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ABSTRACT
We present RoughSpec, a template-based extension of the theory ex-
ploration tool QuickSpec. QuickSpec uses testing to automatically
discover equational properties about functions in a Haskell program.
These properties can help the user understand the program or be
used as a source of possible lemmas in proofs of the program’s cor-
rectness. In RoughSpec, the user supplies templates, which describe
families of laws such as associativity and distributivity, and we
only consider properties that match the templates. This restriction
limits the search space and ensures that only relevant properties
are discovered. In this way, we sacrifice broad search for more di-
rection towards desirable property patterns, which makes theory
exploration tractable and scalable. We also combine RoughSpec
with QuickSpec, using QuickSpec to perform a complete search for
smaller term sizes, while using templates for larger, more complex
properties, in order to leverage the strengths of both systems.
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1 INTRODUCTION
One strength of functional programming is that programs are easy
to reason about. Pure functions often obey simple formal specifica-
tions which, as long as the programmer writes them down, are a
great help in programming. A formal specification can be proved
correct, automatically tested with a tool such as QuickCheck [4] or
SmallCheck [17], or simply read in order to understand a codebase.

Many functional programmers already specify their code, by
writing e.g. QuickCheck properties, but many do not. Can those
who do not specify their code also reap the benefits of formal
specification? The answer is yes: given a piece of code, we can
automatically infer properties about it.

A tool that infers properties from code is called a theory ex-
ploration system. Two theory exploration systems for Haskell are
QuickSpec [18] and Speculate [1]. These tools take as input a col-
lection of Haskell functions and, through testing, discover formal
properties which can be expressed using those functions. For ex-
ample, given the list functions ++, reverse, and map, QuickSpec
discovers a total of five laws, all of them well-known and useful:
reverse (reverse xs) = xs
map f (reverse xs) = reverse (map f xs)
(xs ++ ys) ++ zs = xs ++ (ys ++ zs)
reverse xs ++ reverse ys = reverse (ys ++ xs)
map f xs ++ map f ys = map f (xs ++ ys)

Both tools work in a similar way. They take as input a signa-
ture, which describes the set of functions we would like to explore.
Very roughly, they potentially consider all possible properties, up
to some size limit, which can be built from the given functions
(and some variables). They (1) build a set of terms from the given
functions, (2) use automatic testing to check which terms appear
to be equal and build equations from the equal terms,1 resulting
in a set of equational properties which are likely to be true, (3)
remove any redundant properties (a property is redundant if it
can be derived from other discovered properties), and (4) report all
the non-redundant discovered properties. Because they explore all
possible properties, the generated specification is complete (up to
the size limit).

This approach works well on small sets of functions. Complete-
ness means that we get an expressive specification, and discarding
redundant properties keeps the specification short. When given

1Speculate also discovers non-equational properties.
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only a few functions, QuickSpec and Speculate typically produce
clear, crisp and useful specifications, like the one above. We have
found that studying the output of QuickSpec is a great help in
understanding an unfamiliar API.

Unfortunately, this approach breaks down when exploring large
APIs: a complete theory exploration system simply finds too many
laws. In a benchmark running QuickSpec on about 30 list functions
[18], over 500 laws were found! The QuickSpec user is unlikely to
bother reading all 500. Many are unenlightening, such as this one:

map (f x) (take (succ 0) xs) = zipWith f (scanl g x []) xs

This law is found, not because it was interesting, but because it
was true and because QuickSpec did not consider it to be redun-
dant. When we explore large APIs, we often get huge numbers of
uninteresting laws. Furthermore, the search space is huge so the
tools often take a while to run: exploring the 30 list functions took
about two hours. These problems arise precisely because QuickSpec
and Speculate are complete—unless a law is redundant, it will get
discovered and printed out, interesting or not.

1.1 RoughSpec
We have developed a new theory exploration system, RoughSpec.
Like QuickSpec and Speculate, it takes as input a set of Haskell
functions (which we call the signature), and uses testing to find
properties that seem to hold. The difference is that RoughSpec is
incomplete: it does not try to find all true properties.

Instead, the user gives a set of templates, expressions which
describe a family of laws such as associativity or distributivity.
RoughSpec searches only for instances of these templates. In this
way, the user can specify what kind of properties they would find
interesting, and RoughSpec searches only for these properties.

A template is a Haskell equation containing functions, variables
andmetavariables. For example, here is a template which represents
commutativity (note that in our syntax, variables are written in
uppercase, and a metavariable is written as a variable with a leading
question mark):

?F X Y = ?F Y X

When a template contains metavariables, RoughSpec instantiates
them with functions drawn from the signature, tests the resulting
equations, and reports any that appear to hold. In this case, Rough-
Spec will search for functions ?F such that ?F X Y = ?F Y X for
all X and Y — that is, for commutative functions.

Here are some more examples of templates. They describe: (1)
associativity; (2) an invertible function; (3) distributivity; (4) and (5)
a function having an identity element; and (6) a list homomorphism:

(1) ?F (?F X Y) Z = ?F X (?F Y Z)
(2) ?F (?G X) = X
(3) ?F (?G X) (?G Y) = ?G (?F X Y)
(4) ?F X ?E = X
(5) ?F ?E X = X
(6) ?F (X ++ Y) = ?G (?F X) (?F Y)

In (4) and (5), ?E is a metavariable, and will be replaced by con-
stants drawn from the signature, while X is a universally-quantified
variable. Note too that apart from metavariables and variables, tem-
plates may also mention specific functions, such as ++ in (6).

When we run RoughSpec on a signature of five list functions ++,
reverse, map, sort and nub, using the templates (1)–(3) above as
well as commutativity, we get the following output:
Searching for commutativity properties...

1. sort (xs ++ ys) = sort (ys ++ xs)
Searching for associativity properties...

2. (xs ++ ys) ++ zs = xs ++ (ys ++ zs)
3. sort (sort (xs ++ ys) ++ zs) =

sort (xs ++ sort (ys ++ zs))
4. nub (nub (xs ++ ys) ++ zs) =

nub (xs ++ nub (ys ++ zs))
Searching for inverse function properties...

5. reverse (reverse xs) = xs
Searching for distributivity properties...

6. map f xs ++ map f ys = map f (xs ++ ys)
7. sort (sort xs ++ sort ys) = sort (xs ++ ys)
8. nub (nub xs ++ nub ys) = nub (xs ++ ys)

Each property is tagged with the name of the template that gen-
erated it. For example, the first law is an instance of commutativity,
?F X Y = ?F Y X, with ?F = \xs ys -> sort (xs ++ ys).
(Section 2 describes the strategy RoughSpec uses to instantiate
metavariables.) We see that ++ is associative (2), that reverse is its
own inverse (5), and that map distributes over ++ (6). We also see
that composing ++ with sort or nub produces a binary operation
which satisfies many properties in its own right.

By adding more templates, we can find more laws. For exam-
ple, adding the template ?F (?G X) = ?G (?F X) produces
the law map f (reverse xs) = reverse (map f xs). We
have not found all of the important list laws (for example, the law
reverse (xs++ys) = reverse ys ++ reverse xs), but have
produced a useful and short subset.

