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Abstract Interpolation is a deductive technique applied in program analysis and ver-

ification: for example, it is used to compute over-approximations of images or refine

abstractions. An interpolation system takes a refutation and extracts an interpolant

by building it inductively from partial interpolants. We survey color-based interpola-

tion systems for ground proofs produced by key inference engines of state-of-the-art

solvers: DPLL for propositional logic, equality sharing for combination of convex

theories, and DPLL(T ) for SMT-solving. Since color-based interpolation systems

use colors to track symbols in proofs, equality is problematic, because replacement

of equals by equals mixes symbols and therefore colors. We analyze interpolation in

the presence of equality, and we demonstrate the color-based approach by giving a

complete interpolation system for ground proofs by superposition.

Keywords Interpolation Systems · Satisfiability Modulo Theories · Decision

Procedures · Theory Combination

1 Introduction

1.1 Motivation and Aim

Automated reasoners play a major rôle in supporting tools for program analysis and

verification, as described for instance in [81,32,8,33]. A theorem-proving technique

applied in this context is interpolation, or the operation of extracting interpolants
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from proofs. Given closed formulæ A and B such that A implies B, an interpolant of

A and B is a closed formula that is implied by A, implies B, and contains only symbols

they share; if A implies ¬B, A and B are inconsistent, and an interpolant of A and ¬B

is a reverse interpolant of A and B. If A and B are written in the language of a theory,

so is the interpolant, and implication is implication in the theory.

The first motivation to study interpolation was to allow software model checking

to benefit from theorem proving by abstraction refinement (e.g., [64,48,66,52,2]). A

model checker is applied to determine whether an abstraction of a concrete program

P satisfies a property: if it does, so does P; otherwise, the model checker produces

a counter-example, representing an execution trace leading to an error state, and a

formula, which is satisfiable if and only if the counter-example applies also to P. If

the formula is found unsatisfiable by a theorem prover, the counter-example is spuri-

ous, and the abstraction should be refined to exclude it. Interpolants of the refutation

may capture intermediate states in the spurious error trace, and can be used to re-

fine the abstraction, by re-introducing, for instance, predicate symbols occurring in

interpolants, to exclude states that lead to the spurious error.

Interpolation for abstraction refinement was proposed first for propositional logic

and propositional satisfiability (SAT) (e.g., [64,52,37,86]), and then for quantifier-

free fragments of first-order theories, their combinations (e.g., [88,45,21,23]), and

satisfiability modulo theories (SMT) (e.g., [48,53,24,86]). Considered theories in-

clude equality [65,58,26,39], linear rational arithmetic [65,26], linear integer arith-

metic [17,19], or fragments thereof [26], arrays [18,22,2], and bitvectors [86,46]. In

these approaches, the theory reasoning is done either by specialized inference sys-

tems [48,65,17–19] or by satisfiability procedures [86,46,22,39,2], built into the

DPLL(T ) framework for the “lazy” approach to SMT (e.g., [88,45,26]). In the “ea-

ger” approach, the first-order theory is encoded into propositional logic. Although the

“lazy” approach is generally preferred, if the application suggests to be “eager,” one

may remedy the loss of proof structure caused by the encoding, by lifting the proposi-

tional resolution proof produced by the SAT-solver to a proof in the first-order theory,

and interpolate the latter [58].

In all these contexts, the formulae A and B to be interpolated and the proofs are

ground, because the fragments are quantifier-free and the theory axioms are built-in.

This does not imply that interpolants are quantifier-free. A theory is quantifier-free

interpolating if quantifier-free input formulæ are guaranteed to have quantifier-free

interpolants. Given a ground proof, it is obviously desirable to extract a quantifier-free

interpolant, and therefore this end of the field is mostly interested in quantifier-free

interpolation. Sufficient and necessary conditions to ensure that a union of quantifier-

free interpolating theories is quantifier-free interpolating were given in [21,23].

In this article, we study interpolation of ground proofs, referring to [15] for the

general case. We consider some of the main inference engines at the heart of contem-

porary solvers and provers: DPLL, equality sharing, DPLL(T ), and superposition.

DPLL stands for the Davis-Putnam-Logemann-Loveland procedure for propositional

satisfiability (SAT) originated in [30,29]: the version assumed here is the one with

Conflict-Driven Clause Learning (DPLL-CDCL) [62,71,61], which is the basis of

contemporary SAT-solvers. Equality sharing is the original name (cf. pages 383–386

in [35]) of the Nelson-Oppen method [75] to combine satisfiability procedures for
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theories T1, . . . ,Tn to get a satisfiability procedure for their union T =
⋃n

i=1 Ti (cf.

Chapter 10 of [16] for a textbook presentation). DPLL(T ) is DPLL with a built-in

procedure for satisfiability in theory T [76], typically obtained by equality sharing.

DPLL(T ) and equality sharing are the foundations of SMT-solvers. Superposition-

based inference systems are used in theorem provers for first-order logic with equal-

ity, and also yield decision procedures for theories relevant to program verification

(e.g., [4,3,10,11]).

1.2 State of the Art

Given a refutation, an interpolation system works by associating a partial interpolant

to every clause, in such a way that the partial interpolant of the empty clause is a

reverse interpolant of the input formulæ. We call this approach inductive, because

an interpolation system is defined by defining how it builds the partial interpolant

of the conclusion from those of the premises, for all inference rules. We deem an

interpolation system complete for an inference system, if for all its refutations it ex-

tracts a reverse interpolant. Since it does not require the generation of all possible

interpolants of a refutation, this notion of completeness lets an inference system have

different complete interpolation systems generating different interpolants.

Complete interpolation systems for propositional resolution, and therefore for

DPLL, which produces proofs by propositional resolution, were given in [51,56,77,

64,88] and surveyed in [37]. Since [88], an interpolation system for DPLL(T ) is

obtained by uniting interpolation systems for DPLL and equality sharing. A com-

plete interpolation system for equality sharing was given in [88] for convex theories,

assuming that the Ti-satisfiability procedures produce proofs and interpolants. An in-

terpolation algorithm for combinations of theories, that goes beyond the convex case,

was obtained in [21,23] by a different method. Interpolation of refutations produced

by a DPLL(T )-based SMT-solver from inputs including also non-ground clauses was

investigated in [25,69]. The non-ground input clauses are instantiated upfront by an

instantiation procedure (e.g., [35,31,42,70,43]) invoked by the SMT-solver, so that

the refutations to be interpolated are ground. Interpolation for ground superposition

was studied in [55] continuing work in [67].

1.3 Overview of Contributions

In this article we survey what we call the color-based approach to the interpolation of

ground proofs: the interpolation system tracks non-shared symbols, called local (e.g.,

A-local and B-local) or colored (e.g., A-colored and B-colored), to exclude them from

the interpolant, and determine which literals descend from A or B, in order to ensure

that the reverse interpolant is entailed by A and inconsistent with B. We begin with

color-based interpolation systems for propositional resolution. Intuitively, the color-

based approach requires that A-colored and B-colored symbols do not mix. At the

propositional level this is obvious, since no new literals are generated. Ground proofs

in first-order logic are like propositional proofs in this regard.
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The situation changes as soon as we add equality, already for ground proofs:

regardless of whether equality reasoning is done by congruence closure or superpo-

sition, equalities where one side is A-colored and the other B-colored are problem-

atic. We clarify why this is the case, and we explain how the restriction to equality-

interpolating convex theories in [88], and the assumption of a separating ordering

for ground superposition in [67,55], prevent precisely such AB-mixed equalities. We

relate these two notions, by giving a superposition-based proof that the quantifier-free

fragment of the theory of equality is equality-interpolating. We cover color-based in-

terpolation systems for equality sharing in the case of convex theories, and DPLL(T ).

All papers on color-based interpolation in DPLL(T ) that we are aware of refer to

[88] for the proofs of completeness of the interpolation systems for DPLL, equality

sharing, and DPLL(T ). Since the proofs appeared in [87], and with discrepancies in

definitions and notations between [88] and [87], we reconstruct them here.

Proofs without inferences that mix A-colored and B-colored symbols were called

local (e.g., [67]) — later colored — and ground refutations by superposition are col-

ored under a separating ordering [55]. We give a new complete color-based interpo-

lation system for ground refutations by a standard inference system Γ for first-order

logic with equality, based on resolution and paramodulation/superposition. In sum-

mary, our contributions include:

– A unified framework of definitions for the inductive approach to interpolation;

– A survey of interpolation systems for DPLL, equality sharing and DPLL(T ); and

– An analysis of interpolation in the presence of equality, resulting in a complete

interpolation system for ground superposition.

This article is organized as follows. Section 2 introduces basic concepts and notations.

Section 3 surveys interpolation for propositional proofs. Section 4 analyzes interpola-

tion and equality. Section 5 covers interpolation for equality sharing and DPLL(T ).

Section 6 contains the interpolation system for ground superposition. Section 7 closes

the article with a discussion summarizing related work and contributions. The con-

tents of Sections 3, 4 and 5 appeared in preliminary form in [13] and those of Sec-

tion 6 in [14].

2 Background

We assume the basic definitions and notations commonly used in theorem proving,

such as ⊥ for f alse, ⊤ for true, ✷ for the empty clause, |= for logical consequence

from formulæ or truth in a model, and ⊢ for derivability, where ⊢ without subscript

means generic, sound and complete derivability in the logic, while ⊢ with subscript

(e.g., ⊢Γ ) will be used for concrete derivation in a specific inference system. Equality

is denoted by the symbol ≃, which is symmetric, the symbol ⊲⊳ stands for either ≃
or 6≃, and = is reserved for identity. We typically use a, b, c for constant symbols, f ,

g for function symbols, l, r, s, t for terms, l, m, r for literals, and C, D for clauses. A

clause C is a disjunction of literals l1∨ . . .∨ ln, and its negation¬C is the conjunction

¬l1 ∧ . . .∧¬ln. Both C and ¬C can be seen as sets of literals. We use “symbol” to

mean a constant, function or predicate symbol, that is, a non-variable symbol, and
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“variable” for variable symbol. A term s is a subterm of a term, or literal, l, if s

appears in l; s is a proper subterm, if it is not l itself. The notation l[s] represents a

term, or literal, where s occurs as subterm; in this notation l is called context.

2.1 Preliminaries on Interpolation

Given formula A, let ΣA be the signature of symbols occurring in A. Let A and B

be two formulæ to be interpolated, such that ΣA 6⊆ ΣB and ΣB 6⊆ ΣA, so that their

intersection ΣA,B = ΣA∩ΣB is not trivial.

Definition 1 (Interpolant) A formula I is an interpolant of formulæ A and B such

that A ⊢ B, or an interpolant of (A,B), if (i) A ⊢ I, (ii) I ⊢ B and (iii) all symbols in I

are in ΣA,B.

If ΣA ⊆ ΣB, then ΣA,B = ΣA and A itself would be an interpolant. Symmetrically, if

ΣB ⊆ ΣA, then ΣA,B = ΣB and B itself would be an interpolant. The above assumption

on signatures excludes these trivial cases.

The following fundamental result, known as Craig’s Interpolation Lemma [28],

and presented for instance in [82,38], applies to closed formulæ, that is, formulæ

where all variables are quantified:

Theorem 1 If A and B are closed formulæ such that A ⊢ B, and ΣA,B contains at

least one predicate symbol, then an interpolant I of A and B exists, and it is also a

closed formula. If ΣA,B contains no predicate symbol, then either B is valid (and the

interpolant is ⊤), or A is unsatisfiable (and the interpolant is ⊥).

From now on we consider only closed formulæ or sentences. Since automated rea-

soners work refutationally, it is useful to adopt the notion of reverse interpolant, thus

named in [55]:

Definition 2 (Reverse interpolant) A formula I is a reverse interpolant of formulæ

A and B such that A,B ⊢⊥, if (i) A ⊢ I, (ii) B, I ⊢⊥ and (iii) all symbols in I are in

ΣA,B.

It is simple to see that a reverse interpolant of (A,B) is an interpolant of (A,¬B), and

that if I is a reverse interpolant of (A,B), then ¬I is a reverse interpolant of (B,A).
Swapping A and B may be relevant to applications, where it means going backward

rather than forward, or vice versa, on a given path in a program or model.

A theory is presented by a set T of sentences, meaning that the theory is the set

of all logical consequences of T . It is customary to call T itself a theory. Let ΣT

be the signature of T . Its symbols are called defined, because they are defined by

the axioms in T , or interpreted, because they are interpreted in the models of T .

The other symbols are called free or uninterpreted. Interpreted symbols are allowed

in interpolants:

Definition 3 (Theory interpolant) A formula I is a theory interpolant of formulæ A

and B such that A ⊢T B, if (i) A ⊢T I, (ii) I ⊢T B and (iii) all uninterpreted symbols
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in I are in ΣA,B. A formula I is a reverse theory interpolant of formulæ A and B such

that A,B ⊢T ⊥, if (i) A ⊢T I, (ii) B, I ⊢T ⊥ and (iii) all uninterpreted symbols in I are

in ΣA,B.

Interpreted symbols may appear in A and B, so that the intersections ΣA ∩ΣT , ΣB∩
ΣT , and ΣA,B∩ΣT are not empty in general. The relaxing of the third requirement of

Definitions 1 and 2 in Definition 3 means that a symbol that is not shared may appear

in the interpolant provided it is interpreted. Equivalently, if the interpolant contains

uninterpreted symbols, then they must shared. Since we consider refutational sys-

tems, and keeping with most of the literature, in the following we write “interpolant”

for “reverse interpolant,” unless the distinction is relevant, and omit “theory” when-

ever clear from context.

Since most reasoners transform closed formulæ into sets, or conjunctions, of

clauses, from now on we assume that A and B are disjoint sets of clauses. This in-

cludes as special case sets of unit clauses, or, equivalently, conjunctions of literals.

Since sets are understood as conjunctions, we may write A∪B ⊢ ✷ or, equivalently,

A∧B ⊢⊥ or A,B ⊢⊥, depending on context.

