
Modelling Flocks of Birds from the Bottom Up⋆

Rocco De Nicola1, Luca Di Stefano2,3, Omar Inverso4, and Serenella
Valiani1(�)

1 IMT School of Advanced Studies, Lucca, Italy
2 Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LIG, Grenoble, France

3 University of Gothenburg, Gothenburg, Sweden
4 Gran Sasso Science Institute (GSSI), L’Aquila, Italy

serenella.valiani@imtlucca.it

Abstract. We argue that compositional specification based on formal
languages can facilitate the modelling of, and reasoning about, sophisti-
cated collective behaviour in many natural systems. One defines a sys-
tem in terms of individual components and local rules, so that collective
behaviours emerge naturally from the combined effect of the different
actions of the individual components. With appropriate linguistic con-
structs, this can yield compact and intuitive models that are easy to
refine and extend in small incremental steps. In addition, automated
workflows implemented on top of this methodology can provide quick
feedback, thereby allowing rapid design iterations. To support our argu-
ment, we consider flocking, a well-known example of emergent behaviour
in collective adaptive systems. We build a minimalistic bottom-up model
of a flock of birds incrementally, discussing specific language constructs
as we go along. We then describe a prototype simulator, and use it to
validate our model in a controlled experiment, where a flock is attacked
by a bird of prey. The flock effectively reacts to the attack by splitting
into smaller groups and regathering once the threat subsides, consistently
with both natural observations and previous models from the literature.

1 Introduction

The organization of complex systems in nature, such as flocks of birds, colonies
of ants, schools of fish, swarms of insects, and many more, has long since been at-
tracting considerable interest. Researchers with different background have been
resorting to different mathematical frameworks in order to study these phenom-
ena. For instance, flocking, where a group of birds exhibits coherent patterns of
collective motion, has been modelled using graph theory [24], distributed control
laws [32], and statistical mechanics [3].

This way of modelling is not always practical because it relies on general-
purpose formalisms that may not be very intuitive to use, in addition to the fact
that the system needs to be modelled as a whole, regardless from its natural

⋆ Work partially funded by MIUR project PRIN 2017FTXR7S IT MATTERS (Meth-
ods and Tools for Trustworthy Smart Systems).

structure and often by artificially introducing some kind of central control. In
contrast, in different disciplines, including epidemiology, ecology, economics, and
social sciences [19,14,33,5], there seems to be a growing interest towards com-
positional approaches where the model focusses on the individual components
rather than on the whole system.

Along these lines, in this paper we advocate a bottom-up approach based on
formal specification languages. One defines the system of interest in terms of
individual components and local rules. The collective behaviour of the system
as a whole is not specified explicitly, but can be observed to emerge from the
combined effect of the different actions of the components. This can be of signif-
icant help to reproduce sophisticated collective dynamics intuitively, and, when
combined with appropriate linguistic constructs, can yield compact and intuitive
specifications that are easy to refine. The adoption of a formal language allows
implementing automated workflows for simulation or formal analysis that can
provide feedback quickly, thereby allowing rapid design iterations.

To illustrate our point, we develop a model of a flock by gradually defining
the individual behaviour and features of a bird. As we progressively refine it,
we aim at keeping the behaviour of individual birds as decentralized as possible.
We write our increasingly complex models in an existing language [7], which we
gradually extend with new constructs that keep the specifications compact and
intuitive. Once the model is fully refined, we simulate the evolution of a flock
obtained by composing a number of birds together, and show that it displays
interesting collective features. Namely, when birds are attacked by an external
bird of prey, they are able to first escape from it, and then reassemble into a
coherent flock when they are no longer under threat. This kind of collective
behaviour reflects the one emerging from other models in the literature, but
relies on a rather simple model.

The rest of this paper is structured as follows. We define our model of flocking
behaviour and discuss tailored linguistic constructs for the specification language
in Section 2. We describe our experimental setup for simulation and our con-
trolled experiment in Section 3. We discuss related work in Section 4. Lastly,
in Section 5 we report some final remarks and discuss potential directions for
future work.

2 Specification

In this section, we develop a simplified model that resembles the dynamics of a
flock. We start from describing a set of very simple birds, and then show how
this description can be extended to implement our desired dynamics. As we do
so, we also extend the modelling language itself with new constructs, aiming to
keep the specifications succinct and intuitive.
Description of a bird. Each bird in the flock can be described by two proper-
ties, namely its position and its orientation of movement. We model the former
through a pair of coordinates (x, y) and the latter as a pair of integers (dirx,diry)
representing a heading vector. This description allows to represent both the di-

Listing 1: Baseline agent modelling.

