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The Theory behind TheoryMine
Alan Bundy, Flaminia Cavallo, Lucas Dixon, Moa Johansson, and Roy McCasland

Abstract—We describe the technology behind the TheoryMine
novelty gift company, which sells the rights to name novel
mathematical theorems. A pipeline of four computer systems is
used to generate recursive theories, then to speculate conjectures
in those theories and then to prove these conjectures. All stages of
the theorem discovery and proof processes are entirely automatic.
The process guarantees large numbers of sound, novel theorems
of some intrinsic merit.

Index Terms—Novelty Gifts, Conjecture Generation, Auto-
mated Theorem Proving.

I. INTRODUCTION

THeoryMine (theorymine.co.uk) is a spin-out company in
the novelty gift market, started in 2010. It generates and

proves novel inductive theorems for customers and gives them
the opportunity to name these theorems, e.g., after themselves,
a friend, a relative or a pet. Customers are provided with a
certificate containing a statement of the theorem, a proof hint
and the definitions of the functions and types occurring in
it. An example certificate is given in Figure 1. The name of
the theorem is registered in TheoryMine’s database for future
reference.

The purchase of theorems is not new to mathematics. In
1694, the Marquis de l’Hospital paid Johann Bernoulli 300
Francs a year to use his theorems in any way he wished
[13][59-62]. l’Hospital described these theorems in his book
l’Analyse des Infiniment Petits pour l’Intelligence des Lignes
Courbes. As a result of this, one of Bernoulli’s theorems,
l’Hospital’s Rule, was ascribed to l’Hospital.

The theory and technology underpinning TheoryMine has
been developed over several decades, mostly by members
of the Mathematical Reasoning Group at the University of
Edinburgh. The purpose of TheoryMine is to provide a
fun, tongue-in-cheek application of these automated reasoning
technologies. It also serves as a popular-science introduction
to more serious applications of this research. In particular,
automated reasoning is an important component in verification
tools to make software more reliable and safe to use, as
well as tools to ease the exploration of new mathematical
concepts. TheoryMine has been featured in mainstream media
several times, for example in The New Scientist [4], British
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newspapers The Guardian [2] and The Herald [3], as well as
on BBC Radio 4 [1]. In this article, we outline the theory and
technology behind TheoryMine. The theorem discovery and
proof process is entirely automatic, with human intervention
limited to administering orders.

The TheoryMine system consists of a pipeline of four
automated reasoning systems, which we list below.
• IsaWannaThm [8], generates novel recursive types and

functions to form new recursive theories, then uses
IsaCoSy to generate new theorems in those theories.

• IsaCoSy [10], given a recursive theory, generates induc-
tive conjectures in that theory, using IsaPlanner to prove
them.

• IsaPlanner [9], given an inductive conjecture, tries to
prove it using an inductive proof plan to guide Isabelle
in the search for a proof.

• Isabelle [12], is an open-source, generic, interactive proof
assistant system built in Cambridge and Munich.

In this next few sections we briefly describe each of these
systems.

II. ISAWANNATHM

IsaWannaThm was initially developed by Flaminia Cavallo
during her final-year undergraduate project at the University of
Edinburgh [8], but has subsequently been largely revised and
rewritten to improve its range and performance, as described
below. It creates novel recursive theories by incremental,
exhaustive generation from grammars describing the spaces
of possible recursive types and possible recursive functions
from and to those types.
• Given an initial set of types, it incrementally defines new

recursive types. The default initial set consists of the
booleans bool and the natural numbers N;

• It then uses the initial types and the newly defined types
to construct candidate types for recursive functions.

• Finally, it uses IsaCoSy, parameterised by a set of con-
structor and defined functions, to define novel recursive
functions.

A. Generating Recursive Types

Consider the following two BNF grammars defining two
recursive types: a unary representation of the natural numbers,
N, and then lists of Ns.

N = 0 | s(N)
natlist = nil | cons(N, natlist)

Note that such recursive types are uniquely defined by a
collection of constructor functions: 0 and s in the case of N
and nil and cons in the case of natlist. The booleans bool
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The certificate shows in turn:
• the theorem’s name “Quentin’s Theorem”;
• the recursive definition of the type T ;
• the type declaration and recursive definition of

the function fα;
• the theorem statement and a proof hint. All

proofs are by induction on one variable, here
the y.

