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Abstract. We demonstrate a novel methodology that integrates intuitive
modelling, simulation, and formal verification of collective behaviour in
biological systems. To that end, we consider the case of a colony of foraging
ants, where, for the combined effect of known biological mechanisms such
as stigmergic interaction, pheromone release, and path integration, the
ants will progressively work out the shortest path to move back and forth
between their nest and a hypothetical food repository. Starting from an
informal description in natural language, we show how to devise intuitive
specifications for such scenario in a formal language. We then make use of
a prototype software tool to formally assess whether such specifications
would indeed replicate the expected collective behaviour of the colony as
a whole.

Keywords: Agent-based models · Collective behaviour · Foraging · Ant
colonies · Simulation · Formal verification.

1 Introduction

Researchers in systems biology, ecology, and countless other disciplines have long
since been interested in computational methods to rapidly explore promising ideas
and hypotheses without having to resort to controlled real-world experiments
or field studies. More specifically, agent- or individual- based models have been
suggested as an effective research aid across several research areas [5,19]. In these
models, the system is represented as a collection of autonomous, interacting
components (or agents), whose interaction both lead to, and may be influenced
by, the emergence of collective phenomena.

This form of modelling is becoming increasingly popular, owing to the con-
tinuous growth in available computational power and its ability to faithfully
reproduce non-linear and complex dynamics [27,33]. A common approach to
so-called agent-based modelling [1,12,23,39] is to describe the individual agents
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through mathematical formalisms, e.g., interconnected continuous- or discrete-
time dynamical systems. This does have its benefits, as it allows leveraging
powerful analytical tools developed in well-established areas of mathematical
research, and in particular allow simulation through efficient numerical meth-
ods. However, it requires a considerable learning curve, and is hardly suited to
incremental or compositional modelling.

We argue that adopting a tailored formal language may provide better affor-
dances, enabling an intuitive modelling methodology where informal ideas and
concepts related to the behaviour of a system gradually evolve into machine-
tractable models expressed through formal specifications. Such models can be
maintained and refined with limited effort, for instance to introduce small vari-
ations in the attempt to prove or disprove specific hypotheses on a system
of interest. Besides, adopting a language with formal semantics opens up to
a variety of possibilities in terms of formal analysis techniques, and can thus
offer considerably more rigorous forms of reasoning than possible with massive
simulation [14].

Our methodology (sketched in Fig. 1) aims at supporting intuitive agent-
based modelling of the system of interest, while reducing the overall technical
effort for automated analysis. In practice, one starts by identifying the relevant
characteristics of the environment and of the agents populating it. Then, one
sketches an informal description of the behaviour of the agents in natural language.
Such a description identifies the main actions carried out by the agents, and the
effect of such actions on their own characteristics and on the environment. Then,
taking advantage of a domain-specific language, one progressively expands such
main actions into more detailed sequences of operations, eventually working out
full formal specifications. Thanks to a mechanised procedure, at this point the
formal specifications can either be simulated or formally verified. Simulation is
less computationally expensive than verification, and allows for quick feedback
initially. By inspecting simulated system evolutions, one can quickly identify and
fix possible problems, such as situations that are not realistic, or trivial violations
of some simple property of interest. After one or more rounds of refinements, one
can start to analyse the emerging behaviour of interest, again via more extensive
simulations, or formal verification, and so on, possibly until the verification
verdict is satisfactory.
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Fig. 1: A visualization of our proposed methodology.
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To demonstrate our methodology, we focus on the scenario of foraging
ants, where multiple known biological mechanisms, such as stigmergic inter-
action [34,28], pheromone release [16], and path integration [38], take place.
Starting from an informal description of the behaviour of the ants in plain
English, we gradually obtain behavioural specifications in an existing formal
language [13]. We then wonder whether our ant colony model would somehow be
able replicate the well-known emerging behaviour observed by Goss et al. [22],
whereby the ants will gradually work out the shortest path to move back and
forth between the nest and the food repository. To that end, we discuss how state-
of-the-art general-purpose techniques for automated analysis [17] can fit within
our methodology and be automatically re-used to either simulate or formally
verify the specifications. The possibility of integrating simulation and formal
analysis within the same workflow is a particularly relevant element of novelty
in this context: on the one hand simulation allows to quickly evaluate possible
hypotheses of interest on the system under analysis; on the other hand, formal
analysis provides a considerably more rigorous formalism that can effectively
pinpoint so-called rare events which usually are difficult to pinpoint, or prove
their absence for good.