The templates we have used so far represent well-known prop-
erties and apply to a wide range of APIs. The goal of RoughSpec is
that the user can start with a “standard” set of templates, and find
an incomplete, but useful set of properties for their program. Then
they can find more detailed properties by adding templates that are
tailored to their domain. By putting the user in charge of choosing
templates, we aim to keep the output small and easy to understand.

Our current implementation of RoughSpec is built on top of
QuickSpec [18], but the ideas are not QuickSpec-specific, and would
work equally well on top of a different theory exploration system
such as Speculate [1]. The only difference is that as Speculate also
discovers inequalities and conditional laws, a RoughSpec built on
top of Speculatewould naturally support inequalities and conditions
in templates.

Next, we describe how RoughSpec works, and evaluate it on
some larger examples.

2 HOW IT WORKS
To use RoughSpec, the user inputs the templates they are interested
in, along with the functions they want to explore, in a signature [18].
The user must also supply QuickCheck [4] test data generators
for any non-standard types they want to test. Figure 1 shows an
example of a simple signature, consisting of the functions reverse,
++ and length, and the template ?F (?G X Y) = ?F (?G Y X).
Note that in our current implementation, functions are written
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uncurried, but for readability we write them curried in the main
text of this article.

simpleSig = [
con "reverse" (reverse :: [A] -> [A]),
con "++" ((++) :: [A] -> [A] -> [A]),
con "length" (length :: [A] -> Int),
template "nest-commute" "?F(?G(X,Y))=?F(?G(Y,X))"
]

Figure 1: A signature containing some list functions and a
template for properties about nested composition of func-
tions being commutative in two variables.

As described in Section 1, the templates are expressed in a simple
term language consisting of:

• metavariables, which represent holes to be filled with a func-
tion or constant symbol, and are written as a question mark
followed by a name;

• variables, which are universally quantified, and are written
as a name starting with a capital letter; and

• functions drawn from the signature.
Candidate properties are generated by attempting to fill the holes

in a template using function symbols from the signature, making
sure the generated equations are well typed. For our example tem-
plate above, filling in the holes using the functions length, reverse,
and ++ gives two candidate properties:
length (xs ++ ys) = length (ys ++ xs) (𝑐𝑝1)
reverse (xs ++ ys) = reverse (ys ++ xs) (𝑐𝑝2)

The generated candidate properties are then tested using
QuickCheck [4]. If no counterexamples are found the property
is presented to the user as a law. In our example, 𝑐𝑝1 passes this
phase and is presented to the user, while 𝑐𝑝2 fails and is discarded.

2.1 Expanding templates
In the algorithm described above, each hole in a template can be
filled only with precisely one of the function symbols in scope. This
means that each template matches a rather narrow class of prop-
erties. As we shall see, many properties that we would intuitively
consider to be in the same category are not instances of the same
template, so the user is forced to write many similar templates to
capture a category of properties in full generality.

To help the user avoid the tedious work of typing up a set of
nearly-identical templates, and to improve the expressiveness of
the discovered properties, we have implemented some automated
“expansion” of user input templates, which augments the user-
provided templates by automatically adding variants of them.

2.1.1 Nested functions. Consider the property
length (xs ++ ys) = length (ys ++ xs) (𝑐𝑝1)
discovered in our example above. In that example, we discovered
the property using a template that specifically described the compo-
sition of two function symbols being commutative. Suppose we had
a more general template for commutativity, i.e. ?F X Y = ?F Y X.
What if we want such a template to cover properties like 𝑐𝑝1, rather

than having to type up a specialised “composition of two functions”
commutativity template?

In order to do this we have implemented an extension allowing
a hole to be filled by the composition of two function symbols. We
replace a given hole in our template with two holes representing an
outer function applied to an inner function applied to the original
hole’s arguments. That is, a hole of the form ?F e1...en turns
into ?G (?F e1...en). This allows us to discover the property 𝑐𝑝1
using the commutativity template ?F X Y = ?F Y X. It also allows
us to use a general template for identity functions, ?F X = X, to
discover the property reverse (reverse xs) = xs, that is, that
reverse . reverse is the identity function.

2.1.2 Partial application. Suppose we extend our example signa-
ture from Figure 1 by adding the function map and a distributivity
template
?F (?G X Y) = ?G (?F X) (?F Y), (𝑑1)
describing a function ?F distributing over a two-argument function
?G.

We would like to discover the property
map f (xs ++ ys) = map f xs ++ map f ys, (𝑑𝑚𝑎𝑝)
describing how map distributes over ++. However, since our template
holes can only be filled using precisely one function symbol (or,
following Section ??, two nested function symbols), this template
does not cover the desired property. Instead we would need a more
complex template like
?F X (?G Y Z) = ?G (?F X Y) (?F X Z),
with an extra variable X for map’s first argument.

In order to avoid needing a variety of complicated templates
when our signatures contain functions with varying numbers of
arguments, we allow a template hole to be filled with a partially
applied function. We replace a given hole in our template with a
hole applied to a number of fresh variables, limited by the maximum
arity of the functions in scope. By doing so our desired property
𝑑𝑚𝑎𝑝 is now covered by the template 𝑑1.

In combination with our nested function expansion described
above, this also allows us to discover properties such as
map f (concat (xss ++ yss)) =

map f (concat xss) ++ map f (concat yss),
by adding the concat function to our signature, using the same
template 𝑑1.

This method considers all possible partially-applied functions
when filling a hole. In practice we found this to give rise to some
rather confusing properties when binary operators were involved.
For instance, suppose we extend our example signature with a
template ?F (?G X) = ?F X, which describes pairs of functions
?F and ?G where the result of ?F is preserved when we apply ?G to
its argument. This gives rise to nice properties such as
length (reverse xs) = length xs
length (map f xs) = length xs,

but also such properties as
length (xs ++ reverse ys) = length (xs ++ ys),

where the hole ?F has been filled by the function length . (xs ++).
We find properties about partially applied functions such as

xs ++ rather confusing and uninteresting, and therefore decided
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to restrict this expansion. Our restriction is that if a function is a
binary operator (specifically, it has two arguments, both of which
have the same type) we do not allow a partial application of it to
fill a hole.

2.1.3 Restricting expansion. Expanding templates automatically is
a delicate balance. In moderation, it produces interesting properties
that users want to see, and that intuitively match the given template.
If we expand templates too much, we may generate irrelevant
properties, overwhelm the user with output or increase the running
time of our tool. As can be seen from the special treatment of
binary operators in Section 2.1.2, we have implemented some ad
hoc restrictions to our expansion heuristics to prevent them from
producing properties we found less interesting. In general, which
expansions are appropriate and how they should be used seems
to depend on the context, the kinds of functions being explored
and the user’s priorities. In the future, we plan to give the user
more control over the expansion process by making the language
for describing templates more expressive. For example, the user
should be able to specify which functions they are comfortable
seeing partially applied.