A difficulty with interpolation is to ensure that uninterpreted symbols in inter-

polants are shared. The following definition, where \ is set difference, introduces

terminology that facilitates the discussion:

Definition 4 An uninterpreted symbol is transparent, if it is in ΣA,B, A-colored, if it

is in ΣA \ΣB, and B-colored, if it is in ΣB \ΣA. It is colored, if it is either A-colored or

B-colored.

The assumption that ΣA 6⊆ ΣB and ΣB 6⊆ ΣA means that both A and B contain at least

one colored symbol.

Definition 5 A term, literal, or clause is

– Transparent, if all its uninterpreted symbols are transparent,

– A-colored, if all its uninterpreted symbols are either A-colored or transparent and

at least one is A-colored,

– B-colored, if all its uninterpreted symbols are either B-colored or transparent and

at least one is B-colored, and

– AB-mixed, otherwise.

A term, literal, or clause is colored, if it is either A-colored or B-colored.

This terminology, or variants thereof, is widely adopted. Some authors use A-local

in place of A-colored, B-local in place of B-colored, and AB-common, or global, or

shared, in place of transparent. Asymmetric definitions, where A-local corresponds to

A-colored, and B-local to B-colored or transparent, were given in [65]. We adopt the

color-based terminology, because “local” has another (and older) meaning in auto-

mated deduction since [44,63], although in verification, “local” and “global” may be

connected to the scope of program variables. We hope that this survey will contribute

to establish a standard, but readers should always check the meaning of terms in a

paper. Following [45] we also use:
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Definition 6 A literal is colorable if it is not AB-mixed, or, equivalently, if it is either

A-colored or B-colored or transparent. A clause is colorable if all its literals are.

Colorable is more general than colored: a colorable clause may have both A-colored

and B-colored literals, whereas a colored clause cannot.

In the inductive approach to interpolation, interpolants are built by structural induc-

tion on a refutation of A∪B. The intermediate interpolants during the construction are

called partial interpolants. The definition of partial interpolant requires that of pro-

jection. Thus, we begin by defining projections, for disjunctions of literals, because

we work with clauses, and conjunctions of literals, that arise when negating clauses:

Definition 7 (Projection) Let C be a disjunction (conjunction) of literals and let ΣX

stand for either ΣA, ΣB or ΣA,B. The projection of C on signature ΣX , denoted C|X ,

is the disjunction (conjunction) of literals of C whose uninterpreted symbols are all

in ΣX . By convention, if C is a disjunction and C|X is empty, then C|X =⊥; if C is a

conjunction and C|X is empty, then C|X =⊤.

Assume that C and D are disjunctions or conjunctions of literals. Definition 7 implies

that (¬C)|X = ¬(C|X ), and we generalize it slightly by stipulating that (C∨D)|X =
C|X ∨D|X and (C∧D)|X = C|X ∧D|X . Transparent literals of C belong to both C|A
and C|B, while AB-mixed literals belong to neither. If C is a conjunction, C|A⇒C|A,B
and C|B ⇒ C|A,B; if it is a disjunction, C|A,B ⇒ C|A and C|A,B ⇒ C|B. Clause C is

colorable if and only if C =C|A ∨C|B. Alternatively, transparent literals may be put

only in the projection on ΣB as in [64,65]:

Definition 8 (Asymmetric projection) Let C be a disjunction (conjunction) of liter-

als. The asymmetric projections of C are C\B =C|A \C|A,B and C ↓B =C|B.

Starting with [64], a partial interpolant is an interpolant relative to a clause in a

refutation, so that a partial interpolant of the empty clause will be an interpolant:

Definition 9 (Partial interpolant) A partial interpolant PI(C) of a clause C occur-

ring in a refutation of A∪B is an interpolant of gA(C) = A∧¬(C|A) and gB(C) =
B∧¬(C|B).

Indeed, PI(✷) is an interpolant of (A,B). If C occurs in a refutation of A∪ B, it

means that A∧B ⊢ C, or A∧¬C ⊢ ¬B∨C. Thus, one could seek an interpolant of

A∧¬C and ¬B∨C, or, equivalently, a reverse interpolant of A∧¬C and B∧¬C.

However, the signatures of A∧¬C and B∧¬C are not necessarily ΣA and ΣB, unless

C is transparent. Thus, the definition of partial interpolant uses projections and takes

gA(C) and gB(C), whose signatures are ΣA and ΣB, so that to be transparent with

respect to gA(C) and gB(C) is the same as to be transparent with respect to A and B.

Proposition 1 For all clauses C occurring in a refutation of A∪B, the partial inter-

polant PI(C) has the following properties:

1. A∧¬(C|A) ⊢ PI(C) or, equivalently, A ⊢C|A∨PI(C),
2. B∧¬(C|B)∧PI(C) ⊢⊥ or, equivalently, B∧PI(C) ⊢C|B, and

3. PI(C) is transparent.
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Proof: It follows from Definitions 2 and 9. ✷

For ease of reference in definitions of interpolation systems, we will write c : C to say

that c is the identifier of clause C, and then we may use c|X , PI(c), gA(c) and gB(c).
An interpolation system takes a refutation of A∪B, attaches a partial interpolant to

every clause, and returns the partial interpolant of the empty clause as the interpolant

of (A,B). In order to define an interpolation system, one has to define its partial

interpolants. Since each clause in a refutation is generated by some inference rule, the

definition of an interpolation system needs to cover all inference rules that generate

clauses. The fundamental property of an interpolation system is completeness, that

we define with respect to an inference system or a transition system, because in the

sequel we consider both:

Definition 10 (Complete interpolation system) Given inference system Γ , or tran-

sition system U , an interpolation system is complete for Γ , or U , if for all sets of

clauses A and B, such that A∪B is unsatisfiable, and for all refutations of A∪B by Γ ,

or U , respectively, it generates an interpolant of (A,B).

In order to prove that an interpolation system is complete, it is sufficient to show that

its partial interpolants satisfy Proposition 1.

2.2 Inference Systems and their Proof Trees in the Ground Case

Let Γ be a resolution and superposition based inference system. Inference systems

of this kind feature expansion inferences, that expand the existing set by generating

clauses, such as resolution and superposition, and contraction inferences, that con-

tract the set by removing clauses, such as simplification and subsumption. We are

interested only in inferences that appear in proofs because they generate clauses:

expansion inferences, and those contraction inferences, such as simplification, that

replace clauses by clauses; contraction inferences that merely remove clauses do not

appear in proofs. We use the name generative rules for expansion rules and replace-

ment rules.

Let ≻ be a complete simplification ordering, that is, a simplification ordering

which is total on ground terms and literals. The recursive path orderings (RPO’s)

and Knuth-Bendix orderings (KBO’s), that are commonly implemented in theorem

provers, are complete simplification orderings (e.g., [34] for basic definitions about

orderings). The generative rules of Γ in the ground case are in Figure 1: substitutions

are not needed, and constraints of the form 6� take the form≻, because the ordering is

total on ground terms and literals. Paramodulation, superposition, and reflection build

equality into the inference system; we use superposition when the literal paramodu-

lated into is equational, and paramodulation otherwise. Duplicate literals in clauses

are removed by a standard book-keeping operation known as merging, whose useful-

ness in the context of interpolation was recognized in [45].

Definition 11 (Γ -derivation) Given an input set of clauses S0, a Γ -derivation is a

sequence S0⊢Γ S1⊢Γ . . .Si⊢Γ Si+1⊢Γ . . ., where for all i > 0, Si is a set of clauses

derived from Si−1 by a Γ -inference.
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Resolution

l∨C ¬l ∨D

C∨D
∀m ∈C : l ≻ m; ∀m ∈ D : ¬l ≻ m

Reflection

s 6≃s∨C

C
∀l ∈C : (s 6≃s) 6≺ l

Paramodulation

s≃ r∨C l[s]∨D

C∨ l[r]∨D
s≻ r; ∀m ∈C : (s≃ r)≻ m; ∀m ∈ D : l[s] ≻ m

Superposition

s≃ r∨C l[s] ⊲⊳ t ∨D

C∨ l[r] ⊲⊳ t ∨D
s≻ r; ∀m ∈C : (s≃ r)≻ m; ∀m ∈ D : (l[s] ⊲⊳ t)≻ m

where s ≃ r is the literal paramodulated/superposed from, l[s] is the literal paramodulated/superposed

into, and the same terminology extends to clauses. Simplification is an instance of paramodulation or

superposition, where the generated clause replaces the second premise, C is empty, and s ≻ r is the only

side condition.

Fig. 1 Generative rules of Γ in the ground case.

Let Th(S) = {C | S |=C}: inferences are sound (Si⊢Γ Si+1 implies Si+1⊆ T h(Si)) and

adequate (Si⊢Γ Si+1 implies Si ⊆ T h(Si+1)). S∗ =
⋃

i≥0 Si is the set of all generated

clauses. A Γ -derivation is successful if ✷ ∈ Sk for some k, which reveals that the

input set S0 is inconsistent.

Upon success, the theorem prover extracts a refutation, or refutational proof, or

proof, for short, which includes only the inferences and clauses involved in the gen-

eration of ✷. A proof is usually represented as a proof tree drawn with the root at the

bottom and the leaves at the top:1

Definition 12 (Γ -proof tree) Given a Γ -derivation S0⊢Γ S1⊢Γ . . .Si⊢Γ Si+1⊢Γ . . .,
for all C ∈ S∗, the Γ -proof tree ΠΓ (C) of C is defined as follows:

– If C ∈ S0, ΠΓ (C) consists of a node labeled by C;

– If C is inferred by a generative Γ -inference from premises C1, . . . ,Ck, ΠΓ (C)
consists of a node labeled by C with k subtrees ΠΓ (C1), . . . ,ΠΓ (Ck).

If the derivation is successful, ✷ ∈ S∗ and ΠΓ (✷) is a Γ -refutation.

If a proof is made only of equations, it can be also represented as a chain of equa-

tional replacement steps. A simplification step where s ≃ r simplifies t[s] to t[r] is

represented by the proof chain t[s]→s≃r t[r]. The subterm s is called a redex, and a

term is in normal form if it has no redex. A superposition step of s≃ r into l[s]≃ t is

represented by the proof chain t←l[s]≃t l[s]→s≃r l[r]. It is well known from the theory

of completion that a ground equational proof s
∗
↔ t can be reduced to a rewrite proof,

or valley proof, that is a chain in the form s
∗
→ r

∗
← t for some term r. The interested

reader can find in [9] a recent treatment, historical background, and references for the

theory of completion.

1 In general, it is a rooted graph, called ancestor-graph [12], but it can be put in the form of a tree by

allowing different vertices to have the same clause as label.
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2.3 Equality Sharing and its Proof Trees

The Nelson-Oppen scheme is a standard method to combine theories. Its original

name is equality sharing [73,74,35]. We summarize the relevant elements for what

follows, referring the interested reader to (e.g., [73,75,74,35,16]) for a complete

presentation and more references. Let T be a union
⋃n

i=1 Ti of quantifier-free frag-

ments of first-order theories, where each Ti is assumed to be equipped with a Ti-

satisfiability procedure, that we name Qi, which decides whether a set of ground

Ti-literals has a Ti-model. Equality sharing is not concerned with the inner working

of these procedures; it combines them to yield a procedure that decides whether a

set S of ground T -literals has a T -model, under a few requirements. First, the Ti’s

are required to be disjoint: their signatures share only uninterpreted constants and

equality. Second, they are required to be stably infinite:

Definition 13 A theory T is stably infinite, if a quantifier-free T -formula is T -

satisfiable if and only if it has a T -model with domain of infinite cardinality.

For instance, the theory of equality, linear arithmetic, and theories of data structures

such as lists and arrays, are stably infinite (e.g., [16]). The first phase of equality

sharing, called separation, transforms S into a collection S1, . . . ,Sn, where Si, for

1≤ i≤ n, is a set of ground Ti-literals. Function symbols from signatures of different

theories that occur mixed in the terms are separated by introducing new uninterpreted

constant symbols. For example, f (g(a)) ≃ b, where f and g belong to the signatures

of different theories, becomes f (c) ≃ b∧g(a)≃ c, where c is a new constant. Sepa-

ration ensures that each Qi deals only with Ti-literals. Since only new constants are

introduced, all literals in
⋃n

i=1 Si are ground, and S and
⋃n

i=1 Si are T -equisatisfiable.

In the second phase of equality sharing, each Qi, for 1≤ i≤ n, propagates to all other

Q j’s, for 1≤ j 6= i≤ n, the disjunctions of equalities between shared constants, that it

Ti-deduces from its set of Ti-literals. Completeness requires that each Qi deduces and

propagates all such disjunctions that are Ti-entailed by the set of Ti-literals that Qi

works with. If the theories are convex, it is sufficient to propagate equalities between

shared constants:

Definition 14 A theory T is convex, if whenever H |=T

∨m
k=1 sk ≃ tk, then H |=T

s j ≃ t j, for some j, 1≤ j ≤ m, where H is a conjunction of literals.

It was proved in [6] that every first-order theory that is convex and has no trivial

models is stably-infinite.

For interpolation, we are interested in defining the proof tree generated by equal-

ity sharing. For uniformity with the other inference or transition systems considered

in this article, we view literals as unit clauses, and use ✷ for the contradiction gen-

erated by the procedure: in equality sharing the contradiction is detected by one of

the Qi’s. We use K for the set of propagated equalities, we stipulate that also ✷ gets

propagated, and we denote with ⊢Ti
a Ti-deduction by Qi. Since equality sharing

treats each Qi as a black box, a deduction in Qi is viewed like a single inference by

equality sharing. For the same reason, equality sharing is not concerned with all the

literals that a Qi generates, but only with those that it propagates, namely equalities

between shared constants and ✷:
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Definition 15 (ES-derivation) Given a union T =
⋃n

i=1 Ti of quantifier-free frag-

ments of disjoint convex first-order theories, with Ti-satisfiability procedures Qi,

1 ≤ i ≤ n, and an input set of ground T -literals (unit clauses) S, a derivation by

equality sharing, or an ES-derivation for short, is a sequence

(S1, . . . ,Sn,K0) ⊢
ES
(S1, . . . ,Sn,K1) ⊢

ES
. . .(S1, . . . ,Sn,K j) ⊢

ES
(S1, . . . ,Sn,K j+1) ⊢

ES
. . .

where S1, . . . ,Sn is the separation of S, K0 = /0, and for all j > 0, K j = K j−1 ∪{C},
where C is either ✷ or an equality between shared constants, C 6∈ K j−1, and Si ∪
K j−1 ⊢Ti

C, for some i, 1≤ i≤ n.

