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Abstract

Coordination languages for tuple spaces can offer significant advantages in
the specification and implementation of distributed systems, but often do
require manual programming effort to ensure consistency. We propose an ex-
perimental technique for automated replication of tuple spaces in distributed
systems. The system of interest is modelled as a concurrent Go program
where different threads represent the behaviour of the separate components,
each owning its own local tuple repository. We automatically transform the
initial program by combining program transformation and static analysis, so
that tuples are replicated depending on the components’ read-write access
patterns. In this way, we turn the initial system into a replicated one where
the replication of tuples is automatically achieved, while avoiding unneces-
sary replication overhead. Custom static analyses may be plugged in easily
in our prototype implementation. We see this as a first step towards develop-
ing a fully-fledged framework to support designers to quickly evaluate many
classes of replication-based systems under different consistency levels.
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1. Introduction

When designing a distributed system, adopting a suitable coordination
model can be of fundamental importance. To facilitate the specification of
inter-process communication patterns, some coordination languages provide
explicit data-access primitives. In Linda [1], processes can concurrently ac-
cess an associative data store referred to as tuple space, where tuples, i.e.,
sequences of typed data atoms, can be stored to or fetched from. Processes
synchronise and communicate in this way. Introducing multiple tuple spaces
is a natural way to extend Linda [2]: this concept has been further explored
in several related languages such as X10 [3] and Klaim [4]. On large, data-
intensive distributed systems, techniques to optimise data distribution and
locality may significantly improve efficiency. One such technique, replication,
fits very well within the coordination languages framework. The idea is quite
simple: on a store operation, tuples are deployed to a set of target spaces
rather than just to a single one. This increases locality and thus reduces la-
tency, but brings along the problem of consistency: once one copy of a given
tuple is consumed, how are the remaining copies to be affected?

RepliKlaim [5] addresses such tension between performance and consis-
tency by extending Klaim’s operational semantics with replica-aware data
manipulation primitives. The programmer can use these primitives to con-
trol the distribution of the data as well as the consistency level. Yet, doing
so requires programming ingenuity to specify and coordinate the replicas.
Such manual reasoning can be particularly cumbersome because of process
interleaving, and hardly feasible in the presence of a large number of complex
processes. For the same reasons, evaluating different replication strategies
with respect to the intended performance-reliability trade-off can be rather
tricky.

In this paper, we address the above shortcomings by proposing an exper-
imental approach to support the design of replication policies in distributed
systems that use tuple spaces for process coordination and data storage.
More concretely, we present an automated technique to transform the speci-
fications of any such given system into an equivalent version where the tuples
are replicated. The overall approach is sketched in Figure 1. The system of
interest is modelled as a concurrent Go [6] program. The behaviour of each
component of the system is defined by a separate thread of the program.
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Figure 1: An overview of our proposed approach.

Coordination takes place via goSpace [7], a recent Go library which is part
of a family of Klaim implementations called pSpaces.1

To attain automated replication, we first work at the programming inter-
face level, by implementing extended primitives for replica-aware manipula-
tion of tuples. Taking inspiration from the way Klaim’s operational semantics
was extended in RepliKlaim, we extend goSpace’s programming interface to
obtain what we call RepligoSpaces. The extended primitives make it possi-
ble to target multiple tuple spaces for a single store operation. In addition,
an embedded tracking mechanism allows to consistently remove/update the
replicated data at need.

At this point one could immediately obtain full consistency by using the
extended primitives to replicate every tuple to every shared space in the sys-
tem. This could be automatically obtained via program transformation, by
replacing the tuple manipulation operations with their replica-aware versions,
but would likely result in unnecessary overhead. For this reason, between the
replica-aware data-handling layer and the program transformation part, we
introduce a static analysis pass to refine the target spaces for each store
operation.

This simple workflow is easily extensible, given the modularity between
the data-handling layer, the program transformation schema, and the static
analysis procedure. Different static analysis techniques may be plugged in
relatively effortlessly. At the same time, alternative replication policies and
consistency models can be quickly prototyped by altering the existing replica-
aware primitives. We see this as a first step towards developing an integrated
framework to experiment with data replication in distributed systems with

1https://github.com/pSpaces/
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tuple spaces. We would like to emphasise that our goals do not yet include
an efficient implementation of RepligoSpaces. Rather, we aim at providing a
methodology and an experimental framework to analyse the costs and bene-
fits of different replication schemes, supporting system designers in choosing
the most appropriate solution for their application. The case studies and the
proposed replication schemata are reasonably simple as their main purpose
is to show the applicability of our approach.

This paper extends [8] in different ways. To show the extensibility of our
methodology, we gradually build more sophisticated replication techniques
on top of the basic replication mechanism proposed in [8]; in particular, we
add the possibility of limiting the overall number of elements in a tuple space
as well as different well-known replacement policies, which allows to model
more realistic scenarios with limited local memory. We expand the experi-
mental evaluation of the case study considered in [8] to include the alterna-
tive replication mechanisms. We also sketch another case study, a network
of work-stealing cooperating service providers, and discuss how to use our
experimental methodology to assess the effects of the different replacement
policies; in particular, we show how to use our technique to evaluate the
tradeoff between local memory size and quality of service.

The rest of the paper is organised as follows. Section 2 provides a prelimi-
nary introduction to Klaim RepliKlaim, and pSpaces. Section 3 presents our
RepligoSpaces prototype that implements the replica-aware tuple manipula-
tion routines. Section 4 presents our automated replication procedure based
on static analysis and program transformation. Section 5 provides some de-
tails of our prototype implementation and an experimental evaluation of our
approach. Sections 6 and 7 discuss related work, conclusion, and future work.

2. Preliminaries

In this section, we introduce the main languages representing the starting
points of our work. For conciseness, we only describe the language features
used in the rest of the paper. We refer the interested reader to the cited
references for further details.

Klaim. Klaim (Kernel Language for Agents Interaction and Mobility) [4] is
a coordination language to describe distributed systems and that supports a
programming paradigm where both data and processes can be moved from
one computing environment to another. In this paper, we focus on the data
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aspects and refer the reader to the above reference for a general description
of Klaim.

Klaim’s communication model is based on Linda [4, 1], that enables asyn-
chronous communication via a set of operations used to exchange information
through a shared environment referred to as tuple space. A tuple space is a
collection of tuples. A tuple is a finite sequence of actual fields (e.g., expres-
sions, values, processes) or formal fields (i.e., variables). Tuples that contain
variables are also called templates or patterns. ("Journalist", "Sport",

2018) is an example of a tuple, while ("Journalist", category, year) is
a template with two variables category and year. In Linda and its variants,
tuples are retrieved by pattern matching. Two tuples match if they have the
same number of fields, and all the pairs of fields at the same position match:
two actual fields match if their values are equal; an actual field and a variable
match if they have the same type.

Klaim extends Linda by allowing multiple tuple spaces and offering com-
munication primitives with explicit localities. Processes and tuple spaces can
be located on different nodes, and localities represent unique identifiers for
such nodes. Explicit localities allow to distribute and to retrieve data to and
from the localities, and to structure the tuple space. In fact, the data manip-
ulation operations of Klaim are based on the standard Linda primitives for
tuple spaces but, in addition, they explicitly require the target tuple space
as a reference (@ℓ) to the intended locality.