The paper is structured as follows. In Section 2 we introduce the scenario of
a colony of foraging ants and develop our formal specifications for it. In Section 3
we show how to analyse the specifications in order to assess the emergence of the
mentioned collective behaviour of interest in the colony. We discuss related work
in Section 4 and provide our concluding remarks in Section 5.

2 Modelling

In this section, we develop a model to replicate the collective behaviour of a
colony of foraging ants, where different mechanisms extensively studied in biology
take place. Starting from an informal description of the behaviour of interest in
English, we gradually obtain intuitive specifications in a formal language known
as LAbS [13].

Let us consider a colony of ants initially moving chaotically while searching
for food. Over time, the ants are progressively influenced by the presence of
pheromone in the environment: an ant may smell traces of pheromone nearby,
and move towards it, following the mechanism of stigmergic interaction observed
in several species [34,28]. Having picked up food, the ant will return to its nest
using the most efficient route thanks to a well-known ability known as path
integration [38]; at the same time, the ant releases pheromone on its way back to
the nest, following the pattern of pheromone release observed in [16].

Let us now focus on the environment in which the colony operates. We assume
that the space is a two-dimensional arena of regular shape, initially without traces
of pheromone; we also assume for simplicity that there exists a single source of
food, and that there are no obstacles. In Listing 1, we model the arena as a square
grid of size size and the coordinates of the food repository as (foodx , foody). We
represent the amount of pheromone at each position of the arena as an array
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Listing 1: Definition of the environment
and external parameters.

1 system {
2 extern = size, n, foodx, foody, m, k
3 environment = ph[size, size]: 0
4 spawn = Ant: n
5 }

Listing 2: Attributes of an ant.

1 agent Ant {
2 interface = x: 0..size; y: 0..size;
3 nextX: 0; nextY: 0
4 ...
5 }

initially containing only zeros (line 3). We eventually specify that our colony
consists of n ants (line 4). Note that foodx , foody , size, and n are parameters of
the specifications whose value is to be set by the user at the beginning of the
analysis; the same holds for m (that constrains the range of movement for every
ant), and for k (discussed later).

To model the position and movement of an ant, we introduce separate features
(or attributes) to keep track of its current position and the position it wishes
to move to. We assume that initially every ant starts from any position within
the arena. Intuitively, here we are assuming that the ants have already been
exploring the arena for a while, and thus might have ended up anywhere in
the arena. Listing 2 shows how this is formalized in LAbS. At line 2, x and y
indicate the coordinates of the ant within the grid; the notation 0..size indicates a
non-deterministic value in the interval ranging from 0, inclusive, to size, exclusive.
Lines 3 initialize the coordinates of the position where the ant wishes to move.

We can now describe the behaviour of an ant. Following the informal descrip-
tion at the beginning of the section, an ant repeatedly explores the arena until it
finds some food, heads back to its nest, and finally starts over. This is formalized
in Listing 3, where an ant’s behaviour (Behavior) is described as a sequence of
steps, or, more formally, processes: one for exploring (Explore), one for returning
to the nest (GoHome), and one (Behavior) which is actually a recursive call to
repeat the same sequence indefinitely. The rest of the section is dedicated to
formalizing such three processes; from now on our listings will omit the other
parts of the ants’ specification and only show the behavioural definitions.

The Explore process is composed of a sensing phase during which the ant
looks for nearby pheromone, and a moving phase when the ant either goes to a
pheromone-marked position or, if none is sensed, moves chaotically. When follow-
ing the GoHome behaviour, the ant marks its current position with pheromone
and then moves one step closer to the nest (as mentioned earlier, we can assume
that an ant knows the right way home thanks to path integration).

