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Abstract. Theory exploration is a technique for automatically discover-
ing new interesting lemmas in a mathematical theory development using
testing. In this paper I will present the theory exploration system Hipster,
which automatically discovers and proves lemmas about a given set of
datatypes and functions in Isabelle/HOL. The development of Hipster was
originally motivated by attempts to provide a higher level of automation
for proofs by induction. Automating inductive proofs is tricky, not least
because they often need auxiliary lemmas which themselves need to be
proved by induction. We found that many such basic lemmas can be
discovered automatically by theory exploration, and importantly, quickly
enough for use in conjunction with an interactive theorem prover without
boring the user.

1 Introduction

Theory exploration is a technique for discovering and proving new and interest-
ing basic lemmas about given functions and datatypes. The concept of theory
exploration was first introduced by Buchberger [3], to describe the workflow
of a human mathematician: instead of proving theorems in isolation, like auto-
mated theorem provers do, mathematical software should support an exploratory
workflow where basic lemmas relating new concepts to old ones are proved first,
before proceeding to complex propositions. This is arguably the mode of usage
supported in many modern proof assistants, including Buchberger’s Theorema
system [4] as well as Isabelle [13]. However, the discovery of new conjectures has
mainly been the task for the human user. Automated theory exploration systems,
[11,9,12,6], aims at addressing this by automatically both discover and prove
basic lemmas. In the HipSpec system [6], automated theory exploration has been
shown a successful technique for lemma discovery in inductive theorem proving
solving several challenge problems where auxiliary lemmas were required. In this
paper, we describe HipSpec’s sister system Hipster, which is integrated with
Isabelle/HOL and in addition produce certified proofs of lemmas and offer the
user more flexibility and control over proof strategies.

Hipster consists of two main components: the exploration component, called
QuickSpec [16], is implemented in Haskell and efficiently generates candidate



conjectures using random testing and heuristics. The conjectures are then passed
on to the prover component which is implemented in Isabelle. Hipster discards
any conjectures with trivial proofs, and outputs snippets of proof scripts for each
interesting lemma it discovers. The user can then easily paste the discovered
lemmas and their proofs into the Isabelle theory file by a mouse-click, thus
assisting and speeding up the development of new theories.

Example 1. As a first simple example consider the following small theory about
binary trees with two functions, mirror, which recursively swaps the left and
right subtrees and tmap, which applies a function to each element in the tree1.

datatype ’a Tree =

Leaf ’a

| Node "’a Tree" ’a "’a Tree"

fun mirror :: "’a Tree => ’a Tree"

where

"mirror (Leaf x) = Leaf x"

| "mirror (Node l x r) = Node (mirror r) x (mirror l)"

fun tmap :: "(’a => ’b) => ’a Tree => ’b Tree"

where

"tmap f (Leaf x) = Leaf (f x)"

| "tmap f (Node l x r) = Node (tmap f l) (f x) (tmap f r)"

We can ask Hipster to discover some properties about these two functions by
issuing a command in the Isabelle theory file telling Hipster which functions it
should explore:

hipster tmap mirror

Almost immediately, Hipster outputs the following two lemmas (and nothing
else), which it has proved by structural induction followed by simplification, using
the function definitions above:

lemma lemma_a [thy_expl]: "mirror (mirror y) = y"

apply (induct y)

apply simp

apply simp

done

lemma lemma_aa [thy_expl]: "mirror (tmap y z) = tmap y (mirror z)"

apply (induct z)

apply simp

apply simp

done

Here, Hipster was configured in such a way to consider lemmas requiring inductive
proofs interesting, and other conjectures requiring only simplification trivial.

1 This example can be found online: https://github.com/moajohansson/IsaHipster/
blob/master/Examples/ITP2017/Tree.thy.

https://github.com/moajohansson/IsaHipster/blob/master/Examples/ITP2017/Tree.thy
https://github.com/moajohansson/IsaHipster/blob/master/Examples/ITP2017/Tree.thy


We believe our work on automated theory exploration can complement systems
like Sledgehammer [14]. Sledgehammer is a popular tool allowing Isabelle users to
call various external automated first order provers and SMT solvers. A key feature
of Sledgehammer is its relevance filter which selects facts likely to be useful in
proving a given conjecture from Isabelle’s huge library, which otherwise would
swap the external prover. However, if a crucial lemma is missing, Sledgehammer
will fail, as might well be the case in a new theory development.