Since equality sharing is a decision procedure, an ES-derivation is guaranteed to halt,

and if it generates ✷, a proof can be extracted:

Definition 16 (ES-proof tree) Given an ES-derivation from input set S, which halts

at stage h, for all C∈
⋃n

i=1 Si∪Kh, the ES-proof tree ΠES(C) of C is defined as follows:

– If C ∈
⋃n

i=1 Si, ΠES(C) consists of a node labeled by C;

– If {C1, . . . ,Ck} ⊢Ti
C, for some i, 1≤ i≤ n, ΠES(C) consists of a node labeled by

C with k subtrees ΠES(C1), . . . ,ΠES(Ck).

If a contradiction is found, ✷ ∈ Kh and ΠES(✷) is an ES-refutation.

We gave the definitions of derivation and proof tree under the hypothesis that all

combined theories are convex, because in the rest of this article we will be primarily

concerned with this case.

2.4 Transition Systems and their Proof Trees

While inference system refers to a set of non-deterministic inference rules that yield

a proof procedure once coupled with a search plan, transition system is used for al-

gorithmic engines such as DPLL-CDCL and DPLL(T ), where inference and control

are separated only to a lesser degree. These transition systems operate in two modes:

search mode and conflict resolution mode. In search mode, the state of the system has

the form M ||F , where M is a sequence of assigned literals, and F is a set of clauses.

Intuitively, M represents a partial assignment to literals, possibly with a justification,

and therefore it represents a partial model, or a set of candidate models. An assigned

literal can be either a decided literal or an implied literal. A decided literal represents

a guess, and has no justification. An implied literal lC is a literal l justified by a clause

C: all other literals of C are false in M so that l needs to be true. No assigned literal

occurs twice in M nor does it occur negated in M. If neither l nor ¬l appears in M,

then l is said to be undefined. The set of assigned literals in M is denoted lits(M).
In conflict resolution mode, the state has the form M ||F ||C, where C is a clause

in F whose literals are all false in M. Such a clause is in conflict and is called conflict

clause. We could state that C is in conflict by writing M |= ¬C. In DPLL(T ), the

DPLL engine accepts only propositional clauses, whereas the Qi’s accept ground

first-order literals. To bridge this gap, an abstraction function α maps first-order
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ground atoms to propositional atoms, and then straightforwardly first-order ground

clauses to propositional clauses (e.g., [5]). Thus, it is customary to write M |=P ¬C,

read M “propositionally satisfies” ¬C, to mean M |= ¬α(C).

Definition 17 (Transition system derivation) Given a transition system U and an

input set of clauses F0, a transition system derivation, or U -derivation, is a sequence

∆0=⇒
U

∆1=⇒
U

. . .∆i=⇒
U

∆i+1=⇒
U

. . .

where ∆0 = ||F0, and ∀i > 0, ∆i is of the form Mi ||Fi or Mi ||Fi ||Ci, and is produced

from ∆i−1 by a transition rule in U .

A transition system derivation is characterized by the sets F∗ =
⋃

i≥0 Fi of all gener-

ated clauses and C∗ = {Ci|i > 0} of all conflict clauses. If all conflict clauses were

learnt, which is not the case in practice, then C∗⊆F∗. In DPLL-CDCL and DPLL(T )

learning a conflict clause is the only way to generate a new clause. In the sequel, we

use U1 for DPLL-CDCL and U2 for DPLL(T ) as subscripts.

The transition rules of DPLL-CDCL are in Figure 2. Rules Decide, UnitPropa-

gate and Conflict apply in search mode. Decide guesses the truth value of a literal

that occurs in F ; UnitPropagate propagates the implications of guesses; Conflict de-

tects the presence of a conflict clause and puts the system in conflict resolution mode.

Rules Explain, Learn, Backjump, and Unsat apply in conflict resolution mode. Ex-

plain resolves a literal, say ¬l, in a conflict clause, with its complement l in the clause

that is the justification of l in M; the resolvent is also a conflict clause. Learn adds

to F a clause derived by Explain, because it is a logical consequence of the original

set of clauses. Backjump unassigns at least one decided literal, named l′ in the rule

definition, and drives the system back from conflict resolution mode to search mode.

A typical choice is that l′ be the least recently decided literal that satisfies the condi-

tions of the rule. There is always a way to come back to search mode from conflict

resolution mode, unless the conflict clause is empty, in which case the Unsat rule

concludes that the input is unsatisfiable.

A refutation by DPLL-CDCL is a refutation by propositional resolution, com-

posed of the resolution steps performed by Explain, as noticed first in [89], according

to [81]. The clauses that appear in the refutation are input clauses and conflict clauses:

Definition 18 (DPLL-proof tree) Given a DPLL-derivation,

∆0=⇒
U1

∆1=⇒
U1

. . .∆i=⇒
U1

∆i+1=⇒
U1

. . . ,

for all C ∈ F0∪C∗ the DPLL-proof tree ΠU1
(C) of C is defined as follows:

– If C ∈ F0, ΠU1
(C) consists of a node labeled by C;

– If C is generated by resolving conflict clause C1 with justification C2, ΠU1
(C)

consists of a node labeled by C with subtrees ΠU1
(C1) and ΠU1

(C2).

If the derivation terminates in state unsat, ✷ ∈C∗ and ΠU1
(✷) is a DPLL-refutation.

A justification C2 is either an input clause or a learnt clause, which was once a conflict

clause, and therefore ΠU1
(C2) is defined. An example illustrates proof generation:
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Decide

M ||F =⇒M l ||F if

{

l or ¬l occurs in F,
l is undefined in M;

UnitPropagate

M ||F,C∨ l =⇒M lC∨l ||F,C∨ l if

{

M |=P ¬C,
l is undefined in M;

Conflict

M ||F,C =⇒M ||F,C ||C if M |=P ¬C

Explain

M ||F ||C∨¬l =⇒M ||F ||D∨C if lD∨l ∈M

Learn

M ||F ||C =⇒M ||F,C ||C if C 6∈ F

Backjump

M l′ M′ ||F ||C∨ l =⇒M lC∨l ||F if

{

M |=P ¬C,
l is undefined in M

Unsat

M ||F ||✷=⇒ unsat

Fig. 2 Transition rules of DPLL-CDCL.

Example 1 Assume F = {p∨q,¬p∨q,¬q∨ p,¬p∨¬q}. The derivation starts with

a Decide step, followed by a UnitPropagate step, which leads to a conflict:

/0 ||F =⇒ p ||F =⇒ p,q¬p∨q ||F =⇒ p,q¬p∨q ||F ||¬p∨¬q.

An Explain step performs the resolution between conflict clause ¬p∨¬q and justifi-

cation ¬p∨q, the resolvent¬p is learnt, and Backjump applies with M empty, l′ = p,

M′ = ¬q¬p∨q, C empty, and l = ¬p:

p,q¬p∨q ||F ||¬p∨¬q =⇒ p,¬q¬p∨q ||F ||¬p =⇒ p,¬q¬p∨q ||F,¬p ||¬p

=⇒¬p¬p ||F,¬p,

where ΠU1
(¬p) is given by the resolution step between ¬p∨¬q and ¬p∨ q. The

search restarts with a UnitPropagate step, which leads to another conflict:

¬p¬p ||F,¬p =⇒¬p¬p,qp∨q ||F,¬p =⇒¬p¬p,qp∨q ||F,¬p ||¬q∨ p.

An Explain step performs the resolution between conflict clause ¬q∨ p and justifica-

tion p∨q, and the resolvent p is learnt:

¬p¬p,qp∨q ||F,¬p ||¬q∨ p =⇒¬p¬p,qp∨q ||F,¬p || p =⇒¬p¬p,qp∨q ||F,¬p, p || p,

where ΠU1
(p) is given by the resolution step between ¬q∨ p and p∨ q. Another

Explain step resolves conflict clause p and justification ¬p:

¬p¬p,qp∨q ||F,¬p, p || p =⇒¬p¬p,qp∨q ||F,¬p, p ||✷=⇒ unsat.

The refutation ΠU1
(✷) is given by the resolution step between p and¬p, with ΠU1

(p)
and ΠU1

(¬p) as subtrees.
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T-Propagate

M ||F =⇒M l(¬l1∨...∨¬ln∨l) ||F if















l occurs in F,
l is undefined in M,
l1, . . . , ln ∈ lits(M),
l1, . . . , ln |=T l;

T-Conflict

M ||F =⇒M ||F ||¬l1 ∨ . . .∨¬ln if

{

l1, . . . , ln ∈ lits(M),
l1, . . . , ln |=T ⊥ .

Fig. 3 Additional transition rules for DPLL(T ).

Note that a derivation that simulates truth tables by guessing assignments and back-

tracking chronologically, without generating a proof by resolution, is not allowed by

these transition rules, because Backjump is driven by the conflict clause according to

its conditions, and therefore needs one or more Explain steps.

The addition of transition rules T-Propagate and T-Conflict, shown in Figure 3,

yields DPLL(T ). These two rules connect the DPLL engine with the T -satisfiability

procedure, by letting it propagate T -consequences of M. Both T-Propagate and T-

Conflict apply in search mode, and T-Conflict causes the system to switch to conflict

resolution mode. T-Propagate detects that if literals l1, . . . , ln are true, then l must

also be true in T , or, equivalently, ¬l1 ∨ . . .∨¬ln ∨ l is a T -lemma. If a disjunc-

tion l ∨ l′ is entailed, it makes no difference, because it is the same as saying that

l1, . . . , ln,¬l′ entail l, or ¬l1∨ . . .∨¬ln∨ l∨ l′ is a T -lemma. T-Conflict detects that a

subset l1, . . . , ln of M is T -inconsistent, or, equivalently,¬l1∨. . .∨¬ln is a T -lemma,

which is generated as T -conflict clause. If the T -satisfiability procedure is a combi-

nation of Qi’s by equality sharing, ever since [75], the propagation of disjunctions of

equalities between shared constants, is implemented through case analysis and back-

tracking. In DPLL(T ), the case analysis and backtracking are those of DPLL, as a

disjunction coming from a theory is treated like any other clause.

In a refutation by DPLL(T ), in addition to conflict clauses generated by Conflict

and Explain, there may be T -conflict clauses, and also T -lemmas generated by T-

Propagate may be involved as justifications. Since T -conflict clauses are also T -

lemmas, we use T -lemmas for both. Thus, we need to assume that the Qi’s and their

combination produce proofs of T -lemmas, that we denote by ΠT (C). The proof of

the T -unsatisfiability of l1, . . . , ln is a proof that C = ¬l1 ∨ . . .∨¬ln is a T -lemma.

Similarly, the proof that l1, . . . , ln T -entail l is a proof that ¬l1 ∨ . . .∨¬ln ∨ l is a

T -lemma. Refutations by DPLL(T ) are ground, but not propositional, because the

inverse α
−1 of the abstraction function is applied to restore first-order ground atoms.

Definition 19 (DPLL(T )-proof tree) Given a DPLL(T )-derivation,

∆0=⇒
U2

∆1=⇒
U2

. . .∆i=⇒
U2

∆i+1=⇒
U2

. . . ,

for all C ∈ F0∪C∗ and all C that are T -lemmas, the DPLL(T )-proof tree ΠU2
(C) of

C is defined as follows:

– If C ∈ F0, ΠU2
(C) consists of a node labeled by C;
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– If C is generated by resolving conflict clause C1 with justification C2, ΠU2
(C)

consists of a node labeled by C with subtrees ΠU2
(C1) and ΠU2

(C2);
– If C is a T -lemma, ΠU2

(C) = ΠT (C).

If the derivation terminates in state unsat, ✷ ∈ C∗ and ΠU2
(✷) is a DPLL(T )-

refutation.

Both DPLL-proof trees and DPLL(T )-proof trees are made of inferences performed

in conflict resolution mode, except for the ΠT (C) subtrees.

3 Propositional Interpolation Systems

In this section we see the first instance of the inductive approach to interpolation

by covering interpolation systems for resolution refutations in propositional logic. If

the input problem is propositional, DPLL(T ) solves it by using DPLL alone, and

Γ proves it by resolution. Thus, the interpolation systems of this section apply to a

refutation that could be produced by anyone of DPLL, DPLL(T ), and Γ , if applied

to a propositional problem.

Let A and B be disjoint sets of propositional clauses: a literal is either a propo-

sitional variable or its negation, and Definitions 4 and 5 apply to propositional vari-

ables, literals and clauses. In propositional logic the set of literals that may appear in

a refutation is determined once and for all by the set of literals that occur in the input

set A∪B. Since input literals are either A-colored or B-colored or transparent, so is

every literal in a proof: in other words, there are no AB-mixed literals. Therefore,

interpolation systems build inductively the partial interpolant of every resolvent from

those of its parents, distinguishing whether the literal resolved upon is A-colored or

B-colored or transparent:

Definition 20 (HKPYM interpolation system) Let c : C be a clause in a refutation

of A∪B by propositional resolution:

– If c : C ∈ A, then PI(c) = ⊥,

– If c : C ∈ B, then PI(c) =⊤,

– If c : C∨D is a propositional resolvent of p1 : l∨C and p2 : ¬l∨D then:

– If l is A-colored, then PI(c) = PI(p1)∨PI(p2),
– If l is B-colored, then PI(c) = PI(p1)∧PI(p2) and

– If l is transparent, then PI(c) = (l∨PI(p1))∧ (¬l∨PI(p2)).