2.2 Pruning
There is one last ingredient in RoughSpec’s algorithm. Suppose we
run the algorithm so far on a signature consisting of the functions
reverse, ++, length and map, and two templates from earlier:

• ?F X = X, expressing that ?F is the identity function.
• ?F (?G X) = ?F X, expressing that the result of ?F is
unchanged when we apply ?G to its argument.

We are presented with the following output:

Searching for identity properties...
1. reverse (reverse xs) = xs
Searching for preserve properties...
2. length (reverse xs) = length xs
3. length (map f xs) = length xs
4. length (reverse (reverse xs)) = length (reverse xs)
5. length (reverse (map f xs)) = length (reverse xs)
6. length (map f (reverse xs)) = length (map f xs)
7. length (map f (map g xs)) = length (map f xs)
8. reverse (reverse (reverse xs)) = reverse xs
9. (++) (reverse (reverse xs)) = (++) xs

10. length (reverse (reverse xs)) = length xs
11. length (reverse (map f xs)) = length xs
12. length (map f (reverse xs)) = length xs
13. length (map f (map g xs)) = length xs
14. map f (reverse (reverse xs)) = map f xs

Some of these properties appear to be redundant. For instance,
property 4 is an instance of property 2, in which xs has been re-
placed by reverse xs. Surely our user isn’t interested in seeing a
property that’s just a more specific instance of a previously discov-
ered property?

To avoid cluttering the output with redundant properties, Rough-
Spec includes a pruning phase, which aims to remove discovered
properties that are trivial consequences of earlier properties. The
pruning phase removes a property if:

• It is an instance of an earlier property. In this case, proper-
ties 4 and 8 will be pruned away, as they are instances of
properties 2 and 1, respectively.

• It can be obtained applying the same function to both sides of
an earlier property. For example, property 10 can be obtained
by applying the length function to both sides of property 1.

More formally, a property is removed if it is of the form 𝑡𝜎 = 𝑢𝜎 or
𝐶 [𝑡] = 𝐶 [𝑢], where 𝑡 = 𝑢 is a previously-discovered property, 𝜎 is
a substitution and 𝐶 is a context. In our example, we will discard
properties 4, 8, 9, 10, and 14, so that a total of 9 properties remain.

This still leaves us with some redundant properties. For example,
property 5 follows by equational reasoning from properties 2 and 3.
If we were also to prune away properties that follow by equational
reasoning from earlier properties, we would be left with only the
three properties 1–3 above. Unfortunately, it is not a good idea
to remove all properties that follow by equational reasoning from
earlier properties, because the removed properties are often non-
trivial consequences of the discovered properties, and may well be
interesting to the user. The problem is how to add some form of
equational reasoning, to remove more redundant properties, but
without removing redundant properties too aggressively.

Here is our solution. Because the templates given to RoughSpec
describe the exact shapes of properties that the user is interested in,
we should be careful not to go too far in pruning away properties
matching those desired shapes. We therefore distinguish between
two kinds of properties, depending on whether template expansion
(Section 2.1) was needed to discover the property:

• If the property was found without using expansion, we use
the simple pruning algorithm described above, which re-
moves a property if it is a trivial consequence of a single
existing property.

• If the property was found using expansion, we use the more
powerful pruning algorithm from QuickSpec [18], which
removes the property if it follows by equational reasoning
from the earlier properties.

For instance, property 11 is pruned away as it follows by equa-
tional reasoning from properties 2 and 3, and was generated from
an expanded template. However, if we added the template ?F (?G
(?H F X)) = ?F X to our signature, then property 11 would pre-
cisely match an input template, so pruning by equational reasoning
would be disabled for that property, and it would no longer be
pruned away. On the other hand, property 4 will always be pruned
away, even if we add a template exactly matching it, as it is a direct
instance of property 1.

With this last improvement added, RoughSpec produces the
following three properties, and all others are pruned away:
Searching for identity properties...

1. reverse (reverse xs) = xs
Searching for preserve properties...

2. length (reverse xs) = length xs
3. length (map f xs) = length xs

As properties discovered earlier are used to prune away ones
that are discovered later, the order in which the templates are input
makes a difference to which properties we output. It is usually a
good idea to start with smaller and/or more general templates and
move on to larger and/or more specific ones, as smaller properties
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are more likely to be useful in pruning larger ones, but the user
may also want to put the templates they find most relevant first.

2.3 Libraries of default templates
We have compiled a small set of default templates capturing very
common properties which we found useful in our case studies:
identity: ?F X = X
fixpoint: ?F ?X = ?X
left-id-elem: ?F ?Y X = X
right-id-elem: ?F X ?Y = X
cancel: ?F (?G X) = ?F X
commutative: ?F X Y = ?F Y X
commuting-functions: ?F (?G X) = ?G (?F X)
distributivity: ?F (?G X Y) = ?G (?F X) (?F Y)
homomorphism: ?F (?G X) (?G Y) = ?G (?H X Y)
associativity: ?F (?F X Y) Z = ?F X (?F Y Z)

These capture standard algebraic properties, and can be imported
into a signature as a means to quickly run a first pass of exploration
on a new theory without having to define any templates yourself.
The user can then, if need be, simply extend this set with more
specific templates.

3 CASE STUDIES
The following examples demonstrate theory exploration using our
template-based approach and discuss what kinds of templates we
have found to be useful. We compare our results to theory explo-
ration with QuickSpec on the same sets of functions. The code
is available at https://github.com/solrun/quickspec, in the
template-examples/ifl2020 directory, along with detailed ex-
periment output. All experiments described in this paper were
performed on a ThinkPad X260 laptop with a 2.5GHz Intel i7-6500U
processor and 16GB of RAM running 64-bit Linux.

Runtimes and memory use. Exploring the large library of list
functions in Section 3.3 took just under 8 minutes and reached a
maximum heap residency of 700 MB. All other examples ran in
< 20s with a maximum heap residency of < 100 MB.

3.1 Pretty Printing
This case study shows how RoughSpec can be useful in under-
standing an unfamiliar library. Suppose we are using Hughes’s
pretty-printing library [9] for the first time. We are presented with
an intimidating array of combinators:
empty :: Doc
text :: String -> Doc
nest :: Int -> Doc -> Doc
(<>) :: Doc -> Doc -> Doc
(<+>) :: Doc -> Doc -> Doc
($$) :: Doc -> Doc -> Doc
hcat :: [Doc] -> Doc
hsep :: [Doc] -> Doc
vcat :: [Doc] -> Doc
sep :: [Doc] -> Doc
fsep :: [Doc] -> Doc

The library documentation explains that Doc represents a pretty-
printed document, empty is an empty document, text prints a

string verbatim, and nest indents an entire document by a given
number of spaces. The remaining functions combine multiple doc-
uments into one:

• <>, <+> and $$ typeset two documents beside one another,
beside one another with a space in between, or one above
the other, respectively.

• hcat, hsep and vcat are variants of <>, <+> and $$ that take
a list of documents.

• sep and fsep choose whichever of <+> and $$ gives the
prettiest output.

We may now feel happy going off and writing some pretty print-
ers. But there are still questions unanswered:

• What is the difference between empty and text ""?
• If I am indenting a multi-line document, should I apply nest
to each line individually or to the whole document?

