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Abstract. We present a succinct account of dynamic rippling, a tech-
nique used to guide the automation of inductive proofs. This simplifies
termination proofs for rippling and hence facilitates extending the tech-
nique in ways that preserve termination. We illustrate this by extending
rippling with a terminating version of middle-out reasoning for lemma
speculation. This supports automatic speculation of schematic lemmas
which are incrementally instantiated by unification as the rippling proof
progresses. Middle-out reasoning and lemma speculation have been im-
plemented in higher-order logic and evaluated on typical libraries of for-
malised mathematics. This reveals that, when applied, the technique
often finds the needed lemmas to complete the proof, but it is not as
frequently applicable as initially expected. In comparison, we show that
theory formation methods, combined with simpler proof methods, offer
an effective alternative.

1 Introduction

Inductive proof techniques are required for reasoning about repetition. Examples
include recursively defined data structures, such as natural numbers, lists and
trees. A significant strand of research in automated inductive theorem proving
revolves around a technique called rippling, which is primarily used to guide
rewriting of the step-case [23, 11, 6]. The guidance provided by rippling is based
on observing and annotating syntactic differences between the step-case subgoal
and the induction hypothesis. Rippling ensures termination without requiring
rewrite rules to be oriented in advance, which makes it easy to configure, and
allows it to solve some problems that are otherwise difficult with traditional
approaches to rewriting. Recent work has focused on dynamic rippling which
computes the differences between the goal and the induction hypothesis after
each step [23, 11]. In the rest of this paper, we refer to dynamic rippling simply
as rippling.

Automating inductive proofs gives rise to several challenging problems, in-
cluding the discovery of lemmas [5]. It has generally been assumed that lemma
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discovery requires user intervention. Interactive theorem provers, such as Is-
abelle [21], have large libraries of previously proved theorems and carefully con-
figured proof tools that use them. However, for new theory developments, users
often spend considerable time identifying and proving the required background
lemmas.

Lemma speculation is a heuristic technique for automatically constructing a
missing lemma using information from a failed inductive proof attempt. It has
long been considered a promising technique to improve rippling based proofs [6,
5, 15], and a similar approach has also been proposed in [18]. Lemma specula-
tion constructs a schematic lemma which preserves parts of the goal that are
similar to the inductive hypothesis and introduces meta-variables to stand for
unknown term-structure. The meta-variables are then incrementally instantiated
by rewriting steps. This approach, of gradually instantiating the meta-variables
in each step, is called middle-out reasoning, and has been proposed to tackle a
wide variety of problems [8, 15, 19, 7].

The main novel contributions in this paper are as follows:

– A logical account of dynamic-rippling. This separates the issues of annota-
tion, guidance, and termination. In particular, it describes how these issues
fit together. The result is a succinct formal description which is easy to
extend and experiment with. Furthermore, it results in much simpler termi-
nation proofs than that of Basin and Walsh [3].

– An illustration of how our formalism for rippling can be extended by de-
scribing lemma speculation with middle-out reasoning. This improves on
earlier work as it applies to higher-order domains, ensures the termination
of middle-out reasoning and enjoys the property that every middle-out rip-
pling proof corresponds to a traditional rippling proof with the speculated
lemma.

– An implementation and evaluation of rippling with lemma speculation in
IsaPlanner [11]. The implementation builds on the LCF-design methodology
of the Isabelle system [21]; all proofs are compositions of a small set of
basic trusted inference rules in Isabelle. Our evaluation considers a variety
of common theories, including lists, natural numbers, trees and inequalities.

Although our evaluation is positive for our middle-out reasoning, and gener-
ally positive for the effectiveness of lemma speculation, it highlights an impor-
tant and interesting negative result for the applicability of lemma speculation.
We remark that this is necessarily an empirical result: there are infinitely many
problems which lemma speculation works for, and infinitely many for which it
fails. Our empirical evaluation is based on a study of typical theories in interac-
tive proof assistants.

Another approach to lemma discovery is to attempt to automate the syn-
thesis of a richer background theory, given the initial definitions of datatypes
and functions, as implemented in the IsaCoSy system [17]. IsaCoSy synthesises
progressively larger conjectures using the available theory and avoids the genera-
tion of any reducible terms. We compare IsaPlanner’s performance using lemma
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speculation against using a background theory generated by IsaCoSy along with
a simpler technique called lemma calculation. This shows that more theorems
are proved in the latter case. Theory formation offers an effective alternative to
the more complex lemma speculation technique.