The non-blocking output operation out(t)@ℓ places a tuple t in the tuple
space at location ℓ. The read(T)@ℓ operation selects via pattern matching
one of the tuples at locality ℓ that matches template T ; this operation blocks
until a tuple matching T is found at ℓ. The in(T)@ℓ input operation is
similar to read but it also removes the matched tuple from the tuple space.

In both Linda and Klaim it is also possible to spawn new processes respec-
tively via eval(-) and eval(-)@ℓ. We do not consider process spawning
here as it is not currently implemented in RepliKlaim and pSpaces, and it is
not relevant for our analysis.

RepliKlaim. RepliKlaim [5] adds to Klaim extended tuple manipulation prim-
itives for replica-aware programming. Similarly to Klaim, RepliKlaim pro-
vides a set of blocking and non-blocking operations that add, search and
remove tuples from or to tuple spaces. Tuples in RepliKlaim, i.e., replicated
tuples, have the same format as Klaim’s tuples.

The non-blocking output operation outRK(t,ℓ1 . . . ℓn) permits to add the
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shared tuple t to the data repositories located at all localities ℓϵL (L=ℓ1 . . . ℓn)
atomically (when strong consistency is required) or asynchronously (in case
of weak consistency). Thus, the shared tuple is replicated to every locality
in L.

The input operation readRK(T,ℓ) reads a tuple space. It uses a pattern
T to retrieve a matching tuple (if any) from locality ℓ, but it does not remove
the matching tuple. In case no matching tuple is found, the operation blocks
until a matching tuple becomes available. The operation readRKnb(T,ℓ) is
similar to readRK(T,ℓ) except that it is non-blocking, and returns an empty
tuple when no matching tuple is found.

The input operation inRK(T,ℓ) retrieves a tuple matching the pattern
T at ℓ and removes all replicas of that tuple. This removal is assumed to
happen atomically, meaning that no process may access any tuple space until
all replicas have been removed. Operation inRKw(T,ℓ) also removes a tuple
matching T along with all of its replicas, but the removal of replicas hap-
pens asynchronously. That is, the removal is interleaved with the operations
of other processes, and therefore some tuple spaces may end up in an in-
consistent state in the sense that they store a replica of an already-deleted
tuple. The other operations seen so far never introduce such states, and thus
we say that they preserve strong consistency. Instead, inRKw only preserves
weak consistency, meaning that it only guarantees that all tuple spaces will
be consistent after it completes. In this paper we focus on replication under
strong consistency.

pSpaces. The pSpaces framework is a family of implementations based on
Klaim’s formal semantics and targeted at different modern development plat-
forms, such as Go, Java, and Swift. In this paper we focus on the Go imple-
mentation, goSpace [7].

In pSpaces, a space is a collection of tuples. Spaces can be either local or
remote, in the sense that they can be possibly located on another device. A
remote space supports the same operations as for local spaces, but it needs
slightly different operations to be created and connected with. Every space
is associated with a unique uniform resource identifier (URI) encoded as a
string, i.e., the space identifier. In the rest of the paper, we make no explicit
distinction between local and remote spaces: each component manipulating
the tuple spaces is also associated its own URI, which makes it possible to
figure out whether a space is local or not.

The implementation of pSpaces relies on communication primitives simi-
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lar to those of Klaim, essentially a set of blocking and non-blocking actions
to add, search, and remove tuples to or from a space. A new tuple t is
added to a space s by invoking the non-blocking operation s.Put(t). The
operation s.Query(T) scans a tuple space using pattern matching, block-
ing until a tuple is found. The non-blocking version s.QueryP(T) instead
looks for a tuple in the space and returns the tuple, if any, and a boolean
value indicating whether the operation was successful. The non-blocking
operation s.GetP(T) is similar to s.QueryP(T), but it also removes the
matching tuple, if any, from the space.

3. Programming Interface Extension for Replication

We now present RepligoSpaces, our replica-aware extension of goSpace.
Both pSpaces and goSpace (Sect. 2) allow to manipulate tuples within a sin-
gle space. With RepligoSpaces, we instead allow to manipulate tuples across
multiple spaces. Our extension follows a similar approach to RepliKlaim
with Klaim (Sect. 2). As with RepliKlaim, a store operation takes as an
argument the set of targeted spaces. A tuple t is added to spaces s1 . . . sn via
an MPut(t,s1...sn) operation. The operation MQueryP(s,T) queries a spe-
cific space s for tuples matching pattern T . It returns the found tuple, if any,
or an empty tuple. The operation MQuery(s,T) is similar, but blocks until
a matching tuple is found. Lastly, operations MGetP(s,T) and MGet(s,T)
return a tuple matching T , and remove it from space s and from any other
space where it was previously replicated. The latter blocks until such a tu-
ple is found, while the former simply returns an empty tuple if T cannot be
matched.

We now provide a first possible implementation of the replica-aware tuple
manipulation routines. We then show how to extend this implementation to
model slightly more involved replication mechanisms. Note that we are cur-
rently only considering strong consistency, i.e., atomic operations on tuples.
Also note that in this paper we are concerned with efficiency (and thus data
locality) rather than robustness (redundancy).

3.1. Extended Operations

The MPut operation in Listing 1 adds a tuple to a set of spaces. It takes
as input a tuple t and a set S of space identifiers, in the form of strings that
encode their URIs.
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1 func MPut(t Tuple , Sp Replispace , S [] string) Tuple {
2 Sp.mux.Lock()
3
4 // Create tuple t’ = {t,S}
5 var data [] interface {}
6 data = append(data , t.Fields ...)
7 data = append(data , S)
8 var t1 Tuple = CreateTuple(data ...)
9

10 // Add t’ to each space in S
11 for i := 0; i < len(S); i++ {
12 Sp.Sp[S[i]].Put(t1.Fields ...)
13 }
14
15 Sp.mux.Unlock ()
16 return CreateTuple(t1)
17 }

Listing 1: The MPut operation replicates a tuple over a set of spaces

The idea is then to simply perform a normal goSpace Put operation for
every space in S (lines 10–13). To do so, we need a reference to the space
object identified by the URI at any given position of the set S. For this,
we use a global map Sp from URIs to references to space objects. Note
that this is not a limiting factor as our source transformation procedure will
automatically populate Sp for us (Sect. 4). Note that the actual tuple being
stored is not exactly t, but an extended tuple obtained by appending S to t

(lines 4–7). This avoids centralised tracking of the storage locations [5] and
simplifies the implementation. We are interested in strong consistency, thus
the sequence of Put operations is enclosed in a critical section (lines 2 and
15) to enforce atomicity.

The MQueryP operation illustrated in Listing 2 searches the given space
for tuples matching the given pattern. It takes as input a tuple p (i.e., a
pattern) and a space identifier s, and returns as output a tuple, if any. As the
result of the previous MPut operation as described above, every stored tuple is
extended with an extra field that contains the set of target spaces. Therefore,
our search pattern p will need to be adapted accordingly by appending to p

an extra field to be used as a placeholder to match the set of targeted spaces
in the last field of any stored tuple (line 5 and lines 6–9). The modified
pattern p1 so obtained is used instead of p to retrieve matching tuples at
space s (line 12). On a successful search (lines 14–19), the last field of
the returned tuple is removed as no longer relevant (line 16), and the tuple
originally stored is returned. Otherwise, an empty tuple is returned (line
23). Note that the operation MQuery is similar to MQueryP, except that it
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1 func MQueryP(p Tuple , Sp Replispace , s Space) Tuple {
2 Sp.mux.Lock()
3
4 // Create template p’ = {t,S}
5 var y [] string // <--- extra field to match the space list S
6 var data [] interface {}
7 data = append(data , p.Fields ...)
8 data = append(data , &y)
9 var p1 Tuple = CreateTuple(data ...)

