
Best-First Rippling

Moa Johansson, Alan Bundy, and Lucas Dixon

School of Informatics, University of Edinburgh,
Appleton Tower, Crichton St, Edinburgh EH8 9LE, UK
{moa.johansson, a.bundy, lucas.dixon}@ed.ac.uk

Abstract. Rippling is a form of rewriting that guides search by only
performing steps that reduce the differences between formulae. Termina-
tion is normally ensured by a defined measure that is required to decrease
with each step. Because of these restrictions, rippling will fail to prove
theorems about, for example, mutual recursion where steps that tem-
porarily increase the differences are necessary. Best-first rippling is an
extension to rippling where the restrictions have been recast as heuristic
scores for use in best-first search. If nothing better is available, previously
illegal steps can be considered, making best-first rippling more flexible
than ordinary rippling. We have implemented best-first rippling in the
IsaPlanner system together with a mechanism for caching proof-states
that helps remove symmetries in the search space, and machinery to en-
sure termination based on term embeddings. Our experiments show that
the implementation of best-first rippling is faster on average than Isa-
Planner’s version of traditional depth-first rippling, and solves a range
of problems where ordinary rippling fails.

1 Introduction

Rippling is a heuristic used in automated theorem proving for reducing the dif-
ferences between formulae [5]. It was originally designed for inductive proofs,
where we aim to rewrite the inductive conclusion in such a way that we can
apply the inductive hypothesis to advance the proof. Only rewrites that reduce
differences and keep similarities are allowed. Rewrite rules can be applied both
ways around and termination is guaranteed by defining a ripple measure that is
required to decrease for each step of rewriting. Rippling has been successfully
used for automating proofs in a range of domains, for example, hardware verifica-
tion [8], summing series [21], equation solving [13] and synthesis of higher-order
programs [16].

Rippling is however not guaranteed to succeed. Proof-planning critics has
been proposed as a solution. Critics analyse failed proof attempts to suggest
patches such as a generalisation or conjecturing and proving a missing lemma
[14]. Sometimes it may also be necessary to perform a rewrite that does not
decrease the ripple measure or temporarily increases the differences between
given and goal. This is necessary in, for example, proofs involving mutually
recursive functions [5] (§5.9). Ordinary rippling is not flexible enough to deal with
this. Best-first rippling is suggested as a possible solution to these problems [5]

O. Stock and M. Schaerf (Eds.): Aiello Festschrift, LNAI 4155, pp. 81–98, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

82 M. Johansson, A. Bundy, and L. Dixon

(§5.14). The constraints of rippling are turned into a heuristic measure, allowing
previously illegal steps if nothing better is available.

We have implemented best-first rippling in IsaPlanner [11], a proof-planner
built on top of the interactive theorem-prover Isabelle [18]. IsaPlanner’s current
implementation of higher-order rippling [12], has been expanded to allow rewrites
that normally would be regarded as illegal and discarded. Heuristic scores are
assigned to the steps of rippling, and we use best-first search to pick the most
promising new state (§4.2). Allowing previously illegal steps introduces a risk of
non-termination, which is dealt with by introducing a check on term embeddings
(§4.3). During development, we also discovered that the search space for rippling
often contained symmetries and developed methods for pruning such branches
accordingly (§4.3). Using best-first search often caused the planner to conjecture
and prove the same lemma several times. A new search strategy was developed,
which delays steps waiting for the same lemma (§4.4).

Our experiments show that best-first rippling can successfully solve a range of
problems where the standard depth-first version of rippling fails. We do not find
any problems that are solvable by ordinary rippling but not best-first rippling.
Overall, the run-times for best-first rippling are, on average, better than for
ordinary depth-first rippling, despite the potentially larger search space.

2 Rippling

Rippling works by identifying differences and similarities between two terms: the
given and the goal. It then guides rewriting to reduce the differences, aiming to
arrive at a sub-goal which can be justified by the given. Application of the given
is called fertilisation.

The skeleton represents the parts of the goal that are similar to the given while
wave-fronts represent the differences. A wave-hole denotes a sub-term inside a
wave-front that belongs to the skeleton. In addition, if the given contains a
universally quantified variable the corresponding position in the goal is called a
sink. An example (from [12]) showing how the parts of a goal (here the inductive
conclusion), can be annotated with respect to a given (the inductive hypothesis)
is shown below1:

Given : ∀b : nat. a + b = b + a

Goal : suc(a)
↑

+ �b� = suc(�b� + a)
↓

The wave-front is represented by a box, and the wave-hole by underlining. The
skeleton, coming from the given, a+b = b+a corresponds to the parts of the goal
that are either without annotation or underlined within the wave front. Note that
the universally quantified variable b in the given becomes a sink in the goal, an-
notated by �b�. There are two strategies for making fertilisation possible, known

1 Note this is one way of annotating this goal; in general a goal may be annotated in
several different ways.

Best-First Rippling 83

as rippling-in and rippling-out. Rippling-out will try to remove the differences
completely or move them out of the way, so that the wave-front surrounds the
entire term and the wave-hole contains an instance of the given. Rippling-in tries
to move differences into sinks. The universally quantified variable in the given
can then be instantiated to the contents of the sink and fertilisation is possible.
The arrow of the wave-front indicates if the wave-front is to be rippled out (↑)
or in (↓). In order to make the search space smaller, rippling-in is only allowed
if there exists a sink or an outward wave-front inside the inward wave-front that
eventually may absorb it. We lift this restriction for best-first rippling.