Notation. We use the symbol @ for the list append function, # for cons, [ ] for
nil, as well as the usual notation where [1, 2, 3] is the list 1#2#3#[ ]. Variables
which are allowed to be instantiated by unification are written ?F , following
the Isabelle convention. These are referred to as meta-variables. A schematic
goal (or lemma) is a goal containing meta-variables. We use the equals symbol
(=) for object level equality and the symbol (≡) to denote that two terms are
syntactically identical. We use := for definitions. Finally, we write tσ, for a term,
t, under substitution σ.

2 Proof-Planning and Rippling

Proof-planning is a technique used to guide search in automated theorem proving
by exploiting the fact that there are families of proofs with a similar structure [9].
One such family is proof by induction. The development of proof-planning was
motivated by the observation that human mathematicians often have a high level
plan for how to go about solving a proof and then fill in the exact details. Rippling
is a proof plan commonly used to guide rewriting of the step-case in inductive
proofs [6]. It works by identifying and annotating differences and similarities
between two terms, typically referred to as the skeleton and the goal. In an
inductive proof, the skeleton is the inductive hypothesis of the step-case, and
the inductive conclusion of the step case is the goal. Rippling guides rewriting to
reduce the differences between the goal and the skeleton, with the aim of arriving
at a situation where the goal can be justified by the skeleton. This justification
is called strong fertilisation.

A term can be annotated, with respect to a given skeleton, by identifying the
wave-fronts, wave-holes, and sinks. The wave-fronts are the parts of a term that
differ between the goal and the skeleton. In constructor-based inductive proofs,
these are initially the constructors introduced in the step-case goal. Wave-holes
are sub-terms inside a wave-front that are part of the skeleton. Sinks are the
positions corresponding to universally quantified variables in the skeleton, which
can be instantiated during fertilisation. Wave-fronts have directions: outward
wave-fronts intend to move the differences to the top-of the term tree, while
inward wave-fronts intend to move them to a sink.

A typical example of an annotated goal is the step-case in the inductive proof
of the commutativity of addition:

Skeleton (inductive hypothesis): ∀b′. a+ b′ = b′ + a

Goal (step-case goal): Suc a
↑

+ bbc = bbc+ Suc a
↑ (2.1)

The position of the universally quantified variable b′ becomes a sink in the goal,
annotated as bbc. Wave-fronts are visualised by shaded boxes with an arrow
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indicating outward or inward direction. For our purposes, annotations can be
viewed as function symbols on the term. Wave-fronts are annotated by the func-
tion wf :(α ⇒ α) ⇒ α ⇒ α, where the first argument is the term inside the
wave-front, and the second argument is the wave-hole. Sinks are annotated by
the function sink :α ⇒ α. For the term in the example above this becomes:
(wf Suc a) + (sink b) = (sink b) + (wf Suc a). For a more detailed account of
annotated terms see [12, 11].

During proof search, each application of a rule moves the wave-fronts towards
the top of the term tree. As we shall see in Example 1, this decreases the ripple-
measure (see Def. 4) which guides the proof search. In the final step, the goal is
an instance of the skeleton and no wave-fronts remain. The inductive hypothesis
is then applied to conclude the proof by strong fertilisation.

Example 1: Rippling and Strong Fertilisation. As an example of a rippling proof
we return to the step-case of the inductive proof of the commutativity of addition
(from equation 2.1). The rippling proof of the step case is given below. Note that
this should be read bottom up to see how the proof was discovered:

Strong Fertilisation

a+ bbc = bbc+ a Measure: 0

ripple-step, using:
((Suc x) = (Suc y)) = (x = y)

(2.2)

Suc(a+ bbc)
↑

= Suc(bbc+ a)
↑

Measure: 2

ripple-step, using:
x + (Suc y) = Suc(x + y)

(2.3)

Suc(a+ bbc)
↑

= bbc+ Suc(a)
↑

Measure: 3

ripple-step, using:
(Suc x) + y = Suc(x + y)

(2.4)

Suc(a)
↑

+ bbc = bbc+ Suc(a)
↑

Measure: 4

There are two functions of interest for annotated terms, erasure which returns
the unannotated term, and skel which returns the instance of the skeleton that
is within the goal.

Definition 1 (Erasure). The function erasure(t) replaces every wave front
symbol (wf ), in the term t, by the lambda term λf t. f t, and every sink symbol
(sink) by the identity function.