1 agent Bird {
2 Interface =
3 x: 0..G;
4 y: 0..G;
5 dirx: −D..D + 1;
6 diry: −D..D + 1
7

8 Behaviour = Move; Behaviour
9 Move = {

10 x← x + dirx;
11 y← y + diry
12 }
13 }

(0,1) (1,1)(-1,1)

(0,-1) (1,-1)(-1,-1)

(1,0)(-1,0)

(a) D = 1.

(0,2) (1,2)

(2,1)

(-1,2)

(-2,1)

(0,-2) (1,-2)

(2,-1)

(-1,-2)

(-2,-1)

(1,0) (2,0)(-1,0)(-2,0)

(2,2)

(2,-2)

(-2,2)

(-2,-2)

(b) D = 2 (some labels omitted for readability).

Fig. 1: Possible heading vectors that a bird can assume for different values of D.

rection of the bird’s displacement, i.e., the angle subtended by the heading vector,
and the bird’s velocity, represented by the length of the heading vector.

Listing 1 shows how we can model the above description.1 In the first sub-
section (lines 2–6) we define the interface of the agent, where we define and
initialize its observable features, or attributes. Attributes x and y are initial-
ized non-deterministically and can assume any value corresponding to a valid
coordinate on a grid that represents the arena where the flock is located. The
grid is a square with edges of length G, thus the possible values vary from 0
to G − 1 included (lines 3–4). The initial values of dirx and diry range over
[−D,D] (lines 5–6). We use D to denote the maximum displacement along each
coordinate of the grid: note that, as D increases, so does the number of possible
heading vectors, as shown in Figure 1. The actual initial value of each attribute
is chosen non-deterministically.

1 In this paper, we present condensed, human-readable versions of the full, machine-
readable specifications. These are available at https://github.com/labs-lang/

labs-examples/tree/isola2022/isola2022.

https://github.com/labs-lang/labs-examples/tree/isola2022/isola2022
https://github.com/labs-lang/labs-examples/tree/isola2022/isola2022

Listing 2: Alignment.

1 agent Bird
2 Interface = . . .
3

4 Behaviour = Move; Behaviour
5 Move = {
6 p := pick 1;
7 dirx← dirxp;
8 diry← diryp;

9 x← x + dirx;
10 y← y + diry
11 }
12 }

Behaviour of a bird. As for the behaviour of birds, let us initially model a
system in which each bird simply moves along its heading vector set in the initial
state, without ever changing it.

Listing 1 shows how to model such a behaviour. It is expressed through the
recursive definition at line 8 that states that each agent repeatedly carries out the
actions described in theMove process. More in detail, the statement x← x+dirx
at line 10 updates the attribute x, which represent a component of the position
of the agent, with the evaluation of the expression x+dirx, i.e., the new position
that the agent reaches by moving along its heading vector. Attribute y is updated
similarly (line 11). Currently, we assume that agents never reach the edge. Please
note that each assignment is executed atomically, but sequences of assignments
may be subject to interleaving. To prevent interleaving between the assignments
of the different agents, i.e. to execute multiple assignments atomically, these
must be enclosed in curly brackets, as shown in lines 9–12.

Alignment. The specification introduced above does not lead to any kind of
collective behaviour, as birds simply ignore each other and keep moving in their
own, fixed directions. Therefore, we now have to specify birds that are somehow
influenced by other flockmates. Indeed, it is commonly held that flocking be-
haviour is a result of a combination of local interaction mechanisms [13,29]. We
start by considering alignment, i.e., the property whereby each bird adjusts its
own direction according to that of its neighbours. A trivial method for achieving
this is to let each bird imitate the heading of another bird in the flock. To model
this behaviour, each bird must then be able to “watch” other birds and observe
their heading.

Listing 2, lines 6–8 show the changes needed to implement the behaviour
described above. We omit the interface for clarity, as it is the same as that of
Listing 1. Before proceeding, we must stress that, although agents are anonymous
to each other, they do have a concept of identity. This is provided internally by an
identifier (id) that is unique to every agent in the system, performing a function
similar to that of the keywords this or self in many general-purpose programming

Listing 3: Cohesion.

1 agent Bird {
2 Interface = . . .
3

4 Behaviour = Move; Behaviour
5 Move = {
6 p := pick 1;
7

8 a x := xp + ω · dirxp;
9 a y := yp + ω · diryp;

10 sgn x := 0 if x = a x else (−1 if x > a x else 1);
11 diff x := d((x, 0), (a x, 0);
12 . . . (Same for sgn y, diff y)
13 a dirx := sgn x · (D :2 if diff y > diff x else D);
14 a diry := sgn y · (D :2 if diff y < diff x else D);
15

16 dirx← (dirx + a dirx) : 2;
17 x← x + dirx
18 . . . (Same for diry, y)
19 }
20 }

languages. The fact that agents have identifiers allows us to introduce a new
operator, by which an agent can non-deterministically select other agents in the
system: namely, at line 6, the instruction p := pick 1 selects the id of another
agent and stores it into a local variable p. In general, pick k returns k distinct
identifiers that are guaranteed to be different from that of the agent doing the
selection. We use the operator := to denote assignments to local variables; these
are implicitly declared upon their first assignment.

