TIP: Tons of Inductive Problems

Koen Claessen, Moa Johansson, Dan Rosén, and Nicholas Smallbone

Department of Computer Science and Engineering, Chalmers University of Technology
{koen, jomoa,danr ,nicsma}@chalmers.se

Abstract. This paper describes our collection of benchmarks for induc-
tive theorem provers. The recent spur of interest in automated inductive
theorem proving has increased the demands for evaluation and compar-
ison between systems. We expect the benchmark suite to continually
grow as more problems are submitted by the community. New challenge
problems will promote further development of provers which will greatly
benefit both developers and users of inductive theorem provers.

1 Introduction

We have recently seen increased interest in inductive theorem proving, both
with specialised provers such as IsaPlanner, Zeno and HipSpec [3,5,13], SMT-
solvers such as CVC4 [11], the auto-active prover Dafny [10], recent work on the
first-order SPASS prover [14], as well as some support in proof assistants [8,9].

To ease evaluation and development, and compare the relative strengths of
the different systems, it is important to have good standard benchmarks. The
contribution of this paper is an accessible standard benchmark suite for inductive
theorem provers which can be extended by users and developers. The benchmarks
are publicly available at:

https://github.com/tip-org/benchmarks

We have so far collected 340 problems in our benchmark suite, which we have
called “TTP”, for Tons of Inductive Problems—so named in the hope of attracting
many more problems! We invite the community to submit additional problems
and challenges and expect the collection to continuously grow and provide new
challenges for developers.

2 The Benchmark Format

The benchmarks are expressed in a variant of SMT-LIB [1], extended with support
for algebraic datatypes and higher-order functions. The format is described in
detail in [4]. Starting from the basic SMT-LIB format, we import the following
features from existing systems:

— Algebraic datatypes, which are declared using the declare-datatypes syntax
as supported in Z3 and CVC4.


https://github.com/tip-org/benchmarks

— Recursive function definitions, which use the define-funs-rec syntax im-
plemented in CVC4 and proposed for SMT-LIB 2.5 [1].

— Polymorphic functions, using the proposed par syntax [2], which is imple-
mented in a version of CVCA4.

We then add more features of our own, which are specific to TIP:

— In the standard declare-datatypes syntax, functions over algebraic datatypes
are defined using projection functions like head and tail. We add a pattern-
matching syntax, which is more convenient for many provers.

— Many of our benchmark problems use higher-order functions, such as map.
We add syntax for lambda functions and higher-order functions.

— Many inductive provers treat the goal specially, as opposed to SMT-LIB which
expresses the goal as a negated axiom. We add a construct (assert-not p)
which declares p as the goal; it is semantically equivalent to (assert (not p)).

We do not necessarily expect every prover to support TIP natively. Instead, we
have made a tool which can translate TIP problems to and from a variety of other
formats. Currently our tool can translate TIP problems to a CVC4-compatible
version of SMT-LIB or to WhyML, and can compile Haskell programs into TIP
properties. It can also perform a number of transformations for tools which do
not support the full TIP language, such as removing higher-order functions by
defunctionalisation [12]. Our aim is to support many different source and target
formats in this tool.

Example

As an example of what the benchmarks look like, we show property 12 from the
IsaPlanner benchmark set (see Section 3.1 below), which states that the functions
drop and map distribute over one another:

drop n (map f xs) = map f (drop n xs).

We declare two simple algebraic datatypes representing natural numbers and
polymorphic lists.

(declare-datatypes (a)
((list (nil) (coms (head a) (tail (list a))))))
(declare-datatypes () ((Nat (Z) (S (p Nat)))))

Next, we declare two recursive functions: map, which is a higher-order function
applying a unary function f to each element of a list, and drop, which recursively
drops a given number of elements from the front of the list.

(define-funs-rec
((par (a b) (map ((f (=> a b)) (xs (list a))) (list Db))))
((match xs
(case nil (as nil (list b)))
(case (cons y ys) (cons (@ f y) (map £ ys))))))




(define-funs-rec
((par (a) (drop ((n Nat) (xs (list a))) (list a))))
((match n
(case Z xs)
(case (S m)
(match xs
(case nil xs)
(case (cons y ys) (drop m ys)))))))

These definitions illustrate several features of TIP:

Polymorphism: par introduces type variables.

Higher-order functions: (=> a b) is the type of functions from a to b, and @
applies first-class functions to their arguments.

— Pattern-matching using match and case, which binds new variables.

Finally, the benchmark problem itself is declared with the keyword assert-not:

(assert -not
(par (a b)
(forall ((n Nat) (f (=> a b)) (xs (list a)))
(= (drop n (map f xs)) (map f (drop n xs))))))
(check-sat)

Each benchmark file is stand-alone and only contains one property.

3 Sample Benchmarks

In this section we give a short overview of some the benchmark problems currently
available in the repository. At the moment, there are three different main sources
of problems. We expect more to be added.

3.1 IsaPlanner’s Rippling and Case-Analysis Benchmarks

This set of 85 problems comes from the evaluation of IsaPlanner’s rippling-
heuristic for guiding rewriting in inductive proofs in the context of functions
with case- and if-statements [7]. It has been used in the evaluation of many of
the recent inductive theorem provers and includes theorems about lists, natural
numbers and binary trees. The problems are relatively easy, most of the theorems
can be proved by structural induction using only the function definitions and
only 15 require auxiliary lemmas to be discovered.