Current state of the project

The first version of Hipster has been described in [10]. The Hipster project is
ongoing and the system is under active development. The version described
in this paper is a snapshot of forthcoming second version. It includes several
improvements:

– Hipster now uses the recent QuickSpec 2 [16] as backend for conjecture
generation, which is much more efficient than the previously used first version.
QuickSpec 2 also has a generic interface via the TIP-language and tools [7,15]
avoiding ad-hoc translation from Haskell to Isabelle. Figure 1 shows the new
architecture of HipSpec.

– Hipster can use any Isabelle tactic as specified by the user, now also including
Sledgehammer, which allows it to exploit knowledge from Isabelle’s existing
libraries more efficiently. The aim is to make it easy for the user to customise
Hipster’s proof strategies according to his/her needs.

– The proof output from Hipster has been improved, referring only to standard
Isabelle tactics. Unlike the first version, which produced single-line proofs
using a Hipster-specific tactic, the proofs now displays the variable on which
Hipster did induction, as well as the tactics and lemmas it used to prove the
base- and step cases. This also saves Isabelle re-doing a lot of search when
the proof is replayed.

Hipster is open source with code available from GitHub: https://github.
com/moajohansson/IsaHipster. We happily invite those interested in Hipster
to try it out and welcome contributions to further development.

2 Architecture of a Theory Exploration System

A theory exploration system has two main tasks: First of all, it needs to generate
candidate conjectures (of which at least the majority should be theorems) and
secondly, it needs access to a sufficiently powerful automated theorem prover to
(at least) prove most of the interesting conjectures, and dismiss uninteresting
ones. Hipster’s conjecture generation is outsourced to QuickSpec 2 [16] and proofs
are performed by the tactics of Isabelle/HOL. In this section we describe both
these parts.

https://github.com/moajohansson/IsaHipster
https://github.com/moajohansson/IsaHipster
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Fig. 1. Theory exploration architecture. Hipster and its sister-system HipSpec.

2.1 Conjecture Generation

A trivial approach to conjecture generation would be to exhaustively generate all
possible terms that could be constructed from the input functions and datatypes,
but this would quickly become intractable, so some heuristics are necessary.
Furthermore, we do not want to waste time trying to prove conjectures that are
obviously false, so the conjecture generation should filter those out using testing,
or if possible, avoid generating them in the first place.

Earlier theory exploration systems for Isabelle/HOL, IsaCoSy [9], and IsaS-
cheme [12], took different approaches. IsaCoSy was restricted to generate only
irreducible terms, starting from small term size, and interleaved inductive proofs
with exploration before increasing the term size, so discovered equations could
be used to further restrict the search space. IsaScheme generated conjectures by
instantiating user provided term schemas (templates) and combined this rewriting
and completion. To avoid false conjecture, both IsaCoSy and IsaScheme filtered
the resulting conjectures through Isabelle’s counter-example checker.

Hipster is considerably faster than both IsaCoSy and IsaScheme, much thanks
to QuickSpec’s clever conjecture generation. The key idea is that term generation
is interleaved with testing and evaluation of terms, using Haskell’s QuickCheck
tool [5], which enables many terms to be tested at once, instead of one at the
time (see Example 2 below). Put simply, the conjecture generation algorithm
proceeds by iterating the following steps:

1. Generate new terms of the current term size and add them the the current
universe of terms. The algorithm start from term size 1 and iterates up to
user-specified max size.



2. Test and evaluate the terms generated so far using QuickCheck. Divide them
into equivalence classes.

3. Extract equations from the equivalence classes. Using these equations, prune
the search space for the next iteration of term genration when term size is
increased.