Now that the bird has the identifier of an agent stored in p, it can read its
heading vector by using the syntax dirxp,diryp. In this specification, the bird
simply replaces its own heading vector by that of p (lines 7–8), and then moves
by updating its own position (lines 9–10).

Cohesion. It is evident that birds in a real flock do not simply tend to move
along the same direction, but also get close to each other and try to remain
cohesive. However, the model of birds seen so far is not refined enough to display
this kind of behaviour. In fact, two birds in distant positions will at best assume a
coherent direction of movement, but this will not bring them closer to each other.
Therefore, we now modify the behaviour described above in order to obtain both
alignment and cohesion of the flock. Each bird first selects another bird of the
flock; then, observing its direction, estimates the position where the selected bird
will be in the future, and steers towards that position.

Listing 3 shows how to model this behaviour. Notice that, from now on,
we use a if c else b to denote the ternary operator that evaluates to a when
condition c holds and to b otherwise; the syntax a : b denotes integer division

Listing 4: Flock dispersion and birds collision.

1 agent Bird {
2 Interface = . . .
3

4 Behaviour = Move; Behaviour
5 Move = {
6 p := pick 1;
7 pIsIsolated := forall Bird b, (b = p) or d((xp, yp), (xb, yb)) > δ;

8 appId := id if pIsIsolated else p;
9

10 a x := xappId + ω · dirxappId;
11 sgn x := 0 if x = a x else (−1 if x > a x, else 1);
12 diff x := d((x, 0), (a x, 0);
13 . . . (Same for a y, sgn y, diff y)
14 a dirx := sgn x · (D :2 if diff y > diff x else D);
15 a diry := sgn y · (D :2 if diff y < diff x else D);
16

17 dirx← (dirx + a dirx) : 2;
18 diry← (diry + a diry) : 2;
19 posFree := forall Bird b, (xb ̸= x + dirx) or (yb ̸= y + diry);
20 x← x + dirx if posFree else x
21 y← y + diry if posFree else y
22 }
23 }

with rounding; and d((x1, y1), (x2, y2)) denotes the Manhattan distance between
two points, i.e., |x1 − x2|+ |y1 − y2|. After picking the bird p to be approached
(line 6), we estimate its position after ω steps (lines 8–9). Then, we determine
an approach vector (a dirx, a diry) pointing towards that position. We compute
this vector component-wise at lines 10–14: we omit the instructions for the y-
component for sake of brevity. Lastly, we compute the bird’s new heading vector
as the average of its current one and the approach vector (line 16). This gives
the bird a bit of inertia for a more realistic movement.

Avoiding flock dispersion and collisions. The specifications outlined so far
may still cause undesired outcomes. For instance, the flock may disperse instead
of compacting: this may occur when birds decide to approach other birds that are
separated from the rest of the flock. Additionally, we may end up with collisions,
i.e., two or more birds sharing the same grid location. To avoid the former, we
need to provide birds with the capability of checking whether a bird is isolated.
Similarly, to avoid collision, the bird has to check whether a location is free
before moving.

In Listing 4, we refine our specifications as described above. At line 7, we
check whether bird p is isolated, i.e., its distance from all other birds is greater
than a parameter δ. To perform this check, quantified predicates are introduced,
allowing to predicate over the attributes of all agents, or some agent, of given

Listing 5: Fleeing from a predator.

1 agent Predator { ... }
2

3 agent Bird {
4 Interface = . . .
5

6 Behaviour = Move; Behaviour
7 Move = {
8 p := pick 1 Bird;
9 . . .

10 a diry := sgn y · (D :2 if diff y < diff x else D);
11

12 e := pick 1 Predator;
13 e x := xe + ν · dirxe;
14 esgn x := 1 if x ≥ e x else − 1;
15 ediff x := d((x, 0), (e x, 0));
16 . . . (Same for e y, esgn y, ediff y)
17 e dirx := esgn x · (D :2 if ediff y > ediff x else D);
18 e diry := esgn y · (D :2 if ediff y < ediff x else D);
19

20 e dist := d((x, y), (e x, e y));
21 f dirx := e dirx if e dist < λ else a dirx;
22 dirx← (dirx + f dirx) : 2;
23 . . . (Same for f diry, diry)
24 posFree := forall Bird b, (xb ̸= x + dirx) or (yb ̸= y + diry);
25 x← x + dirx if posFree else x
26 }
27 }

types. The bird will only approach p if it is not isolated; otherwise, it will continue
along its current direction (line 8). Similarly, at lines 19–21, the bird only moves
to the position pointed at by its heading vector if that position is free, i.e., if no
other bird is currently there; otherwise, it stays in its current location.

