
Journal of Automated Reasoning manuscript No.
(will be inserted by the editor)

On Interpolation in Automated Theorem Proving

Maria Paola Bonacina · Moa Johansson

Received: date / Accepted: date

Abstract Given two inconsistent formulæ, a (reverse) interpolant is a formula im-
plied by one, inconsistent with the other, and only containing symbols they share.
Interpolation finds application in program analysis, verification, and synthesis, for
example, towards invariant generation. An interpolation system takes a refutation of
the inconsistent formulæ and extracts an interpolant by building it inductively from
partial interpolants. Known interpolation systems for ground proofs use colors to
track symbols. We show by examples that the color-based approach cannot handle
non-ground refutations by resolution and paramodulation/superposition. We present
a two-stage approach that works by tracking literals, computes a provisional inter-
polant, which may contain non-shared symbols, and applies lifting to replace non-
shared constants by quantified variables. We obtain an interpolation system for non-
ground refutations, and we prove that it is complete, if the only non-shared symbols
in provisional interpolants are constants.

Keywords Interpolation Systems · Superposition · Resolution

1 Introduction

1.1 Motivation and Aim

Automated reasoners are increasingly embedded in tools for the analysis, verifica-
tion and synthesis of programs (e.g., [58,25,6,26]). A theorem-proving technique

Research supported in part by grant no. 2007-9E5KM8 of the Ministero dell’Istruzione Università e
Ricerca, Italy, and by COST Action IC0901 Rich-model Toolkit of the European Union.

Maria Paola Bonacina
Dipartimento di Informatica Università degli Studi di Verona Strada Le Grazie 15, I-37134 Verona, Italy
E-mail: mariapaola.bonacina@univr.it

Moa Johansson
Department of Computer Science Chalmers University of Technology Göteborg, Sweden
E-mail: moa.johansson@chalmers.se

2 M. P. Bonacina and M. Johansson

that is receiving significant attention is interpolation, or the operation of producing
interpolants from proofs. Given closed formulæ A and B such that A implies B, an in-
terpolant of A and B is a closed formula that is implied by A, implies B, and contains
only symbols they share; if A implies ¬B, A and B are inconsistent, and an interpolant
of A and ¬B is a reverse interpolant of A and B.

A challenging application of interpolation is invariant generation (e.g., [51,45,
61,48]). For instance, one assumes that a k-step unwinding of a loop does not sat-
isfy the post-condition. Formulæ expressing this conjecture are given to a theorem
prover. If the loop does satisfy the post-condition up to k-iterations, the conjecture
is unsatisfiable. Interpolants of the refutation are used to guide the construction of a
loop invariant [51]. The requirement that the interpolant contains only shared sym-
bols means that it contains only symbols occurring in the loop body, and not auxiliary
symbols introduced to formulate the conjecture. Thus, interpolation is related to sym-
bol elimination [46]. It was also suggested to let the theorem prover generate formulæ
from formulæ specifying the loop, and take as candidate invariants those that only use
the desired subset of symbols [45,40]. In approaches based on quantifier elimination,
the symbols to be eliminated are quantified, so that quantifier elimination expunges
them (e.g., [43,44]). An early lead towards this application can be traced back to [17].

Invariant generation led to the study of interpolation in first-order logic with
equality, for proofs produced by superposition [51,46,40] or generic inferences [46,
41]. In first-order logic with equality the proofs to be interpolated in general are not
ground, and interpolants naturally contain quantifiers. For invariant generation, the
capability of generating interpolants with quantifiers is an advantage, because invari-
ants often need them (e.g., [53,5]).

In this article we focus on interpolation of refutations generated by a standard in-
ference systemΓ for first-order logic with equality, based on resolution and paramod-
ulation/superposition. Such inference systems are at the heart of theorem provers for
first-order logic with equality (e.g., [60,47,57]), and also yield decision procedures
for theories relevant to program verification (e.g., [3,2,8,9]). As a byproduct, we
discuss interpolation for DPLL(Γ+T) [13], a theorem-proving method that inte-
grates Γ in the DPLL(T) framework for satisfiability modulo theories (SMT) [55,
26], to unite the strengths of resolution-based theorem provers, such as the automatic
treatment of quantifiers, with those of DPLL(T)-based SMT-solvers, such as built-in
theories and scalability of performance on large sets of very long ground clauses.

1.2 State of the Art and Problem Statement

Given a refutation, an interpolation system generates a partial interpolant for every
clause, in such a way that the partial interpolant of the empty clause is a reverse
interpolant of the input formulæ. This approach is inductive, because the interpolation
system builds the partial interpolant of the conclusion from those of the premises, for
each inference rule that may appear in a proof. An interpolation system is complete
for an inference system, if for all its refutations it extracts a reverse interpolant.

In the more recent literature in automated deduction and verification, the study of
interpolation for superposition began in [51], with the aim of extending to refutations

On Interpolation in Automated Theorem Proving 3

in first-order logic with equality the color-based approach applied to propositional
resolution [49] and quantifier-free fragments of first-order theories [39,50]. In the
color-based approach, given formulæ A and B to be interpolated, the interpolation
system traces non-shared symbols, called first local (e.g., A-local and B-local), and
then colored (e.g., A-colored and B-colored), to prevent them from entering the inter-
polant, and identify which literals descend from A or B, to make sure that the reverse
interpolant is entailed by A and inconsistent with B. Intuitively, this requires that the
colors do not mix, an observation captured in [51] with the restriction to local, or
colored, proofs, that is, proofs where no inference involves both A-colored and B-
colored symbols. The research on interpolation of colored proofs continued in [46],
where it was shown that if the ordering is separating, meaning that all terms made
only of shared symbols are smaller than all other terms, then all ground refutations
by superposition are colored. The notion of an ordering with this property, called AB-
oriented ordering, appeared already in [51]. Experiments on interpolating colored
proofs generated by the Vampire theorem prover were described in [40].

The restriction to colored proofs can be weakened to colorable proofs [38]: a
proof is colorable, if it has no AB-mixed literals, that is, no literals with both A-
colored and B-colored symbols. Proofs by propositional resolution are trivially col-
orable, since no new literals are generated, and ground proofs in first-order logic are
like propositional proofs in this respect. If equality enters the picture, already for
ground proofs, equalities where one side is A-colored and the other B-colored are
problematic: the assumption of a separating ordering for ground superposition pre-
vents precisely such AB-mixed equalities, as explained in [11,12], where we give a
systematic treatment of color-based interpolation systems for ground proofs. Proof
transformation techniques to make ground proofs colored or colorable were studied
in [38,19,18,52,41].

While all ground refutations by superposition are colorable under a separating
ordering, this is not the case in general, and we are not aware of a proof transformation
mechanism that can make any non-ground refutation in first-order logic with equality
colorable. In non-ground refutations, not only equality, but also substitutions (most
general unifiers and matching substitutions applied in inferences) create AB-mixed
literals. Thus, the problem is how to go beyond the restriction to colorable refutations,
and give an interpolation system for non-ground proofs with universally quantified
variables instantiated by substitutions.

1.3 Overview of Contributions

We start with counter-examples showing that it is impossible to generalize to non-
ground proofs a color-based approach, not even assuming that the proof is colorable
or colored. Interpolation problems where constant symbols are the only non-shared
symbols suffice to obtain counter-examples.

Unknown to the above literature on color-based interpolation, an interpolation
system for non-ground proofs by resolution and paramodulationwas suggested much
earlier in [42].We are indebted to [42] for the idea of a two-stage approach to interpo-
lation, which separates the issues of ensuring that the reverse interpolant is entailed

4 M. P. Bonacina and M. Johansson

by A and inconsistent with B, and that it contains only shared symbols. The first
stage addresses the first issue by computing inductively what we call a provisional
interpolant, which is entailed by A and inconsistent with B, but may contain colored
symbols. The second stage extracts an interpolant from the provisional interpolant.

We present a two-stage interpolation system for Γ . We give and prove complete
a provisional interpolation system, that computes provisional interpolants for any
Γ -refutation. In the second stage our interpolation system replaces colored constants
with quantified variables, a technique suggested since [21] and mentioned in [50]. We
called it lifting as in [42], while it was termed abstraction in [4]. We prove that this
interpolation system is complete, if all function symbols in provisional interpolants
are shared (or interpreted and therefore admissible). Function-free fragments such
as those in [1,35,29,34,33,56,32] satisfy upfront this restriction. In summary, our
contributions include:

– An analysis of interpolation in the presence of substitutions, showing how ap-
proaches that suffice at the ground level cannot be generalized to non-ground
proofs;

– A new complete provisional interpolation system for a standard inference sys-
tem Γ for first-order logic with equality, based on resolution and paramodula-
tion/superposition;

– An interpolation system for Γ obtained by combining our provisional interpo-
lation system with the classical technique of replacing colored constants with
quantified variables, and a proof that such an interpolation system is complete, if
the only colored symbols in provisional interpolants are constants;

– A discussion of the application of the two-stage approach to interpolating refuta-
tions by DPLL(Γ+T).

Our provisional interpolation system significantly clarifies, simplifies, and makes
more transparent its ancestor in [42]. To the best of our knowledge, the only pa-
per that cited [42] before us, was [30], where [42] was cited only for the interpolation
of proofs by propositional resolution, the topic of [30]. We consider the rediscov-
ery of [42] as an additional scholarly contribution of this article. In what follows,
Section 2 introduces basic concepts and notations; Section 3 analyzes the difficul-
ties with extending to non-ground proofs a color-based approach; Section 4 presents
the provisional interpolation system and its completeness; Section 5 covers lifting,
the interpolation system, and its completeness; Section 6 contains the comparison
with related work, including a careful analysis and detailed discussion of Huang’s
construction; Section 7 discusses results and directions for future work. A one-page
abstract of this article appeared in [7]. This work started when the second author was
with the Dipartimento di Informatica of the Università degli Studi di Verona.

2 Background

We assume the basic definitions and notations commonly used in theorem proving,
such as ⊥ for f alse, � for true, � for the empty clause, |= for logical consequence
from formulæ or truth in a model, and � for derivability, where � without subscript

On Interpolation in Automated Theorem Proving 5

means generic, sound and complete derivability in the logic, while � with subscript
(e.g., �Γ) will be used for concrete derivation in a specific inference system. Equality
is written �, which is symmetric, with �� standing for either � or ��, and = reserved
for identity. Set difference is denoted by \. We use “symbol” to mean a constant,
function or predicate symbol, that is, a non-variable symbol, and “variable” for vari-
able symbol. We typically use a, b, c for constant symbols, f , g for function symbols,
v, w, x, y, z for variables, with a bar (e.g., v̄) for a tuple, l, r, s, t for terms, l, m, r
for literals, and C, D for clauses. A clause C is a disjunction of literals l1 ∨ . . .∨ ln,
where all variables are implicitly universally quantified, and its negation ¬C is the
conjunction¬l1∧ . . .∧¬ln. BothC and ¬C can be viewed as sets of literals. We write
c : C to say that c is the identifier of clause C in a proof and then we may use c in
place ofC. A term s is a subterm of a term, or literal, l, if s appears in l, s is a proper
subterm, written s� l, if it is not l itself. The notation l[s] represents a term, or lit-
eral, where s occurs as subterm; in this notation l is called context. A substitution is
a function mapping variables to terms, which is not identity for finitely many vari-
ables; it is written in the form σ = {x1← t1, . . . ,xn← tn}, where xi �= x j, for all i, j,
1≤ i �= j ≤ n, and xi �= ti, for all i, 1≤ i≤ n.

2.1 Interpolation

Given formula A, let ΣA be the signature of symbols occurring in A. Let A and B
be two formulæ to be interpolated, such that ΣA �⊆ ΣB and ΣB �⊆ ΣA, so that their
intersection ΣA,B = ΣA∩ΣB is not trivial.

Definition 1 (Interpolant) A formula I is an interpolant of formulæ A and B such
that A � B, or an interpolant of (A,B), if (i) A � I, (ii) I � B and (iii) all symbols in I
are in ΣA,B.

Note that if ΣA ⊆ ΣB, then ΣA,B = ΣA and A itself would be an interpolant. Symmet-
rically, if ΣB ⊆ ΣA, then ΣA,B = ΣB and B itself would be an interpolant. The above
assumption on signatures excludes these trivial cases.

The following fundamental result, known as Craig’s Interpolation Lemma [20],
and illustrated for instance in [59], applies to closed formulæ, that is, formulæ where
all variables are quantified:

Theorem 1 If A and B are closed formulæ such that A � B, and ΣA,B contains at
least one predicate symbol, then an interpolant I of A and B exists, and it is also a
closed formula. If ΣA,B contains no predicate symbol, then either B is valid (and the
interpolant is �), or A is unsatisfiable (and the interpolant is ⊥).

From now on we consider only closed formulæ or sentences. Since practical theorem
provers work refutationally, it is useful to adopt the notion of reverse interpolant, thus
named in [46]:

Definition 2 (Reverse interpolant) A formula I is a reverse interpolant of formulæ
A and B such that A,B �⊥, if (i) A � I, (ii) B, I �⊥ and (iii) all symbols in I are in
ΣA,B.

6 M. P. Bonacina and M. Johansson

A reverse interpolant of (A,B) is an interpolant of (A,¬B), and if I is a reverse inter-
polant of (A,B), then ¬I is a reverse interpolant of (B,A).