The type T can be understood as a four-
coloured version of the natural numbers, in which
Ca(bool, bool) provides four different ‘zero’s and
Cb(T ) successively generates the next ‘number’ in
the sequence of each colour. fα is a kind of addition
on these ‘numbers’. Note that fα is associative,
but not commutative. Quentin’s Theorem describes
a very restricted variant of commutativity.
This particular theorem was created in honour of
Quentin Cooper, who interviewed us for the BBC Ra-
dio 4 science magazine programme Material World
on 15th April 2010. The associativity of fα is called
“The Herdman Theorem”, in honour of Karen Herd-
man, who won this theorem as a prize in a Scottish
Enterprise competition as part of its SECC All Staff
Event on 2 June 2010.

Fig. 1. Example Customer’s Certificate

can be considered as a degenerate recursive type, with two
base cases and no step cases.

bool = True | False

To generate a recursive type, we need to fix the following
parameters:
• The number of constructor functions, e.g., N has two, 0

and s, and natlist also has two nil and cons.
• For each constructor function, its arity and the types of

its arguments. In particular, whether these arguments are
recursive, such as the single argument of s and the second
argument of cons, or whether they refer to previously
defined types, such as the first argument of cons. At least
one of these constructors must have only non-recursive
arguments, or there will be no finite members of the
type. These are called base constructors and those with
recursive arguments are called step constructors. Note that
0 and nil are nullary, i.e., have no arguments, so are
trivially of base type.

By systematically exploring the space defined by these pa-
rameters, we can generate infinitely many recursive types. This
can be viewed as exhaustive generation from a meta-grammar
that describes all possible ways of generating recursive type
definitions.

We consider two types to be isomorphic if a permutation
of constructor names and argument order makes them syntac-
tically identical. IsaWannaThm generates datatypes uniquely
by constructing them in an ordered fashion, with constructor
names and arguments sorted by a total ordering. Thus it
avoids isomorphic variants of the same constructor function
for different types, e.g., it does not generate both Cc(T,N) and
Cc(N, T ). Upper limits are set on the parameters to prevent the
generated types becoming too complex for successful theorem
proving.

The example of a recursive type given in Figure 1 is:

T = Ca(bool, bool) | Cb(T )

IsaWannaThm’s naming convention for types is a T possibly
subscripted with a natural number. Its naming convention for
constructor functions is a C usually subscripted with a Roman
lower case letter.

To ensure that TheoryMine’s theorems are novel, IsaWan-
naThm avoids generating types isomorphic to well-known
recursive types. Any types that already appear in Isabelle
libraries are thus filtered out. Unfortunately, we cannot entirely
rule out duplication of more obscure ones. However, it does
start with two well-known base types: N and bool, so that
recursive functions can use these types, as long as at least one
of their inputs has novel type. IsaWannaThm thus generates
recursive types of the form

τ = C1(t11 , . . . , t1m)| . . . |Cn(tn1 , . . . tnk
)

where each constructor Ci has zero or more arguments. Each
argument type tj is either τ itself, bool, N or a previously
generated type. This means that IsaWannaThm currently only
produces first-order types. IsaWannaThm is also restricted to
freely generated types, i.e. ones in which syntactically different
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constructor terms are unequal. An example of a non-free type
would be the integers, defined as

Z = 0 | s(Z) | p(Z)

where p is the predecessor function, since s(p(x)) = p(s(x).
It also avoids mutually recursive types, such as:

τ1 = null | c1(τ1, τ2)
τ2 = null | c2(τ1, τ2)

Lifting these restrictions is a topic for future work.

B. Generating Recursive Functions

Now assume that IsaWannaThm has defined a recursive
type, using the methods of §II-A, and that, without loss of
generality, it has the form:

τ = . . . | c(~τ ′, τ, . . . , τ) | . . .

where c is a typical constructor, ~τ ′ is a vector of (possibly
distinct) non-recursive arguments and the last n arguments of
c are all of type τ .
• IsaWannaThm now generates the types for recursive

functions on τ . The example of a function type given
in Figure 1 is T ×T → T , where T is the new recursive
type. This function type could also have used bool and N.
Type variables are not currently used, i.e., IsaWannaThm
cannot generate polymorphic functions.