Listing 4 expands the specifications of the process Explore and GoHome. Lines 6–
10 shows the details for Explore. The exploration consists in first searching for
pheromone and then moving, but only as long as the ant is not at the same
position as the food source. We enforce this requirement at line 7: if it does not
hold, the rest of the process is skipped. The definition of SmellPheromone in
Listing 4 involves two additional processes, namely SmellPheromone and Move
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Listing 3: High-level behaviour of an ant.
1 agent Ant {
2 interface = ...
3

4 Behavior =
5 Explore;
6 GoHome;
7 Behavior
8 }

(lines 8–9), followed by a self-loop, to make sure the process loops until the ant
finds itself at the food repository, at which point it will break out of the process.

Let us now expand on SmellPheromone. Initially, an ant searches for nearby
traces of pheromone considering some position at maximum sensing distance m
and then checking whether it contains a pheromone marking. Listing 4 (lines 24–
40) encodes such behaviour. Observe that the process description is enclosed in
curly braces: this specifies that all actions therein are executed by the ant in a
single step. Lines 25–26 pick two a non-deterministic value between 1 and m+ 1,
which are used to select two positions within the sensing distance of the ant
(textx1, texty1) and (textx2, texty2) (lines 27–30). To ensure that they are within
the grid, their values are compared and only those between 0 and size− 1 are
accepted. Lines 32–39 define the position (nextX, nextY) that the ant will move
to if it detects pheromone. Note that, if the ant does not detect pheromone at
either of the two observed positions, the desired position is the current position
of the ant.

Listing 4 (lines 12–21) defines the actual movement of the ant. If the ant
has detected pheromone at one of the two previous positions, the content of the
block is ignored and the position of the ant updated with the desired position
(line 22). In case no pheromone was detected, the ant chooses a reachable position
nearby (lines 14–16) within the grid (lines 17–20) and updates its position with
the chosen one (line 22). It is worth to note that the way we implement the
pheromone detection allows for some uncertainty: even when very close to a
pheromone-marked location, an ant may still fail to detect it and stray from
the trail. Once the ant reaches the food, it starts heading back to the nest. For
simplicity, we position the nest at one of the edges of the arena, at (0, foody), so
that the shortest path between the nest and food is a straight horizontal segment.
Lines 42–46 implement the homing behaviour: the ant releases a quantity of
pheromone equal to 1 (line 44) and moves towards the nest (line 45), and repeats
these two steps until the nest is reached.

3 Analysis

We would now like to assess whether, following the behaviour formalised in
Sect. 2, our ants will keep wandering chaotically through the arena, or instead
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Listing 4: Full behavioural description of an ant.

1 Behavior =
2 Explore;
3 GoHome;
4 Behavior
5

6 Explore =
7 x ̸= foodx or y ̸= foody ⇒ (
8 SmellPheromone;
9 Move;

10 Explore)
11

12 Move =
13 (nextX = x and nextY = y ⇒ {
14 dX, dY := [−m..m+1], [−m..m+1];
15 nextX ← x+dX;
16 nextY ← y+dY;
17 nextX ← max(nextX, 0);
18 nextY ← max(nextY, 0);
19 nextX ← min(nextX, size−1);
20 nextY ← min(nextY, size−1)
21 });
22 x, y ← nextX, nextY
23

24 SmellPheromone = {
25 dX := [1..m+1];
26 dY := [1..m+1];
27 testx1, testy1 := min(x+dX, size−1),
28 min(y+dY, size−1);
29 testx2, testy2 := max(x−dX, 0),
30 max(y−dY, 0);
31

32 nextX ←
33 if ph[testx1, testy1] then testx1 else
34 if ph[testx2, testy2] then testx2
35 else x;
36 nextY ←
37 if ph[testx1, testy1] then testy1 else
38 if ph[testx2, testy2] then testy2
39 else y
40 }
41

42 GoHome =
43 x ̸= 0 or y ̸= foody ⇒ ({
44 ph[x,y] ⇐1;
45 x ← max(0, x−1)
46 }; GoHome)

will gradually prefer the shortest path between their nest and the food source,
thus replicating an emerging phenomenon similar to that observed by Goss et
al. [22].

To enable automated reasoning, we decorate the specifications with appropri-
ate properties that allow to evaluate whether such behaviour of interest emerges.
Knowing that the shortest path is the segment from (0, foodx ) to (foodx , foody),
we can look for evidence of emergence by evaluating how far our ants are from this
segment as the system evolves. If the system is able to self-organize, this distance
should gradually decrease with time; otherwise, it should fluctuate chaotically.
For an ant located at position (x, y), we define its distance from the path as:

d(x, y) = |y − foody |+max(0, x − foodx ),

meaning that the distance is just |y− foody | if the ant’s x-coordinate is not greater
than foodx ; otherwise, it is the Manhattan distance [7] between the ant and the
food source.