10
11 // Query a tuple via a pattern matching from a specific space
12 t1 , e := s.QueryP(p1.Fields ...)
13
14 // Return the matching tuple without the last field
15 if e == nil {
16 var u = CreateTuple(t1.Fields [:len(t1.Fields) -1]...)
17 Sp.mux.Unlock ()
18 return u
19 }
20
21 // Return an empty tuple when no tuple is available
22 Sp.mux.Unlock ()
23 return CreateTuple ()
24 }

Listing 2: The MQueryP operation to search for a replicated tuple

blocks until a tuple is found, and does not lock access to the tuple space
while waiting, which would result in a deadlock.

The MGetP operation illustrated in Listing 3 uses a pattern p to search
and remove a matching tuple from space s and any other space where it was
replicated. It returns as output the tuple, if any. As for the other operations,
the pattern p needs to be adapted with an extra placeholder to match the
set of target spaces appended to the stored tuples by an MPut operation. We
can then use the modified pattern p1 to scan space s for matching tuples
(line 12). On a successful search (lines 14–35), we extract from the matched
tuple, the set S of spaces holding a replica of the tuple (line 16). To perform
a standard goSpace GetP operation on every space in S, we use the map Sp

to retrieve a reference to the relevant space object identified by the URI in S,
similarly to the procedure used to implement the MPut operation. Thus, upon
searching for the matching tuples from space s (line 12), the list S of all spaces
containing a replica of the matching tuple is extracted and transformed in
the form of strings of spaces identifiers (lines 16–19). The loop (lines 22–34)
performs a GetP operation for every space in the set S of space identifiers
(line 24) using the map Sp and the modified pattern p1. On a successful
search (lines 26–34), at the last iteration, the tuple is stripped from the
extra field containing the target URIs and returned. Note that, since we are
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1 func MGetP(p Tuple , Sp Replispace , s Space) Tuple {
2 Sp.mux.Lock()
3
4 // Create template p’ = {t,S}
5 var y [] string // <--- extra field to match the space list S
6 var data [] interface {}
7 data = append(data , p.Fields ...)
8 data = append(data , &y)
9 var p1 Tuple = CreateTuple(data ...)

10
11 // Search the tuple from space s
12 t1 , e := s.QueryP(p1.Fields ...)
13
14 if e == nil {
15 // Extract the list of all spaces
16 var S = (t1.Fields[len(t1.Fields) -1])
17 // transform the interface type of spaces into the string type
18 var v [] string
19 v = S.([] string)
20
21 // For each space in the set S of space identifiers
22 for s := range v {
23 // Remove the tuple from the relevant spaces
24 u, e1 := Sp.Sp[v[s]]. GetP(t1.Fields ...)
25
26 if e1 == nil {
27 if s == len(v)-1 {
28 // No error: tuple successfully removed from the space
29 u = CreateTuple(u.Fields [:len(u.Fields) -1]...)
30 Sp.mux.Unlock ()
31 return u
32 }
33 }
34 }
35 }
36
37 Sp.mux.Unlock ()
38 return CreateTuple () // Return an empty tuple when no tuple is available
39 }

Listing 3: The MGetP operation for removing a replicated tuple

assuming only strong operations, it should not be possible for the search to be
unsuccessful after passing the first check (line 14). Eventually the operation
returns an empty tuple in case none is found (line 38). Similarly to what
has been said before about MQuery and MQueryP, we obtain the blocking
operation MGet simply by blocking until a matching tuple t is found. When
this happens, we remove t and all of its replicas. During the removal phase,
we forbid processes from performing other operations on the tuple spaces so
as to preserve strong consistency.

3.2. Limited Memory and Tuple Replacement Policies

So far we have considered arbitrarily large tuple spaces (Sect. 3.1). How-
ever, this is too simplistic for many systems of interest such as multi-core pro-
cessors with local caches, wireless sensor networks with resource-constrained
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nodes, and so on. In order to experiment more realistically with replication
in the presence of limited local memory, we introduce memory-limited tuple
spaces, which can store only up to a given number of tuples. This obviously
also begs the question of what should be done when a process attempts to
store a tuple into a space that is already full. We thus provide different re-
placement policies, where transparently a tuple is selected according to a set
of rules and removed from an otherwise full space (possibly along with any
replicas) to make room for the new tuple being inserted.

A possible way to extend the MPut operation of Listing 1 is shown in
Listing 4. We iterate through every space in S (lines 6–14) to store a replica
of tuple t into every space in the set of targets S. Differently from Listing 1,
for every such space s we check (line 8) if the memory limit is non-zero and s

is already full (note the variable ReplLimit that we add to the RepliSpace
object to represent the maximum number of tuples that each space can hold,
the default value 0 meaning unlimited). If so, we must first remove one of
the existing tuples, by calling evictTuple, which selects and removes a tuple
from a full space, according to the chosen policy (more details on this func-
tions later on). This guarantees that, when the execution reaches line 12,
the number of tuples in s is strictly lower than the limit. Notice that we
still aim at preserving strong consistency, therefore any replica of the tu-
ple selected for replacement is removed as well. At this point, we store the
new tuple in s, and call an internal function afterPut() that updates the
space’s counter and perform additional bookkeeping required by the pol-
icy (lines 12–13). Notice that the creation timestamp now is computed only
once, before the loop (line 4), to guarantee that all replicas of the tuple have
the same timestamp. More specifically, time information is recorded in a
TimeRecord object storing the actual timestamp as well as the tuple being
inserted. This is only needed for internal bookkeeping. When these opera-
tions have been performed for all target spaces, we can finish by returning
the inserted tuple (as seen in Listing 1).

Replacement policies are sets of rules that guide the selection of the tuple
to be removed to make room for a new one. In RepligoSpace we consider the
following policies:

– Random replacement (RR): this policy simply removes one random tu-
ple from the tuple space. When prototyping more sophisticated repli-
cation mechanisms, it may be used as a baseline against which to com-
pare. If the access patterns are quite random, RR may be just as effec-
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1 func MPut(t Tuple , Sp Replispace , S [] string) Tuple {
2 ... // Lock mutex , create tuple t’ = (t, S)
3
4 now := TimeRecord{tuple:t’, time:time.Now()} // Get timestamp for t’
5
6 for i := 0; i < len(S); i++ {
7 s := *Sp.Sp[S[i]]
8 if Sp.ReplLimit > 0 && counter [*s] == Sp.ReplLimit {
9 evictTuple(Sp, *s) // Remove a tuple , based on the chosen policy

10 }
11
12 s.Put(t1.Fields ...)
13 afterPut(t1, Sp, *s, now) // Update counter etc., depending on policy
14 }
15
16 ... // Unlock mutex , return t’
17 }

Listing 4: The MPut operation with cache replacement.

tive as the other policies while enjoying a much lower computational
cost [9].

– First in, first out (FIFO): this policy associates to each tuple a times-
tamp that records when it has been stored in the RepliSpace, and
removes the tuple with the lowest timestamp when space is needed.
Notice that our implementation guarantees that replicas of the same
tuple have the same timestamp.

