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Abstract We have developed a program for inductive theory formation, called IsaCoSy,

which synthesises conjectures ‘bottom-up’ from the available constants and free vari-

ables. The synthesis process is made tractable by only generating irreducible terms,

which are then filtered through counter-example checking and passed to the automatic

inductive prover IsaPlanner. The main technical contribution is the presentation of a

constraint mechanism for synthesis. As theorems are discovered, this generates addi-

tional constraints on the synthesis process.

We evaluate IsaCoSy as a tool for automatically generating the background theories

one would expect in a mature proof assistant, such as the Isabelle system. The results

show that IsaCoSy produces most, and sometimes all, of the theorems in the Isabelle

libraries. The number of additional un-interesting theorems are small enough to be

easily pruned by hand.

Keywords Theory Formation · Induction · Synthesis · Theorem Proving · Lemma

Discovery

1 Introduction

Discovering unknown theorems and lemmas is a major challenge for automated induc-

tive theorem proving. It has generally been assumed that such discovery requires user

intervention. Consequently, most theorem provers rely on the user to supply any addi-

tional lemmas that might be needed for a proof. Interactive theorem provers, such as

Isabelle [21,20], have a large theory library of formalised mathematics. Such libraries

require significant expertise and time to develop. Automating the formation of theory

libraries, even just the construction and proof of background lemmas, is an important
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challenge. It could help both the development of new theories as well as speed up the

formalisation of existing ones.

Given an inductive theory, formed by the definitions of recursive datatypes and

functions, we show how to automatically synthesise a useful set of theorems. These

theorems typically capture the basic properties of the theory and are intended to be

useful in further proofs, either by a human or by an automated theorem prover. The set

of synthesised theorems can also provide a ‘sanity check’, ensuring that the theory has

been appropriately defined (or axiomatised) by ensuring that no unintended theorems

are included.

Our approach is implemented in a program for inductive theory formation, called

IsaCoSy (Isabelle Conjecture Synthesis), built on top of the proof-planner IsaPlanner

[9,10,8] and the proof assistant Isabelle. IsaCoSy builds terms, starting from small ones

and then building incrementally larger ones, using the set of available constants and

function symbols in a given theory. The key idea for making this tractable is to turn

rewriting upside down: only irreducible terms, those not matched by the left hand side

of any rewrite rule, are synthesised. In terms of the implementation, this restriction

turns into constraints on the term-synthesis process, thus avoiding a naive and ineffi-

cient generate-and-test style procedure. The main technical contribution of this paper

is a representation for the constraints and corresponding algorithms for synthesis of ir-

reducible terms. After conjectures are synthesised, counter-example checking is used to

prune out the obviously false ones. The remaining conjectures are given to IsaPlanner,

which attempts to prove them automatically by induction using the rippling heuris-

tic [4]. Any proved theorems are then used to generate more constraints for synthesis of

further terms. An important feature of IsaCoSy is that it is designed to be generic, and

may thus be applied to theories about any recursively defined datatypes in Isabelle.

We analyse the efficiency improvement provided by the constraints mechanism, as

compared with a naive algorithm that perform exhaustive term synthesis. We show

that our constraints machinery enables synthesis to achieve an exponential reduction

in the space of conjectures. This allows the synthesis of important theorems, such as

distributivity laws, that were previously too large to be found by naive synthesis. We

also evaluate IsaCoSy’s ability to generate ‘useful’ theorems by comparing the theo-

rems synthesised by IsaCoSy with those manually formalised by the theory developers

of Isabelle. We use precision and recall analysis for this comparison. Precision anal-

ysis computes the portion of extra theorems not in the library while recall analysis

computes the portion of theorems shared with the library. The domains considered are

the equational theorems in a formalisation of natural numbers, a theory of lists, and a

theory of binary trees. On an ordinary desktop PC, the synthesis process takes several

hours but finds most, and sometimes all, of the theorems in the Isabelle library. Some

of the theorems not found are special cases of synthesised theorems, but are useful

for configuring proof tools. A relatively small number of additional theorems are also

proved. While these are not in the Isabelle library, we note that some of them are also

useful for proof automation. We note the main sources of inefficiency in our approach,

and highlight how these might be tackled.

Overview

In §2, we introduce the IsaPlanner proof-planner and the Isabelle proof assistant on

which IsaCoSy has been developed. In §3 we present some motivating examples intro-
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ducing the basic ideas of our constraints for term synthesis. We then, in §4, describe our

language for expressing constraints, and in §5, a constraint generator which produces

constraints from available theorems. We give examples of typical theorems from which

initial constraints are generated in §6. Additional heuristics, for synthesis are described

in §7. The synthesis engine itself, including procedures for updating and propagating

constraints, is presented in §8.