We can now proceed to analysing the colony of ants in different ways. We first
generate arbitrary simulation traces, to gather some empirical evidence about our
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Listing 5: Assumptions on the initial state of
the ants.

1 assume {
2 FoodAnt = exists Ant a,
3 (x of a = foodx) and (y of a = foody)
4 FarFromThePath = forall Ant a,
5 ((x of a = foodx) and (y of a = foody)) or
6 (x of a > foodx + k) or
7 (y of a > foody + k) or
8 (y of a < foody − k)
9 }

Listing 6: Checking that ants ag-
gregate close to the shortest path
after B steps have elapsed.

1 check {
2 ShortestPath =
3 after B forall Ant a,
4 (x of a ≤ foodx + k) and
5 (y of a ≥ foody − k) and
6 (y of a ≤ foody + k)
7 }

hypothesis; then, we use formal verification to understand whether the collective
behaviour in consideration is guaranteed to happen.

Let us define some concepts used in the rest of the section. A trace of a
system is a sequence of steps performed by its agents. A step corresponds to the
execution of a single statement, or a compound atomic block enclosed in braces.
We focus on finite-length traces, where ants perform their steps one at a time in
a fixed order. Thus, a trace of length q · n for a system composed of n ants will
consist of q steps per ant, and we say that this execution consists of q epochs.

Verification technology. To perform our experiments, we use a tool called SLiVER4

that enables simulation as well as formal verification of LAbS models using
a variety of techniques. The core idea behind SLiVER is to turn the LAbS
specification given as input into a symbolic intermediate representation that
can be translated into different target languages, so as to re-use off-the-shelf
tools developed for those languages as back ends for the analysis [17]. For the
scope of this work, we rely on symbolic bounded model checking of [10], which in
turn reduces to Boolean satisfiability (SAT). We would like to emphasize that
we use the same encoding and rely on the same back end technique for both
simulation and verification: for the former, we override some of the heuristics of
the SAT solver in order to introduce extra randomness and thus produce different
simulations at each run.

Assumptions on the initial state. In our specifications, ants are initially scattered
through the arena (see line 2 of Listing 2). At the same time, we want to start
our simulation at a moment where at least one ant has found the food source:
after all, we already know that until some pheromone appears in the arena, ants
can only carry on with their chaotic exploration. Finally, we want to ignore those
simulations where the ants that have not found food are too close to the shortest
path between the food repository and the nest. This last requirement is simply
there so that we can focus on more interesting traces.

4 SLiVER is available at https://github.com/labs-lang/sliver.

https://github.com/labs-lang/sliver
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Fig. 2: The FarFromThePath assumption of Listing 5 enforces that no ant will
occupy the shaded area in the initial state. The unshaded square within the
shaded area is the location of the food source.

We formalize these requirements in a separate section of the specifications,
as shown in Listing 5. This separation enables us to quickly evaluate different
scenarios without having to alter the behaviour of the ants. Here, we say that at
least one ant starts at the same position of the food source (AntOnFood), and we
define a region around the shortest food-nest path that ants cannot occupy in
the initial state (FarFromThePath). This region is depicted in Figure 2.

Simulation. Given a file ants.labs containing our specifications, we can ask
SLiVER to generate s traces of length B by invoking it as follows:

./sliver.py ants.labs <parameters> --fair --simulate s --steps B
--concretization=sat

Here, <parameters> is a list of values to assign to each external parameter,
and --fair enforces that agents execute their actions in ordered epochs. The
--concretization=sat option enables a concretization step that alleviates the
load on the SAT solver underlying our workflow. This step determines a feasible,
random initial state of the system, and instruments the solver to start from that
specific state, rather than considering all feasible initial states indifferently. The
same instrumentation also involves other parts of the model, e.g., the operations
at lines 25–26 and 14 of Listing 4, which pick values nondeterministically.5