– Least recently used (LRU): similarly to FIFO, this policy removes the
tuple with the lowest associated timestamp. The timestamp initially
represents the moment when the tuple was stored, but is updated every
time the tuple is returned as the result of a Query() or QueryP()

operation. Thus, different replicas of the same tuple may end up having
different timestamps.

Both the memory limit (ReplLimit) and the chosen policy (ReplPolicy)
of the replicated space may be changed at runtime: thus, the current proto-
type allows in principle to handle dynamic memory limits and policies, which
however is beyond the scope of this work.

A replacement policy relies on four functions: afterPut(), afterQuery(),
and afterGet() that are called from within the corresponding primitive op-
erations and perform the required bookkeeping after a tuple is successfully in-
serted, retrieved, or withdrawn from a space, respectively; and evictTuple()

that selects and removes a tuple from a full space, as mentioned earlier.
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In Listing 5 we show a simplified version of these functions for the LRU
policy. Essentially, for every function, the logic for each policy is implemented
as a case within a switch statement. This means that new policies can be
plugged in by simply adding an appropriate case to each function. The only
policy-independent operations are those that allow counting the number of
tuples in each tuple space: namely, we increase counter within afterPut()

(line 2) and decrease it within afterGet() (line 18).
In the case of the LRU policy, we maintain a dictionary lastAccessTime

that tracks the time when the tuple was last retrieved. Whenever we insert
a tuple t into a space s, we initialize lastAccessTime[s][t] to the creation
time of the tuple, now. This is done in the afterPut() function (line 4).
Each time a tuple is retrieved via a Query operation, we capture the current
timestamp and update lastAccessTime[s][t] accordingly (line 12). More-
over, when a tuple is withdrawn, we delete its timestamp from the dictionary
(line 21). Lastly, whenever evictTuple() is invoked to make room for a new
tuple in a full space s, we call a function minByTime() that iterates through
lastAccessTime[s] and returns the tuple with the lowest associated times-
tamp (line 30). Then, we remove this tuple (along with all its replicas) by
means of an MGetP operation (line 35).

3.3. Reactive Replication

In both variants of the replica-aware primitives presented so far (Sect. 3.1
and 3.2) a tuple is immediately replicated to all target spaces that might
need it in the future. Provided that the target spaces are soundly over-
approximated, this yields strong consistency. However, the actual costs of
overhead will heavily depend on the specific application. One might thus
want to evaluate alternative replication mechanisms where the number of
replicas is limited, but occasionally remote lookups may be needed. We
thus propose another variation named reactive replication, as opposed to
the proactive replication seen so far. Under the reactive scheme, we still
rely on an (over-approximated) set of target spaces for each tuple in a store
operation, but only store the tuple into one of the target spaces. When
a process attempts at querying the tuple later, it may have to perform a
remote lookup if the tuple has not been replicated to its local space yet. If
the lookup succeeds, the found tuple is then replicated to the space of the
querying process, to avoid further remote lookups.

We have implemented reactive replication as an optional transformation
in RepligoSpaces. Listing 6 gives an overview of the implementation. Notice
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1 func afterPut(t1 Tuple , Sp Replispace , s Space , now TimeRecord) {
2 counter[s] += 1
3 switch Sp.ReplPolicy {
4 case "lru": lastAccessTime[s][t1.String ()] = now
5 ... // other policies
6 }
7 }
8
9 func afterQuery(t1 Tuple , Sp Replispace , s Space) {

10 switch Sp.ReplPolicy {
11 case "lru":
12 lastAccessTime[s][t1.String ()] = TimeRecord{tuple:t1, time:time.Now()}
13 ... // other policies
14 }
15 }
16
17 func afterGet(t1 Tuple , Sp Replispace , s Space , now TimeRecord) {
18 counter[s] -= 1
19
20 switch Sp.ReplPolicy {
21 case "lru": delete(lastAccessTime[s], t1.String ())
22 ... // other policies
23 }
24 }
25
26 func evictTuple(Sp Replispace , s Space) {
27 var t Tuple
28
29 switch Sp.ReplPolicy {
30 case "lru": t = MinByTime(lastAccessTime , s)
31 ... // other policies
32 }
33
34 // Create template p = {t,S}
35 MGetP(p, Sp, s) // Remove {t,S} along with its replicas
36 }

Listing 5: Implementation of the LRU policy.

that the API is identical to that of Listings 1, 2, and 3, to allow users of
RepligoSpaces to effortlessly switch between the two schemes.

The MPut operation is implemented similarly to Listing 1, except that the
extended tuple (t,S) is only stored into the first space of S (line 5). Now,
assume that a given process attempts to retrieve this tuple from its local space
by performing an MQuery or MQueryP operation. Under the proactive scheme
and assuming a sound static analysis this query would surely succeed, as the
tuple would already have been replicated to every target space (and the local
space would be one of the targets, by soundness of the static analysis). With
reactive replication, instead, the local lookup (line 14) may fail. If so, we
initiate a sequence of remote lookups across the whole replicated space, until
we find a matching tuple. Then, we replicate the tuple locally to prevent
further remote lookups, and return the found tuple (lines 18–29). Finally,
if the template passed to MQueryP does not match any tuple, the operation
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returns an empty tuple (line 31).
The modified MGetP procedure is almost the same as MQueryP. We perform

lookups (first locally, then remotely) to find a tuple that matches the given
template (lines 38–44). If one such tuple is found, we extract from it the set
of spaces S where it may have been replicated. Then, we iterate through S

and remove all replicas of the tuple (lines 46–48). Obviously, no replication
happens here, since the found tuple is going to be removed from every space
anyway. As usual, if no matching tuple is found, an empty tuple is returned
instead.

Notice that this replication scheme still preserves strong consistency, and
makes Put operations lighter: initially, every tuple is stored in a single space,
whereas the proactive scheme would always entail one store operation for
every target space. This comes at a cost of potentially heavier queries, as
the required tuple may not be locally available at first.

4. Static Analysis and Program Transformation

We now discuss our approach to automatically transform an initial Go
program that uses goSpace for data manipulation into an equivalent program
that uses RepligoSpaces (Sect. 3). Intuitively, a fully-consistent but ineffi-
cient replicated system may be easily obtained by atomically re-applying
every output operation to every shared space (regardless of the originally in-
tended target) using the extended programming interface of Sect. 3. We aim
at reducing unnecessary overhead by automatically inspecting the program
to refine the set of target spaces. To that end, we rely on static analysis to
extract from the initial program the data access patterns, and then use this
information during a program transformation phase.

Input Structure. Our initial program (Listing 7) is composed of a set P of
n parallel processes performing concurrent computations over a set S of n
shared tuple spaces. It is worth to observe that the input program may
represent an abstract model of a more complex system whose computations
that do not directly involve tuples are simply abstracted away.