In §9, we present a small case-study to illustrate how IsaCoSy uses its constraints

and heuristics. §10 describes the evaluation and experimental methodology. We show in

§10.1, that IsaCoSy manages to exponentially improve on the synthesis-space compared

to a naive synthesis. In §10.2, we perform a precision and recall analysis with Isabelle’s

libraries. Further experiments exploring the effects of allowing constraints to be gen-

erated from unfalsified but unproved conjectures and on restricting polymorphism are

discussed in §10.3 and §10.4 respectively. The limitations of IsaCoSy and further work

are discussed in §11. We compare IsaCoSy to other theory-formation systems in §12,

and finally summarise and draw conclusions in §13.

The source code and instructions for IsaCoSy are available on-line at:

http://dream.inf.ed.ac.uk/projects/isaplanner/

2 Background

2.1 An Overview of Theory Formation Systems

There are two main approaches to theory formation, generative and deductive. Theory

formation following the generative approach generally produces conjectures according

to some set of heuristics, and then checks which of these are theorems by counter-

examples and/or proof. Our work falls into this category, together with the early the-

ory formation system AM [15], which managed to conjecture Goldbach’s conjecture.

However, AM did not have the capability to prove any conjectures and its heuristics

were domain specific. HR is a more recent generative theory-formation system [6]. It

uses the resolution prover Otter to prove its conjectures and the MACE model genera-

tor to search for counter-examples. HR has been applied to domains including number

theory, graph theory, and group theory. Although the number of interesting conjectures

made was rather low, HR did manage to invent some novel integer sequences. Theory

exploration based on knowledge schemes - essentially higher-order terms - has been

proposed for the Theorema system [2]. The knowledge schemes capture prior mathe-

matical knowledge, and are then instantiated with symbols in the current theory in an

attempt to produce new concepts or function definitions. A preliminary case-study of

the natural number has been undertaken, but the process is not yet automated [12].

Systems using a deductive approach attempt to produce new theorems as logical

consequences of known facts. This approach has the advantage of not having to use

counter-example checking to filter out non-theorems, but instead it has to apply other

forms of filtering to avoid trivial or uninteresting logical consequences. The MATHsAiD

system [17,18] uses this approach, as does the AGInT system for first-order classical

logic [22]. AGInT has been applied to axioms about set theory and about logical puzzles

from the TPTP library [23], where it finds some theorems.

The IsaCoSy system, described in this paper, is the first system built for a generic

higher-order proof assistant. It also implements a novel approach to theory formation
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based on the simple idea of generating irreducible terms. We compare it in more detail

to related work in §12.

2.2 IsaPlanner and Isabelle

IsaCoSy passes conjectures to the proof-planner IsaPlanner, which attempts to prove

them automatically. Proof-planning is a technique used to guide search in automated

theorem proving by exploiting the fact that there are families of proofs with a similar

structure [3,5]. One such family is proofs by induction.

Isabelle is a generic, interactive theorem prover which supports a wide range of

object logics, such as higher-order logic (HOL), Zermelo-Fraenkel set theory and many

others [20]. A large library of theorems for various object logics is available on-line at

http://isabelle.in.tum.de. Each object logic is formalised in Isabelle’s meta-logic,

which is an intuitionistic higher-order logic with implication, universal quantifiers and

equality [21]. Isabelle follows the LCF approach to theorem proving, where new theo-

rems can only be obtained from previously proved statements through manipulation by

a small set of trusted inference rules [11]. More complex tactics are built by combining

these rules in different ways, ensuring that the resulting proofs rely only on the fixed

set of trusted inference rules.

IsaPlanner is built on top of Isabelle and can also support different object log-

ics and follows the LCF approach. It supports automated inductive proofs using an

implementation of the rippling heuristic to guide search [4,8]. It also has a language

for combining simple reasoning techniques into new, more complex ones. The atomic

techniques are declarative wrappers for Isabelle’s tactics, so that proof-planning and

tactic execution can be interleaved, ensuring each step is sound.

2.3 Notation

Functions and Lists: The ‘@’-symbol denotes the list append function and ‘#’ de-

notes cons, and both of these are written infix. These and all other functions used

in our examples are defined in Appendix A.

Term size: We define the size of a term to be the number of symbols (constants or

variables) it contains. For example, the term ‘a = 0’ is of size 3 (one variable and

the two constants ‘0’ and ‘=’).