Rippling proceeds by applying rewrite-rules derived from equations, defini-
tions, theorems and lemmas. To ensure that fertilisation will eventually be pos-
sible after rewriting, rippling requires the skeleton to be preserved between each
step. Termination is guaranteed by defining a ripple-measure, based on the po-
sitions of the wave-fronts, which is required to decrease for each rewrite step.
This also helps reduce the size of the search space, and make it possible to allow
rewrite-rules to be applied in both directions, unlike traditional rewriting where
only one direction is allowed. There are different implementations of ripple mea-
sures. Here, we will use a measure based on the sum of distances from each
outward wave-front to the top of the term tree and from each inward wave-front
to the nearest sink. This measure will clearly decrease as outward wave-fronts
are moved towards the top of the term-tree, and inward wave-fronts towards a
sink further down.

Example. As an example illustrating how rippling moves the wave-front out-
ward to allow fertilisation, consider the step case goal of the inductive proof of
the commutativity of addition, where the given is the inductive hypothesis. Note
that the sinks have been omitted to reduce clutter, as the proof only uses the
rippling-out strategy.

Given : ∀b : nat. a + b = b + a

Goal : suc(a)
↑

+ b = b + suc(a)
↑

with the rules 2:
suc(X) + Y ≡ suc(X + Y) (1)

X + suc(Y) ≡ suc(X + Y) (2)

suc(X) = suc(Y) ≡ X = Y (3)

The proof of the step-case goal will proceed as follows:

suc(a)
↑

+ b = b + suc(a)
↑

�
�
� by rule 1

2 Following the convention for dynamic rippling (§2.1), the rules have not been anno-
tated as wave-rules in static rippling.

84 M. Johansson, A. Bundy, and L. Dixon

suc(a + b)
↑

= b + suc(a)
↑

�
�
� by rule 2

suc(a + b)
↑

= suc(b + a)
↑

�
�
� by rule 3

a + b = b + a
�
�
� Fertilise

True

Notice how each ripple-rewrite moves the wave-front outwards until we arrive at a
state where the goal contains an instance of the given. We can now simply replace
this instance with ‘True’ and conclude the proof. This is called Strong fertilisation.

In the case that rule 3 were missing, there would have been no more rewrites

possible after the state: suc(a + b)
↑

= suc(b + a)
↑
. We say that the state is

blocked. It is however still possible to apply the given using substitution, which
rewrites the blocked goal to suc(b+a) = suc(b+a).This is calledweak-fertilisation.
The resulting goal is true by reflexivity. In situations where rippling is blocked but
weak fertilisation is not possible, we can attempt to apply a critic [14].

2.1 Static and Dynamic Rippling

There are two main approaches for implementing rippling: static and dynamic rip-
pling. They represent and handle annotations in different ways. Rippling as de-
scribed by Bundy et al. [5] will be referred to as static rippling. In static rippling,
the rewrite-rules are annotated before rippling starts in such a way that they will
ensure measure decrease and skeleton preservation. The annotated rules are called
wave-rules and can be applied to any goal with matching annotations. Note that a
single theorem or definition may give rise to several wave-rules. Basin and Walsh
give a formal calculus for static rippling in first-order logic and provide a proof of
termination [1]. They represent annotations as function-symbols at the object level
of the goal. The object level annotations require a special notion of substitution
as standard substitution may produce illegal annotations. Another problem with
static rippling in a higher-order setting, as pointed out by Smaill and Green [20],
is that the object level annotations are not stable over β-reduction. This makes it
impossible to pre-annotate higher-order rewrite rules as they may turn out to be
non-skeleton preserving. To overcome these problems, the use of dynamic rippling
[9,12], and term embeddings, for representing annotations [20,9], have been intro-
duced. In dynamic rippling, annotations are stored separately from the goal and
rewrite rules are not annotated in advance. Instead, all ways of rewriting the goal
with a particular rule are generated after which the annotations are re-computed
and measure decrease and skeleton preservation checked. This means that no spe-
cialised version of substitution is needed.

Best-First Rippling 85

Dynamic rippling is more suitable as a starting point for our best-first rippling
implementation because it initially generates all possible rewrites, including new
subgoals that are non-skeleton preserving and non-measure decreasing. These
would normally be discarded, but we will adapt rippling to instead assign them
heuristic scores.

3 Proof-Planning

Rippling has been implemented andusedwithin the context ofproof-planning [3,6].
Proof planning is a technique for guiding the search for a proof in automated the-
orem proving by exploiting that ‘families’ of proofs, for example inductive proofs,
share a similar structure. Instead of searching the large space of an underlying
theorem-prover, the proof-planner can reason about the applicable methods for
a conjecture and construct a proof-plan consisting of a tree of tactics. A tactic is
some sequence of steps, known to be sound, that are used for solving a particular
problem in a theorem-prover, such as simplification, induction etc.