Example 2 (Conjecture generation in QuickSpec). As a small example, suppose
the universe of terms generated so far include the terms in the first column of
Table 1 below. QuickSpec will generate many (by default 1000) random test
cases and evaluate all terms on these. Initially, all terms are in one equivalence
class, but as testing proceeds, terms are split according to which ones evaluate
to the same value. Table 1 shows how our small set of terms are split into three
equivalence classes using two random tests. Testing would then proceed on many
more random values, but no more splits would occur. When the equivalence

Test-case: xs → [b, a], ys → [ ]

Term Instance Evaluation

xs [b,a] [b,a]
rev(rev xs) rev(rev [b,a]) [b,a]

sort xs sort [b,a] [a,b]
sort (rev xs) sort (rev [b,a]) [a,b]

sort (xs @ ys) sort([b,a] @ [ ]) [a,b]

Test-case: xs → [b, a, c], ys → [c]

Term Instance Evaluation

xs [b,a,c] [b,a,c]
rev(rev xs) rev(rev [b,a,c]) [b,a,c]

sort xs sort [b,a,c] [a,b,c]
sort (rev xs) sort (rev [b,a,c]) [a,b,c]

sort (xs @ ys) sort([b,a,c] @ [c]) [a,b,c,c]

Table 1. How QuickSpec divides terms into equivalence classes based on their evaluation
two random test cases. The first test case (top) splits the terms into two equivalence
classes. The second test case (bottom) splits off a third equivalence class.

classes are stable, QuickSpec extracts two equations:

rev(rev xs) = xs and sort(rev xs) = sort xs.

Note that these conjectures have been tested many times, so they are likely to be
true, but they have not yet been proved. QuickSpec’s pruner will now use these
two equations to restrict its search space. It will prune all terms of the shapes
rev(rev ) and sort(rev ) on account of such terms being reducible by the two
equations QuickSpec found. This stops generation of arguably less interesting
equations, for example rev(rev(xs @ ys)) = xs @ ys, rev(rev(xs @ ys @ zs)) = xs
@ ys @ zs and so on.



The new version of Hipster described here use QuickSpec 2 where the conjec-
ture generation algorithm has been further refined compared to the simplified
version described above, incorporating ideas from both IsaCoSy (avoiding gener-
ation of reducible terms) and IsaScheme (generation of schematic terms first).
We refer to [16] for details of all heuristics in QuickSpec 2.

QuickSpec was originally designed to generate candidate specifications for
Haskell programmes and can also be used as a stand alone light-weight verification
tool for this purpose, producing a candidate specification consisting of equations
that has been thoroughly tested, but not proved. With QuickSpec 2, an interface
using the TIP-language [7], was added to facilitate communication with external
systems such as Hipster and its sister system HipSpec [6]. Hipster translates its
given input functions and datatypes into TIP before sending them to QuickSpec.
Similarly, QuickSpec outputs the resulting conjectures in TIP format, and Hipster
translates them back into Isabelle/HOL (see Figure 1). The TIP-language is
based on SMT-LIB [2], with extensions to accommodate recursive datatypes and
functions. It was originally designed for creation of a shared benchmark repository
for inductive theorem provers. TIP comes with a number of tools for translating
between it and various other formats, such as standard SMT-LIB, TPTP [17]
and Isabelle/HOL, as well as libraries for facilitating writing additional pretty
printers and parsers for other prover languages [15]. QuickSpec should therefore
be relatively easy to integrate with additional provers.

2.2 Proving Discovered Conjectures

When Hipster gets the set of candidate conjectures from QuickSpec, it enters
its proof loop, where it tries to prove each conjecture in turn. The proof loop is
shown in Figure 2. Hipster is parametrised by two tactics, one for easy reasoning
and one for hard reasoning, with the idea being that conjectures proved by the
easy reasoning tactic are trivial, and not interesting enough to be presented
to the user. The hard reasoning tactic is more powerful, and the conjectures
requiring this tactic are considered interesting and are output to the user. Should
the proof fail the first time around, Hipster retries the conjecture at the next
iteration if any additional lemmas have been proved in between. Otherwise,
the unproved conjectures are also presented to the user. As QuickSpec has
tested each conjecture thoroughly it is likely to either be interesting as it is a
theorem with a difficult proof, or, have a very subtle counter-example. So far, the
combinations of hard and easy reasoning we have experimented with has been
various combinations of simplification and/or first order reasoning for the easy
reasoning tactic, and some form of induction for hard reasoning. We plan to do
a more thorough experimentation with different tactic combinations to extract
suitable heuristics.