Free Variables: Free variables represent arbitrary values. Free variables that are al-

lowed to be instantiated by unification are referred to as meta-variables. Meta-

variables are written prefixed by ‘?’, e.g. ?f .

Holes: During synthesis, holes are positions in a term-tree that have not yet been

fully instantiated by synthesis. Holes are implemented as Isabelle/IsaPlanner meta-

variables. Holes will have various constraints associated with them, such as a spec-

ified size and restrictions on which constants and variables are allowed to occur

inside them.

Naming: Both holes and constraints are identified by unique names. We will use

names of the form ?hi for holes and Ci for constraints.

Rewrite rules and equations: We will refer to equational theorems as rewrite rules

when they can be used as a rewrite rule from left-to-right. For example, the theorem

0 + y = y will be called a rewrite rule, when referring to its use as: 0 + y ⇒ y.
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Datatypes: We use ML-notation for datatypes to describe the central data-structures

in this paper. For instance, the typical datatype for lists can be written:

datatype ’a List =

Empty

| Cons of ’a * ’a List

3 Motivating Examples

Unless we employ heuristics and constraints, the space for conjecture synthesis is in-

tractable. The heuristic we present in this paper avoids generating conjectures that

are just ‘more complicated versions’ of simpler ones. This is effected by the synthesis

program only producing irreducible terms - terms that cannot be rewritten to some-

thing simpler by any existing rule. We capture the concept of irreducibility by a set of

constraints that guide synthesis.

In this section, to illustrate the kinds of constraints used to restrict term synthe-

sis, we shall consider a few examples involving natural numbers. These examples are

instances of the kinds of constraints that can be expressed in IsaCoSy’s constraint

language.

Example 1: Definition of +

Addition can be defined as follows:

0 + y = y

Suc(x) + y = Suc(x+ y)

The above equations can be used as rewrite rules. The first applies to any term that

has 0 in the first argument position of +, while the second applies to any term that

has a Suc in the first position (regardless of what the Suc is applied to). We would

like any such terms to be excluded from synthesis. For the first theorem, our constraint

generation algorithm produces a constraint stating that synthesis is never allowed to

put a 0 in the first argument of +. Similarly, for the second theorem, it generates a

constraint disallowing Suc to appear in the first argument of +. This ensures that no

term, which can be rewritten by the definitions of addition, is ever synthesised.

Example 2: Injectivity of Suc

The fact that Suc is injective is expressed in Isabelle by the theorem (Suc n = Suc m) =

n = m, which can be seen as a rewrite rule from left to right. To avoid synthesising

terms to which this rewrite is applicable, we need a constraint that forbids the two

arguments of = to both be instantiated to Suc at the same time.

Example 3: Reflexivity

Reflexivity can be expressed as the rewrite rule (x = x) = True. The constraint we

derive from this theorem is that, in a term we have synthesised, the two arguments of

= never should be the same.
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Example 4: Conditional Constraints

Imagine we have a partially synthesised term, Suc ?h3 =?h2. The reflexivity constraint

(above) applies and disallows the left- and right-hand side of the equation from being

equal. The left-hand side has been partially instantiated to Suc ?h3. Synthesis now

only needs to consider the inequality constraint if the right-hand side hole ?h2 also

becomes instantiated to Suc.

Conditional constraints may also arise from rewrite rules. For example, if a rule

has a left-hand side of the form f(g 0), it means that if a synthesised term, containing

an f , instantiates its argument to g, then 0 is not allowed to occur as the argument of

g.

4 Constraint Language

Motivated by example rewrite rules, such as those in §3, we have developed a small

language for expressing constraints on term synthesis. This constraint language allows

us to capture the requirement that no synthesised term should be reducible by an

existing rule. In particular, a set of constraints is derived for each rule in order to avoid

synthesising the set of terms that match some rule’s left hand side.

4.1 Representation of Constraints

The left hand side of each rewrite rule has a symbol at the top of its term tree which

we will call its top-level function symbol. When a constraint is constructed, it is given

a unique name, and stored in a table associated with the top-level function it was

constructed from. When a particular function-symbol is used during synthesis, its as-

sociated constraints are attached to the new holes at the argument-positions of the

function-symbol.

The constraint language consists of five different kinds of constraints. These kinds

are expressed as the constructors of the following datatype:

datatype Constr =

NotAllowed of Arg * ConstantName

| VarNotAllowed of Arg * VarName

| NotSimult of (Arg * ConstraintName) list

| UnEqual of Arg list

| IfThen of Arg * (ConstantName * ConstraintName)

Note that, as each constraint has a unique name (of type ConstraintName), the datatype

uses constraint names to refer to sub-constraints. The elements of type Arg, refer to a

particular argument position of the function that the constraint is constructed from.