We assume that each process is defined by a separate and unique process
definition function, and that all such functions are collected into the input
program. We denote the process definition functions with P = p1, . . . , pn.
We also assume that the input program additionally contains a main sec-
tion where all the shared tuple spaces are created beforehand and associated
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1 func MPut(t Tuple , Sp Replispace , S [] string) Tuple {
2 ... // Lock mutex , create tuple p’ = (t, S)
3
4 if len(S) > 0 {
5 Sp.Sp[S[0]]. Put(t1.Fields ...) )
6 }
7
8 ... // Unlock mutex , return t’
9 }

10
11 func MQueryP(p Tuple , Sp Replispace , s Space) Tuple {
12 ... // Lock mutex , create template p1 = {p, S}
13
14 t1 , e := s.QueryP(p1.Fields ...)
15
16 if e == nil {
17 ... // Tuple found locally: unlock mutex , return t1
18 } else { // Remote lookup
19 for _, remote := range Sp.Sp {
20 t2, err := remote.QueryP(p1.Fields ...)
21
22 if err == nil {
23 // Replicate tuple locally and return it
24 s.Put(t2)
25 Sp.mux.Unlock ()
26 return t2
27 }
28 }
29 }
30
31 ... // No tuple matches p: Unlock mutex , return empty tuple
32 }
33
34 func MGetP(p Tuple , Sp Replispace , s Space) Tuple {
35 ... // Lock mutex , create tuple p1 = (p, S)
36
37 var S [] string = make ([]string , 0)
38 t1 , e := s.QueryP(p1.Fields ...)
39
40 if e == nil { // Local lookup succeeds
41 S = ... // Extract S from t1
42 } else { // Remote lookup on every space of Sp
43 ... // If a matching tuple t1 is found , extract S from it
44 }
45
46 if len(S) > 0 {
47 ... // Remove t1 from every space in S
48 }
49
50 ... // Unlock mutex , return t1 (or empty tuple)
51 }

Listing 6: Primitives for reactive replication.
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to unique space identifiers, and all the processes are spawned as separate
threads. Finally, we denote with S = s1, . . . , sn the set of spaces shared
among the processes, and associate to each process pi a local tuple space si;
we consider every tuple manipulation operation performed within a process
to be a local operation if it refers to that space, and a remote operation
otherwise.

Output Structure. The output program (Listing 8) retains the same structure
as the input program. The global section of the initial program is extended
with auxiliary data structures, such as the map sp from space identifiers to
concrete references to space objects (line 12) and the map uri from space
objects to space identifiers (line 13) (used for example in Listing 8). An
additional package with the definitions of the extended tuple manipulation
routines (Listings 1, 2, etc.), is added to the import section at the beginning
of the output program (line 3).

In the process definition functions p1, . . . , pn every call to a goSpace
routine is transformed into a call to the corresponding extended primitive
(Sect. 3) to achieve replication accordingly. For MPut operations, the set of
target spaces for replication is added as an argument (e.g., cf. line 21 of List-
ing 7 and Listing 8). Each such set is over-approximated by the procedure
described in the following section. Any other access operation, such as GetP,
Query or QueryP (lines 31 and 40) is instead changed to always refer to the
local space.

Overapproximating the Sets of Target Spaces. It is worth noticing that the
extended tuple manipulation routines (Sect. 3) are independent from the spe-
cific technique used for reducing the set of target spaces for data replication.
In the following, we simply describe a lightweight static analysis technique for
overapproximating such sets of target spaces. The goal of our static analysis
procedure is to work out a refined set of target spaces, i.e., the data-access
tables, for replicating the tuples while preserving strong consistency.

Let us consider a tuple t and a process pi performing an output opera-
tion of t into a specific space sj. The key idea of our approach consists in
determining the set of processes P ′ ⊆ P that can potentially perform a sub-
sequent read operation on that tuple. We identify such processes by looking
at the patterns used in the input operations within the corresponding defi-
nition functions, approximating the actual pattern matching mechanism of
the normal tuple manipulation routines. In practice, given on the one hand
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an output operation and on the other hand an input operation, we check for
a potential match between the tuple being stored and the given search tuple
or template. We repeat this for every process except pi and for every input
operation in the corresponding process definition function, obtaining P ′ by
progressively excluding from P any process that is definitely not involved in
an input operation matching the tuple t. Eventually, the data-access table
for replicating t will be the set S ′ ⊆ S induced by P ′ on S.

For simplicity, let us assume that a field of a tuple t given as input to
an MPut operation can be either a constant or a variable identifier, while a
field of a pattern p taken by MGetP or MQueryP can be either a constant value
or a formal field, namely a typed variable reference. This assumption does
not affect the generality of our approach. Fields that match the result of an
arbitrary expression may be handled by first storing the result in a dedicated
variable and then using a reference to that variable in the tuple. What
matters here is the type of the expression (and therefore of the dedicated
variable), which may be statically determined in languages with strong, static
typing such as Go.

The matching mechanism initially compares the number of fields of t and
p: if they are different, then certainly there is no match; otherwise, there is
still the possibility for t and p to match. The matching is then refined based
on the actual fields of the tuple and the pattern, ignoring any formal fields
or placeholders. A difference of any actual field at the same position of t and
p indicates a mismatch. The matching is eventually refined again by taking
into account the type of the formal fields of p. A type mismatch between
an actual field of t (either a constant or a variable) and the corresponding
formal field of p means no match.

It is worth noticing that combining the matching mechanism described
above with the replica-aware routines from Section 3 preserves consistency,
because:

1. the matching algorithm only avoids replication for those spaces where
a tuple is definitely never going to be accessed (i.e., no matching input
operations for that tuple exist in the whole process definition function
corresponding to that space), and therefore safely over-approximates
the set of target spaces for replication;

2. the tracking mechanism embedded within the replica-aware tuple ma-
nipulation routines guarantees that, when one copy of a tuple is re-
moved, all its replicas are atomically removed as well.
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Program Transformation. We can now transform the initial program to auto-
matically achieve replication, by converting all the operations to goSpace into
calls to the new RepligoSpaces routines introduced in Section 3, and using
as target locations for write operations the sets computed by the matching
technique above.

The program transformation procedure takes as input the initial program
and the data-access tables built via the static analysis pass described above,
and generates a program where each tuple is replicated as indicated by the
corresponding access lists. This can be done by parsing the input program
into an abstract syntax tree, and then performing a series of pattern-based
transformations on (parts of) this tree.

To see how pattern-based syntax tree transformations work, let us now
consider the function call at line 21 of Listing 7, where process1 performs
a Put operation of the tuple ("A",10) into the local tuple space s1. This
fragment of code will trigger transformation because the referenced object
(s1) is a tuple space (which is detected via a symbol table lookup) and the Put
method is among the relevant ones. In the syntax tree, the corresponding
subtree for the whole expression is therefore changed into a call to MPut (see
Listing 1 from Section 3); new child nodes are appended to the function call
node in the syntax tree for the extra parameters as shown in Listing 8. Un-
parsing the syntax tree modified in this way will produce the transformed
program.

Example. We now show how the procedure described above leads from the
program of Listing 7 to the one in Listing 8. The graphs that represent the
data distribution for the initial program (see Listing 7) and the transformed
program (see Listing 8) are shown in Figures 2a and 2c, respectively. Figure
2b represents universal replication and is included for comparison. In the
figures, arrows from left to right indicate write operations; arrows from right
to left read operations. Actual tuple fields, i.e., literals or variable names, are
typeset normally, while placeholders, i.e., type names, are typeset in italics.

Let us first consider the tuple ("A",10) stored by process1 at line 21.
The GetP operation at line 31 process2 uses as the pattern a string constant
and a formal field of integer type. Therefore, the local tuple space s2 is in-
cluded in the set of spaces for replication of ("A",10). Note that the analysis
is control-flow insensitive, as the branch condition at line 29 is ignored.