• Does it matter if I use <> or hcat, <+> or hsep, $$ or vcat?
• Why is there no analogue of <> for sep and fsep?

These are the kinds of questions a formal specification of the pretty-
printing library would answer. Let us see if RoughSpec can help
us.

We start with the list of default templates from 2.3. We reproduce
RoughSpec’s output verbatim. It finds the following 46 laws:
Searching for identity properties...

1. hcat (unit x) = x
2. hsep (unit x) = x
3. vcat (unit x) = x
4. sep (unit x) = x
5. fsep (unit x) = x

Searching for fixpoint properties...
6. nest x empty = empty
7. nest x (hcat []) = hcat []
8. nest x (hsep []) = hsep []
9. nest x (vcat []) = vcat []
10. nest x (sep []) = sep []
11. nest x (fsep []) = fsep []
Searching for left-id-elem properties...
12. nest 0 x = x
13. empty <> x = x
14. empty <+> x = x
15. empty $$ x = x
16. hcat [] <> x = x
17. hsep [] <> x = x
18. vcat [] <> x = x
19. sep [] <> x = x
20. fsep [] <> x = x
21. hcat [] <+> x = x
22. hsep [] <+> x = x
23. vcat [] <+> x = x
24. sep [] <+> x = x
25. fsep [] <+> x = x
26. hcat [] $$ x = x
27. hsep [] $$ x = x
28. vcat [] $$ x = x
29. sep [] $$ x = x
30. fsep [] $$ x = x
Searching for right-id-elem properties...
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31. x <> empty = x
32. x $$ empty = x
33. x <+> empty = x
34. x <> text [] = x
Searching for cancel properties...
35. length (unit (nest x y)) = length (unit y)
Searching for commutative properties...
Searching for commuting-functions properties...
36. nest x (nest y z) = nest y (nest x z)
Searching for distributivity properties...
37. nest x (y <> z) = nest x y <> nest x z
38. nest x (y $$ z) = nest x y $$ nest x z
39. nest x (y <+> z) = nest x y <+> nest x z
Searching for homomorphism properties...
40. text xs <> text ys = text (xs ++ ys)
41. hcat xs <> hcat ys = hcat (xs ++ ys)
42. vcat xs $$ vcat ys = vcat (xs ++ ys)
43. hsep xs <+> hsep ys = hsep (xs ++ ys)
Searching for associative properties...
44. (x <> y) <> z = x <> (y <> z)
45. (x $$ y) $$ z = x $$ (y $$ z)
46. (x <+> y) <+> z = x <+> (y <+> z)

Laws 7–11 are curious. They are all rather similar, and do not look
very interesting. In fact, each of these laws contains a term (such
as hsep [] or vcat []) which is actually equal to empty. Once we
know that, we see that these laws are trivial restatements of law 6.
The same issue occurs with laws 16–30, which are trivial restate-
ments of 13–15. The problem is that there was no template which
allowed RoughSpec to discover laws such as hsep [] = empty.

We shall see an automatic fix for this problem in Section ??. For
now, we fix it by adding the template ?F ?X = ?Y. This template
finds 12 laws, including hsep [] = empty and its companions,
and now laws 7–11 as well as laws 16–30 are pruned away as they
follow from 6 and 13–15 respectively. Law 35 is also pruned away
as our new template finds the simpler and subsuming property
length (unit x) = length (unit y)We are left with a total of
25 laws: 1–6, 12–15, 31–34, and 36–46 above.

Together, these laws answer most of the questions we posed
above. The difference between empty and text "" is that empty
acts as an identity for the other operators:
empty <> x = x x <> empty = x
empty <+> x = x x <+> empty = x
empty $$ x = x x $$ empty = x

On the other hand, text "" mostly does not, only satisfying one
identity law:
x <> text "" = x

If we want to find out why text "" is not an identity element, we
can now use QuickCheck to find a revealing counterexample (or
indeed read Hughes [9] for an explanation).

As for whether one should indent each line separately or the
whole document at once, it doesn’t matter, because nest distributes
over $$:
nest x (y $$ z) = nest x y $$ nest x z

Another distributivity law tells us that we can freely choose to
typeset a long string in one go, or split it up into smaller pieces:

text xs <> text ys = text (xs ++ ys)

The <>, <+> and $$ operators are associative:
(x <> y) <> z = x <> (y <> z)
(x <+> y) <+> z = x <+> (y <+> z)
(x $$ y) $$ z = x $$ (y $$ z)

and hcat, vcat and hsep appear to be those operators folded over
a list:
hcat xs <> hcat ys = hcat (xs ++ ys)
vcat xs $$ vcat ys = vcat (xs ++ ys)
hsep xs <+> hsep ys = hsep (xs ++ ys)

Therefore, it doesn’t matter whether one uses e.g. <> or hcat—they
are equivalent.

Associativity of course means that we can write e.g. x <> y <> z
without worrying about bracketing. We might wonder whether the
same applies to sequences of mixed operators, e.g. x <> y <+> z.
To find out we can add another template:
mixed-associativity: ?G (?F X Y) Z = ?F X (?G Y Z)

-- as infix: (X `?F` Y) `?G` Z = X `?F` (Y `?G` Z)

This reveals that, indeed, a whole host of expressions can be
freely rebracketed:
nest x y <> z = nest x (y <> z)
(x $$ y) <> z = x $$ (y <> z)
(x <+> y) <> z = x <+> (y <> z)
nest x y <+> z = nest x (y <+> z)
(x <> y) <+> z = x <> (y <+> z)
(x $$ y) <+> z = x $$ (y <+> z)

Finally, we come to the question of why there is no two-argument
version of sep and fsep. Given what we learnt above, we might
suspect that these operators are not associative. To test this, we can
add two new functions to the signature:
sep2, fsep2 :: Doc -> Doc -> Doc
sep2 x y = sep [x, y]
fsep2 x y = fsep [x, y]

Indeed, no new associativity law appears.2 Nor is it the case that
e.g. fsep2 (fsep xs) (fsep ys) = fsep (xs ++ ys). In fact,
no interesting laws of any kind appear.

The laws that hsep and family satisfy are very useful when
programming. When we want to typeset a list of documents hori-
zontally, we can either use hsep, <+> or a mixture (e.g. wemaywrite
hsep xs <+> hsep ys instead of hsep (xs++ys)). By contrast,
when using sep or fsep, we must carefully collect all documents
into a list and only then apply the combinator. In this case, the lack
of a nice specification is itself useful information: it warns us that
we should take care when using these combinators!

Summary. RoughSpec performed well on the pretty-printing li-
brary. It produced a manageable number of equations, all of them
simple and easily understood. Despite their simplicity, they an-
swered important questions about how to use the library—the ques-
tions listed at the top of this section. We believe that even simple
properties, such as associativity and distributivity laws, are a great
help in understanding how to use a new library. Finally, we got

2Exercise for the reader: reading the documentation of the pretty library, it seems
reasonable that fsep2 could be associative. Why is it not?
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good results from a “standard” set of templates and were able to
improve the output by adding our own.