We call these arguments of a constraint.

The first two constructors, NotAllowed and VarNotAllowed, simply state that the

specified argument is not allowed to be instantiated to the specified constant or vari-

able (see Example 1 of §3). The NotSimult-constraint captures dependent constraints.

Several arguments may not be allowed to have a particular combination of instantia-

tions simultaneously (see Example 2 of §3). The UnEqual-constraint specifies a list of

positions that are not all allowed to be instantiated to the same term (some of them
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may have the same instantiation, but not all). An example of this is the reflexivity

theorem in Example 3 of §3. Finally, the IfThen-constraint describes a condition un-

der which a constraint on a future hole should be considered. If the argument of the

IfThen-constraint is instantiated to the specified constant, the resulting new holes will

have to adhere to the named constraint (Example 4 of §3).

The IfThen and NotSimult constraints refer to other constraints, which we will

call their children, or sub-constraints. Conversely, if a constraint, C1, is a child of

another constraint, C0, the constraint C0 is said to be the parent constraint of C1.

An invariant on the stored constraints is that no NotSimult constraint has another

NotSimult constraint as a child - if this occurs we merge the NotSimult constraints

into one larger NotSimult constraint.

In §5.3 we present the important properties of our constraint langauge and al-

grotihms. This clarifies that the constraint language provides exactly the constraints

to prevent synthesis of reducible terms.

The constraint language is not designed to capture constraints from rules with

side-conditions and rules containing lambda expressions, these kinds of rules would

require additions to the constraint language. Correspondingly, we have not tried to use

our synthesis algorithm to synthesise conjectures with side conditions, or conjectures

containing lambda-expressions. Monroy-Borja has studied techniques for finding the

correct side-condition to make an inductive conjecture true [19], but extending this

technique to synthesis is left as further work. Allowing lambda-expressions in synthe-

sised conjectures is equivalent to allowing the synthesis of new functions, which is a

difficult problem and would also increase the size of the synthesis space.

4.2 Representation of Argument Positions

Each constraint refers to the argument positions of some function. These positions are

represented differently at different stages of the synthesis process by the constructors

of the following datatype:

datatype ArgPos =

Hole of HoleName

| Path of int list

| LocalIndex of ConstraintName * int

The Hole constructor represents positions which are holes during synthesis where

the HoleName is the name of an Isabelle/IsaPlanner meta-variable.

The Path constructor is only used temporarily when analysing a new theorem for

constraints. It specifies a position in a term as a path from the top of the term-tree.

For example, in the term (a ∗ b) + c, the variable b has the path [1, 2], as it is the first

(leftmost) argument of plus, and the second argument of multiplication. Variable a has

path [1, 1], while the path of c is just [2].

The LocalIndex constructor is used to represent future constraints on some hole

that does not yet exist, but may in the future. This is also how argument positions are

initially represented in constraints generated from rewrite rules, which are computed

and stored prior to synthesis, when no holes exist. As synthesis proceeds, positions

represented using LocalIndex are gradually replaced by holes. The constraint name in

a LocalIndex indicates the name of the constraint that has to be triggered in order for

the LocalIndex to be updated to being a hole. This is either the parent-constraint of the
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constraint in which the LocalIndex occurs1 or, if the constraint has no parent, itself.

Several new holes may be produced at the same time, so the integer-index part of a

LocalIndex indicates which new hole is intended. We abbreviate an argument position

LocalIndex(Ci, j) to Ci.j in order to improve readability.

As an example illustrating the use of LocalIndex -constraints, assume we are syn-

thesising an equality, and initially have a term with two holes:

?h1 =?h2

Also suppose there are two constraints, C1 and C2, (from the zero-case of the definition

of addition) with C1 attached to ?h1:

C1 : IfThen(?h1, ‘plus’, C2)

C2 : NotAllowed(LocalIndex(C1, 1) ‘zero’)

The constraints above states that if ?h1 is instantiated to plus, the first of the resulting

new holes is not allowed to be instantiated to zero. Note that C2 must use the LocalIn-

dex -constructor, as the first argument position of plus does not yet exist as a named

hole. Constraint C1 must be triggered for such a hole to be created. This happens if

?h1 is indeed instantiated to plus, resulting in the new term:

?h3+?h4 =?h2

The new holes are named ?h3 and ?h4, with ?h3 being in the first (leftmost) argument

position of plus, thus instantiating constraint C2:

C2 : NotAllowed(?h3, ‘zero’)

5 Generating Constraints

The constraints used during synthesis are automatically inferred from equational theo-

rems. Initial constraints are derived from the definitions of recursively defined functions,

as well as from theorems about reflexivity and commutativity of equality and theorems

about datatypes that Isabelle’s datatype-package proves automatically. This section

describes the constraint generation algorithm, and shows how it derives constraints

from rewrite rules.