Fleeing from a predator. Until now, we have considered a flock that is unper-
turbed by external threats. We now want to consider one that may be threatened,
for instance, by a bird of prey. This means that birds should be able to recognize
a predator and flee from it when it gets too close. At the same time, the flocking
dynamics that we have gradually introduced so far should be preserved.

Listing 5 shows the implementation of this new kind of flock. Please notice
that we refine the pick operator introduced in Listing 2 by making it typed. For
instance, at line 8 the bird selects another member of the flock, and then performs
the same operations seen in Listing 4. We omit some of the instructions for sake
of brevity. Similarly, at line 12 the bird selects a Predator, and then evaluates
its distance from itself. If this distance is too small, the bird will not perform its
usual approach to its flockmate; instead, it will flee from the predator. We model

Listing 6: Constraints.

1 assume {
2 GridCentre = forall Bird b,
3 xb > 490 and xb ≤ 510 and yb > 490 and yb ≤ 510
4 DifferentPositions = forall Bird b1, forall Bird b2,
5 b1 = b2 or xb1 ̸= xb2 or yb1 ̸= yb2

6 DirectionNotNull = forall Bird b, dirxb ̸= 0 or diryb ̸= 0
7 }

this fleeing behaviour by computing a repulsive heading vector (e dirx, e diry)
and letting the bird follow it if the predator is closer than a given parameter λ.

3 Simulation results

The aim of this section is to understand whether the specifications provided so far
allow the flock to remain compact. We set up an experimental scenario in which
all birds start from non-deterministically chosen positions in a small area, and a
single bird of prey flies through the centre of this area, threatening the flock. We
aim at showing that the attack of the predator perturbs the flock, which becomes
scattered, and that the flock manages to regroup once the predator leaves.

Let us first assume that all agents are placed within an arena, modelled as a
1024 × 1024 square. If the birds could initially assume any position within the
arena, they could be very scattered. Instead, we want the birds to start close
to each other, as an unperturbed flock would be. Similarly, we want birds not
to start from the same position as others, nor to be stationary (i.e., with a null
heading vector).

Listing 6 shows how to model these initial constraints, by listing them into
a new section of the specifications titled assume. Each constraint is expressed
through a quantified predicate, like those seen in Section 2. Lines 2–3 establish
that birds can only be placed in a 20 × 20 sub-grid at the centre of the arena.
Please note that, due to this initial configuration and the limited number of steps
we will analyse, it never occurs that the flock reaches the edges of the arena.
Lines 4–5 state that two agents cannot assume the same initial position. Finally,
line 6 prescribes non-null heading vectors for every bird.

Listing 7 specifies the predator agent. Our predator has the same attributes
as the birds in the flock: a position (x, y) and a heading vector (dirx,diry). We
give it a very simple behaviour, such that it moves in a straight line along its
initial heading vector. To ensure that a predator intersects the flock, the initial
position and the heading vector are given determined values (lines 3–6). We give
the predator a longer heading vector than those of flock birds, modelling the
fact that it moves faster. The predator’s behaviour is shown at lines 8–12 and is
exactly like the one seen in Listing 1, modelling movement in a straight line.

As mentioned earlier, our aim is to check whether the flock preserves cohesion
after an attack. Specifically, as the predator closes in on the flock, birds will flee

Listing 7: Predator specifications.

1 agent Predator {
2 Interface =
3 x: 480;
4 y: 480;
5 dirx: 3;
6 diry: 3
7

8 Behaviour = Move; Behaviour
9 Move = {

10 x← x + dirx;
11 y← y + diry
12 }
13 }

Listing 8: Specifying a cohesion requirement.

1 check {
2 Cohesion = after B forall Bird b1, forall Bird b2,
3 idb1 = idb2 or d((xb1, yb1), (xb2, yb2)) ≤ k
4 }

from it and thus the distance between any two of them will increase. We want to
study whether this distance manages to decrease again after the predator leaves.
Listing 8 shows the formalization of this property within another section of the
specifications, titled check. The property described above is shown at line 3.
Here, after B denotes that the predicate, which asserts that any two birds are
not farther apart than a parameter k, should hold B steps after the initial state.
In LTL [27], this construct would be expressed as XB , i.e., a sequence of B
applications of the “next” operator X.

To quickly assess whether our flock is capable of displaying this kind of be-
haviour, we implemented a simulation workflow (Fig. 2) that produces random
traces of our specification. Intuitively, we perform a structural encoding of our
specifications into a sequential imperative program [10], and then feed the pro-
gram into a reachability analysis tool to produce one or more random traces of
a desired length. These traces are then automatically translated into the spec-
ification syntax and shown to the user. The simulation traces that we generate
this way also contain information about the satisfaction of properties included
in the specification.