Now let us consider process3. The size of the pattern given at line 40
and of the tuple ("A",10) under consideration match. The types of the last
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1 import (
2 . "github.com/pspaces/gospace"
3 ...
4 )
5
6
7
8
9

10 func main() {
11 s1 := NewSpace("tcp :// host :12/s1")
12 go Process1 (&s1)
13 ...
14 }
15
16
17
18 func process1 () {
19 var choice bool
20 ...
21 s1.Put("A" ,10)
22 ...
23 s1.Put(choice ,10)
24 ...
25 }
26
27 func process2 () {
28 ...
29 if check {
30 var key int
31 s1.GetP("A" ,&key)
32 }
33 ...
34 }
35
36 func process3 () {
37 ...
38 var choice bool
39 var desc string
40 s1.GetP(&desc ,& choice)
41 ...
42 }
43
44 ...

Listing 7: Initial program

1 import (
2 . "github.com/pspaces/gospace"
3 . "repligospaces"
4 ...
5 )
6
7 var uri = make(map[space]string)
8 var sp = make(map[string ]*Space)
9

10 func main() {
11 s1 := NewSpace("tcp :// host :12/s1")
12 sp["tcp:// localhost :12/s1"] = &s1
13 uri[s1] = "tcp :// host :12/s1"
14 go Process1 ()
15 ...
16 }
17
18 func process1 () {
19 var choice bool
20 ...
21 MPut("A" ,10,targets0)
22 ...
23 MPut(choice ,10, targets1)
24 ...
25 }
26
27 func process2 () {
28 ...
29 if check {
30 var key int
31 MGetP("A" ,&key ,uri[s2])
32 }
33 ...
34 }
35
36 func process3 () {
37 ...
38 var choice bool
39 var desc string
40 MGetP(&desc ,&choice ,uri[s3])
41 ...
42 }
43
44 ...

Listing 8: Transformed program

fields respectively of the tuple and of the pattern do not match (bool vs
integer). Therefore, the tuple is not replicated to s3.

Let us now focus on the tuple (choice,10) stored by process1 at line 23.
The type of the first field of the tuple is known, but its value depends on
previous computations. The pattern used in the input operation in process2

at line 31 does not match this type. The tuple is thus not replicated at s2,
nor at s3 (again, because the pattern at line 40 does not match).

Indeed, in the transformed program (Figure 2c) the only replicated tu-
ple is ("A",10), which is replicated to s2 as it can potentially be accessed
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by process2. Note that there is no need to store this tuple to s1, as no
subsequent matching read operation within process1 occurs. It is worth to
observe that in general this program transformation does not depend on the
specific static analysis technique to work out the set of target locations (e.g.,
the set containing s2 for tuple ("A",10), called targets0 in Listing 8).

P1

P2

P3

S1

S2

S3

("A",10)

(choice,10)

("A", int )

(string,bool )

(a) No replication

P1

P2

P3

S1

S2

S3

(b) Universal replication

P1

P2

P3

S1

S2

S3

(c) Static analysis

Figure 2: Example replication strategies

5. Implementation and Experimental Evaluation

In this section, we describe the implementation of our prototype and
provide an experimental evaluation on our technique.

Overall Workflow and Technical Details. Having defined the structure of the
input program P and of the output program P ′ (Sect. 4), we can now describe
more precisely the overall workflow of our approach (Figure 3).

P syntax
tree

symbol
table

access
table

static
analysis

program
transf.P ′

Figure 3: Static analysis and source transformation for automated replication

The program P is initially parsed to generate an abstract syntax tree. The
syntax tree is traversed to generate the symbol table. During this process we
start visiting the body of the process definition functions, and then of the
nested blocks recursively. As we go along, we assign blocks unique identifiers,
so that as soon a new variable declaration occurs in the syntax tree, that
variable is added to the set of symbols for the current block; the type of the
variable is also extracted from the syntax tree and stored in the symbol table.
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The next step consists in building the access table by extracting informa-
tion from the syntax tree and the symbol table. In particular, we visit the
syntax tree again to detect all the operations on tuples. At the same time,
we search the symbol table to figure out the type of fields for each tuple
occurring as an argument for any of such operations. Eventually, we obtain
for each tuple operation the actual tuple along with the type of each field of
the tuple.

We can now perform static analysis by visiting the syntax tree a third
time and combining information from the symbol table and the access table
in order to overapproximate the set of target spaces for replication.

A program transformation module alters the syntax tree to replace the
tuple manipulation operations occurring in the initial program with their
replica-aware counterparts, where the set of target spaces for each Put op-
eration has been determined by the static analyser. We finally obtain the
modified program P ′ by un-parsing the modified syntax tree. The code of
our open-source prototype is available at https://github.com/lou1306/

Replication/releases/tag/v2.0. The prototype is written in Go, partly
because of the availability of the actively maintained goSpace library, and
partly because the standard libraries for Go provide built-in facilities for
static analysis and transformation of abstract syntax trees, which has greatly
reduced our overall implementation effort.

5.1. Distributed Lookup

Let us now consider a distributed system composed of n computational
nodes, each executing a separate program, and interacting through a decen-
tralised data store equipped with m memory locations. Following a simi-
lar schema to those used in distributed lookup protocols (e.g., Chord [10]),
memory entries are represented as key-value pairs, with a partitioned address
space among the nodes. Each node is responsible for storing m/n memory
entries. A node reads from and writes to either its own local memory, or
that of another node, depending on the source or target memory address.
Each node performs o operations, with p denoting the expected percentage
of write operations.

For such a system, one might consider adopting a replication scheme in
the attempt to reduce non-local access (at the cost of additional local storage,
plus some overhead for replication to non-local storage). To experiment with
this idea, we model the nodes as separate processes, and the local memory
of a node as the local tuple space of the corresponding process, with tuples
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(address, value) representing values held at different memory addresses. The
structure of the program follows that of Listing 7. For simplicity, we assume
that all read operations are QueryP. Write operations are of course Put.

Experiment 1. To evaluate the effect of replication on the system, we conduct
the following experiments. We initially consider a system with {n=4,m=
32}, then one with twice as much memory {n = 4,m = 64}, then a larger
system {n=32,m=256}, and eventually a larger system with twice as much
memory {n = 32,m = 512}. For all these systems, we set o = 16, while
varying p in {10, 20, . . . , 90}. For each combination of the chosen values for
n, m, and p, we generate 10 test cases (i.e., programs) with random data
access patterns. We run each test case 10 times, leading to rounds of 100
runs each. We repeat each such round twice: once on the initial program,
and once on the replicated program obtained with our tool (Sect. 4), for an
overall number of 1800 runs for each of the four considered systems. We
eventually compare the average number of local and remote read and write
operations. The experiments are summarised in Figures 4a, 4b, 4c and 4d
where we compare the average count of non-local memory accesses with and
without replication, for each configuration.

Without replication, both read and write access can be non-local, de-
pending on the address being accessed. With replication, read operations
are always local, because tuples are always replicated where they can be po-
tentially accessed. However, this comes at the cost of extra non-local write
access to replicate the data. If the system tends to read from the shared
memory more often than writing to it, our approach can be beneficial. In
Figures 4a–4d, the number of non-local accesses with replication is max-
imised when the read and write operations occur with the same probability.
Replication seems to be more beneficial with larger memory size (from 32 to
64, or from 256 to 512).