• Without loss of generality and to avoid redundancy,
functions are assumed to be recursively defined on their
first argument. To ensure that the function is novel, the
type of this first argument must be one of those that
IsaWannaThm has generated, e.g., T in our example, but
not bool or N.

• In generating these function types, IsaWannaThm avoids
associative or commutative variants in the arguments of
the function. For instance, it does not generate both T1×
T2 × N→ T3 and T1 × N× T2 → T3. It does, however,
generate both T1 × T2 × N → T3 and T2 × T1 × N →
T3. Otherwise, it would not be able to have functions
recursing on both T1 and T2.

• For each of these function types, IsaWannaThm generates
a set of candidate structurally recursive functions with this
type. IsaWannaThm’s function naming convention is the
letter f with Greek letters as subscripts. The example of
a new recursive function given in Figure 1 is fα.

• The left-hand sides of the new function definitions are
generated by a simple scheme. IsaCoSy is then used
to generate a candidate right-hand sides. The example
function definition in Figure 1 is:

fα(Ca(x, y), z) = z

fα(Cb(x), y) = Cb(fα(x, y))

These definitions consist of a number of base case and
step case equations. In our example the first equation is a
base case and the second is a step case. There is a one-to-
one correspondence between these cases and the number
and structure of the recursive definition of the type of

the function’s first argument. Recall that the recursive
definition of T is:

T = Ca(bool, bool) | Cb(T )

and note the correspondence with the first arguments of
fα in the left-hand-sides of its two defining equations.
The scheme used to generate the left-hand-side (head)
of each case consists of the function name, a constructor
term in the first argument position and distinct variables
in the remaining argument positions. While the left-
hand side of the function definition is generated by this
simple scheme, IsaCoSy is used to generate the right-
hand-side (body) of each case. It uses its grammar of
well-formed terms to incrementally generate all possible
terms of the required type. It must use the function being
defined somewhere in each step case body. It can also
use constructor functions and previously defined recursive
functions.

• Many of these candidate definitions are not well-founded,
i.e., they define non-terminating functions. We use Is-
abelle’s function package [11] to filter out any which are
not proved to be well-founded, thus ensuring consistency.

This process generates a potentially very large set of recur-
sively defined functions. In fact the set of functions is so
large that we cannot store it in a computer’s memory. We use
continuations to make this part of IsaWannaThm’s evaluation
lazy. Thus, we only generate a tiny fraction of the space of
functions at any one time.

Again, upper limits are set on the number of a function’s
arguments and the size of its case bodies, to prevent the
generated functions becoming too complex for successful
theorem proving.

C. Generating Recursive Theories

Recursive theories are created by IsaWannaThm by system-
atically generating recursive types, then recursive functions
on these types, whose definitions become the axioms of the
theories, and finally by generating conjectures and trying to
prove them to be theorems. An example recursive theory is
given in Figure 1. In §III, we describe how theorems of these
theories are automatically generated by the IsaCoSy system.

As we use Isabelle’s function package as a filter, we
ensure that only terminating recursive functions are included
in the theory. Theories where all axioms are such recursive
definitions are guaranteed to be consistent. This was a major
consideration in the design of IsaWannaThm. Had it merely
generated random formulae as axioms, there would be no
guarantee that the resulting theories would be consistent, so
that customers’ theorems would run the risk of being trivially
true since, in an inconsistent theory, all formulae are theorems.

To ensure that TheoryMine’s theorems are always novel,
with respect to previously know theories, we ensure that
each theory’s particular combination of types and functions
is unique to it. We have also added the additional restriction
to IsaCoSy that each conjecture generated for a theory must
use all of the functions in a theory. The motivation for this is
that a conjecture that does not use all the functions would
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already have been generated as a conjecture of a smaller
theory. This restriction avoids duplication of conjectures and is
why IsaWannaThm generates all subsets of its set of recursive
functions, and not just the maximal ones. The alternative
strategy of generating only theories maximal up to some
complexity threshold would have run the risk that the resulting
theories would prove too complex to be successfully processed
by one of the constituent systems.