To improve the performance of this workflow, we introduce a concretization
step before feeding the program to the back end. This step is a source-to-source
transformation in which we replace nondeterministic assignments in the program
with deterministic assignments to concrete values, randomly-chosen among the
feasible ones. Specifically, we concretize the initial values of the agents’ attributes
(based on their initial values and on the contents of the assume section), the

Specifications

Execution bound

Frontend Encoder Concretizer Back end

TranslatorExecution trace

Emulation
program

Concretized
program

Fig. 2: Workflow to simulate our specifications.

Table 1: Parameters in our model and their values used in the simulation process.
Name Description Value

B Bound for the cohesion property 600
D Maximal absolute value of heading vector components for birds 2
G Size of the arena 1024
k Maximal distance to satisfy the cohesion property 40
δ Isolation distance 32
λ Safe distance from predator 32
ν Used to estimate the future position of the predator 2
ω Used to estimate the future position of the bird to approach 14

Number of Bird agents 29
Number of Predator agents 1

agents’ scheduling, and the identifiers returned by pick statements. This way, we
partially resolve nondeterminism upfront, alleviating the workload of the back
end and leading to faster generation of traces. To implement this workflow, we
extended SLiVER,2 a tool originally aimed at formal verification of collective
systems [10,11]. Namely, we added support for the new constructs described
in Section 2, adapted its program generator to the simulation use case, and
implemented the concretization step.

Table 1 sums up the parameters in our models and their values in our simu-
lations, as well as the composition of the system. Notice that we use B both as
the bound of the cohesion property and as the desired length of our simulations.
We assume round-robin scheduling: thus, every trace is a sequence of epochs in
which each agent performs exactly one action. It is worth recalling that, in this
context, an atomic block is regarded as a single action. In our view, this as-
sumption, though demanding, is reasonable when modelling a real-world system.
Furthermore, it is significantly weaker than the implicit synchrony assumptions
of other models [29,2], in which all agents are required to evolve in lockstep.
In fact, this requirement implies that the future state of individual agents de-
pends on the current state of the whole system, and that state changes happen
simultaneously for all agents.

Fig. 3 shows the visual representation of a trace generated through this sim-
ulation process. Each bird is represented by a triangle pointing in the direction
of its heading vector; the predator is the larger, red triangle with black outline.

2 https://github.com/labs-lang/sliver/

https://github.com/labs-lang/sliver/

Fig. 3: A trace generated through simulation. The predator is the red triangle
with black outline.

Notice that, in this trace, birds are never in the same position, and overlapping
triangles are merely an artefact of the visualization. As we expected, the trace
shows that the predator attack does introduce a certain amount of dispersion in
the flock as birds move to avoid the threat; however, birds are eventually able
to regroup and reorient themselves coherently, satisfying the property that we
specified in Listing 8. As a final remark, we should stress that our simulation
workflow helped us throughout the specification process: for instance, they made
us realize the potential for flock dispersion in Listing 3, guiding us to develop
the more refined Listing 4.

4 Related work

Models of flocking behaviour in the literature rely either on equational mod-
elling, using for instance differential equations [34], discrete-time dynamics [2,29]
or statistical mechanics [3]; on decentralized control laws, either developed ad-
hoc [35] or synthesized from a centralized controller [23]; or on language-based
specifications, such as the ones presented in this work.

An advantage of language-based approaches is that models can be gradually
refined, or compared against each other, with little effort. For instance, the

framework of [20] has been used to model different predator tactics (such as
attacking the centroid of the flock, the nearest prey, or the most isolated one)
and different versions of flocking behaviour: simulations show that preys with a
more individualistic behaviour are more likely to get caught, while more social
flocks provide better chances of survival [8].

Formal specification languages also enable exhaustive exploration of the state
space, which can provide strong guarantees about the behaviour of a system, or
find subtle bugs that are hard to detect through simulations alone. As an exam-
ple, the alpha algorithm [36], which was supposed to make a flock of scattered
agents aggregate in a small region of space, has been found to be incorrect [18,1]
by verifying models of the algorithm written in ISPL [22] or NuSMV [6]. Emula-
tion programs may similarly enable formal analysis of high-level specification by
means of structural encodings towards lower-level languages, allowing to reuse
different existing verification technologies [10,12].