Definition 2 (Skel). The function skel(t) replaces every wave front symbol
(wf ), in the term t, by the projection lambda term λf t. t, and every sink symbol
by the identity function.
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Definition 3 (Annotion set). The set of annotations for a given term, t, with
respect to a skeleton, s, is defined by:

annot(s, t) := {a | erasure(a) ≡ t ∧ ∃σ. skel(a) ≡ sσ}

Annotation algorithms are described in [23, 11]. After the initial goal has been
annotated, rippling proceeds by applying rules derived from function definitions,
axioms and existing theorems and lemmas. These rules are referred to as wave-
rules. To guide the application of wave-rules so that the differences between the
skeleton and the goal are decreased, rippling uses a well-founded measure on
annotated terms, called a ripple-measure.

Definition 4 (Ripple-Measure). A ripple measure is a well-founded (strict)
partial-order on annotated terms, parametrised by a common skeleton, such that
when the skeleton unifies with the annotated term, the measure is minimal. We
write Mess(t1) < Mess(t2) when t1 is less than t2 with respect to a ripple-measure
parametrised by skeleton s.

We use the sum of distances measure, from [11], which sums the distance
from outward wave-fronts to the top of the term tree, and from inward wave-
fronts to the nearest sink (see Example 1). This results in a natural number.
The ripple-measure is the usual less-than ordering on natural numbers.

Theorem 1 (Sum of distances is a ripple-measure). The sum of distances
measure is well-founded and when the goal unifies with the skeleton, it is minimal.

Proof. The well-foundedness follows directly from the less-than ordering on nat-
ural numbers. When a goal term t unifies with a skeleton s, then t contains no
unsunk wave-fronts (otherwise t is not an instance). Hence the sum of distances
measure for all annotations is 0, the minimal value.

Definition 5 (Dynamic Rippling, Ripple-Step). Let W be a context con-
taining a set of wave-rules, s be a skeleton, and ai be an annotated term. A
rippling step is an inference of the form:

W, s, a2 ` g[t2σ]

W, s, a1 ` g[t1σ]

((t1 = t2) ∈W ∨ (t2 = t1) ∈W )
a1 ∈ annot(s, g[t1σ])
a2 ∈ annot(s, g[t2σ])
Mess(a2) < Mess(a1)

The first condition identifies an equational wave rule in the context W . The
next two conditions ensure that the goals have rippling annotations, and the
last condition ensures that the ripple measure decreases. Rippling is the repeated
application of ripple-steps.

Using the above definition of rippling, the proof of termination follows easily:

Theorem 2 (Termination of Rippling). Rippling always terminates.
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Our formalism renders this a trivial consequence of the well-foundedness of the
ripple measure; there is no infinite sequence of ripple-steps.

Definition 6 (Blocked). Rippling is blocked at a goal when the set of ripple-
steps is empty. This happens when no measure decreasing wave-rules can be
applied.

Example 2. Returning to example 1, if rule 2.2 was not available, then rippling

would be blocked at the subgoal: Suc(a+ bbc)
↑

= Suc(bbc+ a)
↑

. When rip-

pling is blocked, in many cases, including this one, it is still possible to complete
the proof by rewriting the goal with the inductive hypothesis. This is called weak
fertilisation.

Definition 7 (Weak Fertilisation).

W, s ` g[t2σ]

W, s, a ` g[t1σ]

(s ≡ (t1 = t2) ∨ s ≡ (t2 = t1))
a ∈ annot(s, g[t1σ])

In example 2, the blocked goal can be weak-fertilised to produce the new subgoal
Suc(b+ a) = Suc(b+ a), which is true by reflexivity.

Lemma calculation is a lemma discovery technique that is simpler than lemma
speculation. While the latter applies when rippling becomes blocked before fer-
tilisation, lemma calculation proves residual goals as lemmas after fertilisation.
Logically, it is justified by the cut-rule. Although simple, variants of this tech-
nique are widely used by automatic inductive provers.

Definition 8 (Lemma Calculation).

W, s ` l W ∪ l, s ` g
W, s ` g

l ≡ generalise(g)

where the generalise function produces a lemma such that ∃σ. lσ ≡ g

Example 3: Lemma Calculation. In example 1, note that only rule 2.4 comes
from the standard definition of addition in Peano arithmetic. If rippling is only
given the definition of ‘+’ with no extra lemmas, then rippling gets blocked even

earlier, at the subgoal: Suc(a+ bbc)
↑

= bbc+ Suc(a)
↑

. Weak-fertilisation is

then applied to the left-hand side of the blocked goal, resulting in the new
subgoal: Suc(b + a) = b + (Suc a). However, this goal cannot be solved by
simplification. This is when the lemma calculation is applied. In this case, the
lemma is simply the remaining subgoal, which is the missing rule 2.3.

