
Theory Exploration for Interactive Theorem Proving

Moa Johansson
Chalmers University of Technology

Abstract

Theory exploration is an automated reasoning technique for discovering and proving interesting prop-
erties about some set of given functions, constants and datatypes. In this note we describe ongoing work
on integrating the HipSpec theory exploration system with the interactive prover Isabelle. We believe
that such an integration would be beneficial for several reasons. In an interactive proof attempt a natural
application would be to allow the user to ask for some suggestions of new lemmas that might help the
current proof development. Theory exploration may also be used to automatically generate and prove
some basic lemmas as a first step in a new theory development. Furthermore, when the theory exploration
system is used as a stand-alone system, it should output a checkable proofs, for instance for Isabelle, so
that sessions can be saved for future use.

1 Introduction

Theory exploration is an automated reasoning technique for discovering and proving interesting properties
about some set of given functions, constants and datatypes. In the context of theorem proving, theory
exploration systems are typically used to generate candidate conjectures satisfying some intrestingness
criteria, using automated testing or counter-example finding to produce candidates likely to be theorems.

Many theory formation systems, such as MATHsAiD [6], IsaCoSy [5] and IsaScheme [7] are automatic
and attempt to produce a background theory with ‘interesting’ lemmas which are likely to be useful to
in later proof attempts. However, while both IsaCoSy and IsaScheme are built on top of the interactive
prover Isabelle [8], neither can be called from an interactive proof attempt. This problem is due to
long runtimes, IsaCoSy and IsaScheme are generally to slow to wait for in an interactive proof attempt.
We have recently developed a new theory exploration system called HipSpec, which discovers and proves
properties about Haskell programs by induction [2]. HipSpec is considerably faster than previous systems,
and thus a candidate for integration in an interactive system.

Large theories with many functions and datatypes is a major challenge for automated theory explo-
ration systems. To deal with theories with many hundreds, or even thousands, of functions requires
some form of modular exploration and division into smaller sub-theories. In the interactive scenario we
can to some extent circumvent this problem. Where the user asks the system for suggestions of lemmas
applicable to the current subgoal, the input to the theory exploration system can be directly specified by
the user or limited to functions relevant to that subgoal.

In this note, we describe a new project aiming at integrating theory exploration and interactive
theorem provers:

• Theory exploration has so far mainly been used in conjunction with automated theorem provers.
Many proof developments are however too complex to be fully automated. By integrating theory
exploration with an interactive theorem prover we make theory exploration available to a wider
audience.

• We aim to develop a tool integrated with the interactive proof assistant Isabelle which allow a user
who is stuck in a proof attempt to ask for some candidate lemmas which could help the current
proof attempt. It is crucial that the system responds quickly and does not produce too many (or
too few) candidates.

• We would like theory exploration systems such as HipSpec to produce a sensible output format,
so that proofs can be independently checked and lemmas recorded in a library. Producing Isabelle
theory files is one option.

1



2 Background: The HipSpec System

HipSpec is an inductive theorem prover and theory exploration system for discovering and proving proper-
ties about Haskell programs. HipSpec takes a Haskell program annotated with properties which the user
wish to prove and first generate and prove a set of equational theorems about the functions and datatypes
present. These are added to its background theory and user specified properties are then proved in this
richer theory. Experimental results have been encouraging, HipSpec performs very well and proved more
theorems automatically than other state-of-the-art inductive theorem provers [2].

Haskell
Source

Conjectures

First Order
Theory

Theorem
Prover

Induction (Hip)

QuickSpec

Translation
(Hip)

Timeout

Open conjecture

Theorem

Extend theory

Figure 1: Architecture of the HipSpec system.

HipSpec combines the inductive prover Hip [10] with the QuickSpec system [3]. An overview of
HipSpec is shown in Figure 1. HipSpec first translates the function definitions and datatypes from the
Haskell program into first-order logic to form an initial theory about the program. QuickSpec also reads
in the available function symbols and datatypes and proceeds to generate new terms from these. Using
the automated testing framework from the QuickCheck system [1], QuickSpec divides these terms into
equivalence classes, from which equational conjectures are extracted. These conjectures are passed back
to Hip, which applies a a suitable induction scheme and feeds the resulting proof-obligations, along with
the first-order background theory, to an automated first-order prover, for instance Z3 [4]. If the proof
succeeds, the new theorem is added to the background theory, and may be used as a lemma in subsequent
proof attempts. If a proof fails, HipSpec tries other conjectures and may return to open ones later, when
more lemmas have been added to the background theory.

3 Integrating HipSpec and Isabelle

Isabelle’s higher-order logic is essentially a (terminating and finite) subset of the functional programming
language Haskell, and Isabelle’s code generator can translate Isabelle theories into Haskell programs.
HipSpec then needs to monomorphise any polymorphic types in order to translate it to first-order logic,
after which it can generate lemmas about the functions corresponding to the Isabelle theory. A very early
prototype allowing HipSpec to be called from Isabelle has been implemented, but a lot of implementational
work remain, in particular to import lemmas discovered back into Isabelle.