In the very unlikely event that TheoryMine would re-
discover some datatype and functions (not excluded by our
current heuristics) which would yield a theorem that already
has a name, e.g. in a mathematics textbook, the customer
will be offered two freshly generated theorems for free as
compensation. We estimate that, within the current complexity
thresholds, IsaWannaThm is capable of generating of the order
of 1016 theorems. That’s more than a million for each person
on planet Earth.

III. ISACOSY

IsaCoSy was developed by Moa Johansson during her PhD
at the University of Edinburgh, [10]. It creates implicitly
universally quantified equations in a recursive theory by
generating irreducible terms, then filtering out most non-
theorems using the counter-example finder QuickCheck [5].
Upper limits are set on the complexity of the conjectures to
prevent them from becoming too complex to be synthesised
or proved. Conjectures that survive these filters are sent to
IsaPlanner to be proved. Those that are successfully proved
become potential products of TheoryMine.

A description of IsaCoSy is included below to make this
paper self-contained, but more details can be found in [10].

The example given in Figure 1 is:

fα(x, fα(y, z)) = fα(y, fα(x, z))

Note that x and y are commuted, but only in the context of
z. To see that fα is not commutative in general, consider for
instance:

fα(Ca(t, f), Ca(f, t)) = Ca(f, t)

6= Ca(t, f)

= fα(Ca(f, t), Ca(t, f))

IsaCoSy generates equations where the left-hand side is
always greater or equal to the right-hand side according to a
simple size based measure. The equations where the left-hand
side is greater can thus be viewed as rewrite rules. All terms
generated by IsaCoSy are guaranteed to be irreducible both
by the recursive definitions of the theory’s functions and by
those previously generated theorems1 which can be considered
as rewrite rules (commutativity theorems, for example, are not
rewrite rules and thus excluded). Rather than first generate po-
tentially reducible terms and then rewriting them into normal
form, IsaCoSy uses a constraint language to ensure they are

1We have also experimented with using unproven but unfalsified conjec-
tures, since in practice these have usually turned out to be theorems, and
failure to reduce with respect to them tends to lead to an over-production
of conjectures. If they aren’t theorems then no harm is caused other than an
under-production of conjectures.

not generated in the first place. For instance, suppose f(c(x))
was known to be the left-hand side of a rewrite rule arising
from a definition or previously proved theorem, a constraint
will be generated to ban the generation of any term containing
an occurrence of f(c(. . .)). As new theorems are proved by
IsaPlanner new constraints are generated. Typically, thousands
of equations are generated, but only a handful pass the counter-
example check, leaving on the order of tens to be proved.

The heuristic of requiring all terms in a conjecture to be
irreducible is intended to filter out trivial theorems, leaving
only those of some intrinsic merit. This simple heuristic
has proven to be surprisingly successful. It was evaluated
by precision/recall comparisons with manually generated sets
of theorems from independent sources, such as Isabelle’s
libraries [10]. Such libraries contain simple theorems, such as
associativity, commutativity, distributivity, idempotency, etc.

Typical IsaCoSy theorems were:

a× b = b× a
(a+ b) + c = a+ (b+ c)

(a× b) + (c× b) = (a+ c)× b
rev(map a b) = map a(rev b)

foldl a (foldl a b c) d = foldl a b (c@d)

IsaCoSy is restricted to generating implicitly universally quan-
tified equations, so cannot generate, for instance, theorems
containing conditionals or existential quantifiers, e.g.,
m < n =⇒ (∃k. n = Suc(m + k)). The evaluation
of IsaCoSy demonstrated that it tended to generate all and
only the theorems considered interesting by human experts.
Where it differed, it was usually possible to argue that this
was down to legitimate variation in judgement, i.e., additional
theorems were similar in structure to those manually produced,
and the missing ones were typically trivially derivable from
ones that were generated. Of course, this evaluation could
only be conducted for well-known recursive theories, not the
novel ones generated by IsaWannaThm, but was still indicative
of general effectiveness. This confirmation is important to
TheoryMine, as we want customers’ theorems to have some
intrinsic merit2.

