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Abstract. We present a novel technique for combining statistical ma-
chine learning for proof-pattern recognition with symbolic methods for
lemma discovery. The resulting tool, ACL2(ml), gathers proof statis-
tics and uses statistical pattern-recognition to pre-processes data from
libraries, and then suggests auxiliary lemmas in new proofs by analogy
with already seen examples. This paper presents the implementation of
ACL2(ml) alongside theoretical descriptions of the proof-pattern recog-
nition and lemma discovery methods involved in it.
Keywords: Theorem Proving, Statistical Machine-Learning, Pattern Recog-
nition, Lemma Discovery, Analogy.

1 Introduction

Over the last few decades, theorem proving has seen major developments. Au-
tomated (first-order) theorem provers (ATPs) (e.g. E, Vampire, SPASS) and
SAT/SMT solvers (e.g. CVC3, Yices, Z3) are becoming increasingly fast and effi-
cient. Interactive (higher-order) theorem provers (ITPs) (e.g. Coq, Isabelle/HOL,
Agda, Mizar) have been enriched with dependent types, (co)inductive types, type
classes and provide rich programming environments.

The main conceptual difference between ATPs and ITPs lies in the styles of
proof development. For ATPs, the proof process is primarily an automatically
performed proof search in a first-order language. In ITPs, the proof is guided by
the user who specifies which tactics to apply. ITPs often work with higher-order
logic and type theory.

Communities working on development, implementation and applications of
ATPs and ITPs have accumulated big corpora of electronic proof libraries. How-
ever, the size of the libraries, as well as their technical and notational sophistica-
tion often stand in the way of efficient knowledge re-use. Very often, it is easier
to start a new library from scratch rather than search the existing proof libraries
for potentially common heuristics and techniques.
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Pattern-recognition [2] is an area of machine-learning that develops statisti-
cal methods for discovering patterns in data. In the statistical sense, a pattern is
a correlation of several numeric features, by which the data is represented. For
instance, the correlation between the theorem statement and the auxiliary lem-
mas required in its proof can be data-mined to improve automation of premise
selection in ATPs [7, 8, 18, 22, 23]. The history of successful and unsuccessful
proof attempts and proof steps can also be used to inform interactive proof
development in ITPs [9, 17].

Statistical machine-learning methods are well-suited for fast processing of
big proof libraries, adapt well to proofs of varied sizes and complexities (first-
or higher-order); and are generally tolerant to noise. However, they have very
weak capacities for conceptualisation. For instance, ML4PG [17] only displays
the families of related proofs to the Coq user, and can tell the correlation of
which features formed the pattern, but it neither explains why this happens nor
formulates any conceptual proof hints.

While statistical methods focus on extracting information from existing large
theory libraries, many symbolic methods are instead concerned with automating
the discovery of lemmas in new theories [4, 6, 11, 13, 20, 21], while relying on
existing proof strategies, e.g. proof-planning and rippling [1]. These systems are
naturally more deterministic and algorithmic than statistical AI.

IsaCoSy [13] and IsaScheme [21] are two term synthesis systems built on
top of Isabelle. They generate candidate conjectures which are filtered through
a counter-example checker. Surviving conjectures are passed to an automated
prover and those proven are added to the theory. The systems differ in their
heuristics for term generation: IsaCoSy only generates irreducible terms, while
IsaScheme uses schemes [3] to specify the shapes of candidate theorems. A sim-
ilar system is QuickSpec and its extension HipSpec [4,5], which generates equa-
tional theorems about Haskell programs, using congruence closure for conjecture
generation. MATHsAiD [20] generates theories by forward reasoning from a given
set of axioms, applying various ‘interestingness’ heuristics.

Symbolic methods have limits: they can be slow on large inputs due to the
increase in the search space, rely on having access to good counter-example
finders for filtering of candidate conjectures and require existing proof strategies
for proving those remaining.

In this paper, we show that it is possible to combine statistical and symbolic
methods to get the best of both worlds: statistical pattern-recognition methods
are well-suited for finding families of similar proofs; symbolic tools can use this
data for more efficient lemma discovery. Feeding outputs of one algorithm to the
other leads to a very natural proof-pattern recognition system, see Figure 1. To
realise this general thesis about the synthesis of the two styles of proof-pattern
recognition, we have made the following methodological choices:

1) We chose the ACL2 prover for our experiments: it is based on first-order
logic and has features of both ITPs and ATPs. ACL2 will try to prove given
conjectures automatically, but strongly relies on the user having supplied the
auxiliary lemmas required for rewriting. Thus, the user must often intervene
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Fig. 1. Architecture of proof-pattern recognition methods in ACL2(ml). The Emacs interface for

ACL2 extracts important features from ACL2 theorems, connects to machine-learning software,

clusters the theorems there, and sends the result (families of similar theorems) to the screen. In

addition, for an unproved theorem T , it sends the cluster C of T to the Lemma Analogy tool, which

in its turn generates an auxiliary lemma by analogy with auxiliary lemmas of the theorems in C.

and advance the proof by adding new lemmas, much like in ITPs. Section 2
gives a brief introduction to ACL2.

2) On the machine-learning side, we chose to adapt the ML4PG [17] design
of interactive proof-pattern recognition; cf. Figure 1. We extended this work
with a new feature extraction algorithm for ACL2(ml), based on term trees
and recurrent clustering. Much like in ML4PG, we discover families of related
lemmas, rather than premise hierarchies like in [18,22,23]. Unlike [18,22,23], we
use clustering instead of supervised learning; and do not use sparse methods.
Section 3 explains our new method in detail.