The Clam proof-planner [7], written in Prolog, and the higher-order λClam
[19], written in λProlog, both implement rippling. The Clam-family of proof
planners uses a set of methods and methodicals. Methods specify what condi-
tions have to be true for the method to be applicable to a goal and what will
be true after the method has been applied. They also carry a reference to the
corresponding tactic that will be used in the theorem-prover when the proof plan
is executed. Methodicals combine several atomic methods into larger compound
methods.

3.1 IsaPlanner

Recently, a higher-order version of dynamic rippling has been implemented in
IsaPlanner [11,10], a proof planner written in Standard ML for the interactive
theorem-prover Isabelle [18]. In IsaPlanner, proof planning is interleaved with
execution of the proof in Isabelle giving IsaPlanner access to Isabelle’s powerful
tactics. The resulting proof-plan is then represented as a proof script in the Isar
language [22], executable in Isabelle and argued to be more readable than the
output from earlier proof-planners such as λClam. Rippling in IsaPlanner has
also been shown to be considerably faster than in λClam [12].

As opposed to the Clam-family of proof planners, IsaPlanner plans the proof
through a series of reasoning states. Each reasoning state contains the partial
proof plan constructed so far, the next reasoning technique to be applied and
contextual information. The reasoning techniques are defined to be functions
from a reasoning state to a sequence of new reasoning states. This sequence rep-
resents all the ways the technique can be applied to its input state. The contex-
tual information contains knowledge acquired during proof planning, including
information about rippling-annotations and skeletons.

IsaPlanner supports several search strategies, including a generic best-first sea-
rch. Search strategies can be applied globally or locally over a reasoning technique.

86 M. Johansson, A. Bundy, and L. Dixon

IsaPlanner’s implementation of rippling is designed in a modular fashion to be
easily extendable and can support different versions of rippling with different no-
tions of annotations and ripple measures simultaneously. Our best-first rippling
implementation is a module defined in terms of the module for ordinary rippling,
thereby making best-first rippling available for any of IsaPlanner’s versions of
rippling.

4 Best-First Rippling

Ordinary rippling requires each step in the rippling-process to satisfy the restric-
tions of measure decrease and skeleton preservation, otherwise the step is regarded
as invalid. There are however a number of occasions where these ‘invalid’ ripple-
steps would be useful or necessary for the success of rippling. In proofs involving
mutually recursive functions, the skeleton might be temporarily disrupted but re-
stored in a later step (see for example [5], §5.9). Another example is a proof where
it is necessary to ‘unblock’ rippling by performing rewrites inside the wave front
[4], which might lead to a temporary increase in the ripple-measure.

In best-first rippling, the measure decrease and skeleton preservation require-
ments are, instead of being strictly enforced, reflected in a heuristic score. The
heuristic prefers smaller ripple measures and skeleton preservation but previously
invalid steps can then be considered if nothing better is available.

To realise best-first rippling we need dynamic rippling and best-first search.
We must consider all rewrites at any given state, evaluate their heuristics scores
and compare them with all other open states in the search. The state with
the lowest score is the most promising one from which to continue rippling.
IsaPlanner implements dynamic rippling and has a generic version of best-first
search, making it a suitable platform for implementing best-first rippling.

Example: Breaking the Skeleton. As an example, consider the following
problem with mutually recursive definitions of even and odd (here called evenM
and oddM).

Given : evenM(n) ∨ oddM(n)

Goal : evenM(suc(suc(n))
↑

) ∨ oddM(suc(suc(n))
↑

with the rules:
evenM(0) ≡ True (4)

evenM(suc(X)) ≡ oddM(X) (5)

oddM(0) ≡ False (6)

oddM(suc(X)) ≡ evenM(X) (7)

Best-First Rippling 87

This gives the following best-first rippling proof using two-step induction:

evenM(suc(suc(n))
↑
) ∨ oddM(suc(suc(n))

↑
)

�
�
� by rule 5

oddM(suc(n)) ∨ oddM(suc(suc(n)) (8)
�
�
� by rule 7

evenM(n) ∨ oddM(suc(suc(n))
↑
)

�
�
� by rule 7

evenM(n) ∨ evenM(suc(n)) (9)
�
�
� by rule 5

evenM(n) ∨ oddM(n)

Fertilisation is now possible. Note that the skeleton is disrupted in steps 8 and
9 (the subgoals are therefore not annotated), but restored in the following step.
These steps are necessary for the completion of this proof but would not be
allowed in ordinary rippling.

Example: Non-measure Decrease Required. The proof of the theorem
evenR(suc(suc(0)) ∗ n), taken from [4], requires us to modify the argument to
the even-function before we can apply fertilisation. As a result, the rewrites will
not move the wave-front, only rearrange the terms inside it, and the measure
will stay the same over a number of steps. Note that this is the two-step recur-
sively defined even-function, (referred to as evenR) as opposed to the mutually
recursive version defined above.

