IsaPlanner 2: A Proof Planner for Isabelle

Lucas Dixon and Moa Johansson

School of Informatics, University of Edinburgh

Abstract. We describe version 2 of IsaPlanner, a proof planner for the
Isabelle proof assistant and present the central design decisions and their
motivations. The major advances are the support for a declarative pre-
sentation of the proof plans, reasoning with meta-variables to support
middle-out reasoning, new proof critics for lemma speculation and case
analysis, the ability to mix search strategies, and the inclusion of a
higher-order version of rippling that can use best-first search. The re-
sult is a more flexible and powerful proof planner for exploring proof
automation in Isabelle.

1 Introduction

Proof assistants, such as Isabelle [10], Coq [11] and HOL [7], provide a frame-
work for formalisation tasks such software verification and mechanised mathe-
matics. Typically, automation is developed by writing programs, called tactics,
that combine operations from a small trusted kernel. Although many forms of
proof automation are already available, developing new tactics and extending
existing ones can be difficult. Higher-level concepts, such as search space and
heuristic guidance, must be developed on top of the the logical kernel.

Proof Planning provides this kind of high-level machinery for encoding and
applying common patterns of reasoning [2]. When encoded in a proof planner
we call these patterns reasoning techniques. The first version of IsaPlanner, a
proof planner for Isabelle, provided an efficient inductive prover [5]. However, it
used a restrictive representation of proof plans that did not allow meta-variables
in the goals. This limited experimentation with techniques based on middle-out
reasoning, as proposed in [1], as well as with proof critics [8].

We present version 2 of IsaPlanner and motive the design decisions. The
central change is a revised representation of proof plans which has lead to new
ways of writing reasoning techniques and lifts the meta-variable restrictions. This
provides the necessary machinery to experiment with middle-out reasoning and
proof critics. We discuss the role this has in facilitating the expression of reason-
ing techniques and outline the lemma speculation and case analysis critics that
have been implemented. The representation of proof plans and meta-variables
also impacts on proof search. The new technique language allows search strate-
gies to be locally specified and mixed, includes operations, such as filtering, on
the search space, and extends the machinery for interactively tracing a proof
planning attempt. These advances make IsaPlanner a more flexible tool for ex-
perimentation with proof planning and have lead to improvements in the power
of the inductive prover.



2 Representation

Proof planning involves applying reasoning techniques to produce proof plans.
Reasoning techniques differ from tactics in that they operate on hierarchical
and partial tactic trees, called proof plans, rather than on the subgoals of a
proof state. This allows them to affect earlier parts of the proof. For example,
failure to prove the step case of an inductive proof can be used to suggest a
change to the induction scheme [8].

The features that differentiate proof plans from other proof-representations
are that they include explicit gaps, they allow steps to be hierarchical in the
sense that they can contain a sub- proof plans, and they store information about
how proof plans are found. IsaPlanner’s representation also annotates gaps with
continuations proposing how they might be filled. These features make proof
plans introspectable and incrementally unfoldable.

The foundational changes to version 2 of IsaPlanner are in the representation
of proof plans. In the previous version, a proof plan was a list of steps analogous
to a procedural proof script. Each step holds Isabelle’s proof state which contains
the list of subgoals. Within each of these subgoals the assumptions are also
stored in a list. In tactic languages and in the first version of IsaPlanner, goals
and assumptions are referred to by specifying a location in the respective list.
However, tactics often modify the ordering of these lists, for instance when they
introduce new subgoals and assumptions. This makes referring to assumptions
and goals unstable: after applying a tactic the location of a goal or assumption
may change.

Version 2 of IsaPlanner provides a representation of proof plans, inspired
by declarative proof languages such as Isar [12], that gives stable references to
assumptions, goals and meta-variables in the form unique names. These proof
plans do not step outside Isabelle’s trusted kernel in the sense that an Isabelle
theorem corresponding to the proof attempt can be generated. Contexts which
are made up of the collection of assumptions and constants under which a goal is
being proved, are also named uniquely. By discharging assumptions using these
names we simplify as well as speed up the process of their discharge.