3) On the symbolic side, we develop a novel lemma generation approach
which uses the statistical suggestions to reduce the search space. Speculating
the correct lemma in a proof can often be the eureka moment which allows a
proof to succeed. It is these eureka lemmas which we would like to reproduce
automatically. We propose an analogy driven approach where the term structure
of an example source lemma is analysed to produce an analogous target lemma
for a given target problem. In the context of ITP, the user is then presented with
an auxiliary lemma suggestion which is customised to the particular problem on
which he is working. Section 4 is devoted to this subject.

We implement the above choices in the ACL2 extension ACL2(ml), available
at [10]. Finally, we conclude with evaluation of this method in Section 5. The re-
sults we obtain with ACL2 have a wider significance, as methodology we develop
here would apply to a wide range of first-order theorem provers.

2 Background

ACL2 [14, 16] (standing for A Computational Logic for an Applicative Com-
mon Lisp) is a programming language, a logic, and a theorem prover supporting
reasoning in the logic. The ACL2 programming language is an extension of an
applicative subset of Common Lisp. The ACL2 logic is an untyped first-order
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;; Factorial
1 (defun fact (n) (if (zp n) 1 (* n (fact (- n 1)))))

2 (defun helper-fact (n a) (if (zp n) a (helper-fact (- n 1) (* a n))))

3 (defun fact-tail (n) (helper-fact n 1))

4 (defthm fact-fact-tail (implies (natp n) (equal (fact-tail n) (fact n))))

;; 2^n
1 (defun power (n) (if (zp n) 1 (* 2 (power (- n 1)))))

2 (defun helper-power (n a) (if (zp n) a (helper-power (- n 1) (+ a a))))

3 (defun power-tail (n) (helper-power n 1))

4 (defthm power-power-tail (implies (natp n) (equal (power-tail n) (power n))))

;; Fibonacci
1 (defun fib (n) (if (zp n) 0 (if (equal n 1) 1 (+ (fib (- n 1)) (fib (- n 2))))))

2 (defun helper-fib (n j k) (if (zp n) j (if (equal n 1) k (helper-fib (- n 1) k (+ j k)))))

3 (defun fib-tail (n) (helper-fib n 0 1))

4 (defthm fib-fib-tail (implies (natp n) (equal (fib-tail n) (fib n))))

Fig. 2. ACL2 definitions and theorems. 1: recursive arithmetic functions. 2: helpers of tail-recursive

arithmetic functions. 3: tail-recursive arithmetic functions. 4: Equivalence theorems of recursive and

tail-recursive functions.

logic with equality, used for specifying properties and reasoning about the func-
tions defined in the programming language. All the variables in the formulas
allowed by the ACL2 system are implicitly universally quantified. The syntax of
its terms and formulas is that of Common Lisp.

Example 1. Given the recursive and tail-recursive functions to compute factorial,
2n and Fibonacci, the ACL2 user can specify the equivalence between the func-
tions as shown in Figure 2 with theorems fact-fact-tail, power-power-tail
and fib-fib-tail. Note the similarity between these lemmas.

ACL2 has both automatic and interactive features. It is automatic in the
sense that once a defthm command is submitted, the user can no longer interact
with the system (the ACL2 proof engine applies a collection of automatic tactics
until either the conjecture is proven or none of the tactics is applicable). Often,
non-trivial results cannot be proven on the first attempt. The user then has
to interact with the prover by supplying a suitable collection of definitions and
auxiliary lemmas, used in subsequent proofs as rewriting rules. These lemmas
are suggested by a preconceived hand proof or by inspection of failed proofs; this
kind of interaction is referred to as The Method [14].

Example 2. ACL2’s first attempt at proving the conjecture fact-fact-tail of
Example 1 fails, and the user needs to introduce a lemma (inspired by the failed
proof of fact-fact-tail), which is automatically proven by ACL2:
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(defthm fact-fact-tail-helper (implies (and (natp n) (natp a))

(equal (helper-fact n a) (* a (fact n)))))

ACL2 can now automatically prove the conjecture fact-fact-tail, using this
auxiliary result. In later sections, we will show how ACL2(ml) automatically
detects similar theorems and generates auxiliary lemmas for them.

The proofs of equivalence between the recursive and tail-recursive functions
in Figure 2 follow a common pattern: the equivalence theorems are not proven by
ACL2 in the first attempt, and the user must introduce auxiliary lemmas about
the helper functions. In general, the detection of common patterns and the
generation of new lemmas from those patterns is based on user’s experience and
can be challenging. The ACL2 distribution consists of several libraries containing
hundreds of theorems, developed by several users with their own notations. It can
be a challenge to detect patterns across different users, notations and libraries.
Moreover, given two similar theorems T1 and T2, the lemmas used to prove T1

can be substantially different to the ones needed for T2 (e.g. different function
symbols, different lemma structures, additional conditions, new concepts).

In the next sections, we describe how these challenges can be addressed au-
tomatically. We consider two running examples. The first one is the JVM library
developed in [12]. This library contains the correctness proofs of the Java byte-
code associated with several arithmetic programs such as multiplication, factorial
and Fibonacci, including the theorems of Figure 2. As a second running example,
we consider the Lists library presented in [15]. From this library, we consider
three functions that will appear later in the paper: sort (that sorts a list of
natural numbers), rev (which reverses a list), and int (which takes two lists
as arguments and returns the list of elements that appear in both); and three
theorems about these functions.