HipSpec does not produce proofs, as it relies on external provers as black boxes. We have however
experimented with using Z3’s capability to produce unsatisfiable cores in order to report back which
lemmas were used in a proof. Using this information, we plan to experiment with a lightweight inductive
tactic for Isabelle, which should apply induction and simplification using the relevant lemmas, thus
verifying the proof in Isabelle as an added soundness check. Given the right lemmas, we expect such a
simple induction tactic would succeed in proving many of the conjectures which HipSpec has discovered.
This is similar to how the Sledgehammer system works [9], it sends a conejcture from Isabelle to external
provers and then replays the proof using Isabelle’s internal prover Metis. Once we have an Isabelle tactic
for HipSpec we can use it in several ways:

Automated induction: HipSpec takes the current goal and applies theory exploration and induction.
If it succeeds, it reports which induction scheme and lemmas were used to its corresponding tactic, which
replays the proof in Isabelle. If any new lemmas were found, information to replay their proofs should
also be produced.

2



Generate background lemmas: The user specifies a set of Isabelle functions and datatypes which
are of interest. HipSpec applies theory exploration to these and generate a set of interesting lemmas along
with instructions to verify the proofs inside Isabelle. This could be done as a first step in a new theory
development, to automatically generate many basic lemmas before the user tackle more complicated
theorems. Alternatively, the user may call theory exploration to help in an ongoing proof-attempt where
the user is stuck. In this case, theory exploration is even more restricted, it should only generate lemmas
which really do apply to the goal, anything else is uninteresting. The user should be presented with a
short list of options to choose from.

HipSpec use random testing to generate conjectures, hence all conjectures have passed a large number
of tests before being submitted to the prover. In an interactive setting, even conjectures HipSpec has
failed to prove automatically can be of interest, with the user interactively supplying the proof, should
she/he find the conjecture is useful.

Produce Isabelle theories about Haskell programs: Ultimately we would like HipSpec to
be useful for verifying real Haskell programs. As mentioned, HipSpec currently use a black-box external
prover and does not output any proofs. For verification purposes we may want some additional reassur-
ance. Therefore, we suggest that HipSpec should have the option to output its results Isabelle theories.
The user can then inspect the Isabelle theory, and recheck the proofs independently if required. Lemmas
about libraries can also more easily be imported if required. Translating from Haskell to Isabelle is how-
ever not as straight forward as the other way around, Haskell is a lazy language and also support infinite
datatypes and non-terminating functions, which Isabelle/HOL does not. Hence, in the first instance we
will be limited to the finite and terminating subset of Haskell.

4 Summary

We believe that theory exploration would be very useful also in an interactive setting. It could assist the
user with suggestions of lemmas relevant to the current proof attempt, or simply to generate basic lemmas
in a new theory. By letting the user specify the functions and datatypes passed to theory exploration,
we can control the search space and explore larger and more complex theories that are currently beyond
the scope of the fully automatic version. We are currently working on integrating the theory exploration
system HipSpec with the interactive prover Isabelle.

References

[1] K. Claessen and J. Hughes. QuickCheck: a lightweight tool for random testing of Haskell programs.
In Proceedings of the fifth ACM SIGPLAN international conference on Functional programming,
ICFP ’00, pages 268–279, New York, NY, USA, 2000. ACM.

[2] K. Claessen, M. Johansson, D. Rosén, and N. Smallbone. Automating inductive proofs using theory
exploration. In Proceedings of the Conference on Auomtated Deduction (CADE), 2013.

[3] K. Claessen, N. Smallbone, and J. Hughes. QuickSpec: guessing formal specifications using testing.
In Proceedings of the 4th international conference on Tests and proofs, TAP’10, pages 6–21, Berlin,
Heidelberg, 2010. Springer-Verlag.

[4] L. De Moura and N. Bjørner. Z3: an efficient SMT solver. In Proceedings of TACAS,
TACAS’08/ETAPS’08, pages 337–340. Springer-Verlag, 2008.

[5] M. Johansson, L. Dixon, and A. Bundy. Conjecture synthesis for inductive theories. Journal of
Automated Reasoning, 47(3):251–289, 2011.

[6] R. L. McCasland, A. Bundy, and P. F. Smith. Ascertaining mathematical theorems. Electron. Notes
Theor. Comput. Sci., 151(1):21–38, Mar. 2006.

[7] O. Montano-Rivas, R. McCasland, L. Dixon, and A. Bundy. Scheme-based theorem discovery and
concept invention. Expert Systems with Applications, 39(2):1637–1646, Feb. 2012.

[8] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for Higher-Order
Logic, volume 2283 of LNCS. Springer, 2002.

[9] L. Paulson and J. Blanchette. Three years of experience with Sledgehammer, a practical link between
automation and interactive theorem provers. In Proceedings of IWIL-2010, 2010.

[10] D. Rosén. Proving equational Haskell properties using automated theorem provers. Master’s thesis,
University of Gothenburgh, 2012.

3