Bottom-up and simulation-aided design is also common in the engineering
of robot swarms and related classes of robotic systems [4]. In this context,
robots are typically programmed at the individual level, using either general-
purpose languages such as C++ or Python, or higher-level, domain-specific for-
malisms [9,25], possibly relying on existing robotic middleware such as ROS [28].
The resulting programs are evaluated by simulating the robots under one of sev-
eral available simulation platforms [17,26,30] to empirically check whether the
swarm exhibits an adequate collective behaviour. These platforms also support
physical simulations, allowing to check how real-world phenomena (like gravity,
collisions, etc.) may interfere with the agents. These kinds of interactions with
the environment are out of the scope of this work, but it might be worthwhile
to integrate these platforms into our simulation workflow.

5 Conclusion

In this work, we have considered the natural collective behaviour known as flock-
ing, and we have shown how compositional models can help reasoning about the
individual dynamics that lead to its emergence. To this end, we gradually re-
fined an extremely simple individual behaviour into a more elaborate, but still
rather compact and intuitive, final specification. This specification allows a flock
of birds to display some interesting collective features. By feeding it to an auto-
mated simulation workflow, we indeed showed that the birds are able to counter
the threat of a predator by splitting into smaller groups that reassemble once
the danger subsides. This successfully reproduces the behaviour observed both
in real-life flocks and in other models [2].

We are considering several interesting directions for future work on this sub-
ject. Our simulation workflow is still experimental and, while it does simulate
the model of Section 2 well, we do not expect it to work in every scenario. For
instance, specifications that contain guarded statements may be hard to simu-
late, since some concretizations may fail to satisfy some guards and thus make
it impossible to produce a trace of the desired length. To work around these is-

sues, we plan to customize the back end so that we can modify the concretization
constraints until a valid trace is obtained.

We intend to complement the simulation-based approach shown in this work
with exhaustive state space exploration techniques that may formally prove the
emergence of desired collective features, regardless of the initial state or the sys-
tem or the specific interactions between agents. We may achieve this by adapting
existing techniques based on verification of emulation programs [10], possibly ex-
tending them to support expressive temporal logics such as LTL [27]. This goal
may also benefit from a more rigorous formalization of the linguistic constructs
introduced in Section 2, which is also reserved for future work. Since the cost of
exhaustive analysis may be prohibitive for very large system, we plan to further
extend our simulation workflow to enable lightweight formal methods, such as
statistical model checking [31], allowing us to at least obtain statistical evidence
on the correctness of these systems. Our framework’s capability to check for
property satisfaction during simulation can be seen as a rudimental form of run-
time verification [21]. Extending this capability to larger classes of monitorable
properties [15] is also planned as future work.

We can trivially parallelize our simulation workflow by running it on mul-
tiple machines at once; moreover, we might further improve performances by
implementing distributed techniques in the back end [16]. Working in these two
directions may allow us to generate large numbers of traces for massive systems.
Generating effective visualizations from a textual trace is also essential to sup-
port the design process. So far, our automated visualization tool (which we used,
for instance, to generate Fig. 3) is tailored to the flocking case study: building
a more generic framework, or integrating our workflow into existing simulation
platforms, would be interesting contributions.

References

1. Antuña, L.R., Araiza-Illan, D., Campos, S., Eder, K.: Symmetry reduc-
tion enables model checking of more complex emergent behaviours of swarm
navigation algorithms. In: 16th Annual Conference Towards Autonomous
Robotic Systems (TAROS). LNCS, vol. 9287, pp. 26–37. Springer (2015).
https://doi.org/10.1007/978-3-319-22416-9 4

2. Ballerini, M., Cabibbo, N., Candelier, R., Cavagna, A., Cisbani, E., Giardina, I.,
Lecomte, V., Orlandi, A., Parisi, G., Procaccini, A., Viale, M., Zdravkovic, V.:
Interaction ruling animal collective behavior depends on topological rather than
metric distance: Evidence from a field study. Proceedings of the National Academy
of Sciences 105(4), 1232–1237 (2008). https://doi.org/10.1073/pnas.0711437105

3. Bialek, W., Cavagna, A., Giardina, I., Mora, T., Silvestri, E., Viale, M., Walczak,
A.M.: Statistical mechanics for natural flocks of birds. Proceedings of the National
Academy of Sciences 109(13), 4786–4791 (2012)

4. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: A review
from the swarm engineering perspective. Swarm Intelligence 7(1), 1–41 (2013).
https://doi.org/10.1007/s11721-012-0075-2

https://doi.org/10.1007/978-3-319-22416-9_4
https://doi.org/10.1073/pnas.0711437105
https://doi.org/10.1007/s11721-012-0075-2

5. Cederman, L.E.: Endogenizing geopolitical boundaries with agent-based modeling.
Proceedings of the National Academy of Sciences 99 Suppl 3, 7296–7303 (2002).
https://doi.org/10.1073/pnas.082081099

6. Cimatti, A., Clarke, E.M., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri,
M., Sebastiani, R., Tacchella, A.: NuSMV 2: An opensource tool for symbolic
model checking. In: 14th International Conference on Computer Aided Verification
(CAV). LNCS, vol. 2404, pp. 359–364. Springer (2002). https://doi.org/10.1007/3-
540-45657-0 29