In contrast, Isabelle holds the assumptions to be discharged in a set which
is made efficient by term-indexing. However, this representation does not allow
meta-variables as it would require re-indexing after instantiation. IsaPlanner’s
use of explicit names overcomes this limitation because the names of assumptions
are not affected by instantiation. The effect is that conjectures containing meta-
variables can be used in a proof attempt, become incrementally instantiated,
and their proof can be interleaved with other conjectures and subgoals, possibly
sharing meta-variables. An example application for this kind of reasoning has
been described in [1].

Internally, IsaPlanner stores meta-variables in a table which is indexed by
their unique name and which holds the names of goals, assumptions and other
meta-variables in which they occur. This allows the proof plan to be updated
efficiently whenever a variable is instantiated. We also keep a record of the
instantiations in order to support deductive synthesis. Using a purely functional



representation with explicit names rather than references allows efficient sharing
of memory while maintaining the ability to search over different proof plans
without having to do any explicit memory management.

3 The Technique Language

The purpose of the technique language is to facilitate developing and experi-
menting with new reasoning techniques for automation.

Reasoning techniques are writen as ML functions from a proof planning state,
representing a point in the search space, to a list of possible next states which
represent the or-choices from that point. Each state contains the continuation
reasoning technique that will be applied next. Unlike tactics which hide search
within their application, this allows reasoning techniques to express operations
on the search space. For example, the technique constructor MAP takes a function
on reasoning states f and a technique r and results in a new reasoning technique
that behaves like r but has f applied to each intermediate state in the search
space. For instance, this can be used to write a generic pruning function that
filters out every state that matches a given criteria.

We can express techniques that affect other branches in the search space by
using shared variables. Each branch has access to this variable and can affect it.
This is used, for example, when a lemma is proved in one branch of the search
space to eagerly complete other proof attempts of the same lemma that are in
progress. Similarly, we can express a pruning technique that, when a conjecture
that is proved false in one branch of the search space, stops all proof attempts
in other branches.

The addition of explicit names for assumptions and subgoals provides lan-
guage constructs that give better control over and-choices. They allow techniques
to easily switch focus between the proof-attempts of different subgoals. Such
switching of focus is particularly useful for middle-out reasoning where a step in
one branch of the proof may instantiate a meta-variable that then makes another
branch easier and thus suggests a change in focus. This happens when proving
customised induction rules in deductive synthesis [1].

3.1 Tracing

In order to support debugging of complex techniques, as well as to help the
development of new ones, IsaPlanner continues to provide an interface for inter-
actively tracing through the search space [3]. This gives a text interface where
the user can select which branch to explore next. In version 2, support has been
added for stepping over sections of the search space as well as asking the prover
to automatically search until some particular state is reached. This is useful for
debugging as well as development.



3.2 Mixing Search Strategies

In the previous version of IsaPlanner, several search strategies were supported;
however only one search strategy could be used per proof attempt. Although,
like tactic languages, a second proof attempt with a different search strategy can
be hidden within a single step, this would not allow the tracing machinery or
the search space operations to see the hidden search space.

To allow a reasoning technique to specify a local search strategy and keep the
advantages of an explicit representation of the search space, we developed a meta-
search strategy. This examines each proof planning state for search operators
that push or pop search strategies a stack. This allows us to provide a technique
constructor SEARCH which takes a search strategy s and a technique r and informs
the meta-strategy to pop s onto the strategy stack then apply r and finally pop s
off the strategy stack. This allows search strategies to be specified by techniques
and mixed within a single proof planning attempt. As mentioned below, this has
been used to improve IsaPlanner’s inductive proof technique [9].

4 Reasoning Techniques

IsaPlanner provides a higher-order dynamic version of rippling, a powerful rewrit-
ing technique that guides a proof by removing the syntactic differences between
the goal and a specified term, usually an assumption [6]. In version 2, this has
been designed in a modular fashion and used to implement and experiment with
many variants of rippling [4].