This interpolation system comes from [88], where it is called Pudlàk algorithm with

[77] as source. The author of [77] refers the reader also to [56]. This interpolation

system was analyzed also in [37,36,86], and called HKP in [36], from the initials of

Huang [51], Krajı́ček [56] and Pudlàk [77], its three independent authors. We add the

initials of Yorsh and Musuvathi and call it HKPYM, on the account of the proof of

completeness in [87]. The system in [51] did not use colors, but a notion of literals

coming from A, from B, or from both, and was for first-order resolution and paramod-

ulation, with propositional resolution as a special case: we studied interpolation in the

first-order case in [15], including a discussion of [51].
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The following system was introduced in [64,65] and studied in [37,86]. We call

it MM from the two M in McMillan. While HKPYM treats A and B symmetrically,

MM is slanted towards B, by the choice of partial interpolant for input clauses in A,

and by treating B-colored and transparent literals resolved upon in the same way:

Definition 21 (MM interpolation system) Let c : C be a clause in a refutation of

A∪B by propositional resolution:

– If c : C ∈ A, then PI(c) =C|A,B,

– If c : C ∈ B, then PI(c) =⊤,

– If c : C∨D is a propositional resolvent of p1 : l∨C and p2 : ¬l∨D then:

– If l is A-colored, then PI(c) = PI(p1)∨PI(p2),
– If l is B-colored or transparent, then PI(c) = PI(p1)∧PI(p2).

The following example applies both systems to the same input:

Example 2 Assume A = {a∨ e, ¬a∨ b, ¬a∨ c} and B = {¬b∨¬c∨ d, ¬d, ¬e}.
In the refutation, each clause is decorated with its partial interpolant surrounded by

brackets. We apply first HKPYM:

– a∨ e [⊥] resolves with ¬e [⊤] to yield a [e]: since e is transparent, the partial

interpolant of the resolvent is (e ∨ ⊥)∧ (¬e∨⊤) = e;

– a [e] resolves with ¬a∨ c [⊥] to yield c [e]: since a is A-colored, the partial inter-

polant of the resolvent is e ∨⊥= e;

– a [e] resolves with ¬a∨b [⊥] to yield b [e]: again a is A-colored, and the partial

interpolant of the resolvent is e ∨⊥= e;

– b [e] resolves with ¬b∨¬c∨d [⊤] to yield ¬c∨d [b∨ e]: since b is transparent,

the partial interpolant of the resolvent is (b∨ e)∧ (¬b∨⊤) = b∨ e;

– c [e] resolves with ¬c∨d [b∨ e] to yield d [e∨ (c∧b)]: c is also transparent, and

the partial interpolant of the resolvent is (c∨ e)∧ (¬c∨b∨ e) = e∨ (c∧b);
– d [e∨ (c∧b)] resolves with ¬d [⊤] to yield ✷ [e∨ (c∧b)]: as d is B-colored, the

interpolant is (e∨ (c∧b))∧⊤= e∨ (c∧b).

We apply next MM to the same refutation:

– a∨ e [e] resolves with ¬e [⊤] to yield a [e]: since e is transparent, the partial

interpolant of the resolvent is e∧⊤= e;

– a [e] resolves with ¬a∨ c [c] to yield c [e∨ c]: since a is A-colored, the partial

interpolant of the resolvent is e∨ c;

– a [e] resolves with ¬a∨b [b] to yield b [e∨b]: again a is A-colored, and the partial

interpolant of the resolvent is e∨b;

– b [e∨b] resolves with ¬b∨¬c∨d [⊤] to yield ¬c∨d [e∨b]: as b is transparent,

the partial interpolant of the resolvent is (e∨b)∧⊤= e∨b;

– c [e∨ c] resolves with ¬c∨d [e∨b] to yield d [e∨ (c∧b)]: c is also transparent,

so that the partial interpolant of the resolvent is (e∨ c)∧ (e∨b) = e∨ (c∧b);
– d [e∨ (c∧b)] resolves with ¬d [⊤] to yield ✷ [e∨ (c∧b)]: since d is B-colored,

the interpolant is (e∨ (c∧b))∧⊤= e∨ (c∧b).

The final result is the same, but some of the intermediate partial interpolants differ:

for each step of the proof, the HKPYM partial interpolant implies the MM partial
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interpolant, but the converse is not true. This is interesting because it was shown in

[37] that final MM interpolants imply final HKPYM interpolants. In this example the

HKPYM interpolant starts out stronger and sufficiently weak.

Both [64,65] for MM and [88] for HKPYM give the asymmetric definition of pro-

jection (cf. Definition 8). However the proof of completeness of HKPYM in [87]

requires the symmetric definition (cf. Definition 7):

Theorem 2 (Yorsh and Musuvathi, 2005) HKPYM is a complete interpolation sys-

tem for propositional resolution.

Proof: We need to prove that for all clauses c : C in the refutation, PI(c) is an inter-

polant of gA(c) = A∧¬(C|A) and gB(c) = B∧¬(C|B), that is, it satifies the require-

ments:

1. gA(c) ⊢ PI(c),
2. gB(c)∧PI(c) ⊢⊥, and

3. PI(c) is transparent.

The proof is by induction on the structure of the refutation by resolution:

Base case:

– If c : C ∈ A, then ¬(C|A) = ¬C; and gA(c) = A∧¬C =⊥, since C ∈ A. Since

PI(c) =⊥, both (1) and (2) reduce to ⊥ ⊢ ⊥, which is trivially true, and PI(c) is

trivially transparent.

– If c : C ∈ B, then ¬(C|B) = ¬C; and gB(c) = B∧¬C = ⊥, since C ∈ B. Since

PI(c) = ⊤, (1) is trivial, (2) reduces to ⊥ ⊢ ⊥, which is trivially true, and PI(c)
is trivially transparent.

Inductive hypothesis: for k ∈ {1,2} it holds that:

1. gA(pk) ⊢ PI(pk),
2. gB(pk)∧PI(pk) ⊢⊥,

3. PI(pk) is transparent.

Inductive case:

a. l is A-colored: PI(c) = PI(p1)∨PI(p2).
First we observe that p1|A ∧ p2|A ⇒ C|A ∨D|A (*). Indeed, since l is A-colored,

p1|A = (l∨C)|A = l∨C|A and p2|A = (¬l∨D)|A =¬l∨D|A. Then, p1|A∧ p2|A =
(l∨C|A)∧ (¬l∨D|A)⇒C|A∨D|A by resolution.

We show (1) gA(c)⇒ PI(c):
gA(c) = A∧¬((C∨D)|A) = A∧¬(C|A∨D|A)
A∧¬(C|A∨D|A)⇒ A∧¬(p1|A∧ p2|A) by contrapositive of (*)

A∧¬(p1|A∧ p2|A) =A∧(¬p1|A∨¬p2|A) = (A∧¬p1|A)∨(A∧¬p2|A) = gA(p1)∨
gA(p2) and gA(p1)∨gA(p2)⇒ PI(p1)∨PI(p2) by induction hypothesis.

We show (2) gB(c)∧PI(c)⇒⊥:

gB(c)∧PI(c) = B∧¬((C∨D)|B)∧PI(c) = B∧¬(C|B∨D|B)∧PI(c) =
B∧¬(C|B)∧¬(D|B)∧ (PI(p1)∨PI(p2))⇒
(B∧¬(C|B)∧PI(p1))∨ (B∧¬(D|B)∧PI(p2)) =
(B∧¬((l∨C)|B)∧PI(p1))∨ (B∧¬((¬l∨D)|B)∧PI(p2)) =
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(because l is A-colored and, therefore, C|B = (l∨C)|B and D|B = (¬l∨D)|B)

= (B∧¬(p1|B)∧PI(p1))∨ (B∧¬(p2|B)∧PI(p2)) =
(gB(p1)∧PI(p1))∨ (gB(p2)∧PI(p2))⇒⊥∨⊥=⊥ by induction hypothesis.

Requirement (3) follows by induction hypothesis.

b. l is B-colored: PI(c) = PI(p1)∧PI(p2).
Similar to Case (a), we have that p1|B∧ p2|B⇒C|B∨D|B (**).

We show (1) gA(c)⇒ PI(c):
gA(c) = A∧¬((C∨D)|A) = A∧¬(C|A∨D|A) = A∧¬(C|A)∧¬(D|A) =
A∧¬((l∨C)|A)∧¬((¬l∨D)|A) =
(because l is B-colored and, therefore, C|A = (l∨C)|A and D|A = (¬l∨D)|A)

= A∧¬(p1|A)∧¬(p2|A) = (A∧¬(p1|A))∧ (A∧¬(p2|A)) = gA(p1)∧gA(p2) and

gA(p1)∧gA(p2)⇒ PI(p1)∧PI(p2) by induction hypothesis.

We show (2) gB(c)∧PI(c)⇒⊥:

gB(c)∧PI(c) = B∧ (¬((C∨D)|B))∧PI(p1)∧PI(p2) =
B∧ (¬(C|B∨D|B))∧PI(p1)∧PI(p2)⇒ by contrapositive of (**)

B∧ (¬(p1|B ∧ p2|B)) ∧ PI(p1) ∧ PI(p2) = B∧ (¬(p1|B) ∨ ¬(p2|B)) ∧ PI(p1) ∧
PI(p2) = [(B∧¬(p1|B))∨ (B∧¬(p2|B))]∧PI(p1)∧PI(p2) =
(gB(p1)∧PI(p1)∧PI(p2))∨ (gB(p2)∧PI(p1)∧PI(p2))⇒
(gB(p1)∧PI(p1))∨ (gB(p2)∧PI(p2))⇒⊥∨⊥=⊥ by induction hypothesis.

Requirement (3) follows by induction hypothesis.

c. l is transparent: PI(c) = (l∨PI(p1))∧ (¬l∨PI(p2)).
We show (1) gA(c)⇒ PI(c), or, equivalently, gA(c)∧¬PI(c)⇒⊥:

gA(c)∧¬PI(c) = A∧ (¬(C|A∨D|A))∧¬[(l ∨PI(p1))∧ (¬l∨PI(p2))] =
A∧¬(C|A)∧¬(D|A)∧ [¬(l∨PI(p1))∨¬(¬l∨PI(p2))] =
[A∧¬(C|A)∧¬(D|A)∧¬(l∨PI(p1))]∨[A∧¬(C|A)∧¬(D|A)∧¬(¬l∨PI(p2))]⇒
[A∧¬(C|A)∧¬(l∨PI(p1))]∨ [A∧¬(D|A)∧¬(¬l∨PI(p2))] =
[A∧¬(C|A)∧¬l∧¬PI(p1)]∨ [A∧¬(D|A)∧ l∧¬PI(p2)] = (l is transparent)

= [A∧¬((l∨C)|A)∧¬PI(p1)]∨ [A∧¬((¬l∨D)|A)∧¬PI(p2)] =
(gA(p1)∧¬PI(p1))∨ (gA(p2)∧¬PI(p2))⇒⊥∨⊥=⊥ by induction hypothesis.

We show (2) gB(c)∧PI(c)⇒⊥:

gB(c)∧PI(c) = B∧¬(C|B∨D|B)∧ [(l∨PI(p1))∧ (¬l∨PI(p2))] =
B∧¬(C|B)∧¬(D|B)∧ [(l∨PI(p1))∧ (¬l ∨PI(p2))]
at this point we reason that l is either true or false; if l is true, l holds, l subsumes

l ∨PI(p1) and simplifies ¬l ∨PI(p2) to PI(p2); if l is false, ¬l holds, ¬l sub-

sumes ¬l∨PI(p2) and simplifies l∨PI(p1) to PI(p1); thus, we get

[B∧¬(C|B)∧¬(D|B)∧ l∧PI(p2)]∨ [B∧¬(C|B)∧¬(D|B)∧¬l∧PI(p1)]⇒
[B∧¬(D|B)∧ l∧PI(p2)]∨ [B∧¬(C|B)∧¬l∧PI(p1)] =
[B∧¬(D|B∨¬l)∧PI(p2)]∨ [B∧¬(C|B∨ l)∧PI(p1)] = (l is transparent)

= (B∧¬(p2|B)∧PI(p2))∨ (B∧¬(p1|B)∧PI(p1)) =
(gB(p2)∧PI(p2))∨ (gB(p1)∧PI(p1))⇒⊥∨⊥=⊥ by induction hypothesis.

Requirement (3) follows from the assumption that l is transparent and the induc-

tion hypothesis. ✷

Given an interpolation system, its dual [51,36], or inverse [37], is the interpolation

system that associates to every clause C in a refutation of A∪B the partial interpolant

that the original system would associate to C if A and B were exchanged. Applying
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this to ✷, the interpolant of (A,B) produced by the inverse system is the interpolant

of (B,A) produced by the original system. An interpolation system is symmetric, if

its interpolant of (A,B) is the negation of the interpolant of (A,B) produced by its

inverse, or if the interpolant of (A,B) is the negation of the interpolant of (B,A).

4 Interpolation and Equality

The addition of equality, even in the ground case, changes the picture, because an AB-

mixed equation ta ≃ tb, where ta is an A-colored ground term and tb is a B-colored

ground term, may be derived. Other AB-mixed literals may appear, if occurrences of

ta in A-colored literals are replaced by tb or vice versa. Thus, it is no longer true that

literals in a refutation are either A-colored or B-colored or transparent, as assumed by

the propositional interpolation systems.

Furthermore, in the propositional case, the status of literals with respect to colors

is stable: if a literal is A-colored, B-colored, or transparent, in the initial state of a

derivation, it will remain such throughout the derivation. In a Γ -derivation, if ta ≃ tb
is generated, ta and tb are in normal form with respect to the current set of equations,

and ta ≻ tb, simplification replaces all occurrences of ta, including those in A, by

occurrences of tb. Thus, tb should become transparent. In a DPLL(T )-derivation, if

ta ≃ tb is generated, the congruence classes of ta and tb have to be merged. Assume

that the congruence class of ta only contains A-colored terms, that of tb only contains

B-colored terms, and ta and tb are the representatives of their congruence classes. If tb
were chosen as the representative of the new class, it should become transparent, in

order to represent both A-colored and B-colored terms. Note that if either one of the

two classes already contains a transparent term t, then the equation ta≃ tb is harmless,

because t can be the representative of the new class, containing both A-colored and

B-colored terms. Regardless of whether equality reasoning is done by rewriting or

congruence closure, inferences with AB-mixed equalities cause the status of terms

and literals with respect to colors to be unstable.