A theory is presented by a set T of sentences, meaning that the theory is the set
of all logical consequences of T . It is customary to call T itself a theory. Let ΣT

be the signature of T . Its symbols are called defined, because they are defined by the
axioms in T , or interpreted, because they are interpreted in the models of T . The
other symbols are called free or uninterpreted. Interpreted symbols may appear in A
and B, so that the intersections ΣA ∩ΣT , ΣB ∩ΣT , and ΣA,B ∩ΣT are not empty in
general. Interpreted symbols are allowed in interpolants:

Definition 3 (Theory interpolant)A formula I is a theory interpolant of formulæ A
and B such that A �T B, if (i) A �T I, (ii) I �T B and (iii) all uninterpreted symbols
in I are in ΣA,B. A formula I is a reverse theory interpolant of formulæ A and B such
that A,B �T ⊥, if (i) A �T I, (ii) B, I �T ⊥ and (iii) all uninterpreted symbols in I are
in ΣA,B.

Thus, a symbol that is not shared may appear in the interpolant provided it is inter-
preted. For most of this article the considered theory will be that of equality, built into
an inference system for first-order logic with equality. Since we consider clausal refu-
tational inference systems, we mostly write “interpolant” for “reverse interpolant,”
omit “theory,” and assume that A and B are disjoint sets of clauses; since set is under-
stood as conjunction, we may write A∪B �� or, equivalently, A∧B �⊥ or A,B �⊥,
depending on context.

A difficulty with interpolation is to ensure that uninterpreted symbols in inter-
polants are shared. The following terminology is widely adopted:

Definition 4 An uninterpreted symbol is transparent, if it is in ΣA,B, A-colored, if it
is in ΣA \ΣB, and B-colored, if it is in ΣB \ΣA. It is colored, if it is either A-colored or
B-colored.

The assumption that ΣA �⊆ ΣB and ΣB �⊆ ΣA means that both A and B contain at least
one colored symbol. Local in place of colored, and AB-common, or global, or shared,
in place of transparent, were also used.

Definition 5 A term, literal, or clause is

– Transparent, if all its uninterpreted symbols are transparent,
– A-colored, if all its uninterpreted symbols are either A-colored or transparent and
at least one is A-colored,

– B-colored, if all its uninterpreted symbols are either B-colored or transparent and
at least one is B-colored, and

– AB-mixed, otherwise.

A term, literal, or clause is colored, if it is either A-colored or B-colored. A literal is
colorable if it is not AB-mixed, or, equivalently, if it is either A-colored or B-colored
or transparent. A clause is colorable if all its literals are.

Colorable is more general than colored: a colorable clause may have both A-colored
and B-colored literals, whereas a colored clause cannot. In [51] an inference is local

On Interpolation in Automated Theorem Proving 7

if all its symbols are either in ΣA or in ΣB. The definition in [46,41] also requires
that if all premises are transparent, so is the conclusion. A proof is local if all its
inferences are. Since there are no AB-mixed clauses in the input and inferences do
not mix colors, a local proof is colored (no AB-mixed clauses) and vice versa:

Definition 6 A proof is colored if it contains no AB-mixed clauses; it is colorable if
all its clauses are colorable, or, equivalently, if it contains no AB-mixed literals.

An interpolation system takes a refutation of A∪ B, and returns an interpolant of
(A,B). A fundamental property of an interpolation system is completeness:

Definition 7 (Complete interpolation system) An interpolation system is complete
for an inference system Γ , if for all sets of clauses A and B, such that A∪B is unsat-
isfiable, and for all Γ -refutations of A∪B, it generates an interpolant of (A,B).

We consider next preliminaries for inference systems and their proofs.

2.2 Inference Systems and their Proof Trees

We consider resolution-based clausal refutational inference systems for first-order
logic with equality, and use Γ as the name of such a system. These inference systems
use a complete simplification ordering on terms and literals to restrict expansion
inferences, that expand the existing set by adding clauses, and to define contraction
inferences, that contract the set by removing clauses. An ordering is a simplification
ordering if it is stable (if s t then sσ tσ for all substitutions σ), monotone (if
s t then l[s] l[t] for all contexts l), and has the subterm property (s t whenever
s� t). These properties imply that the ordering is well-founded (there is no infinite
decreasing chain t1 t2 . . . ti ti+1 . . .). A complete simplification ordering is
also total on ground terms and literals (if s �= t, then either s t or t s). An ordering
on terms and literals is extended to clauses by multiset extension, which preserves
well-foundedness (e.g., [27] for basic definitions and results about orderings).

Since our purpose is interpolation, we are interested only in inferences rules that
appear in proofs. These are expansion inferences and those contraction inferences,
such as simplification, that replace clauses by clauses: we use generative rules for
expansion and replacement rules. Contraction inferences that merely remove clauses,
such as subsumption or tautology deletion, and book-keeping rules such as merging,
that removes duplicate literals, are assumed, but do not appear in proofs. The gener-
ative rules of Γ are listed in Figure 1, where in expansion what is below the single
inference line is added to what is above, and in contraction what is above the dou-
ble inference line is replaced by what is below. Paramodulation, superposition, and
reflection build equality into the inference system; we use superposition when the
literal paramodulated into is equational, and paramodulation otherwise.

Definition 8 (Γ -derivation) Given an input set of clauses S0, a Γ -derivation is a
sequence S0�Γ S1�Γ . . .Si�Γ Si+1�Γ . . ., where for all i > 0, Si is a set of clauses
derived from Si−1 by a Γ -inference.

8 M. P. Bonacina and M. Johansson

Resolution
l∨C ¬l′ ∨D
(C∨D)σ

∀m ∈C : lσ �� mσ ; ∀m ∈ D : ¬l′σ �� mσ

Factoring
l∨ l′ ∨C
(l∨C)σ

∀m ∈C : lσ �� mσ

Paramodulation
s� r∨C l[s′]∨D
(C∨ l[r]∨D)σ

sσ �� rσ ; ∀m ∈C : (s� r)σ �� mσ ; ∀m ∈ D : l[s′]σ �� mσ

Superposition
s� r∨C l[s′] �� t ∨D
(C∨ l[r] �� t ∨D)σ

sσ �� rσ ; ∀m ∈C : (s� r)σ �� mσ ; l[s′]σ �� tσ ; ∀m ∈ D : (l[s′] �� t)σ �� mσ

Reflection
s′ ��s∨C

Cσ
∀l ∈C : (s′ ��s)σ �≺ lσ

Equational Factoring
s� t ∨ s′ � t ′ ∨C

(t ��t′ ∨ s� t ′ ∨C)σ
sσ �� tσ ; ∀l ∈ {s′ � t ′}∪C : (s� t)σ �≺ lσ

Simplification
s� r D[l]

s� r D[rσ]
l = sσ ; sσ rσ ; D[l] (s� r)σ

where the substitution σ is the most general unifier (mgu) of the literals resolved upon l and l′ , in resolution
and factoring, of the terms s and s′ in paramodulation, superposition, reflection, and equational factoring.
For paramodulation and superposition, s′ is not a variable, s� r is the literal paramodulated/superposed
from, l[s′] is the literal paramodulated/superposed into, and the same terminology extends to clauses.

Fig. 1 The generative rules of Γ .

Every inference Si�Γ Si+1 is required to be sound (Si+1⊆ Th(Si)) and adequate (Si⊆
Th(Si+1)), where Th(S)= {C | S |=C}. The set S∗=⋃

i≥0 Si is the set of all generated
clauses. A Γ -derivation is successful if � ∈ Sk for some k, which reveals that the
input set S0 is inconsistent. Upon success, the theorem prover extracts a refutation, or
refutational proof, or proof, for short, which includes only the inferences and clauses
involved in the generation of �:

Definition 9 (Γ -proof tree)Given aΓ -derivation S0�Γ S1�Γ . . .Si�Γ Si+1�Γ . . ., for
all C ∈ S∗, the Γ -proof tree ΠΓ (C) ofC is defined as follows:

– IfC ∈ S0, ΠΓ (C) consists of a node labeled byC;
– If C is inferred by a generative Γ -inference from premises C1, . . . ,Ck, ΠΓ (C)
consists of a node labeled byC with k subtrees ΠΓ (C1), . . . ,ΠΓ (Ck).

If the derivation is successful, � ∈ S∗ and ΠΓ (�) is a Γ -refutation.

A proof tree is drawn with the root at the bottom and the leaves at the top. 1

1 In general, it is a rooted graph, called ancestor-graph [10], but it can be put in the form of a tree by
allowing different vertices to have the same clause as label.

On Interpolation in Automated Theorem Proving 9

3 The Challenge of Interpolating Non-Ground Proofs

Ground Γ -refutations can be interpolated by an approach that we call color-based
and cover systematically in [12]: an interpolation system for ground Γ -refutations
is defined inductively with base cases for input clauses belonging to A or B, and
inductive cases that distinguish whether the literal resolved upon, or superposed from,
is A-colored, B-colored, or transparent. AB-mixed literals are excluded because it is
sufficient to assume a separating ordering (one where transparent terms are smaller
than non-transparent ones) to ensure that ground proofs are colorable.

In this section we show by examples that a color-based approach does not ex-
tend to non-ground proofs. Non-ground inferences instantiate literals by most general
unifiers (mgu’s) and matching substitutions. Substitutions may insert Σ B-symbols in
ΣA-literals and vice versa, easily generating AB-mixed literals. Assume that predi-
cate symbol P and function symbols f and g are transparent, and constant symbols
a and b are A-colored and B-colored, respectively. Superposition of g(y,b) � y into
f (g(a,x),x) � f (x,a), with mgu {y← a,x← b}, generates f (a,b) � f (b,a), where
both sides are AB-mixed. This inference is compatible with a separating ordering, and
shows that a separating ordering does not guarantee that the proof is colorable in the
general case.

One might renounce completeness and restrict attention to colorable non-ground
Γ -refutations. Consider resolution between ¬P(x,b)∨C and P(a,y)∨D, where x
does not appear in C, y does not appear in D, and C and D are colorable. Resolvent
(C∨D)σ , with σ = {x← a,y← b}, is colorable, because (C∨D)σ = C∨D, since
x does not occur in D and y does not occur in C, as each clause has its own vari-
ables. However, the instances of the literals resolved upon, ¬P(a,b) and P(a,b), are
AB-mixed. Thus, the classification of literals as either A-colored, B-colored, or trans-
parent does not suffice for non-ground proofs, even if they happen to be colorable.

Not only the color-based approach does not work for colorable proofs, once sub-
stitutions come into the picture: it does not work for colored, or local, proofs ei-
ther. Assume that predicates L, R, and Q are transparent, and constants a 1 and a2
are A-colored. Consider the resolution step where parents p 1 : L(x,a1)∨ R(x) and
p2 : ¬L(a2,y)∨Q(y) yield resolvent c : R(a2)∨Q(a1) with mgu σ = {x← a2,y←
a1}. This resolution step is local in the sense of [51,46,41], as only one color appears.
An attempt to generalize the color-based approach to non-ground colored proofs
would suggest to define the partial interpolant PI(c) for such a step as (PI(p 1)∨
PI(p2))σ . However, since σ replaces variables by colored terms, there is no guaran-
tee that (PI(p1)∨PI(p2))σ is transparent, even if PI(p1) and PI(p2) are.

In all these problematic examples, the only colored symbols are constant symbols.
Thus, the color-based approach does not extend to non-ground proofs, not even under
the hypothesis that all predicate and function symbols are interpreted or transparent,
and the only colored symbols are constant symbols.

These difficulties suggest that approaches based on colors, or, more generally, on
classifying expressions and proofs by the presence of symbols from Σ A \ΣA,B, ΣB \
ΣA,B, and ΣA,B, do not extend beyond the ground level. In essence, an interpolation
system needs to determine whether a literal l should be added to the interpolant. This
requires (1) to detect whether l comes from the A side or the B side of the proof,

10 M. P. Bonacina and M. Johansson

which is relevant to ensure that the interpolant is implied by A and inconsistent with
B, and (2) to check that l is made of shared symbols. Approaches based on colors look
at the symbols in l to achieve (1) and (2) simultaneously. This is impossible when
substitutions mix the symbols and AB-mixed literals become unavoidable, because
the presence of ΣA-colored or ΣB-colored symbols cannot be used to record where
literals come from.

4 A Two-stage Approach to Interpolation

We design a two-stage approach that separates the issues (1) and (2) of the above
analysis. In the first stage, the interpolation system is only concerned with making
sure that the interpolant is implied by A and inconsistent with B. It uses labels, A and
B, to keep track of where a literal in the proof comes from. The resulting interpolant
is a provisional interpolant, because it may contain colored symbols. Only in the
second stage is the interpolation system concerned with excluding colored symbols.

In order to assign labels to literals in refutations, we define a notion of labeled
Γ -proof tree. Its key properties are that labels are independent of signatures and sub-
stitutions, and are attached to all literals, including AB-mixed ones. For instance,
literals inherited by resolvents inherit the label of the corresponding literals in the
parents, and new literals built by equational replacement inherit the label of the lit-
eral paramodulated or superposed into, even if a substitution was applied.