The one hiccup in RoughSpec’s performance was laws 7–11 and
16–30. We were forced to add a template specifically to prune away
these laws. In fact, another instance of the same problem occurred:
sep and fsep only differ on lists of at least three elements, which
means that sep2 = fsep2. QuickSpec discovers this law instantly,
but RoughSpec failed to find it as there was no template of the form
?X = ?Y. Instead, laws about this function appear twice—once with
sep2 and once with fsep2.

In both cases, we have two laws containing syntactically different
terms that are actually equal—for example, hcat [] and hsep [].
RoughSpec ought to detect that the terms are equal, and avoid
generating duplicate laws. One option is to gather all the terms used
to instantiate metavariables, divide them into equivalence classes
by testing, and keep only the representative of each equivalence
class. Section 4 describes an alternative solution to this problem.

Comparison with QuickSpec. As reported in [18], QuickSpec does
well given the combinators text, nest, <>, <+> and $$, finding a
complete specification that matches the one given by Hughes [9].
Unfortunately, when we add hcat and friends, QuickSpec finds
many complicated, unimportant-looking laws, for example:
40. fsep (xs ++ [empty] ++ ys) = fsep (xs ++ ys)
41. hcat (xs ++ [empty] ++ ys) = hcat (xs ++ ys)
42. hsep (xs ++ [empty] ++ ys) = hsep (xs ++ ys)
43. hcat (xs ++ [hcat ys] ++ zs) =

hcat (xs ++ ys ++ zs)
44. hsep (xs ++ [hsep ys] ++ zs) =

hsep (xs ++ ys ++ zs)
45. fsep (xs ++ [x $$ (y $$ z)]) =

fsep xs $$ (x $$ (y $$ z))
46. fsep (xs ++ [x $$ x] ++ ys) =

fsep xs $$ ((x $$ x) $$ fsep ys)

What’s more, QuickSpec now takes several minutes to run, while
RoughSpec takes 15 seconds. In short, RoughSpec copesmuch better
than QuickSpec once the combinators no longer have a simple
specification.

3.2 Model-based properties
In [10], Hughes compared five different methods of defining prop-
erties for QuickCheck testing, and found the most effective to be
model-based testing, which revealed all the bugs in his test programs
and required only a small number of properties to be written.

Model-based testing is based on the approach to proving the
correctness of data representations introduced by Hoare in [8]. The
data representation is related to an appropriate abstract representa-
tion using an abstraction function. For each operation 𝑜𝑝 : 𝑋 → 𝑋 ,
an abstract implementation 𝑜𝑝𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡 : 𝑋𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡 → 𝑋𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡 is
defined, and the following diagram is proven to commute:

𝑋 𝑋

𝑋𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡 𝑋𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡

abstraction
𝑜𝑝

𝑜𝑝𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡

abstraction

The correctness of the data representation and operations in
question then follows from the (presumably simpler) correctness
proofs for the abstract data and operations.

In model-based testing, we define the same kind of abstract
model of the data structure being tested, then test that the above
diagram commutes. In [10], bugs in the implementation of concrete
operations are found to cause counterexamples to such properties.

Since we can include specific function symbols from the explo-
ration scope in our templates, we can use RoughSpec to search only
for properties that relate two operations via a given abstraction
function, with a template along the lines of:
?F (abstraction X) = abstraction (?G X).

3.2.1 Binary search trees. In [10], Hughes uses binary search trees
as an example and defines five model-based properties relating the
tree operations to operations on a list of key-value pairs with 𝑡𝑜𝐿𝑖𝑠𝑡
as an abstraction function.
1. find x t = findList x (toList t)
2. insertList x (toList t) = toList (insert x t)
3. deleteKeyList x (toList t) = toList (delete x t)
4. toList nil = []
5. toList (union t t1) =

sort (unionList (toList t) (toList t1))

Running RoughSpec on a signature containing the relevant func-
tions and three templates describing model-based properties, we
discover precisely these five properties and two additional proper-
ties, shown below, in just over 0.3 seconds.
6. toList (delete x nil) = []
7. toList nil = sort []

Note that properties 6 and 7 are both equivalent to property 4
above. However, since RoughSpec only searches for properties
matching the given templates and nothing else, it won’t discover
that sort [] = [] or that delete x nil = nil, even though these
are properties a human might find rather trivial and obvious and
would want the pruner to know about. This can be improved by
running QuickSpec up to a small term size to provide background
information, as discussed in Section 4.

Due to the different shapes of the desired properties we need
three different templates to discover them all.
?F Y (toList X) = ?G Y X
toList ?X = ?Y
toList (?G X Y) = ?F (toList X) (toList Y)

With a more expressive template language, as discussed in Section
2.1, we could manage with fewer, more general templates. For
example, all three templates are instances of the general shape
toList (?F X1...Xn) = ?G (toList X1) ... (toList Xn),
which captures the properties used in model-based testing.

Comparison with QuickSpec. QuickSpec discovers 28 properties
about the functions in our signature, among them the five model-
based properties. This takes between 10 and 11 seconds, signifi-
cantly longer than RoughSpec’s 0.3 seconds.

3.3 A large library of list functions
Section 4.2 of [18] describes a stress-test where QuickSpec was used
to find properties about a set of 33 Haskell functions on lists. This
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took standard QuickSpec 42 minutes and resulted in 398 properties
when limited to terms of size 7 or less, and hit a time limit of 2 hours
when the size was increased to 8. As described in the Introduction,
many of the laws found by QuickSpec were not interesting. This
illustrates how running QuickSpec on larger theories scales poorly
with regard to run-time and may produce an overwhelming amount
of output. When we ran the most recent version of QuickSpec on
this set of functions it ran out of memory and did not manage to
produce any properties.

length :: [A] -> Int
sort :: [Int] -> [Int]
scanr :: (A -> B -> B) -> B -> [A] -> [B]
(>>=) :: [A] -> (A -> [B]) -> [B]
reverse :: [A] -> [A]
(>=>) :: (A -> [B]) -> (B -> [C]) -> A -> [C]
(:) :: A -> [A] -> [A]
break :: (A -> Bool) -> [A] -> ([A], [A])
filter :: (A -> Bool) -> [A] -> [A]
scanl :: (B -> A -> B) -> B -> [A] -> [B]
zipWith :: (A -> B -> C) -> [A] -> [B] -> [C]
concat :: [[A]] -> [A]
zip :: [A] -> [B] -> [(A, B)]
usort :: [Int] -> [Int]
sum :: [Int] -> Int
(++) :: [A] -> [A] -> [A]
map :: (A -> A) -> [A] -> [A]
foldl :: (A -> A -> A) -> A -> [A] -> A
takeWhile :: (A -> Bool) -> [A] -> [A]
foldr :: (A -> A -> A) -> A -> [A] -> A
drop :: Int -> [A] -> [A]
dropWhile :: (A -> Bool) -> [A] -> [A]
span :: (A -> Bool) -> [A] -> ([A], [A])
unzip :: [(A, B)] -> ([A], [B])
[] :: [A]
partition :: (A -> Bool) -> [A] -> ([A], [A])
take :: Int -> [A] -> [A]

Background functions:
(,) :: A -> B -> (A, B)
fst :: (A, B) -> A
snd :: (A, B) -> B
(+) :: Int -> Int -> Int
0 :: Int
succ :: Int -> Int

Figure 2: A library of list functions.