5.1 Constraints and Information about Functions

To initialise synthesis, we compute some relevant information about each function.

This includes:

– The type of the function and each of its arguments.

– A domain for each argument position, specifying which constants are allowed to

occur in that position. The domain is initially all the symbols with a matching

type, and is later restricted by constraints from rewrite rules.

1 If this constraint is a sub-constraint of a NotSimult, its arguments are named after the
‘grandparent’-constraints, otherwise a LocalIndex -name might not be unique.
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– A set of constraints for each of the function’s argument positions, arising from the

initial rewrite rules.

– Information about whether the function is known to be commutative and/or as-

sociative. This is updated as synthesis progresses, when the relevant theorems are

discovered. If a function is known to be commutative, we can further restrict syn-

thesis by imposing an order on its arguments. For example, we can require that the

first argument is larger than or equal to the second in measure of size.

The above information is stored in a table indexed by the function-symbol’s unique

name. As synthesis proceeds, and more theorems are proved, these can be fed back into

the constraint generation mechanism to produce more constraints on future synthesis

attempts.

5.2 Constraint Generation Algorithm

The constraint generation algorithm infers constraints from the left-hand sides of

rewrite rules. The algorithm traverses the left-hand side term, producing a set of con-

straints that will be attached to the top-level symbol of the left-hand side of the rewrite

rule. As a running example, consider a rewrite rule based on an equation of the form:

f ?a ?a (g 0) = . . .. Recall that ?a denote a meta-variable that can be instantiated by

unification.

Overview of the Algorithm

1. Traverse the term and find its left-hand side (LHS). In the example, the left-hand

side of the rule is f ?a ?a (g 0).

2. Create equality constraints. Positions of variables that occur several times may not

be allowed to be instantiated to the same term. In the example, f ?a ?a (g 0), we

need to consider disallowing the first and second argument of f to be the same.

To find variables, traverse the LHS top down, keeping track of the path taken. On

encountering a variable, store its name and path in a table. For those variables that

have more than one path, create an UnEqual-constraint:

UnEqual(Path(p1) . . . Path(pn))

For the running example, there are two occurrences of the variable ?a, in the first

and second argument positions of f . Using the Path-constructor from §4.2, the two

occurrences of ?a are represented as Path[1] and Path[2]. These are not allowed to

be equal, resulting in the constraint: UnEqual(Path[1],Path[2]).

3. If the LHS term is a single constant, c, the rewrite rule is applicable whenever a

term contains c. To constrain all terms to not contain c, the constant c is removed

from the domain of all arguments.

4. If the LHS term is a function application, f(x1 . . . xn), compute the constraints

of its argument terms (x1 . . . xn). In the running example, the LHS is a func-

tion application, so we proceed to compute the constraints for the arguments of

f . Constraints for an argument-term xi are computed depending on whether the

argument-term is a variable, constant or function application. In the constraint,

the argument is referred to by its position, and parent-constraint name, using the

LocalIndex -constructor. Returning to the example, assume we give the name C0 to
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the top-level constraint we are constructing for f . The arguments of f will thus be

in positions named C0.1 (for ?a), C0.2 (for the second occurrence of ?a) and C0.3

(for g 0). Computing the constraints for the arguments now proceeds as follows,

depending on the form of the argument:

– Variable v: Look up the variable name v in the table created in step 2, to check

if it is involved in any UnEqual-constraint. If so, the argument position-type is

updated to use a LocalIndex instead of a Path as we now know the name of its

parent constraint. In the running example, both the first and second arguments

of f are variables, and are involved in the UnEqual-constraint created in step

2. We give this constraint the name C1 and update it to:

C1 : UnEqual(C0.1, C0.2)

When the algorithm terminates, all argument positions will be in LocalIndex -

format.