We ran 200 simulations in a virtualized environment on a dedicated machine,
running 64-bit GNU/Linux with kernel 5.4.0 and equipped with four 2-GHz Xeon
E7-4830v4 10-core processors and 512 GB of physical memory. Table 1 shows
the parameters used to instantiate the experiments. Each generated trace had
a length of 800 steps, i.e., 80 epochs. By running 16 instances of SLiVER in
parallel, we were able to simulate our system at an approximate rate of one trace
5 Notice that this is not the same as solving the formula under assumptions: if the

instrumentation makes the formula unsatisfiable, we leave the solver free to drop
part of it and resume its search.
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Table 1: Values for our model’s parameters during the experimental evaluation.
Name Description Value
foodx, foody Position of the food source (10, 10)
k Initial distance from the shortest path 2
n Number of ants 10
m Maximum range of an ant’s movement 1

every 13 minutes. This will seem quite slow for simulation. However, we would
like to remark that the focus here is on integrating simulation and formal analysis
within the same workflow; our workflow was initially conceived for exhaustive
formal analysis and is not optimised for simulation yet.
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Fig. 3: Average distance of the ants from the shortest nest-food path.

The results of our simulations are summarized in Fig. 3. Each line depicts
the average ant-path distance for one trace. Circle markers denote the mean
value across all traces. The plot does seem to indicate that the average distance
between the ants and the shortest path decreases with time. Apart from some
outliers, this distance appears to drop below 2 rather quickly: the mean across
all traces becomes less than 2 after 21 epochs, and becomes 0.6 after 80 epochs.
The initial average distance may vary across traces because we allow one, two or



10 R. De Nicola et al.

Fig. 4: A counterexample to the property of Listing 6.

more ants to start at the food source location: thus, their initial distance from
the shortest path is nought.

Formal verification. We now start to wonder whether the behaviour observed in
the simulations is inevitably going to happen. In other words, will every trace of
this system show the emergence of this feature?

To answer this question, we decorate our specifications with an additional
section, containing the property that we wish to verify. In this case, we want all
ants to be close enough to the shortest path after they have performed a certain
number of actions B, which in our case corresponds to the verification bound.
By “close enough” we mean that their value of x should be at most foodx + k
and that their distance from the path should not exceed k: (Listing 6). In other
words, they should all lie within the area they were forbidden to occupy in the
initial state, which we depicted in Figure 2.

To verify this property, we invoke SLiVER with the following command line:

./sliver.py ants.labs <parameters> --fair --steps B.

We ran this task using the parameters in Table 1 and the same bound of
B = 800 steps, i.e., 80 epochs. Our verification task fails and SLiVER produces a
counterexample as proof that the system can indeed violate the property under
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Listing 7: Ensuring that a single ant is
initially located at the food source.

1 assume {
2 UniqueFoodAnt = exists−unique Ant a,
3 onFood of a = 1
4

5 OneOnFood = forall Ant a,
6 (onFood of a = 0) or
7 ((x of a = foodx) and (y of a = foody))
8

9 OthersFarFromThePath = forall Ant a,
10 (onFood of a = 1) or
11 (x of a > foodx + k) or
12 (y of a > foody + k) or
13 (y of a < foody − k)
14 }

Listing 8: The negation of the prop-
erty shown in Listing 6.

1 check {
2 NegShortestPath = after B
3 exists Ant a,
4 (x of a > foodx + k) or
5 (y of a > foody + k) or
6 (y of a < foody − k)
7 }

investigation, in other words, the ants will not necessarily adopt an increasingly
optimised food-nest path.

Figure 4 shows a graphical visualization of the counterexample (we only report
one state every 10 epochs). Each circle represents an ant; the triangle and cross
mark the position of the nest and food source, respectively. As the trace shows,
the ants still appear to aggregate around the shortest path, but at some point one
of them strays away and ends up in position (1, 13), i.e., at a distance of 3 from
the path. This is enough to violate the property. This counterexample is a result
of the uncertainty in the ants’ pheromone detecting behaviour. Probabilistically,
it is rather likely that an ant close to the pheromone trail will detect it at
least once in a while, and thus keep close to it: this explains why our previous
simulations seem to converge rather effortlessly. However, formal verification
treats all potential traces alike, regardless from their likelihood in a probabilistic
sense. This allows SLiVER to detect traces that could be hard to spot through
simulation alone.