In contrast, running RoughSpec on this set of functions we can
tailor the templates we use to properties we are interested in dis-
covering and produce a more manageable amount of output in a
much shorter time. The list of functions is shown in Figure 3. The
last six functions are declared as background functions. Background
functions may appear in properties, but a discovered property must
contain at least one non-background function.

Running RoughSpec on this set of functions with the library
of 10 default templates presented in Section 2.3, we discover 184

properties in just under 8 minutes. The properties include many
useful laws, such as distributivity-like properties:
length xs + length ys = length (xs ++ ys)
concat xss ++ concat yss = concat (xss ++ yss)
sum xs + sum ys = sum (xs ++ ys)

Template expansion results in more complex properties. The
second property below has size 11, much larger than QuickSpec
was able to discover:
take x (takeWhile p (zip xs ys)) =

takeWhile p (zip (take x xs) (take x ys))
take x (zipWith f xs (zipWith g ys zs)) =

zipWith f xs (zipWith g (take x ys) (take x zs))

These two properties are given as examples of distributivity (take
is distributed over the rest of the expression). The user may not
consider these laws interesting, which suggests that having a more
expressive template language is important. Nonetheless, the laws
discovered are better than those found by QuickSpec, and we are
able to discover them in a fraction of the time. This demonstrates
that RoughSpec is much better suited than QuickSpec to exploring
large libraries of functions, and that it makes theory exploration
tractable on such libraries that were previously infeasible to explore.

3.4 A window manager
The xmonad window manager [20] is a tiling window manager for
X, written in Haskell. We take an implementation of a simple win-
dow manager with multiple virtual workspaces containing stacks
of screens, in the style of xmonad, as shown in [19], and demon-
strate how RoughSpec is useful for finding properties about this
data structure.

The data structure StackSet represents a set of workspaces each
containing a stack of screens, and there are a number of operators
to construct and manipulate StackSets, shown below:
empty :: Natural -> StackSet a
current :: StackSet a -> Natural
view :: Natural -> StackSet a -> StackSet a
peek :: StackSet a -> a
rotate :: Ordering -> StackSet a -> StackSet a
push :: a -> StackSet a -> StackSet a
shift :: Natural -> StackSet a -> StackSet a
insert :: a -> Natural -> StackSet a -> StackSet a
delete :: a -> StackSet a -> StackSet a
index :: Natural -> StackSet a -> [a]

The operator empty creates a StackSet containing a given num-
ber of empty workspaces, current returns the current workspace,
view sets the current workspace, peek extracts the screen on top
of the current workspace’s stack, rotate cycles the current screen
stack up or down, push inserts an screen on top of the current stack,
shift moves the screen on top of the current stack to the top of
stack 𝑛, insert inserts a screen on top of stack 𝑛, delete deletes a
given screen, and index extracts the workspace at a given index.

Running RoughSpec with the set of default templates described
in Section 2.3 we discover the following 23 properties:
Searching for identity properties...
Searching for fix-point properties...

1. current (empty 0) = 0
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2. view x (empty 1) = empty 1
3. rotate o (empty 1) = empty 1
4. shift x (empty 1) = empty 1
5. delete x (empty 1) = empty 1

Searching for left-id-elem properties...
6. rotate EQ s = s
7. current (empty x) + y = y

Searching for right-id-elem properties...
8. peek (push x s) = x

Searching for cancel properties...
9. current (rotate o s) = current s

10. current (push x s) = current s
11. current (shift x s) = current s
12. current (delete x s) = current s
13. current (insert x y s) = current s
14. current (view x (rotate o s)) =

current (view x s)
15. current (view x (push y s)) =

current (view x s)
16. current (view x (shift y s)) =

current (view x s)
17. current (view x (delete y s)) =

current (view x s)
18. current (view x (insert y z s)) =

current (view x s)
Searching for commutative properties...
Searching for op-commute properties...
19. view x (delete y s) = delete y (view x s)
20. rotate o (rotate o' s) = rotate o' (rotate o s)
21. delete x (delete y s) = delete y (delete x s)
22. view x (insert y z s) = insert y z (view x s)
23. shift x (push y (view z s)) =

view z (shift x (push y s))
Searching for 2-distributive properties...
Searching for homomorphism properties...
Searching for associative-3 properties...

We may note that our fix-point properties, 1–5, look rather spe-
cific, referring to empty 0 and empty 1, and wonder whether
they are perhaps valid for empty n for more values of 𝑛. Property 7,
current (empty x) + y = y, implies that current (empty x) = 0,
subsuming property 1, but in a verbose and unclear manner. How-
ever, the more interesting property current (empty x) = 0 does
not fit any of our templates. Testing with QuickCheck reveals that
properties 3–5 hold for empty n for all values of 𝑛 > 0, not just
empty 1, while property 2 is specific to 𝑛 = 1 (if and only if we
have just one workspace in our set, the result of setting a given
one of the workspaces as the current one must always be the same).
This demonstrates that even when RoughSpec does not generate
the most general valid properties for our program, it can help us to
gain a better understanding of the functions in our program and
come up with more general properties to test and create a more
complete specification. However, adding support for conditions
such as 𝑛 > 0 could enable us to generate more elegant and useful
properties.

The properties shown above, discovered by RoughSpec using
our list of default templates, provide us with some insight into how

this window manager works. However, it clearly does not provide
a complete specification and some operations hardly appear in the
properties discovered. If we add a template ?F X = ?F (?F X)
describing idempotency we discover 15 further properties. The first
4, 24–27 shown below, tell us that view, push, delete, and insert
are idempotent, which is interesting and useful information.
24. view x s = view x (view x s)
25. push x s = push x (push x s)
26. delete x s = delete x (delete x s)
27. insert x y s = insert x y (insert x y s)

Properties 28–39, however, describe the idempotency of various
combinations of the previously mentioned functions (along with
the function shift in the case of 31 and 33), for example:
33. shift x (push y s) =

shift x (push y (shift x (push y s)))
38. insert x y (delete z s) =

insert x y (delete z (insert x y (delete z s)))

These properties look rather complicated and uninteresting.
They are generated due to our template expansions, and once again
indicate that in some cases we should limit this expansion. As be-
fore, it may be useful to have a more descriptive template language
where the user can indicate whether or not a given template should
be expanded.

Comparison with hand-written properties and QuickSpec. On this
example, QuickSpec takes 12 seconds, while RoughSpec takes 7
seconds.

In [19] the author defines a set of 18 QuickCheck test proper-
ties forming a specification for this window manager. Of these 18,
five are conditional and therefore cannot be found by our current
implementation of RoughSpec.