(defthm sortsort (implies (nat-listp x) (equal (sort (sort x)) (sort x))))

(defthm revrev (implies (true-listp x) (equal (rev (rev x)) x)))

(defthm int-x-x (implies (true-listp x) (equal (int x x) x)))

3 Statistical Proof-Pattern Recognition with ACL2(ml)

We present a statistical proof-pattern recognition extension to ACL2, called
ACL2(ml). Its implementation design follows the ML4PG tool for Coq [17]:
this Emacs-based machine-learning extension works on the background of the
theorem prover, gathers statistics of proof features, and then, on user’s request,
connects to a machine-learning toolbox (MATLAB or Weka); groups the proofs
using clustering algorithms, and displays families of related proofs to the user.
This approach allows real-time interaction between the user, the prover, and the
machine-learning systems; as [17] explains in detail.

Here, we concentrate only on original components of ACL2(ml) as compared
to ML4PG. There are two such features: a novel algorithm for term tree feature
extraction and the method of recurrent clustering.
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natp

n
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fact-tail fact

n n

impl natp equal fact-t. fact n n’ n”

impl 0 1 1 0 0 0 0 0
natp 0 0 0 0 0 1 0 0
equal 0 0 0 1 1 0 0 0
fact-t. 0 0 0 0 0 0 1 0
fact 0 0 0 0 0 0 0 1
n 0 0 0 0 0 0 0 0
n’ 0 0 0 0 0 0 0 0
n” 0 0 0 0 0 0 0 0

Fig. 3. Term tree and adjacency matrix for Theorem fact-fact-tail; assuming the root-to-leaf

direction of edges.

Term tree feature extraction in ACL2(ml). The discovery of statisti-
cally significant features in data is a research area of its own in machine learning,
known as feature extraction [2]. Irrespective of the particular algorithm used,
most pattern-recognition tools will require that the features have numeric val-
ues; and the number of selected features is limited and fixed (sparse methods,
like the ones applied in e.g. [18,22,23], are the exception to the latter rule). The
feature extraction algorithm implemented in ML4PG was based on correlation
between the goal shapes, the tactics and tactic parameters within a few steps
of the interactive proof. As ACL2 is not a tactic-driven language, we need to
extract features from the ACL2 terms directly. Feature extraction from terms
or term trees is common to most feature-extraction algorithms implemented in
automated theorem provers: see e.g. [18, 22,23].

Definition 1 (Term tree). A variable or a constant is represented by a tree
consisting of one single node, labelled by the variable or the constant itself. A
function application f(t1, . . . , tn) is represented by the tree with the root node
labelled by f , and its immediate subtrees given by trees representing t1, . . . , tn.

Example 3. Theorem fact-fact-tail from Example 1 can be represented by
the term tree of Figure 3.

A variety of methods exists to represent trees as matrices, for instance using
adjacency matrices and incidence matrices, with the former shown in Figure 3.
The adjacency matrix and the various previous methods of term tree feature
extraction (e.g. [18,22,23]) share the following common properties: different tree
nodes are represented by distinct matrix entries (features); the matrix entries
(feature values) are binary; and the size of the matrix depend on the tree size. For
big libraries, such matrices can grow very large (up to 106 in some experiments)
and at the same time very sparse, which implies the use of sparse machine-
learning in [18,22,23].

In ACL2(ml), we implement a more compact feature extraction, where a
total number of features is fixed for all libraries at 49, and the average density of
matrices is 20%. The smaller and denser feature vectors can be used to data-mine
both big and small data sets. Large and sparse feature vectors would require to
use big data sets of proofs, where the size of the example data set is comparable to
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variables arity 0 arity 1 arity 2

td0 0 0 0 [implies]
td1 0 0 [natp] [equal]
td2 [n] 0 [fact-tail]::[fact] 0
td3 [n]::[n] 0 0 0

variables arity 0 arity 1 arity 2 arity 3

td0 0 0 0 0 [if]
td1 0 [1] [zp] [*] 0
td2 [n]::[n] 0 [fact] 0 0
td3 0 0 0 [-] 0
td4 [n] [1] 0 0 0

Table 1. Left. Dense term tree feature extraction matrix for theorem fact-fact-tail. Right.
Dense term tree feature extraction matrix for definition fact. The operator “::” indicates the
concatenation of values (e.g. 4::5=45).

the number of features. In our interactive setting, it is crucial that the ACL2(ml)
tool works equally well with both big and small proof libraries; and that the user
can interact with it at any stage of the proof development.

We develop a method to overcome the problem of having to track a large
(potentially unlimited) number of ACL2 symbols by a finite number of features,
as follows. The ACL2 symbols are represented by distinct feature values given
by rational numbers. The feature values are computed dynamically by recurrent
clustering algorithm, thus reflecting the recursive nature of the ACL2 functions
and proofs. The features are given by the finite number of properties common
to all possible term trees: the term arity and the term tree depth; see Table 1.
This is formalised in the following definitions.

Definition 2 (Term tree depth level). Given a term tree T , the depth of
the node t in T , denoted by depth(t), is defined as follows:
− depth(t) = 0, if t is a root node;
− depth(t) = n+ 1, where n is the depth of the parent node of t.

Definition 3 (ACL2(ml) term tree matrices). Given a term tree T for a
term with signature Σ, and a function [.] : Σ → Q, the ACL2(ml) term tree
matrix MT is a 7× 7 matrix that satisfies the following conditions:
− the (0, j)-th entry of MT is a number [t], such that t is a node in T , t is

a variable and depth(t) = j.
− the (i, j)-th entry of MT (i 6= 0) is a number [t], such that t is a node in

T , t has arity i+ 1 and depth(t) = j.

We deliberately specify [.] only by its type in Definition 3. In ACL2(ml), this
function is dynamically re-defined for every library and every given proof stage,
as we are going to describe shortly in Definition 4. In practice, there will be a
set of such functions computed in every session of ACL2(ml).