Definition 10 (LabeledΓ -proof tree)A labeledΓ -proof tree is aΓ -proof tree where
literals in clauses are labeled by a label, denoted label(l,c) for literal l in clause c : C,
as follows:

– If c : C ∈ A, then for all l ∈C, label(l,c) = A;
– If c : C ∈ B, then for all l ∈C, label(l,c) = B;
– If c : (C ∨D)σ is a resolvent of p1 : l ∨C and p2 : ¬l′ ∨D, then for all m ∈ C,

label(mσ ,c) = label(m, p1); and for all m ∈ D, label(mσ ,c) = label(m, p2);
– If c : (l ∨C)σ is a factor of p : l ∨ l ′ ∨C, then for all m ∈ C, label(mσ ,c) =

label(m, p), and

label(lσ ,c) =
{

A if label(l, p) = label(l ′, p) = A,
B otherwise;

– If c : (C∨ l[r]∨D)σ is generated by paramodulating p1 : s� r∨C into p2 : l[s′]∨
D, then for all m ∈C, label(mσ ,c) = label(m, p1); for all m ∈ D, label(mσ ,c) =
label(m, p2); and label(l[r]σ ,c) = label(l[s′], p2);

– If c : (C∨ l[r] �� t∨D)σ is generated by superposing p1 : s� r∨C into p2 : l[s′] ��
t∨D, then for allm∈C, label(mσ ,c)= label(m, p1); for allm∈D, label(mσ ,c)=
label(m, p2); and label((l[r] �� t)σ ,c) = label(l[s′] �� t, p2);

– If c : Cσ is generated by reflection from p : s ′ ��s∨C, then for all m ∈C:
label(mσ ,c) = label(m, p);

– If c : (t �� t ′ ∨ s � t ′ ∨C)σ is an equational factor of p : s � t ∨ s′ � t ′ ∨C, then
for all m ∈ C, label(mσ ,c) = label(m, p), and label((t �� t ′)σ ,c) = label((s �

On Interpolation in Automated Theorem Proving 11

t ′)σ ,c) =

=

{
A if label(s� t, p) = label(s′ � t ′, p) = A,
B otherwise.

A clause generated by simplification is treated like a clause generated by paramod-
ulation or superposition. Merging of identical literals is treated like a factoring step
with empty unifier.

Note that the cases for the factoring rules treat A and B asymmetrically, favoring B
(cf. Section 3 in [12] for a discussion of symmetry in interpolation systems).

Example 1 If L(x1,c)A ∨P(x1)A ∨Q(x1,y1)A and ¬L(c,x2)B ∨ P(x2)B ∨R(x2,y2)B
resolve on their first literals with mgu σ = {x1← c,x2← c}, the resolvent is P(c)A∨
Q(c,y1)A∨P(c)B∨R(c,y2)B, or Q(c,y1)A∨P(c)B∨R(c,y2)B after merging.

In the inductive approach to interpolation, interpolants are built by structural induc-
tion on a refutation of A∪B. The intermediate interpolants during the construction
are called partial interpolants. Intuitively, a partial interpolant is an interpolant rel-
ative to a clause in a refutation, so that a partial interpolant of the empty clause is
an interpolant. Indeed, if C occurs in a refutation of A∪B, it means that A∧B �C,
or A∧¬C � ¬B∨C. Thus, one could seek an interpolant of A∧¬C and ¬B∨C, or,
equivalently, a reverse interpolant of A∧¬C and B∧¬C. However, the signatures of
A∧¬C and B∧¬C are not necessarily ΣA and ΣB, unless C is transparent. Thus, the
definition of partial interpolant in the color-based approach applies projections with
respect to the signatures, or the colors, to theC in A∧¬C and B∧¬C. Since our inter-
polation system works by tracking literals by labels, rather than symbols, or colors,
we give a notion of projection based on labels (cf. Section 2 of [12] for a compar-
ison with the color-based definitions). We consider disjunctions of literals, because
we work with clauses, and conjunctions of literals, that arise when negating clauses:

Definition 11 (Labeled projection) Let C be a disjunction (conjunction) of labeled
literals. The labeled projection ofC on label X, denotedC|X, is the disjunction (con-
junction) of literals ofC that are labeledX. By convention, ifC|X is empty,C|X =⊥,
ifC is a disjunction; andC|X =�, ifC is a conjunction.
Thus, (¬C)|X = ¬(C|X), (C∨D)|X =C|X ∨D|X and (C∧D)|X =C|X ∧D|X. Unlike
those based on colors, labeled projections also commute with substitutions, because
labels are defined in such a way that substitutions have no bearing on them:

Proposition 1 For all occurrences of clauses (C∨D)σ , (C ∨ l[r]∨D)σ , and (C ∨
l[r] �� t∨D)σ , generated by resolution, including reflection, paramodulation, and su-
perposition, including simplification, in a labeled Γ -proof tree, (C∨D)σ |X = (C|X∨
D|X)σ . For all occurrences of factors (l ∨C)σ and (t ��t ′ ∨ s� t ′ ∨C)σ in a labeled
Γ -proof tree, (Cσ)|X = (C|X)σ .

Proof: It follows from Definitions 10 and 11. �

The interpolation system computes first a provisional interpolant, which is not re-
quired to be transparent:

12 M. P. Bonacina and M. Johansson

Definition 12 (Provisional interpolant)A formula Î is a provisional (reverse) inter-
polant of formulæ A and B such that A,B �⊥, or a provisional interpolant of (A,B),
if (i) A � Î and (ii) B, Î �⊥.
A provisional theory interpolant is defined analogously. Provisional partial inter-
polants also do not have to be transparent, and are defined using labeled projections:

Definition 13 (Provisional partial interpolant) A provisional partial interpolant
P̂I(C) of a clause C occurring in a refutation of A∪B is a provisional interpolant of
A∧¬(C|A) and B∧¬(C|B).
As for partial interpolants, P̂I(�) is a provisional interpolant of (A,B). Thus, a pro-
visional interpolation system extracts from a labeled refutation a provisional inter-
polant, by associating to every clause a provisional partial interpolant.

Definition 14 (Complete provisional interpolation system) A provisional interpo-
lation system is complete for an inference system Γ , if for all sets of clauses A and
B, such that A∪B is unsatisfiable, and for all Γ -refutations of A∪B, it generates a
provisional interpolant of (A,B).

For completeness, one shows that for all clauses C in the refutation, P̂I(C) satisfies
Definition 13. We define a provisional interpolation system for Γ :

Definition 15 (Provisional interpolation system Γ Î) Let c : C be a clause in a la-
beled Γ -refutation of A∪B:

– If c : C ∈ A, then P̂I(c) = ⊥,
– If c : C ∈ B, then P̂I(c) =�,
– If c : C is generated by a Γ -inference from premises p 1 and p2, P̂I(c) is defined
as follows:
– Resolution: c : (C ∨D)σ generated from p1 : l ∨C and p2 : ¬l′ ∨D with σ
mgu of l and l ′:
• If label(l, p1) = label(¬l′, p2) = A, then P̂I(c) = (P̂I(p1)∨ P̂I(p2))σ ,
• If label(l, p1) = label(¬l′, p2) = B, then P̂I(c) = (P̂I(p1)∧ P̂I(p2))σ ,
• If label(l, p1) = A and label(¬l ′, p2) = B, then P̂I(c) = [(l ∨ P̂I(p1))∧

P̂I(p2)]σ , and
• If label(l, p1) = B and label(¬l ′, p2) = A, then P̂I(c) = [P̂I(p1)∧ (¬l′ ∨

P̂I(p2))]σ ;
– Factoring: c : (l∨C)σ generated from p : l∨ l ′ ∨C, with σ mgu of l and l ′:

P̂I(c) =

{
P̂I(p)σ if label(l, p) = label(l ′, p),
(l∨ P̂I(p))σ otherwise;

– Paramodulation: c : (C∨l[r]∨D)σ generated from p1 : s� r∨C and p2 : l[s′]∨
D; and Superposition: c : (C∨ l[r] �� t∨D)σ generated from p1 : s� r∨C and
p2 : l[s′] �� t ∨D, with σ mgu of s and s′:
• If label(s� r, p1)= label(l[s′], p2)=A, then P̂I(c)= (P̂I(p1)∨P̂I(p2))σ ,
• If label(s� r, p1)= label(l[s′], p2)=B, then P̂I(c)= (P̂I(p1)∧P̂I(p2))σ ,

On Interpolation in Automated Theorem Proving 13

• If label(s � r, p1) = A and label(l[s′], p2) = B, then P̂I(c) = [(s � r ∨
P̂I(p1))∧ P̂I(p2)]σ ,
• If label(s � r, p1) = B and label(l[s′], p2) = A, then P̂I(c) = [P̂I(p1)∧
(s �� r∨ P̂I(p2))]σ ;

– Reflection: c : Cσ generated from p : s′ ��s ∨C, with σ mgu of s and s′:
P̂I(c) = P̂I(p)σ ;

– Equational factoring: c : (t �� t ′ ∨ s � t ′ ∨C)σ generated from p : s� t ∨ s′ �
t ′ ∨C, with σ mgu of s and s′:
• If label(s� t, p) = label(s′ � t ′, p), then P̂I(c) = P̂I(p)σ ,
• If label(s � t, p) = A and label(s′ � t ′, p) = B, then P̂I(c) = (s � t ∨

P̂I(p))σ ,
• If label(s � t, p) = B and label(s′ � t ′, p) = A, then P̂I(c) = (s′ � t ′ ∨

P̂I(p))σ .

Simplification is treated as a special case of paramodulation and superposition, where
C is empty and σ is a matching substitution that modifies only variables in s � r
and applies only to term r in the resulting clause. In most cases, Γ Î builds provi-
sional interpolants by adding A-labeled literals that were resolved upon, factorized
with, or paramodulated into B-labeled literals, and applying the most general unifier.
The exception is the addition of the negation of those B-labeled literals that were
paramodulated into A-labeled literals. Intuitively, the added literals represent a sort
of communication interface between the A side and the B side of the problem. By
using Proposition 1, we show that Γ Î is complete:

Theorem 2 Γ Î is a complete provisional interpolation system for Γ .

Proof:We need to prove that for all clauses c : C in the refutation,

1. A∧¬(C|A) � P̂I(c) or, equivalently, A �C|A∨ P̂I(c) and
2. B∧¬(C|B)∧ P̂I(c) �⊥ or, equivalently, B∧ P̂I(c) �C|B.
The proof is by induction on the structure of the refutation.
Base cases:

– If c : C ∈ A, we have P̂I(c) = ⊥, C|A = C, and C|B =⊥, so that (1) reduces to
A �C, which holds sinceC ∈ A, and (2) to ⊥ �⊥, which is trivial.

– If c : C ∈ B, we have P̂I(c) = �, C|A = ⊥ and C|B = C, so that (1) reduces to
A � �, which holds trivially, and (2) to B �C, which holds sinceC ∈ B.

Inductive hypothesis: for k ∈ {1,2} it holds that:
1. A∧¬(pk|A) � P̂I(pk) or, equivalently, A � pk|A∨ P̂I(pk)
2. B∧¬(pk|B)∧ P̂I(pk) � ⊥ or, equivalently, B∧ P̂I(pk) � pk|B.
Inductive cases:
Resolution: c : (C∨D)σ is generated from p1 : (l∨C) and p2 : (¬l′ ∨D), with σ mgu
of l and l ′. There are four cases:

– label(l, p1) = label(¬l′, p2) = A; then (l ∨C)|A = l ∨C|A, (¬l′ ∨D)|A = ¬l′ ∨
D|A, (l ∨C)|B =C|B and (¬l′ ∨D)|B = D|B:

14 M. P. Bonacina and M. Johansson

1. A � (C∨D)σ |A∨ (P̂I(p1)∨ P̂I(p2))σ
From inductive hypothesis (1) we have A � l ∨C|A ∨ P̂I(p1) and A � ¬l ′ ∨
D|A ∨ P̂I(p2). A resolution step yields A � (C|A ∨ P̂I(p1)∨D|A ∨ P̂I(p2))σ ,
which gives the required by reordering of literals and applying Proposition 1.

2. B∧ (P̂I(p1)∨ P̂I(p2))σ � (C∨D)σ |B
From inductive hypothesis (2) we have B∧ P̂I(p1)�C|B and B∧ P̂I(p2)�D|B
whence the inductive conclusion follows with another application of Proposi-
tion 1. For brevity, in all following cases Proposition 1 will be applied silently.

– label(l, p1) = label(¬l′, p2) = B; then (l ∨C)|A = C|A, (¬l′ ∨D)|A = D|A, (l ∨
C)|B = l∨C|B and (¬l′ ∨D)|B = ¬l′ ∨D|B:
1. A � (C∨D)σ |A∨ (P̂I(p1)∧ P̂I(p2))σ is equivalent to

A �Cσ |A ∨Dσ |A∨ (P̂I(p1)∧ P̂I(p2))σ or
A � (Cσ |A ∨Dσ |A∨ P̂I(p1)σ)∧ (Cσ |A∨Dσ |A∨ P̂I(p2)σ).
From inductive hypothesis (1) we have A � C|A ∨ P̂I(p1) and A � D|A ∨
P̂I(p2), whence A � (C|A ∨ P̂I(p1))∧ (D|A ∨ P̂I(p2)) which implies the re-
quired.