A proof without AB-mixed equalities was termed colorable in [45] referring to

DPLL(T ). Since we do not assume that equality is the only predicate, we give the

definition for literals:

Definition 22 (Colorable proof tree) A proof tree is colorable if all its clauses are;

equivalently, a proof tree is colorable if it contains no AB-mixed literals.

A key property to ensure that proofs are colorable was identified in [88]:

Definition 23 (Equality-interpolating convex theory) A convex theory T is equa-

lity-interpolating if, for all interpolation problems (A,B), where there exist transpar-

ent ground terms, whenever A∧B |=T ta ≃ tb, where ta is an A-colored ground term

and tb is a B-colored ground term, then A∧B |=T ta ≃ t∧ tb ≃ t for some transparent

ground term t.

The term t is called equality-interpolating term. This definition is for convex theo-

ries, because it considers only the case where a unit equality is entailed. The the-
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ory of equality is convex. If the proof that T is equality-interpolating is construc-

tive, it yields an algorithm to compute equality-interpolating terms. If an equality-

interpolating term t can be computed whenever a ta≃ tb is generated, t can be adopted

as the representative of the merged congruence class.

In a Γ -derivation, it suffices to have an ordering that ensures that simplification

replaces ta and tb by t. An ordering that makes terms in a shared signature smaller

than terms in an extended signature was introduced for hierarchic reasoning [41]. For

interpolation, a notion of ordering oriented for (A,B), whereby any A-colored term is

larger than any B-colored or transparent term, was introduced in [67]. The definition

that we adopt here was given in [55]:

Definition 24 (Separating ordering) An ordering ≻ is separating, if for all ground

terms, or literals, l and r, l ≻ r whenever r is transparent and l is not.

For a recursive path ordering (RPO), which is defined based on a precedence on

function and predicate symbols, it is sufficient to assume a separating precedence,

namely one where colored symbols are larger than transparent ones, to obtain a sep-

arating RPO. In a separating RPO, a term t with a colored symbol will be larger than

any term s made of transparent symbols, regardless of the number of symbols in s.

For a Knuth-Bendix ordering (KBO), which is defined based on a precedence and a

weight assignment to symbols, a separating precedence is not sufficient, because of

the rôle of weight, which prevents this kind of behavior. As noticed in [49], an ordi-

nal KBO [60], where colored symbols have weight ω and transparent symbols have

finite weight is a separating ordering. The following lemma shows that a separating

ordering excludes AB-mixed literals:

Lemma 1 If the ordering is separating, all ground Γ -proof trees are colorable.

Proof: By induction on the structure of the proof tree:

Base Case: By definition, there are no AB-mixed literals in the input clauses A∪B.

Inductive Case:

– Resolution: By induction hypothesis, the parent clauses do not contain AB-mixed

literals. Since a ground resolvent is made of literals inherited from its parents, it

does not contain AB-mixed literals either.

– Paramodulation/Superposition/Simplification: let s ≃ r be the equation and l[s]
be the paramodulated into or simplified literal. By inductive hypothesis, neither

s≃ r nor l[s] are AB-mixed. Since s≻ r and≻ is separating, either r has the same

color as s or it is transparent. If s and r have the same color, also l[s] and l[r] have

the same color. If s is colored and r is transparent, then l[r] either has the same

color as l[s] or it is transparent, the latter if s was its only colored term. In either

case, l[r] is not AB-mixed. ✷

Based on this lemma we give a different proof of Lemma 2 in [88]. Since our proof

uses a separating ordering, it connects the equality-interpolating property proposed

for equality sharing with the separating ordering proposed for superposition:

Theorem 3 The quantifier-free fragment of the theory of equality is equality-inter-

polating.
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Proof: Assume Γ employs a separating ordering, and (A,B) is an interpolation prob-

lem where there exist transparent ground terms. If A∧B |= ta ≃ tb, where ta is an A-

colored ground term and tb is a B-colored ground term, then, since Γ is refutationally

complete, there is a successful Γ -derivation from A∪B∪{ta 6≃tb}. Note that although

ta 6≃ tb appears to be part of the input, it plays no rôle in the inferences, except that ta
and tb get rewritten. Since the ordering is separating, the resulting refutation ΠΓ (✷)
contains no AB-mixed literals by Lemma 1. ΠΓ (✷) is made only of rewriting steps

and therefore represents a rewrite proof ta
∗
→ t

∗
← tb. Since there are no AB-mixed

literals in ΠΓ (✷), there must be at least a transparent term in this proof chain. Since

the ordering is separating, the smallest term t is transparent. Since the inferences are

sound, it follows that A∧B |= ta ≃ t ∧ tb ≃ t. ✷

In [67] an inference is local if all its symbols are either in ΣA or in ΣB. The definition

in [55,50] also requires that if all premises are transparent, so is the conclusion. A

proof is local if all its inferences are. Since there are no AB-mixed clauses in the input

and inferences do not mix colors, a local proof has no AB-mixed clauses:

Definition 25 (Colored proof tree) A proof tree is colored if it contains no AB-

mixed clauses.

As for literals and clauses, colorable is more general than colored, or local, also for

proofs. A separating ordering implies the stronger requirement as well (cf. Theorem

6 in [55]):

Lemma 2 If the ordering is separating, all ground Γ -proof trees are colored.

Proof: By Lemma 1 there are no AB-mixed literals and we only need to show by

induction that there is no clause with literals of different color.

Base Case: By definition, there are no AB-mixed clauses in A∪B.

Inductive Case:

– Resolution: By induction hypothesis, neither l ∨C nor ¬l ∨D is AB-mixed. The

only way that the resolvent C∨D could be AB-mixed is if C contains an A-colored

literal, D contains a B-colored literal, or vice versa, and l is transparent. However,

this is impossible, because under a separating ordering l and ¬l cannot be trans-

parent and ≻-maximal in clauses containing colored literals.

– Paramodulation/Superposition/Simplification:assume non-AB-mixed clauses s≃
r ∨C and l[s]∨D generate C ∨ l[r]∨D with s ≻ r. For C ∨ l[r]∨D to be AB-

mixed we need that C contains an A-colored literal and l[r]∨D contains a B-

colored literal, or vice versa. If C contains an A-colored literal, since C∨ s ≃ r

is not AB-mixed, s is either transparent or A-colored. If s is transparent, since ≻
is separating, and s ≻ r, then r is also transparent. This is impossible, because

s ≃ r cannot be ≻-maximal and transparent in C∨ s ≃ r which contains an A-

colored literal. If s is A-colored, r is either A-colored or transparent. Context l

cannot be B-colored, because otherwise l[s] would be AB-mixed. Clause D cannot

contain a B-colored literal, because otherwise l[s]∨D would be AB-mixed. Thus,

C∨ l[r]∨D cannot be AB-mixed. ✷
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5 Interpolation for Equality Sharing and DPLL(T )

In this section we see how excluding AB-mixed literals is crucial also when combin-

ing theories by equality sharing (or Nelson-Oppen if the reader prefers). Let A and

B be disjoint sets of ground T -literals, or unit T -clauses, and T =
⋃n

i=1 Ti be a

combination of equality-interpolating convex disjoint theories, with Ti-satisfiability

procedures Q1, . . . ,Qn, that satisfy the requirements for the completeness of equality

sharing2 (cf. Section 2.3). We assume that each Qi is capable of generating equality-

interpolating terms, proofs, and Ti-interpolants for its proofs.

The interpolation partition of S = A∪ B into A and B, and its separation into

S1, . . . ,Sn, based on the theories’ signatures, are orthogonal. Constant symbols in-

troduced by separation inherit the status of the term they replace: for example, if

f (g(a)) ≃ b, where f and g belong to the signatures of different theories, becomes

{ f (c) ≃ b,g(a) ≃ c}, the new constant c is A-colored, B-colored or transparent, de-

pending on what g(a) is. This is possible because the input, by definition, contains

no AB-mixed terms. For every Qi the input set of literals is Si = Ai ∪Bi, where Ai

contains the Ti-literals in A and Bi contains the Ti-literals in B. By Definition 16, an

ES-refutation ΠES(✷) is made of input literals and propagated equalities. The restric-

tion to equality-interpolating convex theories (cf. Definition 23), and the assumption

that each Qi generates equality-interpolating terms, ensure that all propagated equal-

ities are colorable: if an AB-mixed ta ≃ tb is entailed, colorable literals ta ≃ t and

tb ≃ t are deduced and propagated instead. It follows that under these hypotheses any

ES-refutation ΠES(✷) is colorable.

In order to define an interpolation system for equality sharing, we need to define

partial interpolants for the propagated literals in ΠES(✷). Every such literal l is gen-

erated by a Ti-deduction Ai∪Bi∪K ⊢Ti
l, where K is the set of propagated equalities

involved in Ti-deducing l, and l may be ✷ as a special case. A key observation is that

a partial Ti-interpolant of l that Qi may generate cannot be a partial Ti-interpolant

of l with respect to (Ai,Bi), because the premises of the Ti-deduction of l also in-

clude K. It will be a partial Ti-interpolant of l with respect to some partition (A′,B′)
of Ai∪Bi ∪K. Since K contains no AB-mixed literals, it is possible to define A′ and

B′ based on colors as defined by the original (A,B) partition, by using asymmetric

projections (cf. Definition 8) with respect to A and B: let A′ be Ai ∪K\B and B′ be

Bi∪K ↓B. It follows that ΣA′ = ΣA, ΣB′ = ΣB, and what is transparent with respect to

(A′,B′) is transparent with respect to (A,B). The absence of AB-mixed equalities is

crucial here, because color-based projections cannot handle them.

Definition 26 (Theory-specific partial interpolant) Let T1, . . . ,Tn be equality-in-

terpolating convex disjoint theories, with satisfiability procedures Q1, . . . ,Qn capable

of generating equality-interpolating terms, proofs, and Ti-interpolants. For all i, 1 ≤
i≤ n, for all Ti-deductions Ai∪Bi∪K ⊢Ti

l, where Ai is the set of Ti-literals in A, Bi

is the set of Ti-literals in B, K is the set of colorable propagated equalities involved in

2 Note however that completeness of an interpolation system for a proof procedure (cf. Definition 10)

and completeness of the proof procedure itself are orthogonal concepts: if the proof procedure is incom-

plete, there will be unsatisfiable A∪B for which it does not produce a proof, and therefore the interpolation

system will not even be invoked to extract an interpolant from the proof.
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deducing l, and l is a ground colorable propagated literal, the theory-specific partial

interpolant of l, denoted PIi
(A′,B′)(l), is the Ti-interpolant of (A′∧¬(l\B),B

′∧¬(l ↓B

)) generated by Qi, where A′ = Ai∪K\B and B′ = Bi∪K ↓B.

The following interpolation system for equality sharing, that we name YM from the

initials of Yorsh and Musuvathi, extracts a T -interpolant of (A,B) from an ES-

refutation ΠES(✷) of A∪ B, by combining the theory-specific partial interpolants

computed by the Qi’s for the propagated equalities in ΠES(✷). The definition is in-

ductive in the length of the derivation:

Definition 27 (YM interpolation system) Let C be a literal (unit clause) in a refu-

tation of A∪B by equality sharing:

– Base case (the derivation of C has length 0):

– If C ∈ A, then PI(C) = ⊥,

– If C ∈ B, then PI(C) =⊤;

– Inductive case (the derivation of C has length m > 0):

if Ai∪Bi∪K ⊢Ti
C for some Qi, 1≤ i≤ n, then

PI(C) = (PIi
(A′,B′)(C)∨

∨

l∈A′

PI(l))∧
∧

l∈B′

PI(l),

where A′ = Ai∪K\B, B′ = Bi∪K ↓B, and therefore each l ∈ A′∪B′ was generated

by a derivation of length smaller than m.

The base cases of this definition follow HKPYM (cf. Definition 20) rather than MM

(cf. Definition 21), so that PI(C) coincides with PIi
(A′,B′)(C), if C is derived without

involving propagated equalities. Indeed, if K = /0, we have K\B = K ↓B= /0, A′ = Ai,

B′ = Bi, PI(l) = ⊥, which is the unit of disjunction, for all l ∈ Ai, and PI(l) = ⊤,

which is the unit of conjunction, for all l ∈ Bi. Similarly, if there were only one

theory, K would be empty, and the partial interpolant of C would be equal to its

theory-specific partial interpolant. The following example from [88] shows how Def-

initions 26 and 27 work together:

Example 3 Assume A = { f (x1)+ x2 ≃ x3, f (y1)+ y2 ≃ y3, y1 ≤ x1} and B = {x2 ≃
g(b), y2 ≃ g(b), x1 ≤ y1, x3 < y3}. The combined theories are equality (T1 with

procedure Q1) and linear rational arithmetic (T2 with procedure Q2). Separation

gives A1 = {a1 ≃ f (x1), a2 ≃ f (y1)}, A2 = {a1 + x2 ≃ x3, a2 + y2 ≃ y3, y1 ≤ x1},
B1 = {x2 ≃ g(b), y2 ≃ g(b)}, and B2 = {x1 ≤ y1, x3 < y3}. Thus, { f ,a1,a2} are

A-colored, {g,b} are B-colored, and {x1,y1,x2,y2,x3,y3} are transparent. The set of

constant symbols shared by T1 and T2 is V = {a1,x1,a2,y1,x2,y2}. The proof of

unsatisfiability of A∪B generated by equality sharing is made of the following steps,

where literals are decorated with their partial interpolants in brackets:

1. Procedure Q2 deduces x1 ≃ y1 from input literals y1 ≤ x1 [⊥] and x1 ≤ y1 [⊤].
Since x1,y1 ∈V , x1 ≃ y1 is propagated to Q1. YM computes its partial interpolant

as follows. Since no propagated equalities are involved, A′ = A2 and B′ = B2.