In our implementation in IsaPlanner, calculated lemmas are generalised using
common sub-term generalisations (replacing equal sub-terms occurring on both
sides of an equation with a new variable). The lemma created by calculation is
then subjected to an inductive proof attempt. Other generalisation techniques
used in lemma calculation have been studied in [1]. The proof-plan for the step-
case of our inductive prover is summarised by the functional pseudo-tactic shown
in Fig. 1. The interested reader may examine the implementation at:
http://dream.inf.ed.ac.uk/projects/isaplanner
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rippling = blocked ORELSE

(ripple step THEN rippling);

fertilisation =

strong fertilisation ORELSE

(weak fertilisation THEN

(simplification THEN

(solved ORELSE

(lemma calculation THEN

(inductive proof AND apply lemma)))

));

stepcase lemma calc =

rippling THEN fertilisation;

stepcase lemma spec =

rippling THEN

(fertilisation ORELSE

(speculate lemma THEN

middle out rippling THEN

((solved ORELSE

stepcase lemma spec)

AND inductive proof)));

Fig. 1. A tactic-style presentation of the proof-plans for the step-case of an inductive
proof. Left: shows rippling and fertilisation with lemma calculation. Right: shows the
basic step-case proof plan as well as the its extension with lemma speculation. The
solved tactic succeeds only if the goal was solved; the THEN, ORELSE have the standard
behaviour; the AND tactical attempts to solve the first subgoal by the first tactic and
if that is successful then attempts the second subgoal with the second tactic; the
inductive proof tactic is the top-level inductive prover.

3 Middle-Out Rippling and Lemma Speculation

If rippling becomes blocked before the inductive hypothesis can be applied, the
basic proof-plan using lemma calculation after weak fertilisation fails (Fig. 1,
top-right). Lemma speculation solves this difficult class of problems by creating
a schematic equational lemma to unblock rippling. Like lemma calculation, the
lemma is cut into the proof. However, unlike lemma calculation, the lemma is ap-
plied to the goal as a rewrite before the lemma has been proved. This introduces
the schematic variables into the subgoal. Subsequent specialised ripple-steps,
called middle-out ripples, are then used to rewrite the goal and instantiate the
meta-variables (see §3.2). Finally, once the goal has been proved and the lemma
is fully instantiated, a proof of the lemma is attempted. The tactic for rippling
with lemma speculation is shown at the right of Fig 1, and the corresponding
the formal definition of a lemma speculation step is:

Definition 9 (Lemma Speculation).

W ∪ (l = r), s, a, c ` g[r] W ` (l = r)

W, s, a[l′] ` g[l]

(l = r) ∈ LemmaSpecSet(a)
c ≡ Trace(s, [g[r], g[l]])
λx. erasure(a[x]) ≡ λx. g[x]
a[l′] ∈ annot(s, g[l])

The schematic lemma (l = r) is said to unblock the subterm l. The last two
conditions ensure that l ≡ erasure(l′) and l is the subterm corresponding to l′.

The lemma speculation rule extends the context with a trace (c) which is
used to maintain a list of the goals following a lemma speculation step. The
trace is used to ensure the termination of middle-out reasoning (see §3.1). The
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set LemmaSpecSet(a) is all equations of the form l = r where l is the erasure of
a subterm, l′, of the annotated goal, and l′ contains at least one wave front. The
right hand, r, is the skeleton of l′ with meta-variables inserted into all positions
where a wave-front may occur, i.e. above each function symbol and in each sink
position.

For example, consider the goal g[l] ≡ p (f (h x) y) with the annotated

subterm l′ as: f ( h x
↑

) byc. A schematic lemma for this term is f (h x) y =

?F1 (f x (?F2 y)). The new subgoal produced by lemma speculation is then:

p ( ?F1 (f x (b?F2 yc)) ) (3.1)

The dashed box marks the location of an unsunk meta-variable which is called
a potential wave-front in [15]; instantiation of the meta-variable may introduce
wave-fronts into the goal.