Looking for interesting traces via verification. We close this section by highlighting
another potential use of verification: that is, to assess the existence of a trace
satisfying some specific requirements. For instance, let us consider again our
specifications and ask ourselves: assuming that a single ant starts at the food
source, is there any trace where all ants manage to aggregate along the shortest
path? We can get an answer by asking SLiVER to verify that all traces satisfy
the negation of this property: if this task fails, we will be presented with a trace
that satisfies our requirements. Otherwise, it means that no such trace exists.

To encode the new assumptions, we equip all ants with an attribute onFood
that may be initialized to either 0 or 1. Then, we replace our previous assumptions
with new ones (Listing 7) stating the following: only one ant starts with onFood set
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Fig. 5: A counterexample to the property of Listing 8.

to 1 (UniqueFoodAnt); this ant starts at the food location (OneOnFood); and all
other ants start somewhere far from the shortest path (OthersFarFromThePath).6
Lastly, we have to negate the property that we have previously verified: that is,
we want to check that after B steps, there is at least one ant that is still far from
the shortest path. The resulting property is shown in Listing 8.

We verified this property on the same machine used for the previous verification
task, with the same parameters and verification bound. Again, the task failed
and SLiVER returned the counterexample depicted in Figure 5.

4 Related Work

Extensive overviews of the foraging strategies followed by different species of ants
can be found in [16,52]. For additional discussion about current research on ant
foraging, we refer the reader to [28].

Foraging, as well as other elements of ant colony behaviour, is amenable to
macroscopic modelling, which describes a system in terms of its aggregate features
while losing most information about the individuals that compose it. The seminal
work by Goss et al. on self-organized shortcuts, for instance, relies on a random
6 Adding the attribute onFood is not strictly necessary, but makes for more readable

specifications.
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process model [22]. Other works describe the colony through reaction-diffusion
equations [48], or as a dynamical system with excitability dynamics [40]. These
models appear to focus on one single aspect of the colony’s collective behaviour.
This allows their authors to choose the mathematical objects and structures that
provide the best fit for the modelled scenario; however, this specialization also
means that different models of the same system may rely on entirely different,
possibly hard to reconcile approaches. As a consequence, composing two or more
models of this kind (say, to study whether the modelled aspects may interfere
with each other) is likely to require extensive effort.

Agent-based mathematical models of foraging are also abundant in the lit-
erature [34,43,53]. Additionally, the entire field of ant colony optimization [18]
originates as an application of an agent-based colony model to optimization
problems, where artificial ants explore an arena that encodes the problem space
and use pheromone markings to identify the optimal solution.

Our work has deep ties to process algebras. These formalisms were originally
introduced as a tool to reason about concurrency-related problems in computer
science [3,24,37], but have long since been suggested as an effective tool for
modelling complex natural systems. Among other things, it is argued that process
algebras are inherently compositional (so they lend themselves well to describing
collections of interacting agents), and that the specifications can be formally
validated [51].

Our formal specification language LAbS aims at exploiting these perks, while
offering a more high-level and intuitive set of primitives and constructs for the
specification of collective systems. Other forms of natural behaviour that have
been modelled with LAbS include bird flocking [14] and a simplified reproduction
of the experiment from [22] on self-organization in colonies of the Argentinian
ant Iridomyrmex humilis [15]. However, these models were somewhat limited
since they used an earlier version of the language without conditional processes
and multidimensional arrays.

The semantics of a process algebra is commonly defined as some form of
transition system (LAbS also falls in this category). This allows for verification
of qualitative properties by exhaustively exploring the state space of the system.
It is also possible to equip a process algebra with probabilistic or quantitative
semantics, thus enabling other forms of automated reasoning: relevant examples
include WSCCS [49], which has a Markov-chain semantics and has been used
to model and analyse behaviours commonly observed in ant colonies, from
synchronization to activity recruiting [47,50] and Bio-PEPA [9], with an ODE-
based semantics that has been exploited for fluid flow analysis of ant foraging
behaviour [36]. For an exhaustive list of Process Algebra-based methods, please
refer to Section 2 of [2].