Since x1 ≃ y1 is transparent, (x1 ≃ y1)\B =⊥, and A′ ∧¬((x1 ≃ y1)\B) = A2 ∧
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⊤= A2; (x1 ≃ y1) ↓B = x1 ≃ y1, and B′∧¬((x1 ≃ y1) ↓B) = B2∪{x1 6≃y1}. The

theory-specific partial interpolant of x1 ≃ y1 is PI2
(A′,B′)(x1 ≃ y1) = y1 ≤ x1, T2-

interpolant of A2 and B2 ∪{x1 6≃y1}, because it follows from y1 ≤ x1 ∈ A2 and

it is T2-inconsistent with {x1 ≤ y1, x1 6≃y1}, where x1 ≤ y1 ∈ B2. The partial

interpolant of x1 ≃ y1 is PI(x1 ≃ y1) = (y1 ≤ x1∨ ⊥)∧⊤= y1 ≤ x1.

2. Procedure Q1 deduces a1 ≃ a2 from input equalities a1 ≃ f (x1) [⊥] and a2 ≃
f (y1) [⊥], and propagated equality x1 ≃ y1 [y1 ≤ x1]. Since a1,a2 ∈ V , a1 ≃ a2

is propagated to Q2. YM computes its partial interpolant as follows. Since the

propagated equality x1 ≃ y1 is involved in deducing a1 ≃ a2, K = {x1 ≃ y1}; and

since x1 ≃ y1 is transparent, A′ = A1 and B′ = B1 ∪{x1 ≃ y1}. Since a1 ≃ a2 is

A-colored, (a1 ≃ a2)\B = a1 ≃ a2, and A′ ∧¬((a1 ≃ a2)\B) = A1 ∪ {a1 6≃a2};
(a1 ≃ a2) ↓B =⊥, and B′∧¬((a1 ≃ a2) ↓B) = B1∪{x1≃ y1}. The theory-specific

partial interpolant of a1 ≃ a2 is PI1
(A′,B′)(a1 ≃ a2) = x1 6≃y1, T1-interpolant of

A1 ∪ {a1 6≃a2} and B1 ∪ {x1 ≃ y1}, because it follows from {a1 ≃ f (x1), a2 ≃
f (y1), a1 6≃a2}, and it is inconsistent with {x1 ≃ y1}. The partial interpolant of

a1 ≃ a2 is PI(a1 ≃ a2) = (x1 6≃y1∨ ⊥)∧ y1 ≤ x1 = y1 < x1.

3. Procedure Q1 deduces x2 ≃ y2 from input equalities x2 ≃ g(b) [⊤] and y2 ≃ g(b)
[⊤]. Since x2,y2 ∈ V , x2 ≃ y2 is propagated to Q2. YM computes its partial in-

terpolant as follows. Since no propagated equalities are involved, A′ = A1 and

B′ = B1. Since x2 ≃ y2 is transparent, (x2 ≃ y2)\B =⊥, and A′∧¬((x2 ≃ y2)\B) =
A1∧⊤= A1; (x2 ≃ y2) ↓B = x2 ≃ y2, and B′∧¬((x2 ≃ y2) ↓B) = B1∪{x2 6≃y2}.
The theory-specific partial interpolant of x2 ≃ y2 is PI1

(A′,B′)(x2 ≃ y2) = ⊤, T1-

interpolant of A1 and B1 ∪{x2 6≃y2}, because B1 ∪{x2 6≃y2} is T1-inconsistent.

The partial interpolant of x2 ≃ y2 is PI(x2 ≃ y2) = (⊤ ∨ ⊥)∧⊤=⊤.

4. Procedure Q2 deduces ✷ from input literals a1 + x2 ≃ x3 [⊥], a2 + y2 ≃ y3 [⊥],
x3 < y3 [⊤], and propagated equalities a1 ≃ a2 [y1 < x1] and x2 ≃ y2 [⊤]. YM

computes the partial interpolant of ✷, as follows. Since the propagated equalities

a1 ≃ a2 and x2 ≃ y2 are involved in deducing ✷, K = {a1 ≃ a2, x2 ≃ y2}; and

since a1 ≃ a2 is A-colored and x2 ≃ y2 is transparent, A′ = A2 ∪{a1 ≃ a2}, and

B′ = B2 ∪{x2 ≃ y2}. Then, (✷)\B = ✷ = (✷) ↓B; A′ ∧¬((✷)\B) = A2 ∪{a1 ≃
a2}∧⊤= A2∪{a1≃ a2}; and B′∧¬((✷) ↓B) = B2∪{x2≃ y2}∧⊤= B2∪{x2 ≃
y2}. The theory-specific partial interpolant of✷ is PI2

(A′,B′)(✷) = x3−x2≃ y3−y2,

T2-interpolant of A2∪{a1 ≃ a2} and B2∪{x2 ≃ y2}, because {a1+x2≃ x3, a2+
y2 ≃ y3, a1 ≃ a2} entail x3− x2 ≃ y3− y2, which is T2-inconsistent with {x3 <
y3, x2≃ y2}. The partial interpolant of ✷, and interpolant of the original problem,

is PI(✷) = (x3− x2 ≃ y3− y2∨ y1 < x1)∧⊤= x3− x2 ≃ y3− y2∨ y1 < x1.

Repeating the same example with symmetric projections shows why asymmetric ones

are preferable for Definitions 26 and 27:

Example 4 We assume everything is as in Example 3, except that symmetric projec-

tions are applied. We only show the changes that ensue:

1. In the first step, since x1 ≃ y1 is transparent, (x1 ≃ y1)|A = x1 ≃ y1 = (x1 ≃ y1)|B;

A′∧¬((x1 ≃ y1)|A) = A2 ∪{x1 6≃y1}, and B′ ∧¬((x1 ≃ y1)|B) = B2∪{x1 6≃y1}.
Then PI2

(A′,B′)(x1 ≃ y1) = y1 < x1, T2-interpolant of A2 ∪ {x1 6≃y1} and B2 ∪

{x1 6≃y1}, because it follows from {y1 ≤ x1, x1 6≃y1} and is T2-inconsistent with
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{x1 ≤ y1, x1 6≃y1}. It follows that PI(x1 ≃ y1) = (y1 < x1∨ ⊥)∧⊤= y1 < x1, so

that here symmetric projections give a stronger interpolant than asymmetric ones.

2. In the second step, since x1 ≃ y1 is transparent, applying symmetric projections

to K means that x1 ≃ y1 ends up in both A′ and B′: A′ = A1 ∪ {x1 ≃ y1} and

B′ = B1 ∪ {x1 ≃ y1}. Since a1 ≃ a2 is A-colored, (a1 ≃ a2)|A = a1 ≃ a2, and

A′∧¬((a1 ≃ a2)|A) = A1∪{x1≃ y1, a1 6≃a2}; (a1 ≃ a2)|B =⊥, and B′∧¬((a1 ≃
a2) ↓B) = B1 ∪ {x1 ≃ y1}. Then PI1

(A′,B′)(a1 ≃ a2) =⊥, T1-interpolant of A1 ∪

{x1 ≃ y1, a1 6≃a2} and B1 ∪{x1 ≃ y1}, because the first set is T1-inconsistent.

It follows that PI(a1 ≃ a2) = (⊥ ∨ y1 < x1)∧ y1 < x1 = y1 < x1, so that here

symmetric projections give the same result as asymmetric ones.

3. In the third step, since x2 ≃ y2 is transparent, (x2 ≃ y2)|A = x2 ≃ y2 = (x2 ≃ y2)|B;

A′∧¬((x2 ≃ y2)|A) = A1 ∪{x2 6≃y2}; and B′ ∧¬((x2 ≃ y2)|B) = B1 ∪{x2 6≃y2}.
Then PI1

(A′,B′)(x2 ≃ y2) =⊤, T1-interpolant of A1∪{x2 6≃y2} and B1∪{x2 6≃y2},

because B1 ∪{x2 6≃y2} is T1-inconsistent. As before, PI(x2 ≃ y2) = (⊤ ∨ ⊥)∧
⊤=⊤.

4. In the fourth step, since a1 ≃ a2 is A-colored and x2 ≃ y2 is transparent, A′ =
A2∪{a1 ≃ a2, x2 ≃ y2}, and B′ = B2∪{x2 ≃ y2}. Since (✷)|A =✷= (✷)|B, we

have A′∧¬((✷)|A) = A2∪{a1≃ a2, x2≃ y2}∧⊤= A2∪{a1≃ a2, x2≃ y2}; and

B′∧¬((✷)|B) =B2∪{x2≃ y2}∧⊤=B2∪{x2≃ y2}. Then PI2
(A′,B′)(✷) = x3≃ y3,

T2-interpolant of A2∪{a1≃ a2, x2 ≃ y2} and B2∪{x2 ≃ y2}, because {a1+x2 ≃
x3, a2 + y2 ≃ y3, a1 ≃ a2, x2 ≃ y2} entail x3 ≃ y3, which is T2-inconsistent with

x3 < y3. The partial interpolant of ✷ is PI(✷) = (x3 ≃ y3 ∨ y1 < x1 ∨⊤)∧⊤ =
⊤, which is trivial. The glitch is that symmetric projections put the transparent

propagated equality x2 ≃ y2 in both A′ and B′: since x2 ≃ y2 descends only from

B, this spoils the interpolant.

The following theorem proves the completeness of YM for refutations by equality

sharing. Since what matters are the propagated equalities, the inner induction in the

proof is on the set K:

Theorem 4 (Yorsh and Musuvathi, 2005) If T =
⋃n

i=1 Ti is a union of equality-

interpolating convex disjoint theories, YM is a complete interpolation system for refu-

tations by equality sharing of sets A∪B of ground T -literals.

Proof: We prove that for all literals, or unit clauses, C in the refutation, PI(C) is a

T -interpolant of gA(C) = A∧¬(C\B) and gB(C) = B∧¬(C ↓B), that is, it satifies the

requirements:

1. gA(C) ⊢T PI(C),
2. gB(C)∧PI(C) ⊢T ⊥, and

3. PI(C) is transparent.

The proof is by induction on the length of the derivation of C. The base case (proof

of length 0, C ∈ A or C ∈ B) is the same as in the proof of Theorem 2. The inductive

case, for a C such that Ai∪Bi ∪K ⊢Ti
C by a derivation of length m > 0, in a theory

Ti, for some i, 1≤ i≤ n, requires another induction on K.

Base case: if K = /0, then A′= Ai, B′= Bi, and PI(C) = PIi
(A′,B′)(C). By Definition 26,
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PI(C) is a Ti-interpolant of (Ai ∧¬(C\B),Bi ∧¬(C ↓B)); since Ai ⊆ A and Bi ⊆ B,

PI(C) is also a T -interpolant of A∧¬(C\B) and B∧¬(C ↓B).
Inductive case: if K 6= /0, then A′=Ai∪K\B, B′=Bi∪K ↓B and PI(C)= (PIi

(A′,B′)(C)∨
∨

l∈K\B
PI(l))∧

∧

l∈K↓B
PI(l), because PI(l) = ⊥ for all l ∈ Ai and PI(l) = ⊤ for all

l ∈ Bi.

Inductive hypothesis: for all l ∈ K\B, PI(l) is a T -interpolant of (A∧¬(l\B),B∧
¬(l ↓B)), that is, a T -interpolant of (A∧¬l,B), because l\B = l and l ↓B= ⊥ as

l ∈ K\B; for all l ∈ K ↓B, PI(l) is a T -interpolant of (A∧¬(l\B),B∧¬(l ↓B)), that

is, a T -interpolant of (A,B∧¬l), because l\B = ⊥ and l ↓B= l as l ∈ K ↓B; so that:

– For all l ∈ K\B:

(1A) A∧¬l ⊢T PI(l) or, equivalently, A ⊢T l∨PI(l),
(2A) B∧PI(l) ⊢T ⊥,

(3A) PI(l) is transparent; and

– For all l ∈ K ↓B:

(1B) A ⊢T PI(l),
(2B) B∧¬l∧PI(l) ⊢T ⊥, or, equivalently, B∧PI(l) ⊢T l,

(3B) PI(l) is transparent.

We show that Requirements 1, 2 and 3 are satisfied:

1. A∧¬(C\B) ⊢T PI(C):
By Definition 26, Ai∧K \B∧¬(C\B) ⊢Ti

PIi
(A′,B′)(C), or, equivalently,

Ai∧¬(C\B) ⊢Ti
¬K \B∨PIi

(A′,B′)(C) (1)

where¬K\B is the disjunction¬l1∨. . .∨¬lq, if K\B is the conjunction l1∧. . .∧lq.

By induction hypothesis (1A), we have

A ⊢T l j ∨PI(l j) f or 1≤ j ≤ q (2)

By q resolution steps between (1) and (2), and since A ⇒ Ai, it follows that

A∧¬(C\B) ⊢T PIi
(A′,B′)(C)∨

∨

l∈K\B
PI(l). By induction hypothesis (1B), A ⊢T

PI(l) for all l ∈ K ↓B. Therefore, we conclude that A∧¬(C\B) ⊢T (PIi
(A′,B′)(C)∨

∨

l∈K\B
PI(l))∧

∧

l∈K↓B
PI(l).