The proof uses the following rules from the definitions of addition, multipli-
cation and for the two-step recursive version of evenR:

evenR(suc(suc X)) ≡ evenR(X) (10)

X + 0 ≡ 0 (11)

X + suc(Y) ≡ suc(X + Y) (12)

X ∗ suc(Y) ≡ (X ∗ Y) + suc(Y) (13)

Our given and goal gives the following rippling sequence (with the sum-of dis-
tance ripple measure given for each step):

88 M. Johansson, A. Bundy, and L. Dixon

Given : evenR(suc(suc(0)) ∗ n)

Goal : evenR(suc(suc(0)) ∗ suc(n)
↑
) Measure : 2

�
�
� by rule 13

evenR(suc(suc(0)) ∗ n + suc(suc(0))
↑

) Measure : 1

�
�
� by rule 12

evenR(suc(suc(suc(0)) ∗ n + suc(0))
↑

) Measure : 1

�
�
� by rule 12

evenR(suc(suc(suc(suc(0)) ∗ n + 0))
↑
) Measure : 1

�
�
� by rule 10

evenR(suc(suc(0)) ∗ n + 0
↑
) Measure : 1

�
�
� by rule 11

evenR(suc(suc(0)) ∗ n) Measure : 0

Strong fertilisation is now applicable as the wave-front has been fully rippled out
leaving the ripple measure 0. All but the first and last step in the rippling proof
do not change the ripple-measure as the rewrites are applied to terms inside the
wave-front.

4.1 Complications with Best-First Rippling

The price for the greater flexibility of best-first rippling is that the search space
is considerably larger. The increased number of possibilities to continue rippling
also means that rippling will rarely become blocked, which is when applying
fertilisation or critics would normally be considered. Furthermore, allowing non-
measure decreasing and non-skeleton preserving steps means that best-first rip-
pling will loose the guarantee for termination, as it is possible to become stuck
in a loop by applying the same rewrite-rule in opposite directions.

Mutually recursive functions are another source of potential non-termination
as it is possible to apply a non-skeleton preserving rewrite rule in a direction
such that the subgoal gets larger and larger. Recall the previous example:

evenM(suc(suc(n))
↑
) ∨ oddM(suc(suc(n))

↑
)

Best-First Rippling 89

Here we can rewrite evenM(suc(suc(n))
↑

) in two ways, neither of which pre-
serves the skeleton. We can either apply rewrite-rule 5 from left to right or, as
rewrites are allowed in both directions, rule 7 from right to left. The latter would
give the result

oddM(suc(suc(suc(n)))) ∨ oddM(suc(suc(n))

where evenM has been transformed into oddM by adding a successor-function
rather than removing one. Consider now applying rule 5 from right to left, which
produces a state that does embed the skeleton but adds yet another successor
function:

evenM(suc(suc(suc(suc(n))))
↑
) ∨ oddM(suc(suc(n))

↑
)

Subsequent bad applications could keep alternating between evenM and oddM ,
each time adding another successor-function and hence never terminating. Our so-
lution to these problems uses caching of the visited states and is discussed in §4.3.

4.2 Best-First Heuristic

Best-first rippling requires a heuristic evaluation function for deciding which
state is the most promising to evaluate next in the rippling process. Valid ripples
should be considered before non-measure decreasing or non-skeleton preserving
steps. The ripple measure gives an indication of how far w are from being able
to apply fertilisation and conclude the proof.

We have used IsaPlanner’s sum-of-distance ripple measure during develop-
ment and testing. Rippling with this measure has been shown to perform better
than with other kinds of measures [10]. As mentioned earlier, best-first rippling
has however been implemented in a modular fashion, allowing use of any type
of ripple measure.

IsaPlanner’s best-first search function expects to be supplied with a heuristic
order function used for keeping the agenda sorted in increasing order. It is there-
fore not necessary to compute and store explicit numerical scores for the states,
just determine their relative ordering. Our heuristic function for the best-first
search takes two reasoning states and compares them. A state is regarded as less
than another state if its heuristic score is better, thus placing it closer to the
front of the agenda.

The heuristic function for comparing reasoning states can be summarised as
follows:

– States to which strong fertilisation can be applied are always preferred over
continued rippling.

– Skeleton preserving states are always given a better score than non-skeleton
preserving states.

– When both states preserve the skeleton, the state with the best ripple mea-
sure is given the lower score. If the states have the same ripple measure, they
are given equal heuristic scores.

90 M. Johansson, A. Bundy, and L. Dixon

– If neither state preserves the skeleton, the reasoning state with the smallest
goal-term scores better.

Strong fertilisation should be preferred over everything else as it applies the
inductive hypothesis and concludes the proof. Skeleton preservation is always
preferred over non-preservation as we only want to apply non-skeleton preserving
steps when there are no other options. States that do embed the skeleton are
ordered based on the ripple-measures. In comparing ripple-measures, we need to
take into account that, as IsaPlanner employs dynamic rippling, each reasoning
state might have several ripple measures, one for each way a skeleton embeds.
IsaPlanner also supports rippling with multiple skeletons, each of which may
embed in different ways. For comparisons, we use the best ripple-measure of
each state.