The author defines an invariant for StackSets stating that the
current workspace index is within bounds (between 0 and the size
of the set), and that the set does not contain any duplicate screens.
They test that this invariant holds for all StackSets generated by
the QuickCheck generator (invariant s) and also that it still holds
after applying various operations.
1. invariant x
2. invariant $ view n x
3. invariant $ rotate n x
4. invariant $ push n x
5. invariant $ delete n x
6. invariant $ shift n x
7. invariant $ insert n i x

Note that having discovered property 1 above, both RoughSpec
and QuickSpec would prune away properties 2–6, deeming them
redundant. However they can be useful as test properties when we
don’t trust the test data generator to provide good coverage of the
range of potential values.

If we add the invariant function to our signature, QuickSpec
will discover the property invariant s. Of the 13 equational prop-
erties defined in [19], QuickSpec discovers 4.

RoughSpec, on the other hand, discovers the equivalent but more
clunky property invariant s && x = x, although it will discover
invariant s if we add an invariant template ?F ?X = True,
which is perhaps a reasonable template to include when we have
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boolean-valued functions in our exploration scope. Three of the
equational properties defined in [19] are found by RoughSpec
with the idempotency template and one of the remaining ones
is current (empty n) = 0, where RoughSpec discovered the
equivalent but less elegant current (empty x) + y = y. The
problem is similar to the one we encountered in the pretty-printing
and binary search examples: RoughSpec instantiates the schema
?E + X = X with both ?E = current (empty x) and ?E = 0, but
does not notice that these two terms are equal.

4 A HYBRID APPROACH
RoughSpec and QuickSpec’s approaches seem to be complemen-
tary. For large APIs, QuickSpec is slow, and often produces an
overwhelming amount of output. By contrast, RoughSpec runs
quickly, and produces a moderate number of laws. The laws it finds
are easy to understand, because they follow standard patterns, and
can be targeted to the user’s interests.

On the other hand, RoughSpec does not usually find a complete
specification. Even when testing lists, RoughSpec failed to find the
law reverse (xs ++ ys) = reverse ys ++ reverse xs, as it
did not match any of the provided templates. This is by design but
is nonetheless a weakness.

There is another problem. If RoughSpec is given very general
templates, our premise of limiting the search space may no longer
hold. For example, consider a template ?F X = ?G X searching
for equivalent functions. This template could produce interesting
and useful properties, for instance stating that different sorting
functions produce the same output for a given input. However, if
our signature contains many functions that have the same type we
will produce a large number of candidate properties and testing
them will take a long time (and probably most will be falsified).
Meanwhile, QuickSpec will discover relevant properties of this
shape much more quickly.

4.1 Hybrid tool
To solve these problems, this section introduces a hybrid approach.
The idea is to run QuickSpec to find all small laws, running with a
small size limit, and then run RoughSpec to find interesting laws
beyond that size limit.

We have implemented a tool that combines QuickSpec and
RoughSpec. The user can call roughSpecWithQuickSpec k s on
their signature s, where k is an integer parameter specifying up to
which term size QuickSpec should go. This prompts QuickSpec to
run on the signature up to the specified term size and print out the
properties discovered. Then RoughSpec is run, using the templates
supplied, but with knowledge of the properties discovered by Quick-
Spec. The pruner removes any properties subsequently discovered
by RoughSpec that follow from those discovered by QuickSpec. This
allows us to discover elegant and useful smaller properties using
QuickSpec that would be cumbersome and time-consuming to find
with RoughSpec as they would require a too-general template. It
also helps us prune away redundant and uninteresting properties
discovered by RoughSpec. Below we examine the output of the new
hybrid tool on the examples we introduced in Section 3.

4.2 Pretty Printing
Our pretty-printing library example from Section 3.1 provides a
good illustration of how combining QuickSpec and RoughSpec
helps us find better properties.

There, RoughSpec found the undesired properties 7–11 and 16–
30, which described semantically equivalent properties of various
terms that were all equal to empty. In order to remove these prop-
erties, we were forced to add a template ?F ?X = ?Y. This template
has a very general shape and can hardly be said to describe a fam-
ily of interesting properties. Very many true properties as well as
falsifiable candidate properties are likely to match this template,
so including it is likely to harm RoughSpec’s performance. In the
case of our pretty-printing signature, adding this template nearly
doubles the runtime, taking it from 16 seconds with just the de-
fault templates to 28 seconds. However, running our hybrid tool
on the pretty-printing signature with QuickSpec up to size 2, we
get the same benefits but with a runtime of 14.5 seconds. Quick-
Spec discovers precisely the 5 laws stating that hcat [], hsep [],
vcat [], sep [] and fsep [] are equal to empty, and properties 7–
11 and 16–30 are pruned away. As a result, the number of properties
discovered by RoughSpec goes down from 46 to 26.

4.3 Binary Search Trees
In the binary search tree example of Section 3.2, RoughSpec gener-
ated two redundant properties:
6. toList (delete x nil) = []
7. toList nil = sort []

These properties followed from the other discovered properties and
the laws delete x nil = nil and sort [] = [], but these last
two laws were not an instance of any of our templates so were
not discovered by RoughSpec. This is the same problem that we
encountered with the pretty-printing example of Section 3.1.

If we run our hybrid tool with QuickSpec up to term size 3,
QuickSpec discovers, among other laws, that sort [] = [] and
delete x nil = nil, allowing RoughSpec to prune away its
redundant properties. RoughSpec then discovers four properties:
the first five from Section 3.2 minus toList nil = [], which is
now discovered by QuickSpec. (It would be useful to report that
this last property matches one of the user-supplied templates, but
this is future work.) RoughSpec’s runtime goes up from 0.3 to 0.8
seconds, which still compares favourably to the 11 seconds needed
by QuickSpec. Here we pay a small price in runtime to obtain better
quality output.

4.4 List library
We performed two experiments using the combined tool on the
large list library from Section 3.3, allowing QuickSpec to explore
terms of size up to 2 and 3 respectively.

When we ran QuickSpec up to term size 2, QuickSpec discovered
7 properties, some of which would otherwise have been discov-
ered by RoughSpec but a few of which RoughSpec had previously
missed, for instance length [] = 0, sum [] = 0 (as those don’t
fit any of our templates), and concat [] = [] (which Rough-
Spec’s fix-point template does not discover due to the empty list
having a different type on the left hand side of the equation than
the right hand side). These properties are useful for pruning away



Template-based Theory Exploration:
Discovering Properties of Functional Programs by Testing IFL ’20, September 02–04, 2020, Canterbury, United Kingdom

some of the redundant properties discovered by RoughSpec, such as
length [] + x = x. The hybrid tool now discovers 177 properties
instead of the previous 184, with 4 additional properties being dis-
covered by QuickSpec instead, and 3 being pruned away. However,
even running QuickSpec up to a small term size takes a significant
amount of time on this set of functions due to the amount of terms
of different types QuickSpec generates and enumerates, and our
runtime went from 7.3 minutes to 8.6 minutes.