2. B∧ (P̂I(p1)∧ P̂I(p2))σ � (C∨D)σ |B
From inductive hypothesis (2) we have B∧ P̂I(p1) � l∨C|B and B∧ P̂I(p2) �
¬l′ ∨D|B, or, equivalently, B � ¬P̂I(p1)∨ l ∨C|B and B � ¬P̂I(p2)∨¬l′ ∨
D|B; by resolution these give B � (¬P̂I(p1)∨C|B ∨¬P̂I(p2)∨D|B)σ or B∧
(P̂I(p1)∧ P̂I(p2))σ � (C|B∨D|B)σ . The required thus follows.

– label(l, p1) = A and label(¬l ′, p2) = B; then (l ∨C)|A = l ∨C|A, (¬l′ ∨D)|A =
D|A, (l ∨C)|B =C|B and (¬l′ ∨D)|B = ¬l′ ∨D|B:
1. A � (C∨D)σ |A∨ [(l∨ P̂I(p1))∧ P̂I(p2)]σ is equivalent to

A � [C|A∨D|A∨ l∨ P̂I(p1)]σ ∧ [C|A∨D|A∨ P̂I(p2)]σ .
From inductive hypothesis (1) we have A � l ∨C|A ∨ P̂I(p1) and A � D|A ∨
P̂I(p2), which together imply the required.

2. B∧ [(l∨ P̂I(p1))∧ P̂I(p2)]σ � (C∨D)σ |B
By case analysis on (l∨ P̂I(p1))σ :
(a) If P̂I(p1)σ holds, it suffices to establish B∧ (P̂I(p1)∧ P̂I(p2))σ � (C∨

D)σ |B. From inductive hypothesis (2) we have B∧ P̂I(p1) �C|B, which
proves it.

(b) If lσ holds, it suffices to establish B∧(l∧ P̂I(p2))σ � (C∨D)σ |B, which
is equivalent to B∧ P̂I(p2)σ � ¬lσ ∨Cσ |B ∨Dσ |B. From inductive hy-
pothesis (2) we have B∧ P̂I(p2)�¬l′ ∨D|B which proves our target since
l′σ = lσ .

– label(l, p1) =B and label(¬l ′, p2) = A; then (l∨C)|A =C|A, (¬l′ ∨D)|A =¬l′ ∨
D|A, (l ∨C)|B = l∨C|B and (¬l′ ∨D)|B = D|B:
1. A � (C∨D)σ |A∨ [P̂I(p1)∧ (¬l′ ∨ P̂I(p2))]σ is equivalent to

A�C|Aσ ∨D|Aσ∨[P̂I(p1)∧(¬l′ ∨P̂I(p2))]σ orA� (C|A∨D|A∨P̂I(p1))σ ∧
(C|A∨D|A∨¬l′ ∨P̂I(p2))σ . From inductive hypothesis (1) we haveA�C|A∨
P̂I(p1) and A � ¬l ′ ∨D|A∨ P̂I(p2), which together give the required.

2. B∧ [P̂I(p1)∧ (¬l′ ∨ P̂I(p2))]σ � (C∨D)σ |B
By case analysis on ¬l ′σ ∨ P̂I(p2)σ :
(a) If ¬l ′σ holds, it suffices to establish B∧ P̂I(p1)σ ∧¬l′σ � (C∨D)σ |B

which is equivalent to B∧ P̂I(p1)σ � l′σ ∨C|Bσ ∨D|Bσ . From inductive

On Interpolation in Automated Theorem Proving 15

hypothesis (2) we have B∧ P̂I(p1) � l ∨C|B which implies the required
since lσ = l′σ .

(b) If P̂I(p2)σ holds, it suffices to establish B∧ P̂I(p1)σ ∧ P̂I(p2)σ � (C∨
D)σ |B or B∧ P̂I(p1)σ ∧ P̂I(p2)σ � C|Bσ ∨D|Bσ . From inductive hy-
pothesis (2) we have B∧ P̂I(p2) � D|B, which establishes the required.

Factoring: c : (C∨ l)σ is generated from p : (l∨ l ′ ∨C), with σ mgu of l and l ′. There
are again four cases:

– label(l, p) = label(l ′, p) = A; then (l∨ l ′ ∨C)|A = l∨ l′ ∨C|A, (l∨C)σ |A = lσ ∨
C|Aσ , (l∨ l′ ∨C)|B =C|B and (l∨C)σ |B =C|Bσ :
1. A � lσ ∨C|Aσ ∨ P̂I(p)σ
It follows from inductive hypothesis (1) A � l∨ l ′ ∨C|A∨ P̂I(p) and lσ = l ′σ .

2. B∧ P̂I(p)σ �C|Bσ
It follows from inductive hypothesis (2) B∧ P̂I(p) �C|B.

– label(l, p) = label(l ′, p) = B; then (l ∨ l′ ∨C)|A =C|A, (l ∨C)σ |A =C|Aσ , (l ∨
l′ ∨C)|B = l∨ l′ ∨C|B and (l∨C)σ |B = lσ ∨C|Bσ :
1. A �C|Aσ ∨ P̂I(p)σ
It follows from inductive hypothesis (1) A �C|A∨ P̂I(p).

2. B∧ P̂I(p)σ � lσ ∨C|Bσ
It follows from inductive hypothesis (2) B∧ P̂I(p) � l∨ l′ ∨C|B and lσ = l′σ .

– label(l, p) = A and label(l ′, p) = B; then (l ∨ l′ ∨C)|A = l ∨C|A, (l ∨C)σ |A =
C|Aσ , (l∨ l′ ∨C)|B = l′ ∨C|B and (l∨C)σ |B = lσ ∨C|Bσ :
1. A �C|Aσ ∨ lσ ∨ P̂I(p)σ
It follows from inductive hypothesis (1) A � l∨C|A∨ P̂I(p).

2. B∧ (l∨ P̂I(p))σ � lσ ∨C|Bσ
which is equivalent to (B∧ lσ)∨ (B∧ P̂I(p)σ) � lσ ∨C|Bσ .
B∧ lσ � lσ ∨C|Bσ is trivial. B∧ P̂I(p)σ � lσ ∨C|Bσ follows from inductive
hypothesis (2) B∧ P̂I(p) � l′ ∨C|B since l′σ = lσ .

– label(l, p) = B and label(l ′, p) = A; then (l ∨ l ′ ∨C)|A = l′ ∨C|A, (l ∨C)σ |A =
C|Aσ , (l∨ l′ ∨C)|B = l∨C|B and (l∨C)σ |B = lσ ∨C|Bσ :
1. A �C|Aσ ∨ lσ ∨ P̂I(p)σ
It follows from inductive hypothesis (1)A� l ′ ∨C|A∨ P̂I(p) because lσ = l ′σ .

2. B∧ (l∨ P̂I(p))σ � lσ ∨C|Bσ
which is equivalent to (B∧ lσ)∨ (B∧ P̂I(p)σ) �C|Bσ ∨ lσ
B∧ lσ � lσ ∨C|Bσ is trivial. B∧ P̂I(p)σ � lσ ∨C|Bσ follows from inductive
hypothesis (2) B∧ P̂I(p) � l∨C|B.

Paramodulation: c : (C∨ l[r]∨D)σ is generated from p1 : (s� r∨C) and p2 : (l[s′]∨
D) with mgu σ of s and s′. There are four cases:

– label(s � r, p1) = label(l[s′], p2) = A; then (s � r∨C)|A = s � r∨C|A, (l[s′]∨
D)|A = l[s′]∨D|A, (C∨ l[r]∨D)σ |A =C|Aσ ∨ l[r]σ ∨D|Aσ , (s� r∨C)|B =C|B,
(l[s′]∨D)|B = D|B and (C∨ l[r]∨D)σ |B =C|Bσ ∨D|Bσ :
1. A �C|Aσ ∨ l[r]σ ∨D|Aσ ∨ P̂I(p1)σ ∨ P̂I(p2)σ
Inductive hypothesis (1) gives A � s� r∨C|A ∨ P̂I(p1) and A � l[s′]∨D|A ∨
P̂I(p2). By a paramodulation step we get A � (C|A ∨ l[r]∨D|A ∨ P̂I(p1)∨
P̂I(p2))σ from which the required follows.

16 M. P. Bonacina and M. Johansson

2. B∧ (P̂I(p1)∨ P̂I(p2))σ �C|Bσ ∨D|Bσ
From inductive hypothesis (2) we have that B∧ P̂I(p1) �C|B and B∧ P̂I(p2)�
D|B, which gives the inductive conclusion.

– label(s � r, p1) = label(l[s′], p2) = B; then (s � r∨C)|A = C|A, (l[s′]∨D)|A =
D|A, (C∨ l[r]∨D)σ |A =C|Aσ ∨D|Aσ , (s� r∨C)|B = s� r∨C|B, (l[s′]∨D)|B =
l[s′]∨D|B and (C∨ l[r]∨D)σ |B =C|Bσ ∨ l[r]σ ∨D|Bσ :
1. A �C|Aσ ∨D|Aσ ∨ (P̂I(p1)∧ P̂I(p2))σ or, equivalently,

A � (C|A ∨D|A∨ P̂I(p1))σ ∧ (C|A∨D|A∨ P̂I(p2))σ .
By inductive hypothesis (1) we have A �C|A∨ P̂I(p1) and A � D|A∨ P̂I(p2),
which together give the desired conclusion.

2. B∧ (P̂I(p1)∧ P̂I(p2))σ �C|Bσ ∨ l[r]σ ∨D|Bσ .
By inductive hypothesis (2) we have B∧ P̂I(p1)� s� r∨C|B and B∧ P̂I(p2)�
l[s′]∨D|B, or, equivalently,B�¬P̂I(p1)∨s� r∨C|B andB�¬P̂I(p2)∨l[s′]∨
D|B, which by paramodulation produceB� (¬ P̂I(p1)∨¬P̂I(p2)∨C|B∨ l[r]∨
D|B)σ , so that the inductive conclusion follows.

– label(s � r, p1) = A and label(l[s′], p2) = B; then (s � r ∨C)|A = s � r∨C|A,
(l[s′]∨D)|A =D|A, (C∨ l[r]∨D)σ |A =C|Aσ ∨D|Aσ , (s� r∨C)|B =C|B, (l[s′]∨
D)|B = l[s′]∨D|B and (C∨ l[r]∨D)σ |B =C|Bσ ∨ l[r]σ ∨D|Bσ :
1. A �C|Aσ ∨D|Aσ ∨ [(s� r∨ P̂I(p1))∧ P̂I(p2)]σ or, equivalently,

A � (C|A ∨D|A∨ s� r∨ P̂I(p1))σ ∧ (C|A∨D|A∨ P̂I(p2))σ .
From inductive hypothesis (1) we have A � s � r ∨C|A ∨ P̂I(p1) and A �
D|A∨ P̂I(p2), which together give the inductive conclusion.

2. B∧ [(s� r∨ P̂I(p1))∧ P̂I(p2)]σ �C|Bσ ∨ l[r]σ ∨D|Bσ
By case analysis on (s� r)σ ∨ P̂I(p1)σ :
(a) If P̂I(p1)σ holds, it suffices to establishB∧(P̂I(p1)∧P̂I(p2))σ �C|Bσ∨

l[r]σ ∨D|Bσ which follows from inductive hypothesis (2) B∧ P̂I(p1) �
C|B.

(b) If (s� r)σ holds, it suffices to establish B∧(s� r)σ ∧ P̂I(p2)σ �C|Bσ ∨
l[r]σ ∨D|Bσ , which is equivalent to B∧ (s � r)σ ∧ P̂I(p2)σ � C|Bσ ∨
l[s]σ ∨D|Bσ since (s � r)σ holds. By inductive hypothesis (2) we have
B∧ P̂I(p2) � l[s′]∨D|B, which proves the required since sσ = s ′σ .

– label(s � r, p1) = B and label(l[s′], p2) = A; then (s � r∨C)|A = C|A, (l[s′]∨
D)|A = l[s′]∨D|A, (C∨ l[r]∨D)σ |A =C|Aσ ∨ l[r]σ ∨D|Aσ , (s� r∨C)|B = s�
r∨C|B, (l[s′]∨D)|B = D|B and (C∨ l[r]∨D)σ |B =C|Bσ ∨D|Bσ :
1. A∧¬(C∨ l[r]∨D)σ |A � [P̂I(p1)∧ (s �� r∨ P̂I(p2))]σ
We need to show:
(a) A∧¬(C ∨ l[r]∨D)σ |A � P̂I(p1)σ , or, equivalently, A � C|Aσ ∨ l[r]σ ∨

D|Aσ ∨ P̂I(p1)σ , which follows from inductive hypothesis (1) A �C|A∨
P̂I(p1).

(b) A∧¬(C ∨ l[r]∨D)σ |A � (s �� r∨ P̂I(p2))σ which is equivalent to A∧
¬C|Aσ ∧¬l[r]σ ∧¬D|Aσ ∧ (s � r)σ � P̂I(p2)σ . By applying the equa-
tion (s� r)σ , this in turn is equivalent to A∧¬C|Aσ ∧¬l[s]σ ∧¬D|Aσ ∧
(s� r)σ � P̂I(p2)σ and finally to A �C|Aσ ∨ l[s]σ ∨D|Aσ ∨ (s �� r)σ ∨
P̂I(p2)σ . By inductive hypothesis (1) we have that A � l[s ′] ∨D|A ∨
P̂I(p2), which proves the required since sσ = s ′σ .