2. B∧¬(C ↓B)∧PI(C) ⊢T ⊥:

By Definition 26, Bi∧K ↓B ∧¬(C ↓B)∧PIi
(A′,B′)(C) ⊢Ti

⊥. Since B⇒ Bi, we have

B∧K ↓B ∧¬(C ↓B)∧PIi
(A′,B′)(C) ⊢Ti

⊥ (3)

By induction hypothesis (2A), we have B∧PI(l) ⊢T ⊥ for all l ∈ K\B, and thus

B∧
∨

l∈K\B
PI(l) ⊢T ⊥, and

B∧K ↓B ∧¬(C ↓B)∧
∨

l∈K\B

PI(l) ⊢T ⊥ (4)

Combining (3) and (4) gives

B∧K ↓B ∧¬(C ↓B)∧ (PIi
(A′,B′)(C)∨

∨

l∈K\B

PI(l)) ⊢T ⊥
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or, equivalently,

B∧¬(C ↓B)∧ (PIi
(A′,B′)(C)∨

∨

l∈K\B

PI(l)) ⊢T ¬K ↓B (5)

where ¬K ↓B is the disjunction ¬l1∨ . . .∨¬lq, if K ↓B is the conjunction l1∧ . . .∧
lq. By induction hypothesis (2B), we have

B∧PI(l j) ⊢T l j f or 1≤ j ≤ q (6)

By q resolution steps between (5) and (6), we get

B∧¬(C ↓B)∧ (PIi
(A′,B′)(C)∨

∨

l∈K\B

PI(l))∧
∧

l∈K↓B

PI(l) ⊢T ⊥

that is, B∧¬(C ↓B)∧PI(C) ⊢T ⊥.

3. PI(C) is transparent, because PIi
(A′,B′)(C) is transparent by Definition 26, and the

PI(l)’s are transparent by induction hypotheses (3A) and (3B). ✷

Having an interpolation system for DPLL and YM, we have all the ingredients for

an interpolation system for DPLL(T ). Let A and B be sets of ground T -clauses.

According to Definition 19, a DPLL(T )-refutation of A∪B will be a refutation by

propositional resolution plus T -lemmas. Such a refutation is colorable, because all

its literals are input literals, since also T -lemmas are made of input literals (cf. rule

T-Propagate in Section 2.4). Let CPT be the set of T -lemmas that appear in the

DPLL(T )-refutation of A∪B. Such a refutation shows that A∪B is T -unsatisfiable,

by showing that A∪B∪CPT is propositionally unsatisfiable. An interpolation system

for DPLL(T ) will be given by an interpolation system for propositional resolution

plus partial interpolants for T -lemmas. A clause C is a T -lemma, if and only if its

negation ¬C, which is a set, or conjunction, of literals, is T -unsatisfiable. Since C is

colorable, C =C\B∨C ↓B, whence¬C = (¬C)\B∧(¬C) ↓B. Then, (¬C)\B∧(¬C) ↓B

is T -unsatisfiable, and we can compute a T -interpolant of ((¬C)\B,(¬C) ↓B) by

YM. This T -interpolant provides the partial interpolant for the T -lemma C.

Then, we can define two interpolation systems for DPLL(T ) by adding a case for

T -lemmas to either HKPYM (cf. Definition 20), as done in [88], or MM (cf. Defi-

nition 21), as done in [45,26]. The case for T -lemmas is a third base case, because

they are sort of input clauses from the point of view of the propositional engine:

Definition 28 (HKPYM(T ) interpolation system) For c : C a clause in a DPLL(T )-

refutation of A∪B:

– If c : C ∈ A, then PI(c) = ⊥,

– If c : C ∈ B, then PI(c) =⊤,

– If c : C is a T -lemma, PI(c) is the T -interpolant of ((¬C)\B,(¬C) ↓B) produced

by YM from the refutation ¬C ⊢T ⊥;

– If c : C∨D is a propositional resolvent of p1 : l∨C and p2 : ¬l∨D then:

– If l is A-colored, then PI(c) = PI(p1)∨PI(p2),
– If l is B-colored, then PI(c) = PI(p1)∧PI(p2) and
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– If l is transparent, then PI(c) = (l∨PI(p1))∧ (¬l∨PI(p2)).

Definition 29 (MM(T ) interpolation system) For c : C a clause in a DPLL(T )-re-

futation of A∪B:

– If c : C ∈ A, then PI(c) =C|A,B,

– If c : C ∈ B, then PI(c) =⊤,

– If c : C is a T -lemma, PI(c) is the T -interpolant of ((¬C)\B,(¬C) ↓B) produced

by YM from the refutation ¬C ⊢T ⊥;

– If c : C∨D is a propositional resolvent of p1 : l∨C and p2 : ¬l∨D then:

– If l is A-colored, then PI(c) = PI(p1)∨PI(p2),
– If l is B-colored or transparent, then PI(c) = PI(p1)∧PI(p2).

The completeness of HKPYM(T ), or MM(T ), follows from that of HKPYM, or

MM, and YM. However, there are theories used in practice that are not convex:

Example 5 By relying on the proof that the theory of equality is equality-interpolating

(cf. Theorem 3), it was shown in [88] that the theory of non-empty, possibly cyclic

lists, which is convex, is also equality-interpolating. The theory of possibly empty,

possibly cyclic lists is not convex, since l ≃ nil ∨ l ≃ cons(car(l),cdr(l)) is valid

in the theory, but neither disjunct is. Similarly, the theory of arrays is not convex,

since select(store(a, i,e), j)≃ e∨ select(store(a, i,e), j)≃ select(a, j) is valid in the

theory, but neither disjunct is. The presentations of these theories can be found, for

instance, in [3].

Example 6 Linear rational arithmetic is convex (cf. Example 10.12 in [16]), and it

was shown to be equality-interpolating in [88]: first, A∧B⇒ a ≃ b, where a is A-

colored and b is B-colored, is written as A∧B⇒ a ≤ b∧ b ≤ a; second, it is shown

that if A∧B⇒ a≤ b, there exists a transparent term t such that A∧B⇒ a≤ t ≤ b (cf.

Lemma 3 in [88]); third, from A∧B⇒ a≤ t1≤ b and A∧B⇒ b≤ t2≤ a, one gets A∧
B⇒ a≃ t1 ≃ t2 ≃ b, so that t1, or t2, is the equality-interpolating term. Linear integer

arithmetic is not convex: 2 ≤ a∧ a ≤ 3 implies a ≃ 2∨ a ≃ 3, but it does not imply

either disjunct. Neither it is equality-interpolating: if A contains 2a≃ c and B contains

2b≃ c, where a is A-colored, b is B-colored, and c is transparent, A∧B⇒ a≃ b, but

the needed interpolating term c/2 is not in the integers. Approaches to interpolation

in the quantifier-free fragment of linear integer arithmetic were presented in [17,19].

A generalization of the definition of equality-interpolating theory to non-convex the-

ories was suggested in [87]; however, no theory was shown to satisfy it. A weaker,

and therefore more general, definition, which is satisfied by several theories of in-

terest, was given in [21,23], together with a thorough comparison with [87], and a

non-deterministic algorithm for interpolation in any combination of disjoint, stably-

infinite, quantifier-free interpolating theories. This algorithm is based on the meta-

level rules approach of [22], rather than on a color-based interpolation system, and is

therefore outside the scope of this survey. We refer the interested reader to [23].
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6 Interpolation for Ground Superposition

In this section we push as far as possible the color-based approach to interpolation by

giving a color-based interpolation system for ground Γ -refutations of A∪B contain-

ing ground clauses.

Definition 30 (Interpolation system GΓ I) Let c : C be a clause in a ground col-

orable Γ -refutation of A∪B:

– If c : C ∈ A, then PI(c) = ⊥,

– If c : C ∈ B, then PI(c) =⊤,

– If c : C is generated by a Γ -inference from premises p1 and p2, PI(c) is defined

as follows:

– Resolution: c : C∨D is generated from p1 : l∨C and p2 : ¬l∨D

• If l is A-colored, then PI(c) = PI(p1)∨PI(p2),
• If l is B-colored, then PI(c) = PI(p1)∧PI(p2), and

• If l is transparent, then PI(c) = (l∨PI(p1))∧ (¬l∨PI(p2));
– Reflection: c : C is generated from p1 : s 6≃s∨C: PI(c) = PI(p1);
– Paramodulation: c : C∨ l[r]∨D is generated from p1 : s≃ r∨C and p2 : l[s]∨

D; and Superposition: c : C∨ l[r] ⊲⊳ t ∨D is generated from p1 : s≃ r∨C and

p2 : l[s] ⊲⊳ t ∨D

• If s≃ r is A-colored, then PI(c) = PI(p1)∨PI(p2),
• If s≃ r is B-colored, then PI(c) = PI(p1)∧PI(p2), and

• If s≃ r is transparent, then PI(c) = (s≃ r∨PI(p1))∧ (s 6≃ r∨PI(p2)).

GΓ I is a generalization of HKPYM (cf. Definition 20) from propositional logic to

ground first-order logic with equality.

Example 7 Assume A = {Q( f (a)), f (a) ≃ c} and B = {¬Q( f (b)), f (b) ≃ c}, so

that a is A-colored, b is B-colored, and all other symbols are transparent. As in pre-

vious examples, each clause in the refutation is decorated with its partial interpolant

surrounded by brackets.

– Q( f (a)) [⊥] is simplified by f (a)≃ c [⊥] to Q(c) [⊥], as f (a)≻ c in a separating

ordering: since f (a)≃ c is A-colored, the partial interpolant is ⊥ ∨ ⊥=⊥;

– ¬Q( f (b)) [⊤] is simplified by f (b) ≃ c [⊤] to ¬Q(c) [⊤], as f (b) ≻ c in a sepa-

rating ordering: since f (b)≃ c is B-colored, the partial interpolant is ⊤∧⊤=⊤;

– Q(c) [⊥] resolves with ¬Q(c) [⊤] to yield ✷ [Q(c)]: since Q(c) is transparent, the

partial interpolant is (Q(c)∨ ⊥)∧ (¬Q(c)∨⊤) = Q(c).

Theorem 5 The interpolation system GΓ I is complete for ground colorable Γ -refu-

tations.

Proof: We need to prove that for all clauses c : C in the refutation,

1. A∧¬(C|A) ⊢ PI(c) or, equivalently, A ⊢C|A∨PI(c),
2. B∧¬(C|B)∧PI(c) ⊢⊥ or, equivalently, B∧PI(c) ⊢C|B, and

3. PI(c) is transparent.
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The proof is by induction on the structure of the refutation: the base case is the same

as for Theorem 2.

Inductive hypothesis: for k ∈ {1,2} it holds that:

1. A∧¬(pk|A) ⊢ PI(pk) or, equivalently, A ⊢ pk|A∨PI(pk)
2. B∧¬(pk|B)∧PI(pk) ⊢⊥ or, equivalently, B∧PI(pk) ⊢ pk|B
3. PI(pk) is transparent.

Inductive cases:

Resolution: c : C∨D is generated from p1 : l∨C and p2 : ¬l∨D; there are three cases:

– l is A-colored; then (l ∨C)|A = l ∨C|A, (¬l ∨D)|A = ¬l ∨D|A, (l ∨C)|B = C|B
and (¬l ∨D)|B = D|B:

1. A ⊢ (C∨D)|A∨PI(p1)∨PI(p2)
From inductive hypothesis (1) we have A ⊢ (l ∨C)|A ∨PI(p1) and A ⊢ (¬l ∨
D)|A ∨PI(p2). Since l is A-colored and ≻-maximal in l ∨C, and PI(p1) is

transparent, l is ≻-maximal in (l∨C)|A∨PI(p1). Similarly, ¬l is ≻-maximal

in (¬l∨D)|A∨PI(p2). Thus, a resolution step gives A ⊢ (C∨D)|A∨PI(p1)∨
PI(p2) as desired.

2. B∧ (PI(p1)∨PI(p2)) ⊢ (C∨D)|B
From inductive hypothesis (2) we have B∧PI(p1)⊢C|B and B∧PI(p2)⊢D|B
from which follows the inductive conclusion.

3. Transparency of the partial interpolant follows from the inductive hypothesis.

– l is B-colored; then (l ∨C)|A = C|A, (¬l ∨D)|A = D|A, (l ∨C)|B = l ∨C|B and

(¬l∨D)|B = ¬l∨D|B:

1. A∧¬(C∨D)|A ⊢ PI(p1)∧PI(p2) is equivalent to

A∧ ¬(C|A) ∧ ¬(D|A) ⊢ PI(p1) ∧ PI(p2) which follows from inductive hy-

potheses (1) A∧¬(C|A) ⊢ PI(p1) and A∧¬(D|A) ⊢ PI(p2).
2. B∧PI(p1)∧PI(p2) ⊢ (C∨D)|B

From inductive hypothesis (2) we have B∧PI(p1)⊢ (l∨C)|B and B∧PI(p2)⊢
(¬l∨D)|B; by resolution this gives B∧PI(p1)∧PI(p2) ⊢ (C∨D)|B.

3. Transparency of the partial interpolant follows from the inductive hypothesis.

– l is transparent:

1. A∧¬(C∨D)|A ⊢ (l∨PI(p1))∧ (¬l∨PI(p2))
or, equivalently, A∧¬C|A∧¬D|A ⊢ (l∨PI(p1))∧ (¬l∨PI(p2))
From inductive hypothesis (1) we have A∧¬C|A ⊢ l∨PI(p1) and A∧¬D|A ⊢
¬l∨PI(p2), which together give the desired result.

2. B∧ (l∨PI(p1))∧ (¬l ∨PI(p2)) ⊢ (C∨D)|B
By case analysis on l in PI(c): if l is true, l holds, l subsumes l ∨ PI(p1)
and simplifies ¬l ∨ PI(p2) to PI(p2); if l is false, ¬l holds, ¬l subsumes

¬l∨PI(p2) and simplifies l∨PI(p1) to PI(p1); so that we need to establish:

(a) B∧ l∧PI(p2) ⊢ (C∨D)|B
From inductive hypothesis (2) we have B∧PI(p2) ⊢ ¬l ∨D|B whence

B∧ l∧PI(p2) ⊢ D|B.

(b) B∧¬l∧PI(p1) ⊢ (C∨D)|B
From inductive hypothesis (2) we have B∧PI(p1) ⊢ l∨C|B whence B∧
¬l∧PI(p1) ⊢C|B.
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3. Transparency of the partial interpolant follows from the inductive hypothesis

and the assumption that l is transparent.

