
Learning and Exploration in Automated Theorem Proving

Moa Johansson
Chalmers University of Technology

Abstract

This note describes a new project with the purpose of combining the advantages of statistical machine
learning with those of symbolic methods for lemma discovery, such as theory exploration. We can thus
better exploit the resources in large electronic proof libraries to gain heuristic knowledge to, for example,
create more efficient lemma discovery techniques or provide hints as to which induction scheme to try in
an automated prover.

1 Introduction and Motivation

Machine learning and pattern recognition techniques are statistical methods which can be used for dis-
covering similarities in data. Statistical methods are well suited for fast processing of big libraries and
are generally tolerant to noise. While such statistical methods focus on extracting information from large
volumes of data, they lack in capacity for conceptualisation. They can, for example, tell that a correlation
between two proof patterns exists, but not why this happens nor formulate any conceptual proof hints
for similar situations. Theory exploration techniques on the other hand, are concerned with exactly that:
the discovery of new lemmas in new theories [5, 11, 1, 6]. However, theory exploration techniques may
not cope well with very large theories when the search space becomes too big. We thus want to combine
these two techniques exploiting the strengths of both.

For example, suppose we try to prove a new conjecture. We can use pattern recognition and data
mining to detect if some similar theorem has been proved before, and if so, extract information about
which proof technique and which lemmas were used. This information can then be fed into a theory
exploration system to restrict its search space and produce suggestion of, for example, analogous lemmas
applicable to the new conjecture. We have done some preliminary work in this area for the ACL2 proof
assistant [4]. We used clustering methods to decide which theorems and conjectures were similar to each
other based on their term structure, which functions were involved, and how similar the definitions of
those functions were. In the context of inductive theorem proving, information about proofs of similar
conjectures can help the prover to for example make a choice as to which induction scheme to use.

2 Machine Learning in Automated Reasoning

The main application of machine learning methods in the context of theorem proving and automated
reasoning has been premise selection for first-order provers in large theories with many background facts.
If presenting such a first-order prover with too many premises, its speed of operation will deteriorate. If
given too few, the problem at hand might become unsolvable. Premise selection methods using machine
learning techniques can help by using information from previous proofs to find correlations between
theorem statements and the facts used in their proofs. When presented with a new conjecture, a suitably
sized subset of premises most likely to be useful are passed to the prover. This has been implemented in for
instance the provers E and SPASS [3, 9, 13]. The interactive proof assistant Isabelle allows calling external
provers through the Sledghammer tool [12]. As Isabelles’s proof library is very large, Sledgehammer uses
this kind of relevance filtering to select facts estimated to be most relevant from the entire Isabelle library.
The relevance filter is implemented with a naive Bayes learning algorithm [8]. The most commonly used
learning algorithms for automated theorem proving integration seem to be fast but simple algorithms like
naive Bayes and k-nearest neighbours. In a theorem prover, particularly interactive ones like Isabelle, the
learning of new facts should interfere as little as possible with the user experience, which is presumably
why these fast algorithms have been preferred.

The success and efficiency of machine learning algorithms is dependent on among other things feature
selection, in our context: what characteristics of a conjecture or theorem we should focus on when trying

1



to assess their similarity. These features are typically translated into numerical values, and the resulting
vector or matrix is used for learning. Different machine learning algorithms may work better or worse
with different kinds of features, different numbers of features and so on. The most common features used
in the context of theorem proving is simply which symbols occur the statements. However, many other
features has been explored in various works , such as types, subterms, information about theories in which
the statement occurs, just to name a few (see [7] for an overview). Recently, Kalinszyk et al. proposed
to also use features based on matching and unification [7], thus basically relating statements through
their generalisations. If such a generalisation is not present in the corpus, they propose to heuristically
introduce such terms. They conclude that statements that have a common generalisations often have
similar proofs, and show that this can improve premise selection.

3 Learning for Lemma Discovery and Inductive Proofs

We are initially interested in two areas where we believe that machine learning techniques further can
assist automated theorem provers: selection of induction schemes and restricting the search space for
theory exploration.

3.1 Selecting Induction Schemes

We recently added support for recursion induction1 in our theory exploration system Hipster for Is-
abelle/HOL [10]. We found that certain properties that Hipster could not previously prove with structural
induction were possible to automate with a simple switch to recursion induction. The prover now has
a choice as to which induction to apply, structural- or recursion induction. While is power is increased,
the search space becomes larger and the prover is sometimes slower. The choice of induction scheme
should depend on which functions are present in the conjecture, and how they are defined. We expect
that machine learning can help us choosing which kind of induction to try first:

1. A new conjecture that involves functions which often has occurred in other theorems whose proof
required e.g. recursion induction are likely to also require recursion induction.

2. Given a new function f , and suppose its definition is judged similar to an existing function, g.
Suppose further that many theorems involving the function g use a particular induction scheme. It
may then make sense to try the same induction scheme also for conjectures about f .

The features required for realising (1) should simply be the standard symbol occurrence features used in
for instance Sledgehammer. For (2) we need features also capturing the similarities in the structure of a
function definition, in particular the functions recursive structure.