On Interpolation in Automated Theorem Proving 17

2. B∧ [P̂I(p1)∧ (s �� r∨ P̂I(p2))]σ �C|Bσ ∨D|Bσ .
By case analysis on (s �� r)σ ∨ P̂I(p2)σ :
(a) If (s �� r)σ holds, it suffices to show that B∧ (P̂I(p1)∧ s �� r)σ �C|Bσ ∨

D|Bσ , or, equivalently, B∧ P̂I(p1)σ � (s � r)σ ∨C|Bσ ∨D|Bσ . From
inductive hypothesis (2) we have B∧ P̂I(p1) � s� r∨C|B, which proves
the required.

(b) If P̂I(p2)σ holds, it suffices to show thatB∧(P̂I(p1)∧P̂I(p2))σ �C|Bσ∨
D|Bσ . From inductive hypothesis (2) we have B∧ P̂I(p2) � D|B, which
proves the required.

Reflection: c : Cσ is generated from p : s ′ ��s∨C, with σ mgu of s and s′. There
are two cases:
– label(s′ ��s, p) = A; then (s′ ��s∨C)|A = s′ ��s∨C|A and (s′ ��s∨C)|B =C|B:

1. A �Cσ |A∨ P̂I(c)
From inductive hypothesis (1) we have A � s ′ ��s∨C|A ∨ P̂I(p), whence
A � s′σ ��sσ ∨Cσ |A ∨ P̂I(p)σ , and the inductive conclusion follows be-
cause s′σ = sσ and P̂I(c) = P̂I(p)σ .

2. B∧ P̂I(c) �Cσ |B
From inductive hypothesis (2) we have B ∧ P̂I(p) � C|B whence B �
¬P̂I(p)σ∨ � Cσ |B, and the inductive conclusion follows from P̂I(c) =
P̂I(p)σ .

– label(s′ ��s, p) =B; then (s′ ��s∨C)|A =C|A, and (s′ ��s∨C)|B = s′ ��s∨C|B:
the rest is symmetric to the above.

Equational factoring: c : (t �� t ′ ∨ s � t ′ ∨C)σ is generated from p : s � t ∨ s′ �
t ′ ∨C with mgu σ of s and s′. There are three cases, because the two where s� t
and s′ � t ′ have the same label can be merged:
– label(s � t, p) = label(s′ � t ′, p); then, by Definition 10, the same label is
given to (t �� t ′)σ and (s� t ′)σ in the factor:
1. A � (t �� t ′ ∨ s� t ′ ∨C)σ |A∨ P̂I(p)σ
It follows from inductive hypothesis (1)A� (s� t∨s ′ � t ′ ∨C)|A∨P̂I(p),
with a step of equational factoring, if the label of the equations is A,
without, if it is B.

2. B∧ P̂I(p)σ � (t �� t ′ ∨ s� t ′ ∨C)σ |B
It follows from inductive hypothesis (2) B∧ P̂I(p) � (s� t∨s′ � t ′ ∨C)|B
through a step of equational factoring, if the label of the equations is B,
without, if it is A.

– label(s� t, p)=A and label(s′ � t ′, p)=B; then, by Definition 10, label((s�
t ′)σ ,c) = label((t �� t ′)σ ,c) = B, (s � t ∨ s′ � t ′ ∨C)|A = s � t ∨C|A, (s �
t ∨ s′ � t ′ ∨C)|B = s′ � t ′ ∨C|B, (t �� t ′ ∨ s � t ′ ∨C)σ |A = C|Aσ and (t ��
t ′ ∨ s� t ′ ∨C)σ |B = (t �� t ′)σ ∨ (s� t ′)σ ∨C|Bσ :
1. A �C|Aσ ∨ (s� t ∨ P̂I(p))σ
It follows from inductive hypothesis (1) A � s� t ∨C|A∨ P̂I(p).

2. B∧ (s� t ∨ P̂I(p))σ � (t �� t ′)σ ∨ (s� t ′)σ ∨C|Bσ
By case analysis on (s� t)σ ∨ P̂I(p)σ :
(a) If (s� t)σ holds, it suffices to show B∧ (s� t)σ � (t �� t ′)σ ∨ (s �

t ′)σ ∨C|Bσ . Since (s� t)σ holds, this is equivalent to B∧(s� t)σ �
(t �� t ′)σ ∨ (t � t ′)σ ∨C|Bσ , which holds trivially.

18 M. P. Bonacina and M. Johansson

(b) If P̂I(p)σ holds, it suffices to show B∧ P̂I(p)σ � (t �� t ′)σ ∨ (s �
t ′)σ ∨C|Bσ . As sσ = s′σ , this follows from inductive hypothesis (2)
B∧ P̂I(p) � s′ � t ′ ∨C|B.

– label(s� t, p)=B and label(s′ � t ′, p) =A; then, by Definition 10, label((s�
t ′)σ ,c) = label((t �� t ′)σ ,c) = B, (s� t ∨ s′ � t ′ ∨C)|A = s′ � t ′ ∨C|A, (s �
t∨s′ � t ′ ∨C)|B = s� t∨C|B, (t �� t ′ ∨s� t ′ ∨C)σ |A =C|Aσ and (t �� t ′ ∨s�
t ′ ∨C)σ |B = (t �� t ′)σ ∨ (s� t ′)σ ∨C|Bσ :
1. A �C|Aσ ∨ (s′ � t ′ ∨ P̂I(p))σ
It follows from inductive hypothesis (1) A � s ′ � t ′ ∨C|A∨ P̂I(p).

2. B∧ (s′ � t ′ ∨ P̂I(p))σ � (t �� t ′)σ ∨ (s� t ′)σ ∨C|Bσ
By case analysis on (s′ � t ′)σ ∨ P̂I(p)σ :
(a) If (s′ � t ′)σ holds, it suffices to establish B∧ (s′ � t ′)σ � (t �� t ′)σ ∨

(s� t ′)σ ∨C|Bσ . Since sσ = s′σ , this is equivalent to B∧(s′ � t ′)σ �
(t �� t ′)σ ∨ (s′ � t ′)σ ∨C|Bσ , which holds trivially.

(b) If P̂I(p)σ holds, it suffices to establish B∧ P̂I(p)σ � (t �� t ′)σ ∨(s�
t ′)σ ∨C|Bσ . Consider the disjunct (t �� t ′)σ : if it holds, the con-
clusion holds; otherwise, (t � t ′)σ holds, and the target reduces to
B∧ P̂I(p)σ � (s� t)σ ∨C|Bσ , which follows from inductive hypoth-
esis (2) B∧ P̂I(p) � s� t ∨C|B.

Superposition is treated like paramodulation, with l[s] replaced by l[s] �� t, and the
case analysis for simplification is subsumed by those for paramodulation and super-
position. �

The following lemma characterizes the provisional interpolants produced by Γ Î:

Lemma 1 A provisional interpolant Î generated by Γ Î is a formula in negation nor-
mal form, where all variables, if any, are implicitly universally quantified and all
predicate symbols are either interpreted or transparent.

Proof: By construction, the only connectives occurring in Î are ∨, ∧ and ¬, and ¬
applies only to atoms; thus, Î is in negation normal form. Γ Î constructs Î by adding
instances of literals resolved upon, factorized or paramodulated from. These instances
are not necessarily ground, and therefore Î may contain variables, that are implicitly
universally quantified, because they come from clauses where all variables are implic-
itly universally quantified. For equational literals added to Î, the predicate symbol is
equality which is interpreted. Non-equational literals are added if they are A-labeled
literals that resolved upon or factorized with B-labeled literals. Unifiable literals have
the same predicate symbol. AnA-labeled literal and a B-labeled literal have the same
predicate symbol only if the symbol is transparent. Thus, all literals in Î have either
interpreted or transparent predicate symbols. �

5 A Complete Interpolation System

In the second stage, the interpolation system applies to the provisional interpolant
a transformation called lifting, which replaces colored constants by quantified vari-

On Interpolation in Automated Theorem Proving 19

ables. This is an idea that appeared as early as [21]. It is sufficient to obtain a trans-
parent formula if the only colored symbols in the formula are constants:

Definition 16 (Color-flat formula) A closed formula F is color-flat, if its only col-
ored symbols are constant symbols.

By Lemma 1, provisional interpolants generated by Γ Î do not contain colored pred-
icate symbols, and therefore they are color-flat if, in addition, all their function sym-
bols are either interpreted or transparent.

Definition 17 (Lifting) Given a color-flat formula F = ∀v̄.G in prenex normal form,
where the matrix G is in negation normal form, and either the prefix ∀v̄ is empty and
G is ground, or ∀v̄ contains universal quantifiers for all variables in G, let CC(G) be
the set of the colored constants occurring inG. The lifting of F, denoted Lift(F), is the
formula Lift(F) = Qx̄.∀v̄.G′, where G′ is G with all occurrences of each c ∈ CC(G)
replaced by a new quantified variable x, whose quantifier is ∃ if c is A-colored, ∀ if c
is B-colored, and Qx̄ is the prefix of quantifiers thus inserted.

By Lemma 1, provisional interpolants generated by Γ Î are in negation normal form
with all variables, if any, universally quantified, and therefore they satisfy the require-
ments of the definition of lifting. Variables introduced by lifting are requested to be
new, even if they are quantified, so that variables in the result are standardized apart.
The order of quantifiers is immaterial since only constants are lifted. Next, we show
that the lifting of a color-flat provisional interpolant gives an interpolant.

Lemma 2 If Î is a color-flat provisional interpolant of (A,B), then B,Lift(Î) �⊥.

Proof:ByDefinition 12, we haveB, Î �⊥. We show thatB, Î �⊥ impliesB,Lift(Î)�⊥.
By way of contradiction assume that B∧ Lift(Î) is consistent, with a model M =
〈D,Φ〉, where D is the domain and Φ the interpretation function, such that M |=
B∧Lift(Î). We build a model M ′ = 〈D,Φ ′〉 such that M′ |= B∧ Î. By Definition 17,
Î and Lift(Î) are in negation normal form, which means that no quantifier falls in the
scope of an occurrence of negation, and therefore universal (existential) quantifiers
are truly universal (existential). Let Lift(Î)� be the instance of Lift(Î), where the uni-
versally quantified variables introduced by lifting are replaced by the corresponding
B-colored constants originally in Î. Clearly, M |= Lift(Î) implies M |= Lift(Î)�. Let
Φ ′ be identical to Φ in the interpretation of B-colored and transparent symbols. A-
colored symbols do not appear in B∧Lift(Î), and therefore are not interpreted by Φ .
Since Î is color-flat, its only A-colored symbols are constants. Let ca be an A-colored
constant that occurs in Î. Since ca is replaced by an ∃x in Lift(Î) and Lift(Î)�, let
Φ ′(ca) be the element d ∈ D used by M for x when satisfying Lift(Î) and Lift(Î)�.
Then, M′ |= B follows from M |= B, because the two interpretations are identical on
B-colored and transparent symbols. M ′ |= Î follows from M |= Lift(Î)�, because the
only difference between Î and Lift(Î)� is that where Î has an A-colored constant ca,
Lift(Î)� has an existentially quantified variable x, and M ′ interprets ca exactly with
the element of D that M assigns to x to satisfy Lift(Î)�. In conclusion, M ′ |= B∧ Î, a
contradiction. �

The second lemma works dually on the A side, with the rôles of A and B exchanged:

20 M. P. Bonacina and M. Johansson

Lemma 3 If Î is a color-flat provisional interpolant of (A,B), then A � Lift(Î).

Proof: By Definition 12, we have A � Î, or A∧¬Î �⊥. We show that A∧¬Î �⊥ im-
plies A∧¬Lift(Î)�⊥. By way of contradiction, assume that A∧¬Lift(Î) is consistent,
with modelM = 〈D,Φ〉, such thatM |= A∧¬Lift(Î). We build a modelM ′ = 〈D,Φ ′〉
such that M′ |= A∧¬Î. We reduce ¬Î and ¬Lift(Î) to negation normal form by ap-
plying De Morgan laws, which push the negation inside, turning ∃ into ∀ and ∀ into
∃: let (¬Î)† and (¬Lift(Î))† denote the negation normal forms of ¬ Î and ¬Lift(Î).
Since reduction to negation normal form preserves logical equivalence,M |=¬Lift(Î)
implies M |= (¬Lift(Î))†, and proving M ′ |= (¬Î)† suffices to prove M ′ |= ¬Î. The
variables introduced by lifting to replace the A-colored constants in Î are existentially
quantified in Lift(Î) and universally quantified in (¬Lift(Î))†. Let (¬Lift(Î))†

�
be the

instance of (¬Lift(Î))†, where these variables are replaced by the corresponding A-
colored constants originally in Î. Clearly,M |= (¬Lift(Î))† impliesM |= (¬Lift(Î))†

�
.