To make the feature extraction uniform across all ACL2 terms appearing in
the library, the matrices are extended to cover terms up to arity n and tree-
depth m. The parameters n and m can vary slightly; for all libraries considered
in the paper n = 5 and m = 7 were sufficient, giving a feature vector size of
49 – a small size compared to sizes up to 106 in sparse approaches [18, 22, 23].
Having a clustering algorithm working for small sets of examples is crucial for
the technique of recurrent clustering we implement for ACL2(ml).
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Recurrent Clustering. As discussed above, the function [.] influences re-
sults of ACL2(ml) proof-pattern recognition; and the computation of [.] needs to
be sensitive to the similarities that exist between the symbols appearing in the
proofs. As ACL2 is a functional language, every entry in a term tree is necessar-
ily itself defined in ACL2. This symbol definition can itself be clustered against
other definitions used by the library; and the process can be repeated recursively
to include all the necessary standard library definitions. This is how the feature
extraction becomes a part of recurrent clustering in ACL2(ml).

We first define some essential clustering parameters. ACL2(ml) connects au-
tomatically to clustering [2] algorithms available in Weka (K-means, Farthest-
First and E.M.). Clustering techniques divide data into n groups of similar ob-
jects (clusters), where the value of n is a learning parameter provided by the
user. Increasing the value of n makes the algorithm separate objects into more
classes, and, as a consequence, each cluster will contain fewer examples. There
is a number of heuristics to determine the optimal value of n; ACL2(ml) has its
own function to dynamically adjust n for every run of clustering using an aux-
iliary granularity parameter. Granularity can be varied by the user; and ranges
between 1 and 5, low granularity produces big and general clusters while high
granularity produces small and precise clusters (see the top row of Table 2).
Given a granularity value g, the number of clusters n is given by the formula

n = bobjects to cluster

10− g
c.

The clustering algorithm assigns a proximity value to every term in a cluster.
This ranges from 0 to 1, and indicates the certainty of the given example belong-
ing to the cluster. ACL2(ml) shares with ML4PG some additional heuristics to
ensure output quality, e.g., all experiments are run 200 times and only the ones
with high frequencies are displayed to the user.

The choice of clustering algorithm, granularity and ACL2 libraries are ac-
commodated in ACL2(ml) through a menu included in the Emacs interface. On
user’s demand, the ACL2(ml) interface displays families of related theorems; we
call this process Theorem Clustering. In addition, ACL2(ml) clusters all the li-
brary definitions in the background every time a new definition is introduced.
We call this process Definition Clustering.

The main reason for distinguishing theorem clustering and definition clus-
tering is as follows. Theorem clustering is the ultimate goal of the proof mining
here, but the feature tables for the theorems depend on the numeric represen-
tation of the symbols appearing in the theorems (see Definition 3 and Table 1).
These symbols are normally defined within the libraries one uses, or else im-
ported from CLISP. The following definition proceeds inductively on the type of
symbols appearing in ACL2 definitions.

Definition 4 (Function [.]). Given the nth term definition of the library (call
the term t), a function [.] is inductively defined for every symbol s in t as follows:
− [s] = i, if s is the ith distinct variable in t (note that all formulas are implicitly
universally quantified in ACL2);
− [s] = −[m], if t is a recursive definition defining the function s with measure
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∗ Type r e c o gn i s e r s (r = {symbolp , characterp , s t r ingp , consp , acl2−numberp , integerp ,

ra t iona lp , complex−r a t i ona lp}) : [ri] = 1 +
∑i

j=1
1

10×2j−1 ( where ri i s the ith

element o f r ) .

∗ Constructors (c = {cons , complex}) : [ci] = 2 +
∑i

j=1
1

10×2j−1 .

∗ Accessors (a1 = {car , cdr} , a2 = {denominator , numerator} , a3 = { r ea lpar t , imagpart}) :

[a
j
i
] = 3 + 1

10×j
+ i−1

100
.

∗ Operations on numbers (o = {unary−/, unary−−, binary−+, binary−∗}) :

[oi] = 4 +
∑i

j=1
1

10×2j−1 .

∗ I n t e g e r s and r a t i o n a l numbers : [0] = 4.3 , [n] = 4.3 +
|n|
10

( with n 6= 0 and |n| < 1) and

[n] = 4.3 + 1
100∗|n| ( with n 6= 0 and |n| ≥ 1) .

∗ Boolean opera t i ons (b = {equal , i f , <}) : [bi] = 5 +
∑i

j=1
1

10×2j−1 .

Fig. 4. Formulas to compute the value of function [.] for the ACL2 functions imported

from CLISP. The above formulas serve to assign closer values to the functions within each of the

six above groups, and more distant numbers across the groups – thus distinguishing the groups

unambiguously.

function m automatically assigned by the ACL2;
− [s] = k , if s is a function imported from CLISP; and [s] = k in Figure 4;
− [s] = 5 + 2 × j + p, where Cj is a cluster obtained as a result of definition
clustering with granularity 3 for library definitions 1 to n − 1, s ∈ Cj and p is
the proximity value of s in Cj. (Note that a cluster in definition clustering is
given by a set of terms; and the default granularity 3 generally provides a good
balance between the size of clusters and their precision.)