Experiment 2. To assess the difference between proactive and reactive repli-
cation (Sects. 3.1 and 3.2, respectively), we compare their memory usage in
terms of tuples stored in the replicated space.

We consider proactive and reactive replication for the cases {n=4,m=8}
and {n=4,m=16}, fixing o=128, and varying p in {10, 20, . . . , 90}, ending
up with 36 configurations. For every configuration, we generate 10 test cases
with randomized access pattern, and run each test case 10 times. The entire
experiment thus requires 3600 runs. In every run, we measure the maximum
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Figure 4: Non-local read or write operations with and without replication

number of tuples stored simultaneously in the replicated space, and then
compute the average of these measurements for each given configuration.
Notice that this number may easily exceed m, since it includes tuple replicas,
and also because processes never remove tuples (thus, multiple tuples may
refer to the same memory location).

The experimental results are summarised in Figure 5. Reactive replication
always uses less space than proactive replication, and savings increase with
p, until we reach p = 80%. From there on, the number of tuples stored
by proactive replication appears to decrease, likely because queries become
so scarce that there is no longer any need to create replicas; nevertheless,
the savings brought about by the reactive scheme are still significant. Note
that, since both approaches enforce strong consistency, the success rate of the
single read or write operations is the same regardless of the chosen scheme.
Therefore, reactive replication seems beneficial in systems where storage is
expensive but slightly longer execution time for query operations can be
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Figure 5: Tuple space usage under proactive and reactive replication.

afforded.

5.2. Work-stealing Peers

The following scenario is inspired by work stealing scheduling (e.g., [11]),
a collaborative strategy for allocating tasks among processing units in the
attempt to increase the overall efficiency of a concurrent system.

Let us consider a network of peers processing incoming service requests
from external clients. The network provides multiple services. Any peer
(i.e., the receiver) can receive requests for any of the services. By default,
a specific peer is the default target for each service, i.e., it is in charge of
handling all the requests for that service. For simplicity, we assume that the
number of peers and services is the same, and that the i-th peer is the default
target for the i-th service.

Upon an incoming service request, if the default target peer is particu-
larly busy, the receiver will take over, in a work-stealing fashion. Keeping in
mind that the network has no central control, such policy can be enacted as
follows. Each peer keeps track of its own system load locally, by increasing or
decreasing a simple counter when receiving or after processing a service re-
quest, respectively. Therefore, the counter represents the number of requests
that the peer needs to handle. At the same time, depending on a predeter-
mined threshold on the system load, the peer becomes busy or non-busy. A
peer that receives a service request for a busy default target can decide to
steal it, i.e., handle it locally. If the default target is not busy, instead, the
peer will simply forward the request to it.

The above mechanism requires exchange of information across peers. We
wish to use our approach to evaluate the effect of replication, and possibly
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storage limitations, on the efficiency of the network.
We model the system described above as a concurrent Go program where

n is the number of peers, Tb is the busy threshold, TL is the upper load
threshold, and pa is a peer’s probability of accepting (vs. handling) a request.
In addition to the n peers, the system contains one request generator. The
request generator randomly creates 100n service requests and stores them
in the tuple space of their receiving peers. We model a service request as a
triple (i, j, τ) where i is the id of the peer receiving the request, j the service
id, and τ a timestamp recording the creation time of the request.2

Each peer i repeatedly tries to either accept a new request, or handle an
already-accepted request. The request accepting behaviour works as follows.
First, i tries to withdraw a request tuple from its own space with a GetP

operation. If the operation is successful, it returns a triple (x, y, t) where x
is a peer identifier, y a service identifier, and t the time when the request
was created. If y = i, then the peer accepts it and increments a system
load counter l. When the new value of l reaches the busy threshold Tb, i
inserts into its own space a busy tuple (i, "busy"). If y ̸= i, then the peer
checks whether the default target y is busy by looking for the busy tuple
in y’s space. If y is busy, i accepts the request and increments l, possibly
becoming busy by doing so. Otherwise, i simply forwards the request to y
by performing a Put(y, y, t) operation.

The handling behaviour is as follows. The peer first checks whether l≥0.
If this is the case, then there is (at least) one request to be processed, so
the peer can decrease l (meaning that the request has been served). When l
becomes less than Tb, the peer removes the busy tuple from its own space to
signal that it is no longer busy.

The choice between the two behaviours is regulated by the parameters
pa and TL. At every iteration, a peer accepts or handles a request with
probabilities pa or 1− pa, respectively. However, if a peer’s load reaches the
threshold TL, then it will no longer accept any request until its load falls back
below the threshold. This models the fact that a peer has limited resources
and cannot accept an arbitrarily large number of requests without handling
them.

2The timestamp is only used to measure performance, and has no impact on the be-
haviour of the peers.
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Experiment 3. First, we are interested in assessing how replication affects the
time taken by the system to accept a request, as well as the effectiveness of
the work-stealing mechanism itself. To do so, we measure request acceptance
time in four configurations, with Tb in {2, 4, 6, 8}, and fix n=3, pa=75%, and
TL=1.5Tb, under a load of 300 requests. We run each configuration 20 times,
with and without replication, for a total of 160 test cases. We then collect
the average number of stolen requests, as well as the minimum, maximum,
and average request acceptance time.

The experimental results are shown in Figure 6. Notice that wall time was
unsuitable for these measurements, since the replicated program must per-
form more expensive operations (e.g., replicating a tuple to multiple spaces)
than the non-replicated one. Therefore, all times are measured using logical
timestamps (“ticks”), taken from a counter that increases every time one of
the processes (i.e., the peers and the request generator) executes an iteration,
and thus are not affected by our program transformation.

Figure 6b shows how the number of stolen requests in the replicated pro-
gram plateaus at nearly 2/3 of the total number of request. This is the
probabilistic optimum, since 1/3 of requests, on average, are addressed to
the default peer and thus cannot be stolen. In Figure 6a, we can see that
increasing the busy threshold Tb reduces the maximum acceptance time of
requests in the non-replicated program. This makes sense, as the individual
peers are able to accept more request before becoming busy. In the replicated
program, however, we observe the best performance with Tb=4, while higher
values lead to an increase in the maximum time. This may be related to
the fact that peers are more likely to steal requests in the replicated system.
Stealing more requests would make peers more likely to hit the load threshold
TL, forcing them to handle some accepted requests before they can accept
new ones. This could negatively affect acceptance times. Furthermore, some
unlucky requests may be initially addressed to a non-default peer, and then
forwarded to their default one right before it becomes unable to accept re-
quests. Notice that replication barely affects the average acceptance time,
which is quite close to the minimum both with and without replication. This
suggests that most requests are accepted in a much shorter time than the
maximum, otherwise the average time would be noticeably higher.

Experiment 4. We now would like to check how memory-limited tuple spaces
impact the quality of service provided by the peer network. Intuitively, by
enforcing a limit r on the number of tuples that each server can store, we
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Figure 6: Impact of replication on the work-stealing case study.

introduce the possibility of service degradation, i.e., that the network drops
some requests without handling them. We are interested in measuring the
relation between r and service degradation under different replacement poli-
cies. Thus, for each policy, we set up a round of 20 experiments with
n = 3, Tb = 2, TL = 3, pa = 75%, and r in {1, 2, 4, 8}, for a total of 240 test
cases. Then, we measure the minimum, maximum, and average number of
handled requests under each configuration, as well as the average maximum
number of tuples stored in the whole replicated space.