Let Φ ′ be identical to Φ in the interpretation of A-colored and transparent symbols.
B-colored symbols do not appear in A∧¬Lift(Î), and therefore are not interpreted by
Φ . Since Î is color-flat, the only B-colored symbols in ¬ Î and (¬Î)† are constants. Let
cb be a B-colored constant that occurs in ¬ Î. Since cb is replaced by a ∀x in Lift(Î), it
is replaced by an ∃x in (¬Lift(Î))†. Let Φ ′(cb) be the element d ∈ D used by M for
x when satisfying (¬Lift(Î))† and (¬Lift(Î))†

�
. Then, M′ |= A follows from M |= A,

because the two interpretations are identical on A-colored and transparent symbols.
M′ |= (¬Î)† follows from M |= (¬Lift(Î))†

�
, because the only difference between

(¬Î)† and (¬Lift(Î))†
�
is that where (¬Î)† has a B-colored constant cb, (¬Lift(Î))†

�

has an existentially quantified variable x, and M ′ interprets cb exactly with the ele-
ment of D that M assigns to x to satisfy (¬Lift(Î))†

�
. In conclusion, M ′ |= A∧¬Î, a

contradiction. �

These lemmas explain why lifting replaces A-colored constants by existentially quan-
tified variables, and B-colored constants by universally quantified variables. In Lem-
ma 2, where we reason in a model of B, A-colored constants are new, and their in-
terpretation can be built based on that of existentially quantified variables. When Î
and Lift(Î) are negated, B-colored constants turn out to be replaced by existentially
quantified variables. Thus, in Lemma 3, where we reason in a model of A, it is the
turn of B-colored constants to be new, and have their interpretation built based on that
of existentially quantified variables. The following theorem gives the final result:

Theorem 3 If Î is a color-flat provisional interpolant of (A,B), then Lift(Î) is an
interpolant of (A,B).

Proof: Lift(Î) satisfies the definition of interpolant: (i) A � Lift(Î) holds by Lemma 3;
(ii) B,Lift(Î) �⊥ holds by Lemma 2; and (iii) Lift(Î) is transparent. �

An interpolation system for Γ is obtained by combining Γ Î and lifting:

Definition 18 (Interpolation system Γ I) For all Γ -refutations of A∪B, the inter-
polant of (A,B) produced by Γ I is Lift(Î), where Î is the provisional interpolant of
(A,B) computed by Γ Î.

On Interpolation in Automated Theorem Proving 21

Corollary 1 Γ I is a complete interpolation system for Γ for interpolation problems
whose provisional interpolant is color-flat.

Proof: It follows from Theorems 2 and 3. �

We give next a complete example.

Example 2 Suppose A= { f (x)� g(a,x)}, B= {P(f (b)), ¬P(g(y,b))}, so that ΣA =
{ f ,g,a}, ΣB = {P, f ,g,b}, and the ordering used by Γ -inferences is a recursive
path ordering based on partial precedence f > g > a. Γ produces the refutation:

f (x) � g(a,x)(A) P(f (b))(B)
P(g(a,b))(B)

{x← b} ¬P(g(y,b))(B)
�

{y← a}

where the mgu is written next to the inference line. The first step paramodulates an
A-labeled equation into a B-labeled literal, so that

P̂I(P(g(a,b))) = (f (b)� g(a,b)∨⊥)∧�= f (b)� g(a,b).

The second inference resolves upon twoB-labeled literals, hence Î1= P̂I(�)= f (b)�
g(a,b)∧�= f (b)� g(a,b). The interpolant is I1 = Lift(Î1) = ∀v. ∃w. f (v)� g(w,v),
where the universally quantified variable v replaces the B-colored constant b, and
the existentially quantified variable w replaces the A-colored constant a. The order
of the quantifiers is arbitrary, which means ∃w. ∀v. f (v) � g(w,v) is also an in-
terpolant. If we swap A and B, and a and b, we have A = {P(f (a)), ¬P(g(y,a))},
B = { f (x) � g(b,x)}, ΣA = {P, f ,g,a}, and ΣB = { f ,g,b}, with partial precedence
f > g > b. The Γ -refutation is

f (x)� g(b,x)(B) P(f (a))(A)

P(g(b,a))(A)

{x← a} ¬P(g(y,a))(A)

�
{y← b}

The first inference paramodulates a B-labeled equation into an A-labeled literal.
Thus,

P̂I(P(g(b,a))) =�∧ (f (a) �� g(b,a)∨⊥) = f (a) �� g(b,a).

The second inference produces Î2 = P̂I(�) = f (a) �� g(b,a)∨⊥ = f (a) �� g(b,a).
Then I2= Lift(Î2) = ∃v. ∀w. f (v) �� g(w,v), where the existentially quantified variable
v replaces the A-colored constant a, and the universally quantified variable w replaces
the B-colored constant b. I2 is the negation of I1, as expected from Definition 2.

We conclude this section with a discussion of how the two stage approach can be
applied to DPLL(Γ +T) [13]. A refutation by DPLL-CDCL (the Davis-Putnam-
Logemann-Loveland procedure for propositional satisfiability with Conflict-Driven
Clause Learning) is a refutation by propositional resolution. A refutation byDPLL(T)
is a refutation by DPLL-CDCL, where some leaves may be T -lemmas, rather than

22 M. P. Bonacina and M. Johansson

input clauses. If the T -decision procedure generates proofs, its proofs become sub-
proofs of the DPLL(T)-refutation, and T -lemmas appear as roots of subproofs
rather than as leaves (cf. Section 2.4 in [12]).

A refutation by DPLL(Γ+T) is a refutation by DPLL(T) where also Γ -proof
trees appear as subtrees. Informally, DPLL(Γ+T) works with hypothetical clauses
H �C, where C is a clause, and the hypothesis H is the set (conjunction) of ground
literals, coming from the candidate model built by DPLL(T), that were used as
premises by Γ to infer C (cf. [13] for details). A hypothetical clause (l 1 ∧ . . .∧ ln) �
(l′1∨ . . .∨ l′m) is interpreted as ¬l1∨ . . .∨¬ln∨ l′1∨ . . .∨ l′m. When the system detects
that a clause H �C generated by Γ , and such that C is ground, is in conflict with the
candidate model built by DPLL(T), it generates the ground conflict clause ¬H ∨C,
and explains the conflict by resolution steps according to the DPLL-CDCL paradigm.
This includes as a special case the situation whereC is empty. Thus, ¬H∨C may en-
ter a DPLL(Γ+T)-refutation, with its Γ -proof tree as subproof. Since a Γ -proof
tree is not necessarily ground, even if it generates a H �C whereC is ground, also the
refutation by DPLL(Γ+T) is not necessarily ground.

Thus, one can combineΓ Î with a provisional interpolation system for DPLL(T),
to obtain a provisional interpolation system for DPLL(Γ+T), and then apply lifting
to obtain interpolants from color-flat provisional interpolants. Because provisional
interpolants do not need to be transparent, the two stage approach may allow one to
weaken requirements on the DPLL(T) side. For instance, the color-based interpola-
tion systems for DPLL(T) given in Section 5 of [12] assume that the T -decision
procedure generates proofs and interpolants. Assume that T is a union of theo-
ries T1, . . . ,Tn, and the T -decision procedure is obtained by combining by equality
sharing [54] (cf. Chapter 10 of [14] for a more recent presentation) T i-decision pro-
cedures for 1 ≤ i ≤ n. The color-based interpolation system for equality sharing in
[12] requires that the Ti’s are convex equality-interpolating theories. This condition
ensures that the proof by equality sharing will not contain AB-mixed equalities, as re-
quired by the color-based approach. If all is needed are provisional interpolants, this
requirement may be avoided, and AB-mixed equalities remaining in the provisional
interpolant will be taken care of by lifting.

As a practical example where this weakening of requirements is useful, we men-
tion model-based theory combination (MBTC) [23,13], which is an approach to the
implementation of equality sharing. MBTC works for those T i-decision procedures
that build a candidate Ti-model Mi of the Ti-literals. Although this is a strong re-
quirement, there exists, for instance, solvers for linear arithmetic that satisfy it (e.g.,
[31,23]). Then, MBTC lets the T i-decision procedure propagate equalities true in
Mi, rather than Ti-entailed disjunctions of equalities between shared constants, as in
standard equality sharing. These equalities are only guesses, because it is not known
whether they are true in all Ti-models. If one of them turns out to be inconsistent, a
conflict occurs. The backjumping mechanism of DPLL-CDCL withdraws the culprit
equality. For those decision procedures for which MBTC works, this also generates
enough information to fixMi. On the other hand, if a disjunction of equalities between
shared constants is Ti-entailed, at least one of them is true in Mi.

The proof of refutational completeness of DPLL(Γ +T) in [13] relies on the
standard result of completeness of equality sharing for disjoint and stably infinite

On Interpolation in Automated Theorem Proving 23

theories (cf. Chapter 10 of [14]) with propagation of entailed disjunctions of equali-
ties between shared constants. In practice, an implementation of DPLL(Γ+T) may
use MBTC, for instance for linear arithmetic. If DPLL(Γ+T) generates a refutation,
by soundness, it means that the input is unsatisfiable. Thus, all equalities guessed by
MBTC turn out to be inconsistent, are undone by backjumping, and cannot appear
in the refutation as unit T -lemmas. However, they may appear as disjuncts in non-
unit T -lemmas. These equalities propagated by MBTC may be AB-mixed, so that
a color-based interpolation system for equality sharing does not apply. On the other
hand, a provisional interpolation system tolerates AB-mixed equalities, and therefore
the two-stage approach allows one to circumvent this practical problem.

6 Related Work

The approach in [42] is the closest to ours, because it also targets resolution and
paramodulation in first-order logic with equality, without restrictions to colored or
ground proofs, and works in two stages. It employs a notion of coming from A or from
B defined for predicate symbols and applied also to literals. Literals may also come
from both, which is justified in [42] with factoring. However, also other inference
rules may match and mix what comes from A with what comes from B when they
unify literals. When the notion is applied to literals, the fact that the classification of
a literal may depend on the clause where it occurs does not seem to be considered in
[42]. A classification of predicate symbols does not depend on the clause (e.g., P is P
in bothC1 = P(x,y)∨R(y,x) andC2 = P(a,b)∨R(b,a)), whereas one of literals does
(e.g., P(x,y) and P(a,b) are two different literals), as literals get instantiated below
the predicate symbol level. When the notion is applied to symbols, and because of the
three-way distinction from A, from B, from both, which looks analogous to A-colored,
B-colored, transparent, the notion of “coming from” resembles that of color.

We use labels to capture the intuition of a literal descending from A or from B.
Every literal is eitherA-labeled or B-labeled, not both.We keep colors and labels dis-
tinct: colors are based on signature, apply to symbols (cf. Definition 4), and to literals
as a consequence (cf. Definition 5); labels are based on inference, apply to literals,
and appropriately depend on the clause where the literal occurs (cf. Definition 10).

In the first stage, Huang’s system computes relational interpolants, that are de-
fined like partial interpolants, but without using projections, and admitting only trans-
parent predicate symbols. Informally, relational interpolants play in Huang’s system
a rôle analogous to that of provisional partial interpolants in ours. While our defini-
tion of provisional interpolant does not require predicate symbols to be transparent,
the provisional interpolants produced by Γ Î satisfy this requirement (cf. Lemma 1).
Projections are not defined in [42]; however labeled projections and their commuta-
tivity with substitutions seem to be used implicitly in the proof of completeness of
the interpolation system for resolution (cf. Proof of Theorem 2 on page 182 of [42]).

Γ Î and Huang’s system have the same base cases (cf. Definition 15 and Case (i)
on page 182 of [42]). Then, Γ Î has four inductive cases for resolution, because there
are two literals resolved upon and two labels. On the other hand, Huang’s system has
three inductive cases for resolution:

24 M. P. Bonacina and M. Johansson

– Both literals resolved upon coming from A (cf. Case (ii)(a) on page 182 of [42]),
which is the same as the one in Definition 15 where both literals resolved upon
have label A;

– Both coming from B (cf. Case (ii)(b) on page 182 of [42]), which is the same as
the one in Definition 15 where both literals resolved upon have label B; and

– A third catch-all case (cf. Case (ii)(c) on page 182 of [42]), which in our notation
is written P̂I(c) = [(¬l′ ∧ P̂I(p1))∨ (l∧ P̂I(p2))]σ .

Similarly, in place of the two cases for factoring in Definition 15, Huang’s system has
one, where P̂I(c) = P̂I(p)σ (cf. Case (iv) on page 184 of [42]).

For paramodulation, Huang’s system has three inductive cases, numbered (iii)(d),
(iii)(e), and (iii)(f) on page 183 of [42]. Cases (iii)(d) and (iii)(e) use a notion of
maximal A-term or B-term defined as follows: an A-term is a term whose top symbol
comes from A, and an occurrence of an A-term is maximal if it is not a subterm
of another A-term. B-terms and their maximal occurrences are defined in the same
way with B in place of A. Here the notion of “coming from” is implicitly extended to
function symbols, so that it appears to coincide with color, in the sense that an A-term
is a termwhose top symbol is A-colored.We reproduce the three cases in our notation,
assuming that p1 : s� r∨C paramodulates into p2 : l[s′]∨D as in Definition 15:

(iii)(d) P̂I(c) = [(P̂I(p2)∧ s� r)∨ (P̂I(p1)∧ s �� r)]σ ∨ (s� r∧h(s) �� h(r))σ , provided
s′ occurs in l[s′]∨D as subterm of a maximal B-term h(s ′), and there is more than
one occurrence of h(s ′) in l[s′]∨D∨ P̂I(p2);

(iii)(e) P̂I(c) = [(P̂I(p2)∧ s� r)∨ (P̂I(p1)∧ s �� r)]σ ∧ (s �� r∨h(s)� h(r))σ , provided
s′ occurs in l[s′]∨D as subterm of a maximal A-term h(s ′), and there is more than
one occurrence of h(s ′) in l[s′]∨D∨ P̂I(p2);

(iii)(f) P̂I(c) = [(P̂I(p2)∧ s� r)∨ (P̂I(p1)∧ s �� r)]σ , otherwise.