Note the recurrent nature of clustering in Definition 4, with symbol number-
ing for the nth term depending on the clustering results for previous n−1 terms.
As the above definition implies, the function [.] is adaptive, and is recomputed
automatically when new definitions (and hence new symbols) are introduced.
The motivation behind the various parameters of Definition 4 is as follows:
− Variables. The variable encoding reflects the number and order of unique vari-
ables appearing in the term, note its correspondence to the De Bruijn indexes.
− Recursive case. For every recursive function s, ACL2 assigns a termination
measure function m. So, m necessarily exists for all recursive definitions and
implicitly contains some “type” information (e.g. the measure for the function
rev is the length of its input and the measure for fact is the value of its input).
It has a negative value in order for feature values to distinguish the occurrence
of the inductive symbol being currently defined from occurrence of any external
functions invoked in the body of the term. The value −[m] identifies all induc-
tively defined symbols with the same ACL2 termination measure function.
− Finally, the formula 5+2×j+p assigns [s] a value within [5+2×j, 5+2×j+1],
depending on their statistical proximity p for that cluster – p always lies within
[0, 1]. Thus, elements of the same cluster have closer values comparing to the val-
ues assigned to elements of other clusters or to the imported CLISP functions.

We finish this section with some examples of ACL2(ml) clustering. All exam-
ples are run with several clustering functions and a choice of statistical parame-
ters, allowing us to evaluate whether the feature extraction method we present
here is robust across a range of algorithms, see Table 2.
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Algorithm:
g = 1 g = 2 g = 3 g = 4 g = 5

(n = 16) (n = 18) (n = 21) (n = 25) (n = 30)

fib-fib-tail experiments
K-means 9a,b,c 4a,b,c 3a,c 2a 2a

(one relevant cluster)
E.M. 16a,b,c 16a,b,c 9a,b,c 4a,b,c 4a,b,c

FarthestFirst 12a,b,c 12a,b,c 10a,b,c 5a,b,c 4a,b,c

Algorithm:
g = 1 g = 2 g = 3 g = 4 g = 5

(n = 11) (n = 12) (n = 14) (n = 16) (n = 20)

revrev experiments
K-means 22d,e 22d,e 20d,e 11d,e 3d,e

(one relevant cluster)
E.M. 29d,e 25d,e 25d,e 23d,e 19d,e

FarthestFirst 45d,e 34d,e 30d,e 26d,e 15d,e

Table 2. Results of Clustering experiments in ACL2(ml) for a choice of algorithms and granu-
larities. When granularity g is chosen by the user, ACL2(ml) dynamically calculates the number n
of clusters; the table shows the size of one most relevant cluster that ACL2(ml) displays to the user
in each case. Top table. Experiments for Theorem fib-fib-tail using JVM library (150 lemmas).
We mark if the cluster contains (in addition to Theorem fib-fib-tail): a) Theorem fact-fact-tail,
b) Theorem power-power-tail, c) other theorems related to the equivalence of recursive and tail-
recursive functions. Bottom table. Experiments for Theorem revrev using Lists library (100 lem-
mas). All the clusters contain theorems d) sortsort and e) int-x-x (in addition to revrev). Note the
stable performance of our feature extraction algorithm across several algorithms and parameters.

Example 4. Using the JVM library, ACL2(ml) detects lemmas similar to the-
orem fib-fib-tail (see Figure 2). Table 2 shows the sizes of clusters that
ACL2(ml) will display for this theorem for various clustering algorithms and
granularities. In Table 2, we can see a clear pattern: fib-fib-tail is consis-
tently grouped with other theorems related to the equivalence of recursive and
tail-recursive functions – this is done with all variations of learning algorithms
and granularities, albeit with varied degree of precision. For this set of examples
and this stage of the proof, the feature extraction function [.] returned values:
[fact] = 12.974, [power] = 12.973, [fib] = 12.618.
[helper-fact] = 16.961, [helper-power] = 16.967, [helper-fib] = 16.431.
[fact-tail] = 18.970, [power-tail] = 18.969, [fib-tail] = 18.735.
Note that the numbers above correspond to our intuitive grouping in Figure 2.

Table 2 also shows the lemmas of library Lists that are similar to revrev. In
this case, the most precise cluster is detected by K-means with g = 5, but we can
notice that revrev is always clustered with theorems sortsort and int-x-x.

4 Lemma Discovery in ACL2(ml)

One of the motivations of this research is to provide the ACL2 users with an
efficient interactive lemma suggestion mechanism when automated proof search
fails. The symbolic side of ACL2(ml) uses analogical reasoning to efficiently pro-
duce lemmas which are relevant to the current conjecture. In particular, it auto-
matically attempts to suggest lemmas which are characterised as eureka lemmas
– i.e. ones whose invention is mathematically creative and difficult to automate.
In Section 3, we described how ACL2(ml) employs statistical machine-learning
to determine similarity of theorem statements based on the term structure. In
this section, we show how ACL2(ml) uses this information to construct analogous
lemmas – this greatly reduces the search space for lemma discovery.
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Fig. 5. Left: The source theorem and lemma along with the target theorem for which we seek an
analogous lemma. Right: overview of the process of generating analogical lemmas. Here the label
iteration is the iteration step and mappings is a count of the number of analogy mappings.

We introduce the following terminology: A Target Theorem (TT) is a theorem
currently being attempted in ACL2, but requiring user’s intervention. A Source
Theorem (ST) is a theorem which has been suggested as similar to the TT
by the statistical ACL2(ml). A Source Lemma (SL) is a user-supplied lemma
required for proving the source theorem. The symbolic side of ACL2(ml) groups
(potentially multiple) statistical suggestions into ST and SL pairs, each being
evaluated in turn. The process then outputs some Target Lemmas (TLs) — these
lemmas are analogical to some SL and not falsified by counter-example checking.