Reflection: c : C is generated from p1 : s 6≃ s∨C

– s is A-colored: (s 6≃s∨C)|A = s 6≃ s∨C|A, (s 6≃s∨C)|B =C|B
1. A∧¬(C|A) ⊢ PI(c)

Inductive hypothesis (1) is A∧¬(s 6≃ s∨C|A) ⊢ PI(p1), whence A∧ s ≃ s∧
¬(C|A) ⊢ PI(p1), and A∧¬(C|A) ⊢ PI(c), since PI(c) = PI(p1).

2. B∧¬(C|B)∧PI(c) ⊢⊥
Inductive hypothesis (2) gives B∧¬(C|B)∧PI(c) ⊢⊥ since PI(c) = PI(p1).

3. The partial interpolant is transparent by inductive hypothesis.

– s is B-colored: (s 6≃ s∨C)|A =C|A, (s 6≃ s∨C)|B = s 6≃s∨C|B; the rest of the proof

is symmetric to the previous case.

– s is transparent: (s 6≃ s∨C)|A = s 6≃ s∨C|A, (s 6≃s∨C)|B = s 6≃s∨C|B; the rest of

the proof is as in the previous cases.

Paramodulation: c : C∨ l[r]∨D is generated from p1 : s≃ r∨C and p2 : l[s]∨D

– s≃ r is A-colored: either s and r are both A-colored, or, since s≻ r, s is A-colored

and r is transparent; since there are no AB-mixed literals, either l[s] and l[r] are

both A-colored, or l[s] is A-colored and l[r] is transparent; (s ≃ r∨C)|A = s ≃
r∨C|A, (l[s]∨D)|A = l[s]∨D|A, (C∨ l[r]∨D)|A =C|A∨ l[r]∨D|A , (s≃ r∨C)|B =
C|B, (l[s]∨D)|B = D|B:

1. A ⊢ (C∨ l[r]∨D)|A∨PI(p1)∨PI(p2)
Inductive hypothesis (1) gives A ⊢ s ≃ r∨C|A ∨PI(p1) and A ⊢ l[s]∨D|A ∨
PI(p2); since s≃ r is ≻-maximal in s≃ r∨C and PI(p1) is transparent, s≃ r

is ≻-maximal also in s ≃ r∨C|A ∨PI(p1); similarly, l[s] is ≻-maximal also

in l[s]∨D|A∨PI(p2); thus, the inductive conclusion follows by a paramodu-

lation step.

2. B∧ (PI(p1)∨PI(p2)) ⊢ (C∨ l[r]∨D)|B
From inductive hypothesis (2) we have B∧PI(p1)⊢C|B and B∧PI(p2)⊢D|B,

which proves the inductive conclusion.

3. The partial interpolant is transparent by inductive hypothesis.

– s ≃ r is B-colored: similar to the previous case, either l[s] and l[r] are both B-

colored, or l[s] is B-colored and l[r] transparent, so that (s≃ r∨C)|B = s≃ r∨C|B,

(l[s]∨D)|B = l[s]∨D|B, (C∨ l[r]∨D)|B =C|B ∨ l[r]∨D|B, (s ≃ r∨C)|A = C|A,

(l[s]∨D)|A = D|A:

1. A∧¬((C∨ l[r]∨D)|A) ⊢ PI(p1)∧PI(p2) is equivalent to

A ∧ ¬(C|A) ∧ ¬l[r]|A ∧ ¬(D|A) ⊢ PI(p1) ∧ PI(p2) which follows from A ∧
¬C|A ⊢ PI(p1) and A∧¬D|A ⊢ PI(p2), that hold by inductive hypothesis (1).

2. B∧PI(p1)∧PI(p2) ⊢ (C∨ l[r]∨D)|B or, equivalently,

B∧PI(p1)∧PI(p2) ⊢C|B∨ l[r]∨D|B (*)

By inductive hypothesis (2) we have B∧PI(p1)⊢ s≃ r∨C|B and B∧PI(p2)⊢
l[s]∨D|B so that (*) follows by a paramodulation step.

3. The partial interpolant is transparent by inductive hypothesis.

– s≃ r is transparent:

1. A ⊢ (C ∨ l[r]∨D)|A ∨ ((s ≃ r ∨PI(p1))∧ (s 6≃ r ∨PI(p2))) is equivalent to

A∧ ((s 6≃ r∧¬PI(p1))∨ (s≃ r∧¬PI(p2))) ⊢ (C∨ l[r]∨D)|A
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(a) Assume s 6≃ r; then it suffices to establish A∧s 6≃ r∧¬PI(p1)⊢ (C∨l[r]∨
D)|A. By induction hypothesis (1) we have A∧¬(s ≃ r∨C)|A ⊢ PI(p1),
whence A∧ (s 6≃ r)|A∧¬(C|A) ⊢ PI(p1), and A∧ s 6≃ r∧¬PI(p1) ⊢C|A,

which proves the required.

(b) Assume s ≃ r; then it suffices to establish A∧ s ≃ r ∧¬PI(p2) ⊢ (C ∨
l[r]∨D)|A or, equivalently, A∧ s ≃ r∧¬PI(p2) ⊢ (C∨ l[s]∨D)|A since

s ≃ r holds, and the literals l[r] and l[s] are treated in the same way by

the projection, as s and r are transparent. By induction hypothesis (1) we

have A∧¬(l[s]∨D)|A ⊢ PI(p2), whence A∧¬PI(p2) ⊢ (l[s]∨D)|A, and

we are done.

2. B∧ (s≃ r∨PI(p1))∧ (s 6≃ r∨PI(p2)) ⊢ (C∨ l[r]∨D)|B
(a) Assume s ≃ r; then s ≃ r∨PI(p1) is subsumed, and s 6≃ r∨PI(p2) re-

duces to PI(p2). Thus, it suffices to establish B∧ s ≃ r∧PI(p2) ⊢ (C∨
l[r]∨D)|B , which is equivalent to B∧ s ≃ r∧PI(p2) ⊢ (C∨ l[s]∨D)|B ,

since s≃ r holds, and l[r] and l[s] are treated in the same way by the pro-

jection, as s and r are transparent. By induction hypothesis (2) we have

B∧PI(p2) ⊢ (l[s]∨D)|B, which closes this case.

(b) Assume s 6≃ r; then s 6≃ r∨PI(p2) is subsumed, and s ≃ r∨PI(p1) re-

duces to PI(p1). Thus, we need to establish B∧ s 6≃ r ∧PI(p1) ⊢ (C ∨
l[r]∨D)|B. By induction hypothesis (2) we have B∧PI(p1) ⊢ (s ≃ r∨
C)|B, or B∧PI(p1) ⊢ (s ≃ r)|B ∨C|B, whence B∧ s 6≃ r∧PI(p1) ⊢C|B,

because s≃ r is transparent.

3. Transparency follows from the transparency of s ≃ r and the inductive hy-

pothesis.

Superposition is treated like paramodulation, with l[s] replaced by l[s] ⊲⊳ t, and the

case analysis for simplification is subsumed by those for paramodulation and super-

position. ✷

Corollary 1 If the ordering is separating, GΓ I is a complete interpolation system

for ground Γ -refutations.

Proof: It follows from Lemma 1 and Theorem 5. ✷

7 Discussion

The existence of interpolants in first-order logic was established by Craig’s Interpola-

tion Lemma in [28]. Constructive proofs based on cut elimination were given in [54,

84,40]. One of the first studies of the complexity of interpolation appeared in [72]. In

[56,77,57] interpolation was studied to advance what is known as “Cook’s program,”

which can be summarized as follows. Since the result by Cook and Reckhow in [27]

that NP = co−NP if and only if there is a polynomially bounded proof system for

the classical propositional tautologies, the goal of that research line has been to prove

that there is no polynomially bounded proof system in order to settle NP 6= co−NP.

A proof system as defined in [27] (or [85] for a survey), is a function f such that

f (x) = y, if x is a string representing a proof, and y is a string representing the tau-

tology proved by x. The proof system f is polynomially bounded if the length of x is
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polynomially bounded by the length of y. The results of [56,77] are lower bounds on

the length of interpolants, that imply lower bounds on the length of proofs and show

that the proof system at hand is not polynomially bounded. The investigation in [57]

studies limitations to this approach.

The relevance of interpolation for model checking was discovered by Ken McMil-

lan beginning with [64], and since then interpolation has received increasing attention

(e.g., [48,65,52,45,17,68,18,86,19,2,22,78,80,23]), and has been implemented in

reasoners, such as Foci [65,67,69], MathSAT [26], OpenSMT [24], Vampire [49,50],

and program analyzers based on model checking, such as CSIsat [7], Wolverine [59],

and Eldarica [80]. In model checking one is interested in interpolants that acceler-

ate convergence towards a fixed point in forward, or backward, reachability search.

This goal has led to study several techniques, including interpolation systems with

labelling, or coloring, functions, to tune the strength of interpolants [37,86,78], and

abstraction over terms [2] or entire interpolants [80].

There are several approaches to practical interpolation. One is the inductive and

color-based approach surveyed here, which is appropriate for generic inference and

transition systems. Another one consists of building interpolation into specialized

inference systems [48,65,17–19] and satisfiability procedures [86,46,22,39,2] both

with the theory built-in. For instance, the interpolation algorithm of [39] is for a

congruence-closure-based satisfiability procedure for the quantifier-free fragment of

the theory of equality. The interpolation systems for equality sharing and DPLL(T ),

that we covered in this article, are consumers of interpolation algorithms incorpo-

rated into satisfiability procedures for specific theories, because they assume that ev-

ery Ti-satisfiability procedure produces Ti-interpolants. A third one formulates the

interpolation problem as a set of Horn clauses with an unknown query, and gives an

algorithm to solve it: the solution is a conjunction of constraints that represents the

interpolant [47,79].

An approach to combination and interpolation based on the notion of locality of

theories of [44,63] was pursued in [83]. A theory T is local in this sense, if the T -

satisfiability of a set of ground clauses can be decided by involving only finitely many

ground instances of the T -axioms. A combination of theories is seen as a series of

local extensions of a convex core theory, where an extension is local if the resulting

theory is local. The notion of equality-interpolating convex theory was generalized in

[83] to that of P-interpolating convex theory, where P is the main predicate symbol

of the core theory (e.g., an ordering in place of equality).

The methodology of [20,22,21,23] offers a different approach to both interpola-

tion algorithm design and combination of theories. It uses meta-rules to obtain inter-

polation algorithms: it was applied in [22] to the theory of arrays with extensionality,

in [20] to a combination of arrays and integer difference constraints, and in [21,23]

to any combination of disjoint, stably-infinite, quantifier-free interpolating theories.

The latter algorithm relies on a notion of equality-interpolating theories, which is the

most general in the literature thus far.

The study of interpolation for superposition in [67] aimed at generalizing to refu-

tations in first-order logic with equality the color-based approach that had been ap-

plied to propositional resolution [64] and to quantifier-free fragments of first-order

theories [48,65]. The notions of local inference and local proof were introduced in
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[67], together with that of ordering oriented for (A,B), which was a precursor of the

separating ordering. “Local” was replaced by “colored” in [45]. Ground refutations

by superposition with a separating ordering were shown to be colored in [55].

Approaches based on instantiation and proof transformation were developed in

[25] and [69] for ground refutations by a DPLL(T )-based SMT-solver, equipped

with an instantiation procedure (e.g., [35,31,42,70,43]). The instantiation procedure

is used to generate ground instances of non-ground input axioms. For instance in

[69] this technique is applied to proofs generated by Z3, that are processed and then

passed on to Foci for interpolation. The refutations to be interpolated are ground,

but not necessarily local, because the instantiation procedure may have introduced

AB-mixed literals. Thus, AB-mixed literals are eliminated by proof transformation.

In this article, we surveyed color-based interpolation systems for ground refu-

tations. After covering interpolation systems for propositional resolution, or, equiv-

alently, DPLL, we analyzed interpolation and equality. When going from proposi-

tional reasoning to equality reasoning, already in the ground case, and regardless of

whether equality reasoning is done by rewriting or congruence closure, interpolation

becomes more difficult, because equality makes colors unstable as soon as terms of

different colors become equal. We clarified how the requirement of convex equality-

interpolating theory for equality sharing and that of a separating ordering for ground

superposition address this same issue, as both aim at avoiding AB-mixed literals,

and ensuring that the proof is colorable (cf. Lemma 1). We connected them by us-

ing the separating ordering to prove that the quantifier-free fragment of the theory

of equality is equality-interpolating (cf. Theorem 3). Then we surveyed color-based

interpolation systems for combinations of convex equality-interpolating theories by

equality sharing and for DPLL(T ). The key point is that propagated equalities are

not AB-mixed, so that the proof is colorable. Next we studied interpolation of ground

Γ -refutations. Under the assumption of a separating ordering, ground Γ -refutations

are colorable (cf. Lemma 1) and colored (cf. Lemma 2). “Colorable” is more gen-

eral and more precise then “colored,” since it captures exactly the absence of AB-

mixed literals. We gave a new interpolation system, named GΓ I, which is complete

for ground Γ -refutations (cf. Theorem 5), and generalizes the interpolation systems

for propositional resolution. The interested reader may find in [15] an approach to the

interpolation of non-ground Γ -refutations.

The state of the art on ground interpolation can be advanced by giving inter-

polation systems that produce better interpolants than the existing ones, in terms of

strength, length, or other features [37,39,78,1,80], or by giving interpolation systems

for quantifier-free fragments of theories that do not have them. The latter include non-

linear arithmetic, where interpolation is relevant to hybrid system verification, theo-

ries of data structures beyond arrays, sets, and multisets [53], where interpolation is

relevant to the verification of heap-manipulating programs, and the theory of bitvec-

tors [86,46], where interpolation is relevant to applications in hardware verification

and security. For example, it is not known how to extract theory interpolants from the

propositional proofs produced by solving bitvector problems by bit-blasting.
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