It is not said whether h is a function symbol or a context. Cases (iii)(d) and (iii)(e)
are neither explained nor applied in the examples, while Cases (iii)(e) and (iii)(f) are
not covered in the proof of completeness. Resolution and paramodulation are treated
separately, so that, for instance, the notion of “literal coming from” is not defined,
when the parent of a resolution step is a paramodulant. Our provisional interpola-
tion system Γ Î uses labels systematically, and treats resolution and paramodulation
uniformly and in an integrated way.

The second stage in [42] features a lifting mechanism which replaces maximal
A-terms with existentially quantified variables and maximal B-terms with universally
quantified variables. We borrowed the name “lifting” from [42], however our lifting
mechanism only replaces colored constants. The idea of obtaining interpolants by re-
placing non-shared constant symbols with quantified variables appeared in [21], was
mentioned in [50], and under the name of abstraction, was used in [4] to interpolate
LK-proofs with only atomic cuts (cf. Chapter 8.2). If the system is allowed to replace
compound subterms by quantified variables, alternations of quantifiers must be gener-
ated in the right order in order to obtain an interpolant. For instance, forA= {P(a,x)},
B = {¬P(y, f (y))}, and Î = P(a, f (a)), where the first occurrence of a is a maximal
A-term, and f (a) is a maximal B-term, the interpolant is I = ∃z.∀w.P(z,w), because
w depends on z, as a is a subterm of f (a), whereas ∀w.∃z.P(z,w) is not an interpolant.
The argument of the proofs of our Lemmas 3 and 2 does not apply if lifting replaces

On Interpolation in Automated Theorem Proving 25

compound terms, because there is not enough information to build an interpretation
of Î from one of Lift(Î) if function symbols are removed. The claim of complete-
ness in [42] rests on a different proof argument, which goes through grounding the
non-ground proof: we refer the interested reader to [42] for details.

After [42], the study of interpolation for superposition restarted in [51], with the
notions of local inference and proof, and a hint that non-local superposition infer-
ences would have to be procrastinated, until they become local by further instanti-
ation. In hindsight this may be seen as an early lead towards approaches based on
instantiation and proof transformation, that were later developed in [18] and [52] for
ground refutations by a DPLL(T)-based SMT-solver, equipped with an instantiation
procedure (e.g., [28,22,36,53,37]) to generate ground instances of non-ground input
axioms. The refutations to be interpolated are ground, but not necessarily colorable,
because instantiation may insert AB-mixed literals. In [18], purification replaces crit-
ical subterms by new constant symbols considered transparent. In [52], localization
replaces critical subterms by new constant symbols considered interpreted. Purifica-
tion visits the literal top-down, while localization proceeds bottom-up. In both ap-
proaches, equations defining the new constant symbols are introduced in the proof.
Since new constants do not belong to the original signature, they are later replaced
by quantified variables. In order to avoid loops in the definitions, and introduce the
quantifiers with the correct alternations, bothmethods use an ordering, defined in [18]
as the topological order on the inverse dependency graph of the equations defining
the new constants, and captured in [52] by a precedence on new constants.

Another line of research stemming from [51] was pursued in [46,40,41]. A key
idea in both [50] and [46] is that an interpolant is a boolean combination of transpar-
ent formulæ from the proof. In [46] this result is formulated as a lemma which proves
the existence of C-interpolants for transparent clauses in local proof trees built by
generic inferences. A C-interpolant is defined like a partial interpolant of clause C,
for the special case where C is transparent and therefore projections are not needed.
The approach is inductive, as the constructed C-interpolant is a boolean combina-
tion of selected transparent ancestors of C in the proof and their C-interpolants. The
selected ancestors are consequences of symbol-eliminating inferences, meaning infer-
ences that deduce a transparent consequence from premises with at least one colored
symbol. The report of experiments in [40] discusses restricting inferences in Vam-
pire, to favor the generation of colored proofs, and having the prover output all con-
sequences of symbol-eliminating inferences. The development in [41] adds a notion
of digest of a proof, to specify which ancestors to pick to construct theC-interpolant.
The digest is made of transparent subproofs between colored subproofs. The focus
of [41] is on two proof transformations. The first one aims at localizing non-local
refutations: it assumes that the only colored symbols in proofs are constants, and it
replaces constants of one color, either A-color, or B-color, by existentially quantified
variables. Since the purpose is localizing the proof, eliminating one color suffices.
The second one, called grey slicing, aims at minimizing the generated interpolant: it
works by repeatedly removing intermediate transparent clauses. The experiments in
[41] involve Z3 [24] and Vampire [47]: localization is applied to the proofs by Z3,
which are ground. Clearly, not all proofs can be localized, and localization fails if
there are colored function symbols.

26 M. P. Bonacina and M. Johansson

7 Discussion

We studied interpolation of refutations generated by inference systems for first-order
logic with equality based on resolution and paramodulation/superposition. The main
contribution is a new interpolation system for non-ground refutations, which gener-
ates first provisional interpolants, and obtains then interpolants by replacing colored,
or non-shared, constant symbols with quantified variables. This interpolation system
is complete if the provisional interpolant is color-flat, meaning that its only colored
symbols are constants. The general question of extracting an interpolant from any
refutation by resolution and paramodulation, for any interpolation problem (A,B),
without hypotheses or restrictions, remains open. Although the restriction to color-
flat provisional interpolants is not a minor one, our interpolation system may be rele-
vant to several fragments without function symbols, that are decidable, have the finite
model property (e.g., [34,56]), and in some cases admit superposition-based decision
procedures (e.g., [35,33,32]).

We started with examples showing that a color-based approach to interpolation
(surveyed in [12] for the ground case) does not generalize to non-ground proofs,
not even assuming that they are colorable, colored (also known as local), or that
all predicate and function symbols are interpreted or transparent. Counter-examples
where the only colored symbols are constants suffice. Thus, we reckoned that in the
inductive approach to interpolation, one needs (1) to track the descendance of literals
from either the A or the B part of the refutation, to ensure that the interpolant follows
from A and is inconsistent with B, and (2) to check that only transparent literals enter
in the interpolant. The color-based style employs colors to achieve both goals.

We presented a two-stage approach, inspired by [42], which separates the two
concerns. In the first stage, a provisional interpolation system uses labels in place of
colors to track descendance of literals, and computes a provisional interpolant, which
follows from A and is inconsistent with B, but may contain colored symbols. A key
property of this labeling mechanism is that labels are independent of substitutions,
because they are inherited through inferences, rather than being defined based on sig-
natures like colors. In this way, the obstacle represented by the fact that an instance
lσ is not guaranteed to have the same color of l, which hinders the color-based ap-
proach, disappears. We defined an inductive provisional interpolation system for Γ ,
named Γ Î, and proved its completeness (cf. Theorem 2).

In the second stage, lifting replaces A-colored constants with existentially quan-
tified variables, and B-colored constants with universally quantified variables. This
suffices to obtain a transparent formula, if all function symbols in the provisional
interpolant are either interpreted or transparent, as Γ Î already ensures that predicate
symbols will be such. Under this hypothesis, we proved that the lifting of provisional
interpolants yields interpolants (cf. Theorem 3), thus establishing the completeness
of the interpolation system Γ I that combines Γ Î with lifting.

In some contexts this hypothesis is satisfied because there are no function sym-
bols. Examples include Datalog or the recursion-free Horn clauses without uninter-
preted function symbols of [56]. Other examples are some decidable fragments of
first-order logic studied for instance in [34]: the Löwenheim class with equality, also
known as first-order relational monadic logic (only unary predicates and constants,

On Interpolation in Automated Theorem Proving 27

no functions); the Bernays-Schönfinkel-Ramsey (BSR) class with equality (formulæ
of the form ∃∗∀∗ϕ , where ϕ is quantifier-free and function-free, while constants are
allowed); and the FO2 class (first-order formulæ with only two variables, with con-
stants, no functions). A subclass of BSR, the Bernays-Schönfinkel-Horn class, is suf-
ficient to axiomatize timed automata, with superposition as a decision procedure [33,
32]. The FO2 class includes themodal fragment, or the fragment of formulæ obtained
by translating modal logic into first-order logic. The modal fragment was generalized
to the guarded fragment in [1], by showing that the key property for decidability is
not the number of variables, but the absence of function symbols and the restriction
on quantification. A superposition-baseddecision procedure for the guarded fragment
was given in [35].Model-building decision procedures for the guarded fragment were
studied in [29].

We discussed the application of the two-stage approach to the DPLL(Γ +T)
method of [13]. As surveyed in [12], a color-based approach to interpolation of equal-
ity sharing requires the built-in theories to be convex equality-interpolating, to avoid
the propagation of AB-mixed literals. A different approach to interpolation in com-
bination of theories appears in [15,16]. In a two-stage approach AB-mixed literals
become harmless, and this requirement is no longer necessary. This may be useful
for implementations of equality sharing that employmodel-based theory combination
[23], which propagates equalities true in a model, rather than entailed, and may prop-
agate AB-mixed equalities. Model-based theory combination is used, for instance, for
linear integer arithmetic, which is not equality-interpolating.

The state of the art on interpolation can be advanced by giving interpolation sys-
tems for logics, theories, or inference systems that did not have them, or by giving
interpolation systems that produce better interpolants than the existing ones. Our re-
search is of the first kind, and therefore we aimed at generality and completeness, by
developing a two-stage approach that overcomes the limitations of the color-based
approach with respect to non-ground proofs. A direction for future work is to aim
at a two-stage interpolation system that handles also provisional interpolants that are
not color-flat: a possibility is to investigate combining our provisional interpolation
system with a reconstruction of the second stage of [42]. Since the two-stage ap-
proach may generate interpolants with many quantifiers, other topics for future work
are the evaluation of its practical efficiency by implementation and experiments, and
the analysis of its complexity. Also important is the study of the characteristics of the
generated interpolants, such as strength, length, number of quantifier alternations,
and how to bound them. Research on the qualities of interpolants will benefit from
feed-back from experiments and may be more significant if conducted in relation to
specific applications.

Acknowledgements Early versions of parts of this work were presented at meetings of COST Action
IC0109 in Tallinn (March 2012), and Haifa (November 2012), at a Workshop in Honor of Arnon Avron
in Tel Aviv (November 2012), and at the First International Workshop on Interpolation: from Proofs to
Applications in St. Petersburg (July 2013). We thank the organizers, and Leonardo de Moura, Swen Jacobs,
Laura Kovàcs, Viktor Kuncak, Ken McMillan, Philipp Rümmer, and Andrei Voronkov, for their comments.
We thank the anonymous reviewers for their suggestions.

28 M. P. Bonacina and M. Johansson

References

1. Hajnal Andréka, Johan van Benthem, and István Nemeti. Modal logics and bounded fragments of
predicate logic. Journal of Philosophical Logic, 27(3):217–274, 1998.

2. Alessandro Armando, Maria Paola Bonacina, Silvio Ranise, and Stephan Schulz. New results on
rewrite-based satisfiability procedures. ACM Transactions on Computational Logic, 10(1):129–179,
2009.

3. Alessandro Armando, Silvio Ranise, and Michaël Rusinowitch. A rewriting approach to satisfiability
procedures. Information and Computation, 183(2):140–164, 2003.

4. Matthias Baaz and Alexander Leitsch. Methods of Cut-Elimination. Springer, Berlin, 2011.
5. Sascha Böhme and Michal Moskał. Heaps and data structures: a challenge for automated provers. In
Nikolaj Bjørner and Viorica Sofronie-Stokkermans, editors, Proceedings of the 23rd Conference on
Automated Deduction (CADE), volume 6803 of Lecture Notes in Artificial Intelligence, pages 177–
191, Berlin, 2011. Springer.

6. Maria Paola Bonacina. On theorem proving for program checking – historical perspective and recent
developments. In Maribel Fernandez, editor, Proceedings of the 12th International Symposium on
Principles and Practice of Declarative Programming (PPDP), pages 1–11, New York, NY, 2010.
ACM.

7. Maria Paola Bonacina. Two-stage interpolation systems. In Laura Kovàcs and Georg Weissenbacher,
editors, Notes of the First International Workshop on Interpolation: from Proofs to Applications
(IPrA), Twenty-Fifth International Conference on Computer Aided Verification (CAV), Technical Re-
ports. Technische Universität Wien, 2013.

8. Maria Paola Bonacina and Mnacho Echenim. Rewrite-based satisfiability procedures for recursive
data structures. In Byron Cook and Roberto Sebastiani, editors, Proceedings of the 4th Workshop
on Pragmatics of Decision Procedures in Automated Reasoning (PDPAR 2006), volume 174(8) of
Electronic Notes in Theoretical Computer Science, pages 55–70, Amsterdam, 2007. Elsevier.

9. Maria Paola Bonacina and Mnacho Echenim. On variable-inactivity and polynomial T -satisfiability
procedures. J. Logic and Computation, 18(1):77–96, 2008.

10. Maria Paola Bonacina and Jieh Hsiang. On the modelling of search in theorem proving – towards a
theory of strategy analysis. Information and Computation, 147:171–208, 1998.