Example 5. Let us consider the case shown by Figure 5, where a user of ACL2
wants to prove the TT4: (helper-fib n 0 1) = (fib n). As described in Section
3 and Table 2, ACL2(ml) suggests the closest analogy to be:
(helper-fact n 1) = (fact n). Only one user-defined auxiliary lemma is used
in the proof of this ST: (helper-fact n a) = (* a (fact n)). The job of the
lemma analogy process is to construct the corresponding TL for the fibonacci

example, this will be our running example throughout this section.

The overall process for lemma analogy is shown in Figure 5. It has two main
components: Analogy Mapping and Term Tree Mutation. Analogy Mapping cal-
culates which symbols could be analogical to each other using the definition
clustering techniques from Section 3. Term Tree Mutation then uses this infor-
mation to construct candidate target lemmas analogical to a given SL. Symbols
belonging to the background theory, i.e. symbols shared between the source and
target, are not changed by Analogy Mapping.

Definition 5 (Analogy Mapping A). For all symbols s1, . . . , sn occurring in
the current ST, the set of admissible analogy mappings is the set of all mappings
A such that
- A(si) = si for all shared background symbols; otherwise:

4 To ease readability, we use infix notation instead of ACL2 notation, e.g. t1 = t2

instead of (equal t1 t2).
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- A(si) = sj for all combinations of i, j ∈ 1 . . . n, such that si and sj belong to
the same cluster in the last iteration of definition clustering.

Example 6. For our running example, the shared background theory includes
symbols {+, *,-, 1, 0}. We thus get a mapping:
A = {fact 7→ fib, helper-fact 7→ helper-fib, + 7→ +, 1 7→ 1 . . . }

Term Tree Mutation. Given an analogy mapping, candidate lemmas are
constructed by mutating the term tree of the SL. IsaScheme [21] works similarly,
by defining schemes which determine the shape of a generated term. Here, we
extend this idea by iteratively allowing larger perturbations on this shape if
no suitable candidate lemma has been found. We refer to this as mutation, an
overview of the process is shown in Figure 5. The algorithm proceeds down three
levels of increasing term tree mutation. After each iteration, we test the validity
of the set of generated equations using a counter-example checker. If no candidate
conjecture survives counter-example checking, mutation proceeds to the next
iteration. The Term Tree Mutation algorithm for the case of equational lemmas
is shown in Figure 6, however note that each sub-routine work on arbitrary
terms and the mutation algorithm can thus trivially be generalised. The first
iteration, Tree Reconstruction, replaces symbols in the SL with their analogical
counterparts. The second iteration, Node Expansion further mutates the term,
by synthesising small terms (max depth 2) in place of variables. Finally, the last
iteration, Term Tree Expansion similarly adds new term structure, but on the
top-level of the term.

Iteration 1 – Tree Reconstruction. The first iteration recursively replaces
symbols in the source term by their analogical counterpart specified by A. If the
analogous function has fewer arguments than the source, we simply ignore excess
arguments. If it has more arguments, we insert variables in the free positions.

Example 7. The running example has SL (helper-fact n a) = (* a (fact n))

with A as in Example 6. TreeRec performs the replacements to produce sets
of candidate left- and right-hand sides, including for instance, the potential
left-hand side (helper-fib n n1 a) and the right-hand sides (* a (fib n)) and
(* n1 (fib a)) – as well as other variants with variables in different order. Note
that we introduce a new variable n1 as helper-fib has one more argument than
its analogical counterpart helper-fact. In this case, no combination of left- and
right-hand sides yield an equational theorem.

Iteration 2 – Node Expansion. If Tree Reconstruction fails to produce
any conjecture passing counter-example testing, the second iteration synthesises
terms which are allowed to replace variables, thus growing the term tree from
the leaves. These synthesised terms are however limited to depth 2 and built
from the shared function symbols, to keep the search space tractable.

Example 8. In our running example, we look at the new terms generated from
the right-hand side of the SL. Suppose we start from one candidate from the pre-
vious iteration: (* n1 (fib a)). Node Expansion will consider all possible ways
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TTMutation
Input: An analogy mapping A, a set of shared symbols F, and an equational source

term tl = tr.

1. Compute Tree Reconstructions giving sets of candidate left- and right hand sides.
L1 = TreeRec(A, tl)
R1 = TreeRec(A, tr)

Counter-example check all pairs of terms as candidate equations.
Res = TestAllEqs(L1, R1)
if not(Res = []) then return Res
If no candidate lemma found, continue to next iteration.
else

2. Compute Node Expansions
L2 = map (NodeExp F) L1
R2 = map (NodeExp F) L2

Counter-example check all pairs of terms generated so far as candidate equations.
Res = TestAllEqs(L1++L2, R1++R2)
. . .

3. Compute Tree Expansions
L3 = (TreeExp F) L2
R3 = (TreeExp F) R2

return TestAllEqs (L1++L2++L3, R1++R2++R3)

Fig. 6. Term Tree Mutation. The algorithm proceeds through three iterations of increasingly mu-

tating the source term. This work is performed by the functions TreeRec, NodeExp and TreeExp. The

left- and right hand sides of the original equation are mutated separately and after each step all

combinations of equalities are counter-example tested (by the function TestAllEqs).

of replacing the variables a and/or n1 by terms built from shared background
theory functions {+, *, -}, applied to available variables, {a, n, n1}, and con-
stants, {1, 0}. The set of potential right-hand sides will now include terms such
as (* n1 (fib (- n 1))) (having replaced a by (- n 1)), as well as many more
similar alternatives.