As mentioned in the previous section, QuickSpec has its own heuristics for
reducing the search space and removing seemingly trivial conjectures. However,
QuickSpec does not know anything about Isabelle’s libraries, nor does it assume
that it necessarily has access to the function definitions (when used as a stand-
alone tool, it is designed to be able to explore properties also about Haskell
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Fig. 2. Hipster’s proof loop. Conjectures from QuickSpec are discarded if they can be
proved by the easy reasoning tactic and presented to the user if they are proved by the
hard reasoning tactic. Conjectures not proved at the first attempt might be retried once
additional lemmas have been proved.

programs which it can test, but not have the source code for). Hence, there will
usually always be at least a few trivial conjectures from the Isabelle point of
view. Priming QuickSpec with existing facts from Isabelle is future work.

Example 3 (Using Hipster for the maths homework). As an undergraduate at
Chalmers, you might be faced with something like the following exercise in
your discrete maths class: Prove that the rev function and the tail-recursive qrev
function produce the same result: rev xs = qrev xs [ ]. An Isabelle-savvy student
formalises this as follows and tries to prove the exercise using induction and
Isabelle’s Sledgehammer tool2:

fun qrev :: "’a list => ’a list => ’a list"

where

"qrev [] acc = acc"

| "qrev (x#xs) acc = qrev xs (x#acc)"

theorem hardExercise: "rev xs = qrev xs []"

apply (induct xs)

apply auto

sledgehammer

Unfortunately, not even Sledgehammer succeeds in proving the step-case, here
using the external provers CVC4 [1] and Z3 [8]:

Sledgehammering...

"cvc4": Timed out

"z3": Timed out

2 The source code is at: https://github.com/moajohansson/IsaHipster/blob/

master/Examples/ITP2017/Qrev.thy.

https://github.com/moajohansson/IsaHipster/blob/master/Examples/ITP2017/Qrev.thy
https://github.com/moajohansson/IsaHipster/blob/master/Examples/ITP2017/Qrev.thy


Something must be missing, so let us use Hipster to see what it can discover
about these functions:

hipster rev qrev

lemma lemma_a [thy_expl]: "qrev (qrev z y) [] = qrev y z"

apply (induct z arbitrary: y)

apply simp

apply simp

done

lemma lemma_aa [thy_expl]: "rev y @ z = qrev y z"

apply (induct y arbitrary: z)

apply simp

apply simp

apply (metis append_eq_append_conv2 rev.simps(2) rev_append

rev_singleton_conv rev_swap)

done

Hipster returns two interesting lemmas which it needed its hard reasoning tactic
to prove. In this example, hard reasoning was set to structural induction followed
by simplification and/or Sledgehammer3, while the easy reasoning tactic was set
to just simplification and/or Sledgehammer. Note that the second discovered
lemma, lemma aa, is a generalisation of our theorem. This is exactly what we
need, as is confirmed by Sledgehammer:

theorem hardExercise: "rev xs = qrev xs []"

apply (induct xs)

apply auto

sledgehammer

by (metis lemma_aa) (*** This line is now found by Sledgehammer ***)

As a matter of fact, we could even prove the exercise without induction now, as
it is a special case of lemma aa.

Example 4 (Configuring Hipster’s proof methods). If we were to study the in-
termediate output from Hipster while it is running on Example 3, we would
notice that there are in fact 17 lemmas discovered by QuickSpec, most of which
got discarded by Hipster. These include re-discovery of the function definitions
(remember, QuickSpec does not assume it has direct access to the source code,
only that it can test functions), a couple of lemmas about rev already present in
Isabelle’s library, and also theorem hardExercise from Example 3. Why did it
get discarded?