The inductive prover implemented in IsaPlanner makes use of the rippling
machinery for the step cases of inductive proofs and uses Isabelle’s simplifier
for the base cases. Recently, we experimented with mixing best-first search for
rippling, and depth-first search over the rest of the proof attempt, to develop a
new version of the inductive prover. This was shown to improve the technique,
allowing it automatically prove theorems that were previously outside the search
space [9].

4.1 Lemma Speculation Critic

In addition to the lemma calculation critic, used by the inductive prover and
described in [4], IsaPlanner now also supports a more sophisticated lemma spec-
ulation critic, inspired by [8]. The lemma calculation critic uses common-subterm
generalisation of the goal propose a lemma. In contrast, the lemma speculation
critic creates a schematic lemma by inserting meta-variables standing for yet
unknown term-structure. This schematic lemma is then applied to the goal and
rippling-based rewriting continues. As meta-variables are shared across the goals
in the proof plan, instantiations in the goal will also instantiate the lemma. This
gives more flexibility to the lemmas being conjectured.



4.2 Case Analysis

Program specifications will frequently contain if- and case-statements. In order
to automate such verification proofs, a case-analysis critic for if-statements has
recently been developed. During rippling, the critic automatically introduces a
case-split on the condition of the if-statement when it cannot automatically be
reduced to true or false. This creates a subgoal for each branch of the if statement
on which rippling can then continue. A similar critic for automating splitting of
case-statements is under development.

5 Conclusions and Further Work

IsaPlanner now provides a representation of proof plans with appropriate ma-
chinery for handling meta-variables. It also allows the proof attempts of different
subgoals to be interleaved. The purpose of the system is to support research into
novel proof planning techniques and to allow experimentation with proposed
ones such as middle-out reasoning and proof critics. A lemma speculation critic
as well as a case analysis one have been already been implemented. We plan to
further develop IsaPlanner’s support for proof critics and deductive synthesis.
Further work also includes providing a logical account of the new representation
for proof plans.

References

1. A. Bundy, L. Dixon, J. Gow, and J. Fleuriot. Constructing induction rules for
deductive synthesis proofs. ENTCS, 153(1):3-21, 2006.

2. A. Bundy, F. van Harmelen, J. Hesketh, and A. Smaill. Experiments with proof
plans for induction. JAR, 7(3):303-324, 1991.

3. L. Dixon. Interactive hierarchical tracing of techniques in IsaPlanner. In User
Interfaces for Theroem Provers (UITP’05), ENTCS, 2005.

4. L. Dixon. A Proof Planning Framework for Isabelle. PhD thesis, University of
Edinburgh, 2005.

5. L. Dixon and J. D. Fleuriot. IsaPlanner: A prototype proof planner in Isabelle. In
CADE-03, volume 2741 of LNCS, pages 279-283, 2003.

6. L. Dixon and J. D. Fleuriot. Higher order rippling in IsaPlanner. In TPHOLs-04,
volume 3223 of LNCS, pages 83-98, 2004.

7. M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL: A theorem
proving environment for higher order logic. Cambridge University Press, 1993.

8. A. Ireland and A. Bundy. Productive use of failure in inductive proof. JAR,
16(1-2):79-111, 1996.

9. M. Johansson, A. Bundy, and L. Dixon. Best-first rippling. In Reasoning, Action
and Interaction in AI Theories and Systems, volume 4155 of LNCS, pages 83-100,
2006. An extended version is available as University of Edinburgh Technical Report
EDI-INF-RR-0849, http://www.inf.ed.ac.uk/.

10. L.C. Paulson. Isabelle: A generic theorem prover. Springer-Verlag, 1994.

11. The Coq Development Team. The Coq Proof Assistant Reference Manual — Version
V8.0, April 2004.

12. M. Wenzel. Isar - a generic interpretative approach to readable formal proof doc-
uments. In TPHOLs-99, volume 1690 of LNCS, pages 167-184, 1999.