When we ran QuickSpec up to term size 3, QuickSpec discovered
43 properties and RoughSpec 146 (compared to the original 184)
and the runtime was 8.75 minutes. Since adding QuickSpec to the
mix increases the runtime quite a bit and (while QuickSpec also
discovers a number of properties RoughSpec would have found
anyway), our combination of tools does not provide the improve-
ments we hoped for in this case. It seems that the benefits of using
QuickSpec decrease as the number of different functions in the
signature increase.

Alternatively, running QuickSpec only on the background func-
tions or a limited subset of the library functions could be more
helpful to make our pruner smarter without taking too much time.

4.5 Window manager
When we run our hybrid tool with QuickSpec set up to term size 3,
QuickSpec discovers two properties:

1. rotate EQ s = s
2. current (empty x) = 0

This allows RoughSpec to prune away the less elegant properties
current (empty 0) = 0 and current (empty x) + y = y
(property 1 would have been discovered by RoughSpec anyway),
otherwise producing the same output as previously and taking 7
seconds instead of the previous 6.5. When we add the invariant
function as described in Section 3.4, QuickSpec also discovers the
property invariant s, allowing RoughSpec to prune away the
equivalent but less nice invariant s && x = x.

4.6 Summary
Combining QuickSpec and RoughSpec reduces the number of tem-
plates needed to discover small, basic properties. These properties
are often useful for pruning away other, larger (and to a human,
less elegant) properties. What’s more, the combination solves the
problem we repeatedly encountered in Section 3, where RoughSpec
produced redundant laws as a result of failing to notice that two
terms are equal. There is often a small overhead in runtime com-
pared to using RoughSpec on its own, which is to be expected, as
the search space is bigger when we allow QuickSpec to explore
small terms. The larger the signature is, the bigger this overhead is.
Still, the combination of QuickSpec and RoughSpec often produces
higher-quality laws than either tool manages on its own.

5 RELATEDWORK
Apart from QuickSpec [18] and Speculate [1], which we described
in the Introduction, there are also theory exploration tools for
mathematics [13–15]. Below we describe several which support
templates or schemas:

• Buchberger [2] introduced the idea of schema-based theory
exploration and his team implemented it in the Theorema [3]
system. Theorema provides tools to assist the user in their
theory exploration but does not automate the process. The
user must provide the schemas (but can store them in a
schema library for easier reuse), manually perform substi-
tutions to instantiate the schemas with terms, and conduct
proofs interactively.

• IsaScheme [15] is a schema-based theory exploration sys-
tem for Isabelle/HOL. Users provide the schemas as well
as a set of terms to instantiate the schemas with, but the
instantiation is performed automatically. The conjectures
generated by instantiation are then automatically refuted us-
ing Isabelle/HOL’s counter-example finders, or proved using
the IsaPlanner [5, 6] prover.

• MATHsAiD [14] is an automated theorem-discovery tool
which has mainly been applied in the context of abstract
algebra. It uses a combination of several exploration tech-
niques, one of them being schema instantiation, which is
used for a limited set of lemmas/theorems. The schemas used
by MATHsAiD are predefined and built-in to the system and
include, for example, reflexivity and transitivity.

None of the above systems has the same flexibility in combining
scheme-based and free-form equational exploration as our system.
We allow the user to customise the templates used, as well as tune
exploration to decide which part of the search space should be
explored thoroughly by QuickSpec, and which parts should be
explored by a template-based strategy.

Very recently, there has been interest in applying neural net-
works and techniques developed for natural language processing
also for tasks in automated theorem proving. Rabe et al. [16], present
an experiment using a language model for various mathematical
reasoning tasks, including the generation of new conjectures. They
evaluate their tool on tasks such as generating a missing precondi-
tion for a given conditional statement, generating the opposite side
of an equation, given one side, as well as "free-form" conjecturing.
While the model does produce some true statements, the majority
these are not new, but for instance exact copies or alpha renam-
ings of statements from the training set. This is of course a very
different approach compared to our work, as our tool is designed
to produce only statements that are apparently true (by means of
testing), and only statements that are different from what has been
previously seen, ensured by including simple equational reasoning
in the generation process.

6 FUTUREWORK
There are many avenues of future work we would like to explore.

RoughSpec currently supports only equations as templates. We
would like to allow templates to be arbitrary formulas, such as a
template for monotonicity, X <= Y ==> ?F X <= ?F Y. There
is no deep reason why RoughSpec only supports equations—only
that it re-uses code from QuickSpec [18], which itself only supports
equations. We plan to lift this restriction, which is not hard but
requires a bit of engineering.

We are currently extending RoughSpec to discover conditional
equations. In our approach, the user specifies a set of equational
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templates and a set of condition templates, and the tool discovers
which combinations of conditions make each equation true. That
is, the user does not have to know the exact condition for each
template, but only which conditions are interesting. The main idea
is that given a candidate equation and a large set of candidate
conditions, we can test if all conditions together imply the equation;
if they do, we can remove conditions one by one and thus obtain a
minimal set of conditions. An important question would be whether
we can supply a useful set of “standard” condition templates, as we
do for equations.

In the experiments described in this paper we have used hand-
written templates provided by the user or by a library of default
templates. We would like to further explore using data-driven meth-
ods to learn good templates for a given context. We will investigate
using machine learning to extract common patterns from proof
libraries, learning common lemma shapes given properties of the
theorem we want to prove (c.f. [7]), as well as exploiting type-class
laws and other algebraic properties.

QuickSpec has been used to discover lemmas in a theorem prov-
ing context [12], and we believe our extension could also be useful
here, using templates relevant for the theorem we would like to
prove. We will also investigate extracting templates from failed
proof attempts, similar to critics in proof planning [11].

We currently use a set of heuristics to expand templates. Tem-
plate expansion is important in order to captures a wide variety of
laws, but it sometimes goes too far. For example, given the template
?F (?G X) = ?G (?F X), both ?F and ?G can be replaced by a
nested function, resulting in laws of the form f (g (h (i x))) =
h (i (f (g x))). To reduce the use of heuristics, we would like
to define an expressive template language, in which the user can
say precisely what sort of laws they want, for example, to forbid
the use of nested functions in the template above, or alternatively
allow for expansion as iterative deepening, up to a specified limit.
As another example, it should be possible to define a template that
captures a general distributivity law f (g x1) (g x2)...(g xn)
= g (f x1...xn) for 𝑛-ary functions, without specialising it to a
particular 𝑛. Doing so requires designing a small set of combinators
for building templates.

Our tool could be made more user-friendly by not requiring the
user to explicitly type up a signature. A default signature for a given
set of functions could be automatically generated using Template
Haskell.

7 CONCLUSION
We have presented RoughSpec, a theory exploration tool in which
the user specifies which kinds of properties are interesting. It gen-
erates specifications which are short, and easy to understand, but
not necessarily complete. It can be used both to produce a rough
specification of how a set of functions behaves, and to target spe-
cific families of laws that the user is interested in. It also scales
well to large APIs. It is complementary to QuickSpec, which uses a
complete strategy for conjecture generation.

By combining the two tools, we get the benefits of both: Quick-
Spec deals with smaller conjectures (of which there are fewer), while
RoughSpec handles larger conjectures, resulting in a system that is

both fast and outputs a manageable number of largely interesting
properties.
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