The programming and modelling language literature provides a wide choice of
languages tailored towards collective, agent-based systems [29]. Examples include
ASCAPE [26], SCAMP [42], and MASON [35]; see [41] for a MASON model of
foraging ants that bears some similarity to our work.
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Arguably, the most notable specimens in this category are LOGO [20] and its
derivatives, most notably StarLogo [44] and NetLogo [54], which have found a
rather wide adoption as a tool to create and simulate agent-based models across
multiple research areas, including systems biology [8,43]. StarLogo and NetLogo
are engineered to handle thousands of agents, and NetLogo also integrates pow-
erful visualization features. Additionally, StarLogo and NetLogo allow specifying
complex, dynamic environments by defining patches, a concept introduced in the
artificial life community [25]. The environment is assumed to be an n-dimensional
grid partitioned into non-overlapping patches or cells, where each patch may
interact with neighbouring patches and with agents that are inhabiting it at a
given moment. Thus, the concept of patches reconciles agent-based models with
cellular automata [31]. In contrast, the world inhabited by LAbS agents has no
predefined structure and is essentially just a store of shared variables (e.g., the
pheromone matrix in our case study): the structure, if any, emerges from the
behavioural rules of the individual agents.

5 Conclusions

In this work we have advocated for the application of language-based, bottom-up
methodologies to support research in computational biology, and highlighted the
benefits of integrating simulation and formal analysis within the same workflow.
We have shown that high-level languages with adequate constructs and primitives
allow for an intuitive process where an informal description of the individual
behaviour of a complex biological system (in our example, an ant colony) is grad-
ually turned into a formal specification. Compared to lower-level mathematical
models, these specifications are easier to refine and extend; they support reuse
and composition; furthermore, they are amenable to formal verification, which
may provide further insight into the system’s emergent properties.

To illustrate this, we have first produced a collection of simulation traces
apparently confirming the emergence of self-organized pathfinding in the colony.
Then, we have shown how formal verification can disprove that this form of
behaviour emerges inevitably. Intuitively, this is due to the fact that ants in our
model are able to take a sequence of bad choices that lead them farther, not
closer, to the path. Lastly, we have used verification to show that a single ant
finding a food source may be enough for the self-organizing behaviour to emerge.
Crucially, these tasks were all carried out starting from the same model, with
only minimal and intuitive changes being required for the last task.

We plan on improving our methodology along several directions. The modelling
language should be further extended with primitives promoting composability
and code reuse, such as parameterized process invocations and modules. We
would like to foster cooperation with the computational biology community, to
gather realistic case studies and to get valuable feedback to motivate further
refinements of our language and methodologies.

On the analysis side, we intend to address the main drawback of our simulation
workflow, namely its limited efficiency with respect to traditional approaches
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based either on executing the model (when the development platform includes
a compiler or runtime environment) or on numerical methods. In this respect,
SLiVER’s reliance on existing verification technologies allows it to evolve with
little effort as the state of the art in general-purpose automated reasoning
advances. For instance, we could improve the performance by integrating recent
optimised SAT decision procedures [21], or by exploiting techniques for deep
counterexample detection, e.g., transition power abstractions [4]. This might be
especially beneficial when simulating long traces.

Probabilistic reasoning may be enabled by leveraging existing probabilistic
model checkers [30]. To support this use case, we might extend the language
so that the choices of agents follow a probabilistic distribution. Lightweight
simulation-based formal techniques, including statistical model checking [45] and
runtime verification [32], may provide some statistical assurance on the behaviour
of systems that are currently out of the reach of formal analysis.

In this work, we have focused on bounded executions of systems with a
fixed and predefined number of agents. We may support unbounded verification
either by computing a completeness threshold, i.e., a bound large enough to
encompass the whole state space of the system under analysis [11], or by resorting
to inductive reasoning techniques for program analysis, such as k-induction [46]
or property-directed reachability (PDR, also known as IC3) [6]. We could move
past systems of predefined size by considering the number of agents as a fixed, but
of arbitrary value. In principle, we could even add language primitives allowing
an agent to spawn others, or to leave the system, making the size of our models
dynamic. At the analysis level, these changes would likely require describing our
agents through dynamically-allocated data structures; while this is feasible in
principle, we suspect that it would result in further challenges to tractability.
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