3.1 Measures for Schematic Goals

The key invariant initiated by lemma speculation is that there exists a substi-
tution that will result in the lemma’s application being a valid ripple-step. This
invariant is then extended to the application of ripple-steps as they instantiate
the meta-variables. This is captured by the predicate MesDecr which, for the
list of goals in the trace ([gn, . . . , g1]), is true if there is a substitution that makes
[g1, . . . , gn] sequentially measure decreasing with respect to a given skeleton s:

MesDecr(σ,Trace(s, [gn, . . . , g1])) ≡ ∃an . . . a1. Projection(σ,Vars([gn, . . . , g1]))

∧ an ∈ annot(s, gnσ) ∧ · · · ∧ a1 ∈ annot(s, g1σ)

∧ Mess(an) < . . . < Mess(a1) (3.2)

where Projection(σ,Vars([gn, . . . , g1])) ensures that σ consists of projections for
all meta-variables in the goals.

Theorem 3 (Lemma Speculation is Measure Decreasing). By construc-
tion, all lemmas produced by lemma speculation will initially result in a list of
measure decreasing subgoals: ∃σ. MesDecr(σ,Trace(s, [g[r], g[l]])).

Proof. The projection of the meta-variables onto their arguments will result in
g[r] removing all wave fronts. This is always measure decreasing for the sum-of-
distances measure.

3.2 Middle-Out Rippling

After speculation, the lemma subgoal, W ` (l = r), and the main subgoal,
W ∪ (l = r), s, c ` g[r], contain shared meta-variables. If ordinary rippling
were applied to the main subgoal, the presence of these meta-variables would let
higher-order unification find unifiers with any rewrite rule, causing the search
space to become intractably large. In order to manage the rippling search space
and ensure termination of rippling, we use a variant of the ripple-step rule, called
middle-out ripple-step.
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Definition 10 (Middle-Out Ripple-Step).

(∆ W, s, c2 ` g[t2])σ1

∆ W, s, c1 ` g[t1]

(t′1 = t2) ∈W ∨ (t2 = t′1) ∈W
RestrUnifiers(t1, t

′
1, σ1)

c1 ≡ Trace(s, l) c2 ≡ Trace(s, (g[t2]#l)σ1)
∃σ2. MesDecr(σ2, c2)

This rule differs from a regular rewrite step in that the substitutions can involve
variables in both the rule and the goal. Meta-variables shared with the lemma
are also instantiated in all other subgoals (∆), notably in the lemma subgoal.
The relation RestrUnifiers, embodies a heuristic that restricts the unifiers (σ1)
so as to avoid trivial ones which can occur with any wave-rule (see §3.3).

The MesDecr relation ensures that the new subgoal forms part of a measure
decreasing chain. This holds if there exists a grounding substitution σ2 for the
remaining meta-variables, which makes the trace measure decreasing. Note that
the definition of MesDecr requires σ2 to be a projection of the uninstantiated
variables of the trace (see equation 3.2). This is the key condition that ensures
termination of middle-out rippling (see §3.4).

Each middle-out step is followed by an attempt to find projection-instantiations
for the remaining meta-variables using either of the following eager-fertilisation
rules:

Definition 11 (Eager Strong Fertilisation).

∆σ

∆ W, s, c ` g
sσ ≡ gσ
MesDecr(σ, c)

Definition 12 (Eager Weak Fertilisation).

(∆ W ` g[t2])σ

∆ W, s, c ` g[t1]

s ≡ (t′1 = t2) ∨ s ≡ (t2 = t′1)
t1σ ≡ t′1σ
MesDecr(σ, c)

As the MesDecr condition requires σ to be a projection of all remaining meta-
variables, eager fertilisation results in a ground goal. When the goal contains all
variables from the speculated lemma, this also results in the speculated lemma
having no further meta-variables. Like middle-out steps, the MesDecr condition
ensures that instantiations result in c being a valid measure-decreasing ripple-
trace. When eager fertilisation produces a fully instantiated lemma, a counter-
example check is applied before attempting to prove the lemma in order to prune
out obviously false lemmas. Our proof machinery does not address subgoals
which fail to fully instantiate the lemma.

3.3 Restricted Higher-Order Unification

Rewriting using an equation involves finding a unifier between the equation’s
left hand side and a sub-term of the goal. However, when the goal contains a
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meta-variable, there is a trivial higher-order unifier between the subterm with
the meta-variable at head-position and every rule’s left-hand side3. The general
characteristic of these trivial unifiers is that all arguments of the meta-variable
are ignored. Our restricted form of higher-order unification deliberately sacrifices
completeness to avoid such unifiers by ensuring some non-variable argument of
the meta-variable is unified with a non-variable subterm of the wave rule’s left
hand side.

Definition 13 (Restricted Higher-order unification).