As we saw in §II-B, IsaCoSy is also used to generate the
bodies of the definitions of recursive functions. Its ability to
generate all irreducible terms from the grammar of the term
language is simply adapted to this additional application.

The conjecture generation and counter-example checking in
IsaCoSy is what takes the longest in the TheoryMine system.
The runtimes for IsaCoSy vary a great deal, from minutes to
hours. This depends on properties and complexity of the theory
being explored and the size bounds on conjectures generated.
Theories involving polymorphism or many commutative func-
tions take longer to explore, especially if we also want to
look for large conjectures [10]. However, small conjectures
in monomorphic theories can typically be generated relatively
quickly. For the purpose of TheoryMine, we do not consider
theories with polymorphism. We typically let the system run
for some given amount of time to populate our database with

2Although, none of them is likely to earn anyone a Fields Medal.
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whatever new theorems it has discovered in that time. It is not
necessary to discover all theorems of a theory, as we easily
can generate new datatypes, functions and theories.

IV. ISAPLANNER

IsaPlanner was initially created by Lucas Dixon during his
PhD at the University of Edinburgh, then further developed
as part of an EPSRC project [9]. It uses proof planning [6]
to guide Isabelle in an inductive proof of input conjectures.
In particular, it uses rippling [7] to guide the step cases of
inductive proofs, by manipulating the induction conclusion so
that it matches the induction hypothesis. It also uses some
proof critic techniques, such as lemma calculation, to recover
from an initially failed proof attempt.

These proof planning techniques enable IsaPlanner to prove
many inductive conjectures entirely automatically. Such au-
tomation is essential to TheoryMine, as it enables theorems
and their proofs to be generated without the need for human
intervention and, therefore, to scale the service to a large
number of customers at very low cost. Of course, IsaPlanner
cannot automatically prove all inductive theorems — since
recursive theories are undecidable in general. This is not a
problem for TheoryMine, provided that a large number of
theorems can be proved, which is the case.

V. ISABELLE

Isabelle is being developed by Larry Paulson’s group (Uni-
versity of Cambridge) and Tobias Nipkow’s group (Technis-
che Universität München). It is a generic, interactive proof
assistant. Mathematical theories can be expressed in a variety
of logics, although classical higher-order logic is the most
popular. The user can then guide an attempt to prove a
conjecture written in the chosen logic and within the chosen
theory. Isabelle is an LCF-style prover. This means that it has
a small trusted core of logical rules, and that every proof must
ultimately consist of a combination of operations within that
core. This architecture provides a very high level assurance
of the correctness of any theorems produced by Isabelle. This
is important to TheoryMine, as we need our customers to be
sure that what they buy are indeed theorems.

Proofs can be partially automated by the use of tactics.
These combine the basic rules of inference and axioms,
structuring the proof at a higher-level of granularity, so that the
user has fewer choice points to navigate. Tactics can range in
power from the composition of a few rules to sub-routine calls
to entire third-party theorem provers. Although this enables
simple theorems to be proved entirely automatically, most
non-trivial theorems do require human intervention. IsaPlanner
improves on Isabelle’s automation by automatically choosing
which tactics to use in proofs by induction.

VI. CONCLUSION

We have described the underlying theory and technology
behind the TheoryMine novelty gift company, that produces
theorems to be named by customers. This technology ensures
the following desirable properties of TheoryMine’s products.

• Restricting TheoryMine’s scope to terminating recursive
functions ensures that the theories produced are always
consistent, so that not all formulae are trivially provable.

• Isabelle’s LCF-style architecture ensures that the theorems
are correctly proved.

• IsaPlanner’s proof planning ensures that these proofs are
produced entirely automatically.

• IsaCoSy’s irreducibility heuristic ensures that the theo-
rems have some intrinsic merit.

• IsaWannaThm’s meta-grammars for types and functions
generate a huge number of novel theories and theorems.

These properties ensure that TheoryMine can automatically
serve a large number of customers at minimal cost with
theorems that are correctly proved, non-trivial and of some
intrinsic merit.
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