– Constant c: Create a new NotAllowed-constraint for this argument position

and constant: NotAllowed(Cp.i, c)

– Function application c(y1 . . . ym): Recursively compute the constraints of

the arguments. If the number of constraints are:

– Greater than 1, i.e. a list (posj , Cj) . . . (posn, Cn). Create a NotSimult-

constraint:

NotSimult((posj , Cj) . . . (posn, Cn))

– Exactly 1, i.e. (posj , Cj). Create an IfThen-constraint:

IfThen(Cp.i, c, Cj)

– 0, i.e. all arguments are variables occurring once in the term. Create a

NotAllowed-constraint for this argument and function-symbol:

NotAllowed(Cp.i, c)

In the example, the third argument of f is a function application g 0. To

compute a constraint on this, which we shall name C2, we first compute a

constraint for the single argument of g, the constant 0. This gives the constraint

C3 : NotAllowed(C2.1, ‘0’). Hence we also get C2 : IfThen(C0.3, ‘g’, C3). This

means that if the position C0.3 is instantiated to g, the first argument of g is

not allowed to be 0.

5. Once the constraints on argument positions are computed, we can determine the

top-level constraint. As before it becomes a NotSimult-constraint if there are several

argument-constraints. If there is only one, and that is a NotAllowed-constraint, this

constant can simply be removed from the domain of the relevant argument position.

In the example, the complete set of constraints for the three arguments of f are:

C1 : UnEqual(C0.1, C0.2)

C2 : IfThen(C0.3, ‘g’, C3)

C3 : NotAllowed(C2.1, ‘0’)

This results in the top-level constraint, C0, becoming:

C0 : NotSimult((C0.1, C1), (C0.2, C1), (C0.3, C2))

This constraint stops synthesis simultaneously violating both constraints C1 and

C2 when synthesising a term containing the function f .
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6. The final step of the constraint generation algorithm is to store the constraints in

the constraint-table. The top-level function symbol on the LHS is associated with

the top-level constraint (in the example, f 7→ C0). This mapping will then be used

when synthesising a term containing the function symbol f .

5.3 Properties of Constraint Generation

We now consider properties of the generation of constraints. This brief exposition of

the main theoretical properties helps understand the high-level specification of the

constraint mechanisms. We first introduce some notation and terminology:

– Constraints(l → r) is the set of constraints that are generated from a rewrite rule

l→ r.

– A term t satisfies a set of constraints when t is allowed to be synthesised by the

constraints. For example, the constraint VarNotAllowed(?h, v), is satisfied when

?h is instantiated to anything other than v.

– A term t violates a set of constraint when t is in the set of terms disallowed by the

constraints. For example, VarNotAllowed(?h, v) is violated if ?h is instantiated to

v.

– A redex of a rewrite rule, l→ r, in a term, t, is a subterm of t that matches l.

The main property of IsaCoSy’s constraint language is that the constraints gener-

ated from rewrite rules will exclude exactly those terms reducible by at least one of

the rewrite rules. This can be decomposed into two sub-properties.

The first property states that any term that violates a constraint (which excludes it

from synthesis) is indeed reducible by the rewrite rule from which IsaCoSy constructed

the constraint. Thus the constraints generated from a rule never exclude too many

terms from synthesis.

Property 1 (No Over-Coverage) Given a rule l→ r, if t is a term that violates

Constraints(l→ r), then there is a redex of l within t.

The second property states the compliment to Property 1, namely that any term

that is reducible by some rule will indeed violate the constraints generated from that

rule. Thus synthesis will never produce reducible terms.

Property 2 (Sufficient Coverage) Given a rule l→ r, if a term t contains a redex

of l, then t violates Constraints(l→ r).

From the combination of Properties 1 and 2 the final property follows, which is the

desired specification for IsaCoSy’s constraint generation algorithm:

Property 3 (Exact coverage) Given a rule l→ r and a term t, t violates

Constraints(l→ r) iff there is a redex within t.

The proofs of these properties can be found in [13]. A more detailed theoretical

account of the constraint-mechanism with fully formal proofs, run-time analysis and

analysis of the properties of synthesis with respect to term-ordering is interesting fur-

ther work. In the rest of this article, we focus on the implementation, design choices,

and empirical results of the constraints machinery.
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6 Sources of Initial Constraints

The initial constraints given to the synthesis machinery are derived from function

definitions, datatype theorems and other library theorems. Below, we give examples of

each kind, and show the constraints that are derived.

6.1 Constraints From Function Definitions

Function definitions provide an important source of initial constraints for synthesis.

Recall the definition of natural numbers:

0 + y = y

(Suc x) + y = Suc(x+ y)

Following the algorithm in §5.2, the left-hand side of the first defining equation is a

function application (of ‘plus’ to 0 and y), so we proceed to compute constraints on the

arguments. As 0 is a constant, a NotAllowed-constraint on the first argument of + is

generated. The variable y only occurs once, so it does not contribute to any constraints.