Iteration 3 – Term Tree Expansion As opposed to Iteration 2, which in-
troduced new term structure at the leaves, this phase allows for insertion of term
structure at the top level. Term Tree Expansion considers all terms synthesised
so far and explores how they can be used as arguments to shared background
theory functions.

Example 9. For the running example, we consider the whole set of candidate
terms for the right-hand side. We consider all terms that can be built giv-
ing some combination of these as arguments to the background theory func-
tions {+, *, -}. For instance, one of the new terms that is built in this iter-
ation is (+ (* n (fib (- n1 1))) (* a (fib n1)), having added a top-level +.
The counter-example checker does not find a counter-example for the conjecture
(helper-fib n n1 a) = (+ (* n (fib (- n1 1))) (* a (fib n1)). Hence, the re-
sult is shown to the user as a suggestion of an auxiliary lemma to employ in the
current proof.
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5 Evaluation and Conclusions

We have presented ACL2(ml), an ACL2 extension combining statistical ma-
chine learning, to detect proof patterns, with symbolic techniques for generating
new auxiliary lemmas. All software and extensive evaluation results are avail-
able from [10]. Both sides of ACL2(ml) are original techniques on their own.
However, comparing ACL2(ml) with other alternative tools, two of its features
distinguish it from all other approaches: its methods of generating the proof-
hints interactively and in real-time, in response to the user’s call; and secondly,
its flexible environment for integration of statistical and symbolic techniques.
We finish with an evaluation of the system.

Scalability. The ACL2 proofs libraries can grow very big, especially in in-
dustrial scenarios. The statistical ACL2(ml) tool works well with libraries of
varied sizes and complexities; and does not need any fine-tuning when the user
adds more libraries. To illustrate this, we increased by 6.64 times the data set
used in Example 4 and Table 2 (by adding as noise lemmas coming from stan-
dard ACL2 libraries; and also the ones presented in [19] – the data set contains
996 theorems). Table 3 shows that ACL2(ml) still finds precise clusters; e.g., it
still finds a cluster containing exactly the three theorems proving equivalence of
recursive and tail-recursive functions similar to fib-fib-tail. Similar results
are shown with respect to other functions from e.g. JVM library, see [10].

g = 1 g = 2 g = 3 g = 4 g = 5
(n = 110) (n = 124) (n = 142) (n = 166) (n = 199)

fib-fib-tail 57a,b,c 50a,b,c 25a,b,c 8a,b,c 4a,b,c

Table 3. Results of Clustering experiments in ACL2(ml) for k−means clustering algorithm and
a choice of granularities. Experiments for Theorem fib-fib-tail. We mark if the cluster contains (in
addition to Theorem fib-fib-tail): a) Theorem fact-fact-tail, b) Theorem power-power-tail, c)
theorems related to the equivalence of recursive and tail-recursive functions. The size of the data set
is 996 theorems coming from the JVM library [12], the standard ACL2 libraries: Lists, powerlists and
sorting; and a library related to the formalisation of a computer algebra system presented in [19].

Usability of statistical suggestions. The statistical side of ACL2(ml) is
not deterministic; but it is possible to empirically evaluate the usability of the
statistical results produced by ACL2(ml). Using the data set containing 996 theo-
rems presented in Table 3, and considering the clusters obtained with granularity
5, we notice that: 37% of clusters identified by ACL2(ml) can be directly used
by the Lemma Analogy tool of ACL2(ml) to mutate lemmas. Additionally, 15%
of clusters contain theorems that use the same lemmas in their proofs, another
15% of clusters consist of theorems that are used in the proofs of other theorems
of the same cluster, and about 19% of clusters contain basic theorems whose
proofs are similar, but based on simplification, and hence unsuitable for Lemma
Analogy application. Only 14% of clusters do not show a clear correlation that
could be reused.

Modularity. ACL2(ml) provides a flexible environment for integrating sta-
tistical and symbolic machine-learning methods. The statistical parameters can
be easily tuned to provide a better input for the Analogy tool.
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Example 10. Consider the generation of auxiliary lemmas for fib-fib-tail and
revrev. The auxiliary lemma for fib-fib-tail is generated from the lemma
marked with either a or b in Table 2. Other lemmas in this cluster can be
considered as noise. In this case, the granularity and algorithm choice are not
particularly relevant because the auxiliary lemma can be created from all the
clusters and the search space is small. However, the correct auxiliary lemma is
generated faster when increasing the granularity parameter.

In the case of revrev, the relevant clusters are bigger than in the case of
fib-fib-tail and the relevant lemma for revrev is only generated from the-
orem sortsort. Then, the noise can be reduced by setting ACL2(ml) to the
highest granularity 5 with K-means algorithm, which reduces the cluster to 3
lemmas.

All our running examples were based on the cases when the proofs of the
theorems required introduction of only one user-defined auxiliary lemma; and
hence the analogy tool concentrated only on them. However, in the general case,
the similar theorems found by statistical ACL2(ml) can rely on several auxiliary
lemmas. To help the Analogy tool decide which of them should be used for new
lemma generation, the statistical tool can be applied recursively to cluster these
auxiliary lemmas; and thus find those more likely to result in a good analogy.

Lemma Discovery. The Analogy algorithm is designed to be fast and reduce
the combinatorial explosion introduced by typical theory exploration techniques.
By starting from an exemplar source lemma, we use mutation to perturb the
term. We compare our tool with QuickSpec [5] – a state of the art system for
generating equational conjectures about Haskell programs. While QuickSpec is
designed to suggest a number of conjectures about a given set of symbols, the
lemma analogy system aims at just discovering a few lemmas relevant to some
particular proof attempt.