The heuristic also handles non-rippling states, such as setting up a rippling
attempt or applying fertilisation. Non-rippling steps are simply preferred be-
fore more rippling as a fixed number of non-rippling steps will either result in
a solution (if fertilisation is successful) or a new ripple-state to which our stan-
dard heuristic is applicable if we have to prove a lemma. Little or no search is
needed.

Because best-first rippling does not become blocked as often as ordinary rip-
pling does, we considered introducing some heuristic measure allowing the ap-
plication of weak fertilisation and critics before we run out of applicable rules.
We developed a variant of best-first rippling where weak-fertilisation and Isa-
Planner’s lemma calculation critics were applied eagerly to states where none
of the children were skeleton-preserving, i.e. the state would have been blocked
in ordinary rippling. The non-skeleton preserving children are also kept in the
agenda, but given a worse heuristic score than to weak fertilise and/or conjecture
a lemma.

4.3 Termination and Reduction of Search Space Size

As mentioned before, allowing rippling with non-measure decreasing wave-rules
means that best-first rippling is no longer guaranteed to terminate. The same
wave-rule now can be applied in opposite directions, causing loops, and it is
possible to apply rewrites that just blow up the size of the goal-term as described
in §4.1. Another source of inefficiency is the many symmetric branches in the
search tree.

To deal with these problems, the best-first implementation caches the visited
states of a ripple sequence. We filter out any new subgoals that are identical to
subgoals previously seen anywhere in the search tree, thereby pruning symmetric
branches. The termination and looping problem is dealt with by introducing an
embedding check, as used in IsaPlanner’s lemma conjecturing ([10] Chapter 9).
If a previous goal-term embeds into the new sub-goal it is removed, which filters
rewrites that would otherwise cause divergence. Kruskal’s Theorem [15], states
that there exists no infinite sequence of trees such that an earlier tree does not
embed into a later tree. Therefore, the embedding check will restore termination,
which was lost as we relaxed the restriction of ripple-measure decrease. We have

Best-First Rippling 91

(5) odd(suc(suc n) \/ odd(suc n)
By (1) =>

(3) even(suc n) \/ odd(suc n)

(4) odd(n) \/ odd(suc n)

By (2) => By (1) <=

Pruned: Same−check (3)

By (2) <=

(6) odd(n) \/ even(n) (7) even(suc n) \/ odd(suc n)

(8) even(suc n) \/ odd(suc n) (9) even (suc(suc (suc n) \/ odd(suc n)

Pruned: Same−check (3)

By (2) => By (1) <=

Pruned: embeds (3)

(2) odd(suc N) == even(N)
(1) even(suc N) == odd(N)

Fig. 1. Partial search tree for best-first rippling showing how branches are pruned to
avoid loops and redundant rewrites. Note that the two rules are allowed to be applied
in both directions.

chosen to only check embeddings against other states on the same branch, if
checked against states on alternative OR-branches we could potentially prune
useful states. This approach appears to work well in practice. Figure 1 illus-
trates how unproductive branches are pruned to reduce the size of the search
space.

4.4 Delaying Parts of the Search

We discovered that a common problem arising when using best-first or breadth-
first search for rippling is that the same lemma might be conjectured indepen-
dently at different places in the search space, causing the planner to pursue
several simultaneous attempts on the same lemma.

In IsaPlanner’s standard depth-first rippling this is not an issue. When a
blocked state is encountered, a lemma is conjectured and proved before back-
tracking to try more rippling in the original proof attempt. Lemmas that have
already been proved to be true (or failed) are cached, allowing later blocked
states requiring the same lemma to use the previous result, thus saving time
by avoiding symmetric parts of the search space. When using best-first search,
it may be the case that after a lemma has been conjectured and a proof at-
tempt begun, some state in the original proof attempt has a better heuristic
score so rippling is continued from there. If this second ripple also becomes
blocked and requires a lemma which we already have started a proof of else-
where, we want to prevent beginning a second attempt. Instead, the second
reasoning state should be suspended until the lemma has been proved. After
the lemma is proved, not only the state from which it was originally conjec-
tured, but also any other states waiting for that particular lemma, should be
resumed.

Beginning several attempts of the same lemma was one of the major sources
for inefficiencies in our initial implementation of best-first rippling. Initially, the
problem was tackled by giving rippling in a lemma attempt a better heuristic
score than rippling the original conjecture. This is however not always desirable;

92 M. Johansson, A. Bundy, and L. Dixon

if a bad lemma is conjectured, we do want the option to abandon it and explore
other possibilities. Experiments also suggested that this approach may miss so-
lutions to some problems and generally lead to longer run-times. We chose to
instead create a new generic search strategy in IsaPlanner. This strategy inspects
all new states and may temporarily remove them from the agenda if marked as
delayed. Similarly, the strategy checks if the current state wishes to resume
some delayed states, which are then returned to the agenda. IsaPlanner’s lemma
conjecturing machinery was augmented with a cache for lemmas-in-progress in
addition to the existing caching of completed proof attempts. The lemma con-
jecturing critic inspects the cache and if an attempt is already in progress, the
reasoning state is marked as delayed and not evaluated further until the proof
attempt of the relevant lemma is finished.