3.2 Theory Exploration

The problem we are interested in is different from premise selection for first-order provers. We want to be
able to construct missing interesting lemmas, rather than just selecting from a given corpus, using theory
exploration. A theory exploration system is typically given a set of functions, datatypes and constants
and generates candidate terms using random testing, followed by automated proofs. Only theorems with
non-trivial proofs are deemed interesting and presented to the user. Like automated first order provers,
the performance of theory exploration systems can degrade if given too many functions as input at once
(as a rough estimate, more than 20-25 can be problematic). Some areas where we think machine learning
can help theory exploration include:

1. Discovering lemmas by analogy from similar proofs.

2. Speculating new properties by analogy to properties about similar functions.

3. Discovering conjectures bridging theories between similar datatypes.

For (1), we expect to follow a similar approach taken in our previous work [4], where we cluster new
conjectures with existing theorems and their proofs, using features based on term structure and the
similarity of functions appearing in each. The hypothesis is that lemmas used in the proof of a similar
theorem can be used to extract an analogous lemma for our new conjecture. An option here is to abstract
over the structure of an existing lemma, creating one or several schemas, which can then be given to a
theory exploration system. Search will be required at this stage, but the search space is reduced compared
to searching through all possible terms. Of interest here are also techniques similar to those suggested

1Induction following the termination order of a function in the conjecture, rather than structural induction over datatypes.

2



by Kalinszyk et al. [7], if we detect several theorems in the training data have a common generalisation,
such lemmas could be speculated and proofs attempted.

For (2), we expect to cluster similar function definitions together, with the hypothesis that if a function
f is similar to a function g, and we know some properties about f , then it is worth exploring if g has
some similar properties. Of course, this will not always be the case, but at least gives some guidance as
to which properties might hold about a new function, thus reducing the search space.

For (3), we suppose that we have two theories about two datatypes and functions on these, and
furthermore, that some properties have been proved over the two datatypes. If many of these properties are
similar, it is worth speculating some bridging lemmas to connect the two theories, for instance converting
one datatype into the other.

3.3 Inductive Proofs to Learn From

Good training data is crucial for machine learning. In addition to the existing libraries for interactive
provers such as Isabelle, we have started to collect a set of benchmarks specifically for inductive provers [2].
The TIP (Tons of Inductive Problems) benchmark suite is expressed in a syntax which is an extension
of SMT-LIB and currently contains a few hundred problems (we invite anyone interested to submit
additional benchmarks to us). We plan to further complement this format with support for expressing at
least some high-level description of proof-plans, e.g. what induction scheme and what lemmas the prover
has used. This would be very useful for future machine learning applications.

References

[1] K. Claessen, M. Johansson, D. Rosén, and N. Smallbone. Automating inductive proofs using theory
exploration. In Proceedings of the Conference on Auomtated Deduction (CADE), 2013.

[2] K. Claessen, M. Johansson, D. Rosén, and N. Smallbone. TIP: Tons of inductive problems. In
Proceedings of the Conference on Intelligent Computer Mathematics (CICM), 2015.

[3] J. Denzinger and S. Schulz. Automatic Acquisition of Search Control Knowledge from Multiple Proof
Attempts. Inform. and Comput., 162(1-2):59–79, 2000.

[4] J. Heras, E. Komendantskaya, M. Johansson, and E. Maclean. Proof-pattern recognition and lemma
discovery in ACL2. In Logic for Programming, Artificial Intelligence, and Reasoning (LPAR), volume
8312 of LNCS, pages 389–406. Springer, 2013.

[5] M. Johansson, L. Dixon, and A. Bundy. Conjecture synthesis for inductive theories. Journal of
Automated Reasoning, 47(3):251–289, 2011.

[6] M. Johansson, D. Rosén, N. Smallbone, and K. Claessen. Hipster: Integrating theory exploration in
a proof assistant. In Proceedings of the Conference on Intelligent Computer Mathematics (CICM),
2014.

[7] C. Kaliszyk, J. Urban, and J. Vyskocil. Efficient semantic features for automated reasoning over
large theories. In Proceedings of IJCAI 2015, pages 3084 – 3090. AAAI, 2015.

[8] D. Kühlwein, J. C. Blanchette, C. Kaliszyk, and J. Urban. MaSh: Machine Learning for Sledgeham-
mer. In Proceedings of ITP’13, LNCS, 2013.

[9] D. Kühlwein, T. van Laarhoven, and T. H. E. Tsivtsivadze, J. Urban. Overview and evaluation of
premise selection techniques for large theory mathematics. In IJCAR’12, volume 7364 of LNCS,
pages 378–392, 2012.

[10] I. Lobo-Valbuena and M. Johansson. Conditional lemma discovery and recursion induction in Hipster.
In 15th International Workshop on Automated Verification of Critical Systems (AVoCS), 2015.

[11] O. Montano-Rivas, R. McCasland, L. Dixon, and A. Bundy. Scheme-based theorem discovery and
concept invention. Expert Systems with Applications, 39(2):1637–1646, Feb. 2012.

[12] L. Paulson and J. Blanchette. Three years of experience with Sledgehammer, a practical link between
automation and interactive theorem provers. In Proceedings of IWIL-2010, 2010.

[13] J. Urban, G. Sutcliffe, P. Pudlak, and J. Vyskocil. MaLARea SG1 - Machine learner for automated
reasoning with semantic guidance. In IJCAR’08, volume 5195 of LNCS, pages 441–456, 2008.

3