As the NotAllowed-constraint for 0 is the only constraint, 0 is removed from the domain

of the first argument of plus.

For the left-hand side of the second defining equation, the first argument of + is

a function application (Suc x), but its argument does not produce any constraints.

Hence we get only a single NotAllowed-constraint which forbids Suc to occur as the

first argument of +.

In general, the defining equations of functions defined by structural recursion will

restrict the domain of the argument(s) on which the function is recursive.

6.2 Constraints From Datatype Theorems

Isabelle’s datatype package will automatically derive a number of useful theorems when

a new datatype is defined. These will typically be used to provide constraints on equali-

ties. Our program automatically uses the injectivity and so called distinctness theorems

for each datatype to provide synthesis with a useful set of initial constraints.

Returning to our running example of natural numbers, Isabelle derives an injectivity

theorem (§3, Example 2):

((Suc n) = (Suc m)) = (n = m)

It also derives a distinctness theorem2:

(Suc n = 0) = False

From injectivity, we derive constraints stating that the first and second arguments

of an equality are not simultaneously allowed to be instantiated to Suc:

C1 : NotSimult((C1.1, C2), (C1.2, C3))

C2 : NotAllowed(C1.1, ‘Suc’)

C3 : NotAllowed(C1.2, ‘Suc’)

2 Isabelle actually derives a slightly different variant, of the form Suc n 6= 0, which IsaCoSy
uses to derive an equivalent theorem suitable for our constraint derivation algorithm.
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The distinctness theorem forbids the two arguments of an equality being instanti-

ated to opposite constructors:

C1 : NotSimult((C1.1, C2), (C1.2, C3))

C2 : NotAllowed(C1.1, ‘Suc’)

C3 : NotAllowed(C1.2, ‘zero’)

6.3 Reflexivity: Equality Constraints

Recall the reflexivity theorem from Example 3 of §3: (x = x) = True. To avoid this

being applicable as a rewrite rule, we do not want to synthesise any terms with identical

left and right-hand sides. This results in an equality constraint on the two arguments

of the equality:

C1 : UnEqual(C1.1, C1.2)

Of course, it might not be possible to establish that the two subterms are indeed differ-

ent until the whole term is fully synthesised. If the two arguments become instantiated

to different top-level symbols, the constraint can be dropped. Otherwise, the equality

is broken down into sub-constraints on new holes appearing after instantiation. Unlike

the constraints from injectivity and distinctness, we do not know in advance how many

levels down the term tree we might have to look before an equality constraint, such as

reflexivity, can be dismissed.

6.4 Commutativity: Argument Order Constraints

Commutativity theorems are used to avoid symmetries in synthesis. If we know that

a function is commutative, we can impose an order on its arguments. For example,

always require the leftmost argument to be of greater or equal size. Initially, IsaCoSy

has access to the commutativity theorem for equality:

(x = y) = (y = x)

Although the ordering used to constrain synthesis of commutative functions is a

parameter to our synthesis algorithm, for simplicity, from here on we will use term-size.

Thus, for an equality, ?h1 =?h2, we impose the constraint that the size of ?h2 is always

smaller or equal to the size of h1. This allows us to, roughly, cut the synthesis space

in half3.

Size constraints are currently not expressed in the constraint language described

above, but attached to holes during synthesis. This lets us take advantage of the fact

that our term-synthesis is always given a bounded size. Every time a new hole is

introduced, every possible size that the hole can take, up to the bound, is generated.

Synthesis of each size is then performed independently.

Commutativity theorems can be provided by the user. By default we provide the

commutativity of equality. During synthesis, when a commutativity property is found,

it is also used automatically to further constrain synthesis.

3 Some symmetric terms will be synthesised: when both sides of the equation have the same
size. A total order on terms could be used to remove all symmetries. There is a trade-off
between the time to compute the ordering and the synthesis space it removes.



14

7 Additional Heuristics

We also make use of three simple, additional heuristics in order to further constrain

synthesis.

7.1 Variable occurrence

A common heuristic for equational rewriting is to only allow rules where the variables

in the right-hand side are a subset of the variables on the left. For example, f(x, y) = x

is a valid rewrite rule, but x = f(x, y) is not. As we are interested in synthesising valid

rewrite rules, the default settings for IsaCoSy is to only allow holes in the left-hand

side to be instantiated to fresh variables, while variables on the right-hand side are only

allowed to be picked from those already occurring on the left. For example, if we have

the following partially synthesised term, f(x, y) =?h, the only variable-instantiation

allowed for ?h is x or y.