4.5 Storing Skeletons

Ordinary rippling will discard any skeletons that cannot be embedded in the
current goal term as they are not needed any more. Best-first rippling on the
other hand, needs to keep all skeletons. After applying a non-skeleton preserving
step, the previous skeleton must be kept so we can keep track of whether or not
the skeleton is restored in subsequent steps.

The skeletons and their possible embeddings are stored in IsaPlanner’s con-
textual information for rippling. Previously, only the list of possible embeddings
of a skeleton was stored. When a skeleton failed to embed, all references to the
skeleton were removed, making it impossible to later check if the skeleton could
embed into some new state. For best-first rippling, the contextual information for
rippling has been modified to store a list of pairs consisting of both the skeleton
and a list of embeddings of that skeleton (as opposed to only the embeddings
list). A skeleton not embedded in the current subgoal will have an empty list of
embeddings, but will still be kept.

5 Evaluation and Results

Best-first rippling has been evaluated by comparing it to IsaPlanner’s imple-
mentation of ordinary rippling, which uses depth-first search. We measured the
number of successfully solved problems as well as run-times on both successful
and failed proof attempts. Our test-problems included a set of benchmarks for
IsaPlanner, consisting of 55 theorems in Peano arithmetic and about lists, to test
the performance of best-first rippling compared to ordinary rippling on standard
problems. Best-first rippling has a larger search space and performs some extra
work computing heuristic scores, so we expected it to be slower than ordinary
depth-first rippling. The benchmarks also included a range of non-theorems, al-
lowing us to test the robustness of best-first rippling. Ideally we would like to
exhaust the search space quickly when no solution can be found, rather than see
non-termination. In addition to IsaPlanner’s benchmarks, we also tested a set of
39 problems where we would expect to see the full benefits of best-first rippling,

Best-First Rippling 93

Fig. 2. Number of successes on the 94
theorems in the test set (55 bench-
marks and 39 additional)

Fig. 3. Average run-times in seconds

including proofs about mutually recursive functions, proofs involving destructor-
style functions (such as the predecessor function in Peano arithmetic) and proofs
where measure increasing steps are required. The mutually recursive problems
typically require induction schemes reflecting the depth of the nested recursive
function definitions. As an example, recall the mutually recursive definition of
even and odd from §4. The two functions are defined in terms of each other so
we use two-step induction. In these cases, the induction scheme was supplied
manually to IsaPlanner/Isabelle, as inference of induction schemes is currently
limited to standard recursively defined data-types.

We also compared a version of best-first rippling that applies critics when it
is blocked, with a version that eagerly tries to apply critics or weak-fertilisation
when no more skeleton-preserving steps are available. This was expected to in-
dicate whether applying critics is more efficient than searching the larger space
arising from allowing non-skeleton preserving steps.

The experiments were conducted on a standard 2 GHz Intel Pentium4 PC
with 512 MB of memory running Isabelle2005. Each problem had a timeout
limit of 30 seconds.

The number of successful proofs for the three versions of rippling are dis-
played in figure 2. Both best-first rippling with eager application of critics and
the variant without it, managed to find proofs for 76 of the 94 theorems. Ordinary
depth-first rippling succeeded to find 49 proofs, 40 from IsaPlanner’s benchmarks
compared to 41 for best-first rippling. The additional benchmark problem solved
by best-first rippling was rev(l) = qrev(l, []), a problem expected to fail as Isa-
Planner lacks a generalisation critic for accumulator variables, but here solved as
a side effect of our caching mechanism3. On the additional set, ordinary rippling
proved only 10 theorems compared to 35 for best-first, which was expected as
these were chosen from classes of problems known to be difficult for ordinary
rippling.

3 The interested reader can find the proof on the project website: http://dream.
inf.ed.ac.uk/projects/bfrippling.

http://dream.
inf.ed.ac.uk/projects/bfrippling

94 M. Johansson, A. Bundy, and L. Dixon

 0.001

 0.01

 0.1

 1

 10

 100

 0.001 0.01 0.1 1 10 100

R
un

tim
e

B
F

-r
ip

pl
in

g

Runtime ordinary rippling

Proof runtime
Break even

Fig. 4. Each scatter-plot represents a conjecture, with the x-value being the runtime for
ordinary rippling and the y-value the runtime of standard best-first rippling. The ver-
tical and horizontal lines marks the timeout limit of 30 seconds. Failed proof-attempts
have also been plotted along these lines for clarity. A logarithmic scale is used for better
visualisation.

Figure 3 shows the average run-times for proof-attempts while figure 4 shows
the time spent on each proof for best-first and ordinary rippling. Ordinary rip-
pling is slightly faster on most problems both techniques can solve but the dif-
ferences are small. Best-first rippling is however faster on average, due to a few
outliers for ordinary rippling. Ordinary rippling fails or times out more often
than best-first rippling. As a result, best-first rippling is faster than depth-first
rippling overall, and also spends less time on conjectures it cannot prove thanks
to the caching and embedding-check.

The differences in runtime appears to be small between the two variants of
best-first rippling. Conjecturing lemmas eagerly when no skeleton-preserving
steps are available appears to make little difference to the run-times of the mu-
tually recursive problems in our test set. We also notice that best-first rippling
spent less time on failed proof attempts, including the non-theorems in the test
set, despite the larger number of allowed rewrites.