7. De Nicola, R., Di Stefano, L., Inverso, O.: Multi-agent systems with vir-
tual stigmergy. Science of Computer Programming 187, 102345 (2020).
https://doi.org/10.1016/j.scico.2019.102345

8. Demsar, J., Lebar Bajec, I.: Simulated predator attacks on flocks:
A comparison of tactics. Artificial Life 20(3), 343–359 (2014).
https://doi.org/10.1162/ARTL a 00135

9. Desai, A., Saha, I., Yang, J., Qadeer, S., Seshia, S.A.: DRONA: A
Framework for Safe Distributed Mobile Robotics. In: ICCPS (2017).
https://doi.org/10.1145/3055004.3055022

10. Di Stefano, L., De Nicola, R., Inverso, O.: Verification of distributed systems via
sequential emulation. ACM Transaction on Software Engineering and Methodology
31(3) (2022). https://doi.org/10.1145/3490387

11. Di Stefano, L., Lang, F.: Verifying temporal properties of stigmergic collective sys-
tems using CADP. In: 10th International Symposium On Leveraging Applications
of Formal Methods, Verification and Validation (ISoLA). LNCS, vol. 13036, pp.
473–489. Springer (2021). https://doi.org/10.1007/978-3-030-89159-6 29

12. Di Stefano, L., Lang, F., Serwe, W.: Combining SLiVER with CADP to ana-
lyze multi-agent systems. In: 22nd International Conference on Coordination Mod-
els and Languages (COORDINATION). LNCS, vol. 12134, pp. 370–385. Springer
(2020). https://doi.org/10.1007/978-3-030-50029-0 23

13. Emlen, J.T.: Flocking behavior in birds. The Auk 69(2), 160–170 (1952)

14. Finkelshtein, D., Kondratiev, Y., Kutoviy, O.: Individual based model with compe-
tition in spatial ecology. SIAM Journal on Mathematical Analysis 41(1), 297–317
(2009). https://doi.org/10.1137/080719376

15. Francalanza, A., Aceto, L., Ingólfsdóttir, A.: On verifying hennessy-milner
logic with recursion at runtime. In: 6th International Conference on Run-
time Verification (RV). LNCS, vol. 9333, pp. 71–86. Springer (Sep 2015).
https://doi.org/10.1007/978-3-319-23820-3 5

16. Inverso, O., Trubiani, C.: Parallel and distributed bounded model check-
ing of multi-threaded programs. In: 25th Symposium on Principles and
Practice of Parallel Programming (PPoPP). pp. 202–216. ACM (2020).
https://doi.org/10.1145/3332466.3374529

17. Koenig, N., Howard, A.: Design and use paradigms for Gazebo, an open-
source multi-robot simulator. In: IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS). vol. 3, pp. 2149–2154 vol.3. IEEE (2004).
https://doi.org/10.1109/IROS.2004.1389727

18. Kouvaros, P., Lomuscio, A.: A counter abstraction technique for the verification
of robot swarms. In: 29th Conference on Artificial Intelligence (AAAI). pp. 2081–
2088. AAAI (2015)

19. Kuylen, E., Liesenborgs, J., Broeckhove, J., Hens, N.: Using individual-based mod-
els to look beyond the horizon: The changing effects of household-based clustering

https://doi.org/10.1073/pnas.082081099
https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1016/j.scico.2019.102345
https://doi.org/10.1162/ARTL_a_00135
https://doi.org/10.1145/3055004.3055022
https://doi.org/10.1145/3490387
https://doi.org/10.1007/978-3-030-89159-6_29
https://doi.org/10.1007/978-3-030-50029-0_23
https://doi.org/10.1137/080719376
https://doi.org/10.1007/978-3-319-23820-3_5
https://doi.org/10.1145/3332466.3374529
https://doi.org/10.1109/IROS.2004.1389727

of susceptibility to measles in the next 20 years. In: 20th International Confer-
ence on Computational Science (ICCS). LNCS, vol. 12137, pp. 385–398. Springer
(2020). https://doi.org/10.1007/978-3-030-50371-0 28

20. Lebar Bajec, I., Zimic, N., Mraz, M.: Simulating flocks on the wing:
The fuzzy approach. Journal of theoretical biology 233, 199–220 (2005).
https://doi.org/10.1016/j.jtbi.2004.10.003

21. Leucker, M., Schallhart, C.: A brief account of runtime verification.
Journal of Logic and Algebraic Programming 78(5), 293–303 (2009).
https://doi.org/10.1016/j.jlap.2008.08.004

22. Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: An open-source model checker for
the verification of multi-agent systems. Software Tools for Technology Transfer
19(1), 9–30 (2017). https://doi.org/10.1007/s10009-015-0378-x

23. Mehmood, U., Roy, S., Grosu, R., Smolka, S.A., Stoller, S.D., Tiwari, A.:
Neural flocking: MPC-based supervised learning of flocking controllers. In:
23rd International Conference on Foundations of Software Science and Com-
putation Structures (FoSSaCS). LNCS, vol. 12077, pp. 1–16. Springer (2020).
https://doi.org/10.1007/978-3-030-45231-5 1

24. Olfati-Saber, R.: Flocking for multi-agent dynamic systems: Algorithms and
theory. IEEE Transactions on Automatic Control 51(3), 401–420 (2006).
https://doi.org/10.1109/TAC.2005.864190

25. Pinciroli, C., Beltrame, G.: Buzz: An extensible programming language
for heterogeneous swarm robotics. In: IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). pp. 3794–3800. IEEE (2016).
https://doi.org/10.1109/IROS.2016.7759558

26. Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla,
M., Mathews, N., Ferrante, E., Di Caro, G., Ducatelle, F., Birattari, M.,
Gambardella, L.M., Dorigo, M.: ARGoS: A modular, parallel, multi-engine
simulator for multi-robot systems. Swarm Intelligence 6(4), 271–295 (2012).
https://doi.org/10.1007/S11721-012-0072-5

27. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium
on Foundations of Computer Science (FOCS). pp. 46–57. IEEE (1977).
https://doi.org/10.1109/SFCS.1977.32

28. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Berger, E.,
Wheeler, R., Ng, A.Y.: ROS: An open-source robot operating system. In: ICRA
Workshop on Open Source Software (2009)

29. Reynolds, C.W.: Flocks, herds and schools: A distributed behavioral model. In:
Proceedings of the 14th Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH 1987, Anaheim, California, USA, July 27-31, 1987. pp.
25–34. ACM (1987). https://doi.org/10.1145/37401.37406

30. Rohmer, E., Singh, S.P.N., Freese, M.: V-REP: A versatile and scal-
able robot simulation framework. In: IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS. pp. 1321–1326. IEEE (2013).
https://doi.org/10.1109/IROS.2013.6696520

31. Sen, K., Viswanathan, M., Agha, G.: Statistical model checking of black-
box probabilistic systems. In: 16th International Conference on Computer
Aided Verification (CAV). LNCS, vol. 3114, pp. 202–215. Springer (2004).
https://doi.org/10.1007/978-3-540-27813-9 16

32. Shi, H., Wang, L., Chu, T.: Flocking of multi-agent systems with a dy-
namic virtual leader. International Journal of Control 82(1), 43–58 (2009).
https://doi.org/10.1080/00207170801983091

https://doi.org/10.1007/978-3-030-50371-0_28
https://doi.org/10.1016/j.jtbi.2004.10.003
https://doi.org/10.1016/j.jlap.2008.08.004
https://doi.org/10.1007/s10009-015-0378-x
https://doi.org/10.1007/978-3-030-45231-5_1
https://doi.org/10.1109/TAC.2005.864190
https://doi.org/10.1109/IROS.2016.7759558
https://doi.org/10.1007/S11721-012-0072-5
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1145/37401.37406
https://doi.org/10.1109/IROS.2013.6696520
https://doi.org/10.1007/978-3-540-27813-9_16
https://doi.org/10.1080/00207170801983091

33. Stiglitz, J.E., Gallegati, M.: Heterogeneous interacting agent models for under-
standing monetary economies. Eastern Economic Journal 37(1), 6–12 (2011).
https://doi.org/10.1057/eej.2010.33

34. Toner, J., Tu, Y.: Flocks, herds, and schools: A quantitative the-
ory of flocking. Physical Review E 58(4), 4828–4858 (1998).
https://doi.org/10.1103/PhysRevE.58.4828

35. Vásárhelyi, G., Virágh, C., Somorjai, G., Tarcai, N., Szörényi, T., Nepusz, T.,
Vicsek, T.: Outdoor flocking and formation flight with autonomous aerial robots.
In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
pp. 3866–3873. IEEE (2014). https://doi.org/10.1109/IROS.2014.6943105

36. Winfield, A.F.T., Liu, W., Nembrini, J., Martinoli, A.: Modelling a wireless
connected swarm of mobile robots. Swarm Intelligence 2(2-4), 241–266 (2008).
https://doi.org/10.1007/s11721-008-0018-0

https://doi.org/10.1057/eej.2010.33
https://doi.org/10.1103/PhysRevE.58.4828
https://doi.org/10.1109/IROS.2014.6943105
https://doi.org/10.1007/s11721-008-0018-0

	Modelling Flocks of Birds from the Bottom Up