The measurements are shown in Table 7. Predictably, a very low memory
limit r leads to severe degradation, regardless of the policy. However, a value
of r = 8 allows every policy to handle at least 95% of requests on average.
Specifically, FIFO handles 290 requests out of a possible 300 (96.7%); LRU
handles 292 (97.3%); RR handles 287 (95.7%). LRU displays the best average
performance in all settings except r=2. While the average quality of service
shows little difference across all policies, the interval between the minimum
and maximum number of handled requests over all runs appears to worsen
under FIFO and RR as r increases from 1 to 4. When r = 8, both policies
show improvement: this is probably because there are at most 300 requests to
process, so the maximum cannot exceed this value. LRU, on the other hand,
displays an approximately constant range across all values of r. Finally, we
observe that, for low values of r, the much lighter RR policy behaves on par
with, if not better than, the others.

The effects of memory-limited tuple spaces on storage requirements are
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Figure 7: Service degradation and memory usage.

apparent in Figure 7b. Naturally, low values of r result in a much lower
storage footprint, but also lead to severe service degradation, as shown earlier.
Still, with r= 8, the system requires 44% less space than in the unlimited-
memory case (r= 0): we store at most 24 tuples, as opposed to 43. Given
that such a system will drop less than 5% of all requests, the memory-limited
approach may be well suited in a setting where such levels of degradation are
acceptable while storage space comes at a premium.

6. Related work

In addition to the pSpaces family of implementations, tuple space systems
have been embedded in a number of different programming languages. Java
implementations include Klava [12] for Klaim, and jRESP3 for SCEL [13].
jSpace, the implementation of pSpaces in Java, was initially based on a fork of
jRESP. We chose to work on top of pSpaces because it is actively maintained.

Besides RepliKlaim [5], tuple replication has also been implemented in
X10 [14], a general-purpose language for large-scale distributed systems [3].
An extension of Lime, a distributed tuple space for mobile ad-hoc networks,
relies on replication to increase availability [15]. While not explicitly aimed
at replication, LogOp [16] also extends Linda operators with scopes, which
dynamically resolve to one or more tuple spaces upon which the operation

3http://jresp.sourceforge.net/
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will be performed. In all these approaches, the responsibility to control
replication is left to the programmer.

In the attempt to increase scalability, a hierarchical tuple space model
with partial replication has been proposed in [17]. Spatial distribution of
tuples is a rather different approach to ours where tuples contain both content
and replication rules [18]; in this model the propagation of the tuples is
asynchronous and thus strong consistency has to be explicitly programmed.
Alternative distribution mechanisms for tuple spaces based on the concept
of ghost tuples have been proposed in [19], where it is the system that may
decide not to eliminate tuples for using them later.

Tuple-based coordination models focusing on fault tolerance have been
proposed in [20]. Consistency models for replicated data are covered in [21].
Dynamic replication has been considered in [22, 23].

Several program transformation frameworks for different languages are
available. A popular framework for C and C++ is ROSE [24], where the
syntax tree can be directly modified and then un-parsed to obtain the mod-
ified program. Another transformation framework for C and C++, widely
adopted in software verification, is the Clang compiler framework [25]. As
Clang does not allow to modify the abstract syntax tree, program transfor-
mation is obtained by directly altering the relevant fragments of the initial
source code. In our approach the model of the system to be replicated is
expressed as a Go program, and standard Go packages support either of the
above techniques. This was another reason for choosing the Go implementa-
tion among the available ones of pSpaces.

Static verification of concurrent Go programs for bounded liveness and
safety has been considered in [26, 27]. Bounded analysis of concurrent pro-
grams for safe replication has been proposed in [28].

7. Conclusion and Future Work

We have presented RepligoSpaces, a replica-aware extension of goSpace,
and the implementation of Klaim (pSpaces) in Go. We have also discussed
how RepligoSpaces fits within a fully-mechanisable procedure for automated
replication of programs over tuple spaces that relies on combining static anal-
ysis and program transformation. A lightweight static analysis pass on the
initial program computes the sets of target spaces for replication so that the
standard tuple manipulation routines can be replaced by equivalent replica-
aware versions. The combined approach preserves strong consistency, thanks

30



to a tracking mechanism embedded in the tuple manipulation routines and
to the fact that the set of target spaces is safely over-approximated. To re-
alistically model scenarios where memory is constrained, we have enriched
the approach with memory-limited tuple spaces implementing several well-
known replacement policies. Finally, we have introduced an alternative, re-
active replication scheme that replicates tuples on-demand. This reactive
mechanism still preserves strong consistency, and for some applications may
require less storage space than the proactive one at the cost of additional
computations. We implemented a prototype that can automatically apply
these replication schemes to a replica-unaware Go program, allowing us to
evaluate their impact empirically. We then demonstrated this prototype on
a selection of synthetic examples, where replication provides significant ben-
efits. We do not claim these results to be general: replication may be less
effective or even detrimental to performance, depending on the case study.
Our experiments instead aim at demonstrating our tool-assisted methodology
to evaluate the costs and benefits of replication in a distributed system.

In the near future, we plan further work on the static analysis procedure
to improve the accuracy of the over-approximation in the presence of formal
fields, i.e., placeholders in the pattern or variables in the tuple to be stored.
The analysis presented in this paper is simple and lightweight, as it only
requires simple visits of the abstract syntax tree of the program and was
mainly aimed at demonstrating the usage of our experimental framework
for quick prototyping of replication schemes. We plan to initially focus
on simple and efficient techniques to complement the existing analysis with
limited effort. To name a few, constant propagation [29] can reduce the over-
all number of formal fields or restrict the possible values of a given formal
field collecting them over different branching paths; while abstract interpre-
tation [30] can overapproximate the interval ranges of the integer variables
used as formal fields. Dynamic techniques may also complement this work
in interesting ways. For instance, one might extract a probabilistic model of
a running program via a dynamic analysis, generate a goSpace program that
captures this model, and finally use our workflow to analyse whether replica-
tion could guarantee any performance benefits. Dynamic analysis may also
become necessary if we shift our focus towards more open systems, where pro-
cesses may join and leave as they please. This would likely require extending
the programming interface to register and de-register spaces and adjust the
replication mechanism accordingly. To evaluate these extensions, we should
consider further scenarios where replication has successfully been applied to
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other contexts, such as database systems [31], and cloud computing [32], as
well as other consistency models [21, 33].

Clearly, tuple eviction may alter the runtime behaviour of processes that
coordinate or synchronize by means of tuples. This currently limits the ap-
plicability of our limited-memory transformation. To address this limitation,
we may let the user specify a set of patterns to identify critical tuples that
should never get evicted. This feature, in turn, would introduce the risk of
some tuple space getting filled with critical tuples and being unable to accept
new ones. Still, we could formally check the absence of such risks by means
of automated verification tools such as Gomela [34].

We consider our contribution to be a first step towards developing an
integrated framework to experiment with data replication in distributed sys-
tems with tuple spaces. We aim to provide different analyses and consistency
models to choose from, to appreciate the effect of different consistency levels
on many interesting classes of more or less complex distributed systems where
data replication is heavily used. This would allow, for instance, to evaluate
under different consistency levels many interesting classes of systems, such as
models of hardware cache or complex interaction models, where replication
is heavily used, and performance is particularly sensitive to variations in the
data distribution.
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