RestrUnifiers(t1[t′1], t2, σ1) ≡
( t′1 ≡ f . . . (3.3)

∧ t2 ≡ ?X t′(2,1) . . . t
′
(2,i) . . . t

′
(2,n)) (3.4)

∧ t′1σ ≡ t′(2,i)σ (3.5)

∧ σ1 ≡ σ ∪ {?X 7→ λx1 . . . xi . . . xn. t1[xi]} ) (3.6)

Condition 3.3 ensures that there is a subterm of the first argument which does
not contain a head-positioned meta-variable, while condition 3.4 requires that
the second argument does contain a meta-variable at head position. To illustrate
restricted unification, consider a middle-out ripple on the example from goal 3.1:
p (?F1 (f x (?F2 y))), using the equation g (f ?u ?v) = f ?u (g ?v). Restricted
unification will have the arguments:

t1[t′1] := g[(f ?u ?v)]

t2 := ?F1 (f x (?F2 y))

σ1 := {?v 7→ (?F2 y), ?u 7→ x} ∪ {?F1 7→ (λz. g z)

The result is that the goal is rewritten to p (f x (g (?F2 y))) and the speculated
lemma is instantiated from f (h x) y = ?F1 (f x (?F2 y)) to f (h x) y =
g (f x (?F2 y)).

3.4 Termination of Middle-Out Rippling

The previous implementation of lemma speculation in the CLAM 3 system did
not guarantee termination of middle-out steps [15]. A major improvements of
our version is the retention of the termination of rippling, even when extended
to schematic goals. As discussed in §3.1, this is achieved by recomputing the
ripple-measures for the whole trace of schematic goals.

Theorem 4. The rule for a middle-out ripple-step may only be applied finitely
many times to a schematic goal arising from lemma speculation.

3 The trivial unifier between a pair of terms t, and ?Xa1 . . . an is the substitution
?X 7→ λx1 . . . xn. t
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Proof. Assume we have a trace of schematic goals [gn, . . . g1]. By construction,
the last goal in the list (g1) does not contain any meta-variables, and has a
fixed ripple measure (by definition 9 and theorem 3). The measure condition
(equation 3.2) ensures that there is a substitution such that each step in the
trace must decrease the measure with respect to the previous step. The fixed
initial measure and well-foundedness of the rippling-measure (theorem 1) thus
ensures there is no infinite chain of measure decreasing steps from g1, and hence
that middle-out rippling terminates.

4 Evaluation and Limitations of Lemma Speculation

To evaluate our technique, we considered inductive theorems from: the list-
library of Isabelle-20094 (223 theorems); theories of Peano arithmetic, including
Isabelle’s natural number library (46 theorems) as well as a large variety of alter-
native formalisations from [11] (524 theorems); and all previous theorems known
to need lemma speculation (the first 7 theorems in Table 1) [15]. We also exam-
ined, in a more ad-hoc fashion, theories concerned with inequalities over natural
numbers, ordinal arithmetic, additional properties of fold, append, map, and
reverse, and problems from the domain of higher-order function synthesis [10].

The important negative result for lemma speculation is that it is rarely ap-
plicable. We found only 18 theorems where it can be applied; 7 examples were
in the literature, 5 new examples were found by hand, 1 new example was found
in Isabelle’s list library, and 5 new examples were found in alternative formali-
sations of Peano arithmetic. The reason for the limited number of examples is
that when rippling is blocked, it is rarely the case that the inductive hypothesis
cannot be applied. Tables 1 and 2 highlights a representative set of the results5.

Another limitation of lemma speculation is that when it is applicable and
forms the last step required before fertilisation, no middle-out rewriting steps
are applied. This results in the speculated lemma being underspecified, as hap-
pens for theorems 7-9 in Table 1. Overall, lemma speculation provides fully
instantiated lemmas for 11 of the 18 problems.

Our domains consist largely of equational theorems. While lemma speculation
was rarely applicable, lemma calculation was frequently so. In non-equational do-
mains, such as inequality proofs, where lemma calculation after weak fertilisation
was not applicable, neither was lemma speculation. Proofs in this domain often
require more sophisticated reasoning about assumptions, notably something like
the extensions to fertilisation described in [2]. This kind of reasoning may allow
proofs to get to the point where lemma speculation is applicable. Domains where
there is a higher degree of nesting in term-structures and longer chains of rip-
pling may also have more opportunity for lemma speculation. In these problems,
the chances for middle-out reasoning to fully instantiate a lemma is also greater.