The full collection of test problems, results and function definitions can be
found on-line at http://dream.inf.ed.ac.uk/projects/bfrippling. The
source code is available from the IsaPlanner website: http://sourceforge.net/
projects/isaplanner/.

To summarise the results; best-first rippling proves a number of theorems
where ordinary rippling is too restricted to succeed, as expected. Despite the
larger search-space of best-first rippling the differences in run-times compared
to ordinary rippling are small. Best-first rippling appears to be more robust
when presented with non-theorems, less time is spent on failed proof-attempts
compared to ordinary rippling.

Best-First Rippling 95

6 Related Work

6.1 Depth-First Rippling

The main difference between our work and IsaPlanner’s previous implementa-
tions of ordinary depth-first rippling [10], is that best-first rippling relaxes the
requirements that each state must preserve the skeleton and decrease the ripple
measure. These requirements guarantees the termination of ordinary rippling,
something that is lost for best-first rippling. Our implementation instead uses
mechanisms for caching of visited states to avoid loops and a check on term
embeddings to restore termination (see Kruskal’s Theorem [15]). This works
well in practise and has the additional advantage of pruning the search space of
symmetric branches.

6.2 Best-First Rippling in λClam

James Brotherston implemented a best-first methodical in the λClam proof plan-
ner [2]. The best-first methodical use a greedy search strategy, considering only
the best option at the current node, not previous nodes higher up in the tree.
Higher branches in the search tree are only investigated on backtracking. Ap-
plied to rippling4, Brotherston identifies this as a problem as it does not allow
switching focus to the most promising area of the search. Our best-first search
strategy is not greedy and we can easily switch focus to different parts of the
search tree as IsaPlanner’s reasoning states, held in the agenda, contains the
necessary local contextual information about the proof-plan and next reasoning
technique.

6.3 Best-First Proof-Planning

Manning et al. presents an implementation of best-first proof-planning in Clam
[17]. A best-first heuristic is employed to make choices between three different
proof planning methods; generalisation, simplification and induction, as a fixed
ordering sometimes causes unnecessarily complicated proofs or even causes fail-
ure. Our work differs from that of Manning as we are applying best-first search
within the rippling technique. IsaPlanner applies induction and rippling first,
then attempts simplification or generalisation if the ripple becomes blocked. De-
spite this, all proofs in [17] are solvable by best-first rippling, although perhaps
not in the most efficient way.

7 Further Work

As a side-effect of the caching mechanism, best-first rippling manages to prove
the conjecture rev(l) = qrev(l, []) where we would expect rippling to fail without
a generalisation critic that can introduce an accumulator variable before induc-
tion and rippling is attempted. Best-first rippling does however fail to prove more
4 Personal communication: internal Blue Book Note series, numbers 1405, 1409, 1425.

96 M. Johansson, A. Bundy, and L. Dixon

complicated theorems involving similar tail-recursive functions. Such problems
can be solved using a critic to analyse the failed proof attempt in order to sug-
gest a generalisation. Another limitation of the current implementation is that
the user is required to specify if an induction scheme other than standard one
is required. The Clam proof-planner had a number of critics for finding lem-
mas, forming generalisations, case-splits and revising the induction scheme [14].
IsaPlanner has currently only one critic, for lemma calculation. We plan to imple-
ment additional critics in IsaPlanner. This is expected to allow a larger number
of problems to be solved automatically, including many of the problems from the
test set where both best-first and ordinary depth-first rippling currently fail.

The caching techniques we have discussed could also benefit ordinary rip-
pling. In particular, pruning states already seen from the search space removes
symmetric branches which would potentially improve run-times.

Our test-set mainly consisted of relatively easy theorems. Further experiments
will evaluate best-first rippling on harder problems. We also plan to undertake
a larger comparison between rippling and regular rewriting.

8 Conclusions

We have shown that our implementation of best-first rippling is able to automat-
ically prove a number of theorems where IsaPlanner’s previous implementation
of depth-first rippling fails, for example, proofs about mutually recursive func-
tions and proofs requiring a temporary increase in the ripple measure. Rippling
has been allowed more flexibility by recasting the measure decrease and skele-
ton preservation requirements into heuristic scores. In allowing these steps we do
however lose the guarantee of termination for rippling. Our solution to this prob-
lem introduces an embedding check (§4.3), where new subgoals in which we can
embed previously seen cached goals on the same branch are pruned. This cuts
out branches where subsequent applications of non-skeleton preserving rewrites
leads to divergence as described in §4.1 and restores termination. We also found
that the search space often would contain symmetries, where the same state
occurs in several different places. To improve efficiency, any goal identical to a
cached goal is simply pruned.

Using best-first search rather than depth-first search means that it is possible
to switch between rippling in a lemma attempt and rippling in the original
proof, depending on which seems more promising. This often gave rise to the
same lemma being conjectured from different blocked states. Our new search
strategy suspends any states requiring a lemma for which a proof is already in
progress. When a lemma is proved, all states waiting for it are resumed.