3.2 Productive Use of Failure Benchmarks

This is another benchmark suite which has been used to evaluate several recent
provers. It consists of 50 theorems about lists and natural numbers and originates
from evaluation of techniques for discovering auxiliary lemmas in the CLAM
prover [6]. The original paper did not provide definitions for the functions used
in the benchmarks, so the definitions provided here come from the evaluation
of the HipSpec system [3]. These proofs are generally a bit harder, and may
require additional lemmas to be found and proved (by another induction) or
generalisation of the conjecture in order to strengthen the inductive hypothesis.




3.3 New TIP Benchmarks

This set contains 205 new benchmarks including, amongst others, properties of
the Agda standard library! implementation of integers on top of natural num-
bers, problems about natural numbers in binary representation, various sorting
functions with correctness properties expressed in alternative ways, problems
about regular expressions, binary search trees, grammars and skew heaps. The
problems about sorting, regular expressions, grammars and heaps have to our
knowledge not all been fully automated yet and are offered as challenges!

4 Contribute to TIP

We invite the theorem proving community to contribute additional inductive
benchmarks and challenge problems to TIP. Instructions for how to submit
problems can be found in the README file for the repository (https://github.
com/tip-org/benchmarks.)

We are developing a toolchain for translating to and from our format. The
development is in its own repository (https://github.com/tip-org/tools).
The tool can currently read in problems in TIP format or Haskell, and output
TIP, SMT-LIB and WhyML, with some caveats:

— The generated SMT-LIB uses declare-datatypes, define-funs-rec and
polymorphism.

— The generated WhyML makes no special effort to pass Why3’s termination
checker.

We encourage the community to request and contribute additional input and
output formats to our tool chain.

5 Conclusion and Further Work

TIP is intended to be a standard benchmark suite for developers and users of
inductive theorem provers. We hope that this initiative will ease comparison
and evaluation of systems and spur further collaboration and development by
attracting submissions of additional challenge problems from the community.
In addition to serving as a standard benchmark suite for inductive provers,
the TIP benchmarks may also be useful for developers of theory exploration
systems. Theory exploration is a technique for automatically discovering interest-
ing conjectures about a given set of functions and datatypes, and is used in for
example the HipSpec prover to discover lemmas. The TIP benchmarks can be
compared to the output from the theory explorer in precision/recall analysis to
assess the quality and interestingness of the conjectures generated. A good theory
exploration system may also be used to generate new benchmarks for TTP.

! https://github.com/agda/agda-stdlib


https://github.com/tip-org/benchmarks
https://github.com/tip-org/benchmarks
https://github.com/tip-org/tools
https://github.com/agda/agda-stdlib

Another aim is to also support non-theorems, for evaluation of tools for
counter-example finding. This requires no extension to the format at all, but
it requires a standardization on how to annotate problems with their expected
answer (theorem or non-theorem), as well as a common solution format.

It is important to have good tool support if TIP is to be used by the community.
Our tool is currently in active development, in order to support more input and
output formats, as well as various strategies for encoding features of TIP for
provers that do not support the full language.

In the future, we may want to extend the language to support a richer variety
of problems. For example, we may want to include problems about lazy functions
and co-datatypes.

References

1. Clark Barrett, Aaron Stump, and Cesare Tinelli. The SMT-LIB standard — version
2.0. In Proceedings of the 8th International Workshop on Satisfiability Modulo
Theories (SMT ’10), July 2010. Edinburgh, Scotland.

2. Frangois Bobot. [RFC] Add adhoc polymorphism. https://github.com/CVC4/
CVC4/pull/s1.

3. Koen Claessen, Moa Johansson, Dan Rosén, and Nicholas Smallbone. Automating
inductive proofs using theory exploration. In Proceedings of the Conference on
Automated Deduction (CADE), volume 7898 of LNCS, pages 392-406. Springer,
2013.

4. Koen Claessen, Moa Johansson, Dan Rosén, and Nick Smallbone. The TIP language.
http://tip-org.github.io/format.html.

5. Lucas Dixon and Moa Johansson. IsaPlanner 2: A proof planner in Isabelle.
Technical report, University of Edinburgh, 2007.

6. Andrew Ireland and Alan Bundy. Productive use of failure in inductive proof.
Journal of Automated Reasoning, 16:79-111, 1996.

7. Moa Johansson, Lucas Dixon, and Alan Bundy. Case-analysis for rippling and
inductive proof. In Proceedings of ITP, pages 291-306, 2010.

8. Moa Johansson, Dan Rosén, Nicholas Smallbone, and Koen Claessen. Hipster:
Integrating theory exploration in a proof assistant. In Conference on Intelligent
Computer Mathematics, 2014.

9. Matt Kaufmann, Manolios Panagiotis, and J Strother Moore. Computer-Aided
Reasoning: An Approach. Kluwer Academic Publishers, 2000.

10. K. Rustan Leino. Automating induction with an SMT solver. In Proceedings of
VMCAI Springer, 2012.

11. Andrew Reynolds and Viktor Kuncak. Induction for SMT solvers. In Proceedings
of VMCAI, 2015.

12. John C. Reynolds. Definitional interpreters for higher-order programming languages.
In Proceedings of the ACM Annual Conference - Volume 2, ACM 72, pages 717-740,
New York, NY, USA, 1972. ACM.

13. Willam Sonnex, Sophia Drossopoulou, and Susan Eisenbach. Zeno: An automated
prover for properties of recursive datatypes. In Proceedings of TACAS, pages
407-421. Springer, 2012.

14. Daniel Wand and Christoph Weidenbach. Automatic induction inside superposition.
https://people.mpi-inf.mpg.de/~dwand/datasup/draft.pdf.


https://github.com/CVC4/CVC4/pull/51
https://github.com/CVC4/CVC4/pull/51
http://tip-org.github.io/format.html
https://people.mpi-inf.mpg.de/~dwand/datasup/draft.pdf

	TIP: Tons of Inductive Problems