The ACL2(ml) approach is more suitable for integration into an ITP, as anal-
ogy can reduce the search space, making lemma discovery tractable in theories
where QuickSpec runs out of memory. QuickSpec works by generating all terms
up to a given depth (default is 3) and then use testing to evaluate the terms and
divide them into equivalence classes. These represent a large number of equations
so the set is pruned before displaying it to the user in an attempt to only show a
small set of interesting equations. Table 4 shows the results of all combinations
of source and target theorems from the examples used on the natural numbers
examples introduced into ACL2(ml). QuickSpec takes as input only the function
symbols from the target theorems for each run. Both systems produce results in-
stantly, except in the cases where QuickSpec runs into exponential blowups. The
Analogy tool usually returns one lemma relevant to the TT, whereas QuickSpec
may return a very large number of results (some of which are not valid), which
is not ideal for displaying to a user of an interactive system. It also runs out
of memory on examples involving functions with many arguments and a higher
degree of commutativity, such as the tail recursive version of multiplication (as
the number of terms within its depth limit increases). These kind of theories are
generally problematic for any theory exploration system relying merely on term
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Target QuickSpec
fact power expt sum sum sq mult fib Lemma Valid Invalid

Source

fact - X1 X1 X1 X1 X2 X1 × 10 5
power X1 - X1 X1 X1 X2 X1 × 17 4
expt X1 X1 - X1 X1 X2 X1 × OoM OoM
sum X1 X1 X1 - X1 X2 X1 × 7 2

sum sq X1 X1 X1 X1 - X2 X1 × 7 1
mult X1 X1 X1 X1 X1 - X1 × 200 20
fib (X2) (X2) × × × × - × OoM OoM

Table 4. Results of lemma analogy in comparison with QuickSpec. Xn denotes a success with n

returned lemmas, and (Xn) denotes a valid generated lemma which is not applicable to the TT.

× denote failure to find exactly the desired lemma, while OoM denotes that the system ran out

of memory. The numbers correspond to the number of formulae generated by QuickSpec

generation, e.g. [4, 13, 21]. Despite their heuristics, the search space grows too
big. The integration in an ITP allows us to use information about the current
proof attempt, and thus navigate these theories.

Like proof-critics [1], which is a technique for lemma discovery in automated
provers, we use information from the current proof-attempt to guide the search
for auxiliary lemmas. However, while proof-critics only analyses the current
proof attempt, ACL2(ml) also learns from all previous proofs. Some proof-critics
are also closely reliant on particular proof-techniques, such as rippling, while
ACL2(ml) is independent of this.

Limitations and Further Work. Below, we summarise the limitations of
the system and indicate directions of further work. Although the statistical side
of ACL2(ml) can process and cluster any proof and lemma shape, the symbolic
analogy tool cannot handle all possible analogical cases (and no algorithmic
approach could do that in principle).

Different patterns. Statistical ACL2(ml) groups in the same clusters theorems
revrev, and int-x-x; however, the lemmas used in revrev cannot be mutated
to generate any of the lemmas needed in the proof of int-x-x.

Smaller lemmas. The lemma analogy tool currently only adds term structure;
therefore, it cannot generate smaller lemmas. E.g. Lemmas fact-fact-tail and
fib-fib-tail are in the same cluster (see Table 2); the analogy tool succeeds in
generating the lemma fib-fib-tail given the source lemma fact-fact-tail,
but fails to go the other way around. This would require removing term structure,
i.e. the inverse operation of Term Tree Expansion (see Section 4).

Conditional lemmas. Apart from type recogniser conditions (e.g. natp is the
type recogniser for natural numbers), several ACL2 lemmas need additional con-
ditions, which, at the moment, are not generated by the symbolic ACL2(ml).
Discovering appropriate conditions for generated lemmas is a difficult problem
for theory exploration systems.

New definitions. Another big challenge in lemma discovery is invention of
new concepts. The proof of Lemma int-x-x needs a new concept called subp



Proof-Pattern Recognition and Lemma Discovery in ACL2 17

which is the recogniser for subsets of lists – (subp x y) returns true or false

according to whether every element of x is an element of y.
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18. D. Kühlwein et al. Overview and evaluation of premise selection techniques for

large theory mathematics. In IJCAR’12, volume 7364 of LNCS, pages 378–392,
2012.

19. F. J. Mart́ın-Mateos et al. ACL2 verification of simplicial degeneracy programs in
the Kenzo system. In CICM’09, volume 5625 of LNCS, pages 106–121, 2009.

20. R. L. McCasland, A. Bundy, and P F. Smith. Ascertaining mathematical theorems.
ENTCS, 151(1):21–38, 2006.

21. O. Montano-Rivas et al. Scheme-based theorem discovery and concept invention.
Expert Syst. Appl., 39(2):1637–1646, 2012.

22. E. Tsivtsivadze, J. Urban, H. Geuvers, and T. Heskes. Semantic graph kernels for
automated reasoning. In SDM’11, pages 795–803, 2011.

23. J. Urban et al. Malarea sg1- machine learner for automated reasoning with seman-
tic guidance. In IJCAR’08, volume 5195 of LNCS, pages 441–456, 2008.

http://staff.computing.dundee.ac.uk/jheras/acl2ml
http://staff.computing.dundee.ac.uk/jheras/acl2ml
http://www.cs.utexas.edu/users/moore/publications/how-to-prove-thms/main.ps
http://www.cs.utexas.edu/users/moore/publications/how-to-prove-thms/main.ps
http://www.cs.utexas.edu/users/moore/acl2/
http://www.cs.utexas.edu/users/moore/acl2/

	Proof-Pattern Recognition and Lemma Discovery in ACL2