The anser is simple: The conjectures returned from QuickSpec happens to
come in an order so that Hipster tries to prove hardExercise before it has tried
the essential lemma aa. The first proof attempt therefore fails, and it is returned
to the queue of open conjectures (see Figure 2). In the next iteration of the

3 The proof command metis (followed by a list of required library facts) in the proof of
lemma aa is produced by Sledgehammer. Metis is Isabelle’s built in first order prover
used to reconstruct proofs from external provers.



proof-loop, Hipster has already proved lemma aa and can prove hardExercise
using just its easy reasoning tactic (here Sledgehammer). Suppose we consider
Hipster a bit overzealous in its pruning, and want to see also proofs found by
Sledgehammer. We can easily reconfigure it to use a different combination of
tactics, for example an easy reasoning tactic which only use simplification with
existing Isabelle facts, and a hard reasoning tactic which use Sledgehammer or
induction4:

setup Tactic_Data.set_sledge_induct_sledge

hipster rev qrev

...

lemma lemma_ab [thy_expl]: "qrev (qrev (qrev x2 z) y) x3 =

qrev y (qrev (qrev z x2) x3)"

apply (metis Qrev.lemma_aa append.assoc append.right_neutral lemma_a)

done

lemma lemma_ac [thy_expl]: "qrev y [] = rev y"

apply (metis Qrev.lemma_aa append.right_neutral)

done

Now, Hipster keeps two additional lemmas, which both follows from the previously
discovered lemmas by first-order reasoning. lemma ac is theorem hardExercise

with the left- and right-hand sides flipped, while lemma ab is a slightly exotic
formulation of associativity for qrev and arguably not something a human would
come up with.

3 Ongoing and Future Work

We plan to do a more comprehensive evaluation of various tactics in Hipster. As
we saw in Example 4, the results of theory exploration are different depending
on how we configure the hard- and easy reasoning tactics. Furthermore, there
is a trade-off in run-time depending on how powerful we make the respective
tactics. Experimental evaluation is needed to decide on some suitable heuristics
and default combinations. In the examples shown here, we only used structural
induction, but we would also like to compare it in detail to, for instance, recursion
induction based on function definitions as default [18]. An extension to co-
recursion and co-datatypes is also being developed as part of the MSc project of
Sólrún Halla Einarsdottir at Chalmers.

The version of Hipster described here is under active development, and not
all features has yet been ported to the new version which uses QuickSpec 2. The
first version of Hipster had some very basic support for discovery of conditional
equations [18], where the user specified a predicate for the condition, which

4 The interested reader may consult the file Tactic Data.ML in the Hipster source
code repository for details of several pre-defined combinations of easy/hard reasoning
tactics, as well as how to define additional ones.



was passed to QuickSpec 1. Testing conditional equations is tricky, one need
to generate test-cases where the condition holds which is a non-trivial task. In
QuickSpec 1, the test-cases not satisfying the condition were just discarded,
meaning that many extra test-cases had to be evaluated and testing become
much slower and false conjectures are more likely to slip through. This has been
improved in QuickSpec 2 [16], but at the time of writing not fully integrated in
the new version of Hipster.

4 Summary

Hipster is a theory exploration system for Isabelle/HOL. It automatically conjec-
tures and proves basic lemmas about given functions and datatypes, which can
be particularly useful as part of an automated inductive theorem prover. Hipster
is parametrised by two proof strategies which can be set by the user, one for
easy reasoning and one for hard reasoning. Conjectures solved by easy reasoning
(e.g. simplification) are considered trivial and uninteresting, while those requiring
hard reasoning (e.g. induction) are considered worth presenting to the user.

Hipster use an external conjecture generation engine called QuickSpec. The
systems are connected via an interface language called TIP, which is an extension
of SMT-LIB, and related tools for parsing and pretty printing. We believe this
interface has potential to be very useful for connecting additional provers wishing
to benefit from theory exploration.

Hipster, QuickSpec and TIP are all under active development by our group
at Chalmers. We invite anyone interested to test the tools and contribute to their
development.
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