4 http://www.cl.cam.ac.uk/research/hvg/Isabelle/dist/library/HOL/List.html
5 Due to space restrictions, the full results for lemma speculation, including run-times,

can be found online: http://dream.dai.ed.ac.uk/projects/lemmadiscovery/

lemspec_results.php.
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Theorem Lemma Speculation IsaCoSy

Found
Lem

Proved
Lem

Proved
Thm

1 x+ (Suc x) = Suc(x+ x) yes yes yes

2 even(x+ x) yes no yes

3 even(len(l @ l)) yes no no

4 rev((rev l) @ m) = (rev m) @ l yes yes yes

5 rev(rev(l @ m)) = rev(rev l) @ rev(rev m) yes yes yes

6 rev(rev l) @ m = rev(rev(l @ m)) yes yes yes

7 rotate (len l) (l @ m) = m @ l fail - yes

8 rev(concat l) = concat(map rev (rev l)) fail - yes

9 len(concat (map f l)) = len(maps f l) fail - no

10 foldl (λ x y. y + x) n ((rev l) @ m) =
yes no weak fert.

foldl (λ x y. y + x) n (m @ l)

11 foldl (λ x. y. x+ (len y)) n ((rev l) @ m) =
yes no weak fert.

foldl (λ x. y. x+ (len y)) n (m @ l)

12 x ≤ (y + x) yes no yes

Table 1. The sub-columns for lemma speculation indicate when a lemma is found,
and when this lemma can be proved automatically. The ‘IsaCoSy’ column indicates
if IsaPlanner can prove the theorem automatically given the background theory pro-
duced by IsaCoSy. For Theorems 7-9, lemma speculation fails to fully instantiate the
lemma. For theorems 10 - 11, IsaPlanner makes some progress using IsaCoSy’s back-
ground theory, allowing application of weak fertilisation. The same lemmas as lemma
speculation finds can then be produced by the simpler lemma calculation technique.

Finding such problem domains and evaluating lemma speculation on them is left
as further work.

A positive result for our version of middle-out rippling is that, as well as
working in higher-order domains, it supports speculating the same lemmas as
the earlier implementation in CLAM 3. This indicates that the power of middle-
out rippling has not been adversely affected by ensuring termination.

4.1 Comparison of Lemma Speculation and Theory Formation

Another approach to automated lemma discovery is to attempt to generate a
richer background theory in advance, as done by the IsaCoSy theory formation
system [17]. We compared two versions of IsaPlanner’s inductive prover: one
using lemma speculation and one using just lemma calculation but provided
with the lemmas from IsaCoSy’s automatically generated background theory.
In general, lemma calculation is preferable over speculation, as it has a consid-
erably smaller search space and thus faster run-times. On a 2Ghz, 2GB-RAM
desktop PC lemma calculation takes on average less than 1 second while lemma
speculation takes up to 137. Automatically generating the background theory
uniformly adds all generated theorems as wave rules and may take several hours,
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Thm Speculated Lemma(s) Synthesised Lemma(s) Used

1 Suc x+ y = Suc(y + x) x+ Suc y = Suc(x+ y)

2* x+ (Suc x) = Suc(x+ x) x+ Suc y = Suc(x+ y)

3*
len(l @ (h#l)) = Suc(len(l @ l))

-
or len(l @ (h#l)) = len(h#(l @ l))

4 rev (h#l) @ m = rev l @ (h#m) rev(xs @ ys) = (rev ys) @ (rev xs)

5
rev (l @ [h]) = h#(rev l)

rev (l @[h]) = h#(rev l) or
rev(xs @ ys) = (rev ys) @ (rev xs)

and
(xs @ ys) @ zs = xs @ (ys @ zs)

6 rev (l @ [h]) = h#(rev l) rev(l @ [h]) = h#(rev l)

7 - (xs @ ys) @ zs = xs @ (ys @ zs)

8 -
rev(xs @ ys) = (rev ys) @ (rev xs)
and map f (rev l) = rev(map f l)

9 - -

10 foldl (λ x y. y + x) n (l @ (h#m)) =
(xs @ ys) @ zs = xs @ (ys @ zs)

foldl (λ x y. y + x) h (n#(l @ m))

11 foldl (λ x y. x+ (len y)) n (l @ (h#m)) =
(xs @ ys) @ zs = xs @ (ys @ zs)

foldl (λ x y. x+ (len y)) n (h#(l @ m))