11. Maria Paola Bonacina and Moa Johansson. On interpolation in decision procedures. In Kai Brünnler
and George Metcalfe, editors, Proceedings of the 20th International Conference on Analytic Tableaux
and Related Methods (TABLEAUX), volume 6793 of Lecture Notes in Artificial Intelligence, pages
1–16, Berlin, 2011. Springer.

12. Maria Paola Bonacina and Moa Johansson. Interpolation of ground proofs: a survey. Submitted for
publication, 2014. Available at http://profs.sci.univr.it/~bonacina/.

13. Maria Paola Bonacina, Christopher A. Lynch, and Leonardo de Moura. On deciding satisfiability by
theorem proving with speculative inferences. J. Automated Reasoning, 47:161–189, 2011.

14. Aaron R. Bradley and Zohar Manna. The Calculus of Computation – Decision Procedures with
Applications to Verification. Springer, Berlin, 2007.

15. Roberto Bruttomesso, Silvio Ghilardi, and Silvio Ranise. From strong amalgamability to modularity
of quantifier-free interpolation. In Bernhard Gramlich, Dale Miller, and Ulrike Sattler, editors, Pro-
ceedings of the 6th International Joint Conference on Automated Reasoning (IJCAR), volume 7364
of Lecture Notes in Artificial Intelligence, pages 118–133, Berlin, 2012. Springer.

16. Roberto Bruttomesso, Silvio Ghilardi, and Silvio Ranise. Quantifier-free interpolation in combina-
tions of equality interpolating theories. ACM Transactions on Computational Logic, 15(1), 2014.

17. Ritu Chadha and David A. Plaisted. On the mechanical derivation of loop invariants. J. Symbolic
Computation, 15(5-6):705–744, 1993.

18. Jürgen Christ and Jochen Hoenicke. Instantiation-based interpolation for quantified formulae. Notes
of the 8th International Workshop on Satisfiability Modulo Theories (SMT), 2010.

19. Alessandro Cimatti, Alberto Griggio, and Roberto Sebastiani. Efficient interpolant generation in
satisfiability modulo theory. ACM Transactions on Computational Logic, 12(1):Article 7, 2010.

20. William Craig. Linear reasoning. A new form of the Herbrand-Gentzen theorem. J. Symbolic Logic,
22(3):250–268, 1957.

21. William Craig. Three uses of the Herbrand-Gentzen theorem in relating model theory and proof
theory. J. Symbolic Logic, 22(3):269–285, 1957.

22. Leonardo de Moura and Nikolaj Bjørner. Efficient E-matching for SMT-solvers. In Frank Pfenning,
editor, Proceedings of the 21st Conference on Automated Deduction (CADE), volume 4603 of Lecture
Notes in Artificial Intelligence, pages 183–198, Berlin, 2007. Springer.

On Interpolation in Automated Theorem Proving 29

23. Leonardo de Moura and Nikolaj Bjørner. Model-based theory combination. In Sava Krstić and Albert
Oliveras, editors, Proceedings of the 5th Workshop on Satisfiability Modulo Theories (SMT 2007),
volume 198(2) of Electronic Notes in Theoretical Computer Science, pages 37–49, Amsterdam, 2008.
Elsevier.

24. Leonardo de Moura and Nikolaj Bjørner. Z3: an efficient SMT solver. In C. R. Ramakrishnan and
Jakob Rehof, editors, Proceedings of the 14th Conference on Tools and algorithms for the construction
and analysis of systems (TACAS), volume 4963 of Lecture Notes in Computer Science, pages 337–340,
Berlin, 2008. Springer.

25. Leonardo de Moura and Nikolaj Bjørner. Bugs, moles and skeletons: Symbolic reasoning for software
development. In Jürgen Giesl and Reiner Hähnle, editors, Proceedings of the 5th International Joint
Conference on Automated Reasoning (IJCAR), volume 6173 of Lecture Notes in Artificial Intelligence,
pages 400–411, Berlin, 2010. Springer.

26. Leonardo de Moura and Nikolaj Bjørner. Satisfiability modulo theories: introduction and applications.
Comm. ACM, 54(9):69–77, 2011.

27. Nachum Dershowitz and David A. Plaisted. Rewriting. In Alan Robinson and Andrei Voronkov,
editors, Handbook of Automated Reasoning, volume 1, pages 535–610. Elsevier, Amsterdam, 2001.

28. David L. Detlefs, Greg Nelson, and James B. Saxe. Simplify: a theorem prover for program checking.
JACM, 52(3):365–473, 2005.

29. Michael Dierkes. Model Building for Sets of Guarded Clauses. PhD thesis, Institut National Poly-
technique de Grenoble, 2001.

30. Vijay D’Silva, Daniel Kroening, Mitra Purandare, and Georg Weissenbacher. Interpolant strength. In
Gilles Barthe and Manuel V. Hermenegildo, editors, Proceedings of the 11th International Conference
on Verification, Model Checking, and Abstract Interpretation (VMCAI), volume 5944 of Lecture Notes
in Computer Science, pages 129–145, Berlin, 2010. Springer.

31. Bruno Dutertre and Leonardo de Moura. A fast linear arithmetic solver for DPLL(T). In Tom Ball
and R. B. Jones, editors, Proceedings of the 18th Conference on Computer Aided Verification (CAV),
volume 4144 of Lecture Notes in Computer Science, pages 81–94, Berlin, 2006. Springer.

32. Arnaud Fietzke. Labelled superposition. PhD thesis, Max Planck Institut für Informatik, Saabrücken,
2013.

33. Arnaud Fietzke and Christoph Weidenbach. Superposition as a decision procedure for timed automata.
Mathematics in Computer Science, 6(4):409–425, 2012.

34. Pascal Fontaine. Combinations of theories for decidable fragments of first-order logic. In Silvio Ghi-
lardi and Roberto Sebastiani, editors, Proceedings of the 7th Symposium on Frontiers of Combining
Systems (FroCoS), volume 5749 of Lecture Notes in Artificial Intelligence, pages 263–278. Springer,
2009.

35. Harald Ganzinger and Hans de Nivelle. A superposition decision procedure for the guarded fragment
with equality. In Proceedings of the 14th IEEE Symposium on Logic in Computer Science (LICS).
IEEE Computer Society Press, 1999.

36. Yeting Ge, Clark Barrett, and Cesare Tinelli. Solving quantified verification conditions using satisfi-
ability modulo theories. In Frank Pfenning, editor, Proceedings of the 21st Conference on Automated
Deduction (CADE), volume 4603 of Lecture Notes in Artificial Intelligence, pages 167–182, Berlin,
2007. Springer.

37. Yeting Ge and Leonardo de Moura. Complete instantiation for quantified formulas in satisfiability
modulo theories. In Ahmed Bouajjani and Oded Maler, editors, Proceedings of the 21st Conference
on Computer Aided Verification (CAV), volume 5643 of Lecture Notes in Computer Science, pages
306–320, Berlin, 2009. Springer.

38. Amit Goel, Sava Krstić, and Cesare Tinelli. Ground interpolation for combined theories. In Renate
Schmidt, editor, Proceedings of the 22nd Conference on Automated Deduction (CADE), volume 5663
of Lecture Notes in Artificial Intelligence, pages 183–198, Berlin, 2009. Springer.

39. Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Kenneth L. McMillan. Abstractions from
proofs. In Xavier Leroy, editor, Proceedings of the 31st ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages (POPL), pages 232–244, New York, NY, 2004. ACM.

40. Kryštof Hoder, Laura Kovàcs, and Andrei Voronkov. Interpolation and symbol elimination in Vam-
pire. In Jürgen Giesl and Reiner Hähnle, editors, Proceedings of the 5th International Joint Confer-
ence on Automated Reasoning (IJCAR), volume 6173 of Lecture Notes in Artificial Intelligence, pages
188–195, Berlin, 2010. Springer.

41. Kryštof Hoder, Laura Kovàcs, and Andrei Voronkov. Playing in the grey area of proofs. In Michael
Hicks, editor, Proceedings of the 39th ACM SIGACT-SIGPLAN Symposium on Principles of Program-
ming Languages (POPL), pages 259–272, New York, NY, 2012. ACM.

30 M. P. Bonacina and M. Johansson

42. Guoxiang Huang. Constructing Craig interpolation formulas. In Ding-Zhu Du and Ming Li, edi-
tors, Proceedings of the 1st Annual International Conference on Computing and Combinatorics (CO-
COON), volume 959 of Lecture Notes in Computer Science, pages 181–190, Berlin, 1995. Springer.

43. Deepak Kapur. A quantifier-elimination based heuristic for automatically generating inductive asser-
tions of programs. J. System Science and Complexity, 19(3):307–330, 2006.

44. Deepak Kapur, Zhihai Zhang, Matthias Horbach, Hengjun Zhao, Qi Lu, and Thanh Vu Nguyen. Ge-
ometric quantifier elimination heuristics for automatically generating octagonal and max-plus invari-
ants. In Maria Paola Bonacina and Mark E. Stickel, editors, Automated Reasoning and Mathematics:
Essays in Memory of William W. McCune, volume 7788, pages 189–228. Springer, Berlin, 2013.

45. Laura Kovàcs and Andrei Voronkov. Finding loop invariants for programs over arrays using a theorem
prover. In Proc. of the Conf. on Fundamental Approaches to Software Engineering, number 5503 in
LNCS, pages 470–485, Berlin, 2009. Springer.

46. Laura Kovàcs and Andrei Voronkov. Interpolation and symbol elimination. In Renate Schmidt, editor,
Proceedings of the 22nd Conference on Automated Deduction (CADE), volume 5663 of Lecture Notes
in Artificial Intelligence, pages 199–213, Berlin, 2009. Springer.

47. Laura Kovàcs and Andrei Voronkov. First order theorem proving and Vampire. In Natasha Sharygina
and Helmut Veith, editors, Proceedings of the 25th Conference on Computer Aided Verification (CAV),
volume 8044 of Lecture Notes in Computer Science, pages 1–35, Berlin, 2013. Springer.

48. Daniel Kroening and GeorgWeissenbacher. Interpolation-based software verification with Wolverine.
In Ganesh Gopalakrishnan and Shaz Qaader, editors, Proceedings of the 23rd Conference on Com-
puter Aided Verification (CAV), volume 6806 of Lecture Notes in Computer Science, pages 573–578,
Berlin, 2011. Springer.

49. Kenneth L. McMillan. Interpolation and SAT-based model checking. In Proceedings of the 15th Con-
ference on Computer Aided Verification (CAV), volume 2725 of Lecture Notes in Computer Science,
pages 1–13, Berlin, 2003. Springer.

50. Kenneth L. McMillan. An interpolating theorem prover. Theoretical Computer Science, 345(1):101–
121, 2005.

51. Kenneth L. McMillan. Quantified invariant generation using an interpolating saturation prover. In
C. R. Ramakrishnan and Jakob Rehof, editors, Proceedings of the 14th Conference on Tools and
Algorithms for Construction and Analysis of Systems (TACAS), volume 4963 of Lecture Notes in
Computer Science, pages 413–427, Berlin, 2008. Springer.

52. Kenneth L. McMillan. Interpolants from Z3 proofs. In Per Bjesse and Anna Slobodova, editors,
Proceedings of the 11th Conference on Formal Methods in Computer Aided Design (FMCAD), New
York, NY, 2011. ACM and IEEE.

53. Michal Moskał. Fx7 or in software, it is all about quantifiers. System Descriptions at the Satisfiability
Modulo Theories Competition (SMT-COMP), 2007. Available at http://research.microsoft.
com/en-us/um/people/moskal/.

54. Greg Nelson and Derek C. Oppen. Simplification by cooperating decision procedures. ACM Trans-
actions on Programming Languages and Systems, 1(2):245–257, 1979.

55. Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT and SAT modulo theories:
from an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). JACM, 53(6):937–977,
2006.

56. Philipp Rümmer, Hossein Hojjat, and Viktor Kuncak. Disjunctive interpolation for Horn clause ver-
ification. In Natasha Sharygina and Helmut Veith, editors, Proceedings of the 25th Conference on
Computer Aided Verification (CAV), volume 8044 of Lecture Notes in Computer Science, pages 347–
363, Berlin, 2013. Springer.

57. Stephan Schulz. System description: E 1.8. In Ken McMillan, Aart Middeldorp, and Andrei
Voronkov, editors, Proceedings of the 19th Conference on Logic, Programming and Automated Rea-
soning (LPAR), volume 8312 of Lecture Notes in Artificial Intelligence, pages 735–743, Berlin, 2013.
Springer.

58. Natarajan Shankar. Automated deduction for verification. ACM Comput. Surv., 41(4):40–96, 2009.
59. Raymond M. Smullyan. First-Order Logic. Dover Publications, New York, NY, 1995. First published

by Springer in 1968.
60. Christoph Weidenbach, Dylana Dimova, Arnaud Fietzke, Rohit Kumar, Martin Suda, and Patrick

Wischnewski. SPASS version 3.5. In Renate Schmidt, editor, Proceedings of the 22nd Conference on
Automated Deduction (CADE), volume 5663 of Lecture Notes in Artificial Intelligence, pages 140–
145, Berlin, 2009. Springer.

61. Georg Weissenbacher. Program Analysis with Interpolants. PhD thesis, Magdalen College, Oxford
University, 2010.