Our test results show that best-first rippling not only is capable of solving
a range of problems not solvable by ordinary rippling, but also has faster run-
times overall thanks to the combination of efficiency measures described above
and the guidance from best-first search. We also compared two versions of best-
first rippling to verify if it is beneficial to apply critics before best-first rippling
is blocked, as best-first rippling might not become blocked as often as ordinary

Best-First Rippling 97

rippling due to the larger search space. On our test set, we did however find that
applying critics eagerly when no more skeleton preserving states were available,
made little difference.

References

1. D. Basin and T. Walsh. A calculus for and termination of rippling. Journal of
Automated Reasoning, 1-2(16):147–180, 1996.

2. J. Brotherston and L. Dennis. LambdaClam v.4.0.1 User/Developer’s manual.
Available online: http://dream.inf.ed.ac.uk/software/lambda-clam/.

3. A. Bundy. The use of explicit plans to guide inductive proofs. In 9th International
Conference on Automated Deduction, pages 111–120, 1988.

4. A. Bundy. The termination of rippling + unblocking. Informatics research paper
880, University of Edinburgh, 1998.

5. A. Bundy, D. Basin, D. Hutter, and A. Ireland. Rippling: Meta-level Guidance for
Mathematical Reasoning. Cambridge University Press, 2005.

6. A. Bundy, F. van Harmelen, J. Hesketh, and A. Smaill. Experiments with proof
plans for induction. Journal of Automated Reasoning, 7:303–324, 1992.

7. A. Bundy, F. van Harmelen, C. Horn, and A. Smaill. The Oyster-Clam system.
In 10th International Conference on Automated Deduction, number 449 in LNAI,
pages 647–648, 1990.

8. F. Cantu, A. Bundy, A. Smaill, and D. Basin. Experiments in automating hardware
verification using inductive proof planning. In First International Conference on
Formal Methods in Computer-Aided Design, volume 1166 of LNCS, pages 94–108.
Springer Verlag, 1996.

9. L. A. Dennis, I. Green, and A. Smaill. Embeddings as a higher-order representation
of annotations for rippling. Technical Report Computer Science No. NOTTCS-WP-
SUB-0503230955-5470, University of Nottingham, 2005.

10. L. Dixon. A proof-planning framework for Isabelle. PhD thesis, School of Infor-
matics, University of Edinburgh, 2005.

11. L. Dixon and J. Fleuriot. IsaPlanner: A prototype proof planner in Isabelle. In
Proceedings of CADE’03, pages 279–283, 2003.

12. L. Dixon and J. Fleuriot. Higher-order rippling in IsaPlanner. In Proceedings of
TPHOLs’04, pages 83–98, 2004.

13. D. Hutter. Coloring terms to control equational reasoning. Journal of Automated
Reasoning, 18(3):399–442, 1997.

14. A. Ireland and A. Bundy. Productive use of failure in inductive proof. Journal of
Automated Reasoning, 16:79–111, 1996.

15. J. B. Kruskal. Well-quasi-ordering, the tree theorem, and Vazsonyi’s conjecture.
Transactions of the American Mathematical Society, 1960.

16. D. Lacey, J. Richardson, and A. Smaill. Logic program synthesis in a higher-order
setting. Computational Logic, 1861:87–100, 2000.

17. A. Manning, A. Ireland, and A. Bundy. Increasing the versatility of heuristic
based theorem provers. In A. Voronkov, editor, International conference on Logic
Programming and Automated Reasoning LPAR’93, number 698 in Lecture Notes
in Artificial Intelligence, pages 194–204. Springer Verlag, 1993.

18. T. Nipkow, L.C. Paulson, and M. Wenzel. Isabelle/HOL - A proof assistant for
higher-order logic. Number 2283 in Lecture Notes in Computer Science. Springer
Verlag, 2002.

98 M. Johansson, A. Bundy, and L. Dixon

19. J. Richardson, A. Smaill, and I. Green. System description: Proof planning in
higher-order logic with Lambda-Clam. In 15th International Conference on Auto-
mated Deduction, number 1421 in LNAI, pages 129–133, 1998.

20. A. Smaill and I. Green. Higher-order annotated terms for proof search. In Theorem
Proving in higher-order logics: 9th international conference, volume 1275 of Lecture
Notes in Computer Science, pages 399–413. Springer Verlag, 1996.

21. T. Walsh, A. Nunes, and A. Bundy. The use of proof plans to sum series. In
11th Conference on Automated Deduction, number 607 in LNCS, pages 325–339.
Springer Verlag, 1992.

22. M. Wenzel. Isar - a generic interpretative approach to readable formal proof docu-
ments. In Proceedings of TPHOLs’99, volume 1690 of Lecture Notes in Computer
Science, pages 167–184. Springer Verlag, 1999.

	Introduction
	Rippling
	Static and Dynamic Rippling

	Proof-Planning
	IsaPlanner

	Best-First Rippling
	Complications with Best-First Rippling
	Best-First Heuristic
	Termination and Reduction of Search Space Size
	Delaying Parts of the Search
	Storing Skeletons

	Evaluation and Results
	Related Work
	Depth-First Rippling
	Best-First Rippling in Clam
	Best-First Proof-Planning

	Further Work
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