12 Suc z ≤ a+ (Suc z) = z ≤ Suc(a+ z)
x+ Suc y = Suc(x+ y)

and (x ≤ (x + y)) = True

Table 2. Lemmas discovered by lemma speculation compared to those by syntheses,
numbered according to Table 1. Recall that the lemmas speculated for theorems 2 and
3 had to be proved interactively. Using the synthesised background theory results in
two alternative proofs for theorem 5, either using the first lemma, or both the others.

but only needs to be done once. Both experiments have the same initial config-
uration, consisting of only the function definitions; all lemmas had to be discov-
ered automatically. The evaluation set and results are shown in Table 1, with
the lemmas shown in Table 2. When given the background theory generated by
IsaCoSy, IsaPlanner proves two theorems (7 and 8) that it cannot prove using
lemma speculation. Conversely, using the speculated lemmas, theorem 3 can be
proved6. However, it seems likely that improvements to IsaCoSy will allow gen-
eration of lemmas needed to allow lemma calculation to complete the proofs of
the theorems 3 and 9, which currently fail. For two theorems (10 and 11) the
background theory allows lemma calculation to conjecture the same lemmas as
lemma speculation.

It is frequently the case that the lemmas constructed by lemma speculation
cannot be proved. This happens for 5 out of 9 speculated lemmas. Speculated
lemmas tend to be more specialised compared to lemmas produced and proved
by IsaCoSy. This makes the latter generally easier to apply and prove (the proofs
are easier because the induction hypothesis is stronger). The lemmas produced
by IsaCoSy for theorems 2 and 12, and arguably also 4 and 5, are more general

6 The lemmas was automatically discovered, but had to be proved interactively.
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than those found by lemma speculation. The wider variety of general lemmas
also result in an alternative proof for theorem 5. Finally, we remark that the
background theories generated by IsaCoSy are useful for a wider variety of proofs
than those to which lemma speculation is applicable. See [17] for a more detailed
evaluation of IsaCoSy.

5 Related Work

Middle-out rippling is an instance of narrowing, i.e. rewriting where both the goal
and rule may contain variables instantiated by unification. However, it differs
from the account of higher-order narrowing in [22], as we allow meta-variables
to occur as arguments to each other in schematic lemmas.

By separating the concepts of annotations, measures and rippling-steps, our
formalisation becomes significantly more succinct than that of Basin and Walsh [3].
In particular, it makes the termination proof simpler and supports extensions
more easily. The main improvement over the previous versions of middle-out
reasoning, e.g. [13, 15], is that ours ensures termination. Our restricted unifica-
tion heuristic also efficiently cuts out undesirable unifiers, while previous work
had to apply filtering of unwanted results after unification [13], or use heuristics
specific to rippling [15].

Lemma speculation sometimes fails to fully instantiate schematic lemmas.
Previous work attempted to instantiate such a lemma by during the lemma’s
proof [15]. However, this heuristic works very few examples, and it was thus not
implemented in IsaPlanner. Another approach to finding lemmas is interactive
lemma speculation [16], which can provide the user with some useful feedback,
even when the lemma cannot be fully instantiated. A lemma discovery algorithm
similar to speculation has been proposed in [18]. Like lemma speculation, sub-
terms in the goal are equated with the hypothesis, and meta-variables used
for unknown term-structure. However, we are not aware of any experimental
evaluation of this algorithm. Finally, the MATHsAiD [20] and Theorema [14, 4]
systems have also been applied to inductive theory formation, although only to
natural numbers. The similarity of their results in this domain suggests that if
extended to other domains, they would provide similar results to IsaCoSy.

6 Conclusions and Further Work

We have extended techniques for middle-out reasoning and lemma speculation
to dynamic rippling and higher-order domains. We also provided a novel, con-
cise and formal account of dynamic rippling, which extends to the middle-out
case. The main improvement over previous approaches is the ability to prove
termination easily, and extend it naturally to middle-out rippling.

We have implemented middle-out rippling in the IsaPlanner system and per-
formed a practical evaluation in the context of lemma speculation. The lemma
speculation technique attempts to construct missing lemmas from failed proof
attempts. Contrary to expectations, our results suggest that lemma speculation
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is not widely applicable. We also showed that, for the otherwise hard problems
to which lemma speculation is applicable, theory formation techniques in com-
bination with simpler proof methods offer an effective alternative. Further work
includes extending rippling-based proof methods so that other domains can be
examined, where lemma speculation may be more applicable, and exploring other
applications of middle-out reasoning and theory formation.
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