7.2 Number of Variables Allowed

IsaCoSy allows the user to specify how many different variables should be allowed in

the synthesised terms. In many theories, such as lists or natural numbers, the theorems

found in textbooks and prover libraries often have no more than two or three variables.

Studying the theorems in Isabelle’s libraries4 for natural numbers and lists, suggests

that a good default heuristic for the number of different variables is 1 + the maximum

arity of any function involved. While restricting the number of variables can cause

theorems to be missed, it is very useful in reducing the synthesis space.

7.3 Eager Check for Associativity and Commutativity

Another option IsaCoSy supports is to check, prior to synthesis, for associativity and

commutativity properties. If the AC-option is switched on, proofs of associativity and

commutativity are explored before the synthesis process starts. This is attempted for

all binary function with arguments of the same type. Should the proof of commuta-

tivity succeed, we can impose ordering restrictions on the function’s argument during

synthesis (recall §6.4). Furthermore, if the function is commutative, it is likely that the

commuted variants of its definitional theorems will be useful to our prover, so these

are also added to the set of synthesised terms. For example, the commuted definitions

of plus (defined as in §3) gives us the two theorems:

y + 0 = y

y + (Suc x) = Suc(y + x)

These theorems are obtained by commuting both the left- and right-hand sides. Com-

muting only one side is also an option, which would give another two versions, but

these were not found to be useful for proof automation in IsaPlanner.

4 www.cl.cam.ac.uk/research/hvg/Isabelle/dist/library
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8 Synthesising Conjectures

After the initial constraints of the current theory have been computed, synthesis can

start. The synthesis algorithm is given a table of current constraints for the available

function symbols and an initial top-level term. The initial term contains meta-variables

that are interpreted as the holes to be instantiated. In our experiments, we use the

initial term ?h0 =?h1.

Synthesis is also given a maximum and minimum size limit for the terms being syn-

thesised. At each iteration, non-theorems are filtered out by counter-example checking.

The conjectures that can then be proved are fed into the constraint generation mech-

anism to provide further constraints, thus restricting the synthesis space for future

terms. We have also experimented with allowing constraints to be generated from terms

that pass counter-example checking, rather than just those that IsaPlanner proves (see

§10.3) So far, all the terms that passed counter-example checking were theorems.

8.1 A Data-Structure for Synthesis

The synthesis algorithm uses a data-structure, which we an call STerm, to keep track

of information related to the current synthesis attempt. An STerm contains:

– The term synthesised so far.

– The name, type and term-size for each uninstantiated hole.

– A table of current constraints, indexed by their unique names.

– The constraints associated with each hole.

– The domain of allowed constants that each hole can be instantiated to.

– Constraint dependencies, keeping track of parent-constraints where relevant.

As synthesis progresses, by instantiating the holes, the constraints on them will be

evaluated and either dropped (if they no longer apply) or refined to provide restrictions

on new holes.

8.2 Overview of the Algorithm

IsaCoSy starts from some specified minimum size and performs one iteration of the

algorithm below for each size, up to the given maximum size.5

1. Initialise synthesis by importing the constraints associated with the given top-level

function (for example, equality). Also compute the allowed size combinations for

the holes.

2. Pick the next hole to be instantiated from the search agenda. The current version

of IsaCoSy uses depth-first search, but the synthesis machinery is compatible with

other search strategies.

– If hole-size = 1 : Instantiate the hole to a constant of size 1 (e.g. the empty list,

or the constant 0 for natural numbers), or to a variable. Variables can either

be fresh or already exist elsewhere in the term. Existing variables are filtered

against VarNotAllowed-constraints on the hole, in case they are forbidden in

5 The implementation is purely functional ML and provides a more detailed account for the
interested reader.
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this position. If synthesising an equality, fresh variables are typically only al-

lowed in the left-hand side. Similarly, if we have chosen a maximum number of

different variables, fresh variables are only allowed as long as this limit has not

been exceeded.

– Else, hole-size > 1: Instantiate the hole to a function with arguments providing

new holes. Consider all function-symbols in the domain of the hole that have a

minimum term size satisfying 1 < min-size ≤ hole-size.

3. Update and propagate constraints, given the instantiation and possible new holes

(see §8.3).

4. Terminate when there are no more open holes. Filter-out the resulting terms

through the counter-example finder. IsaCoSy uses Isabelle’s quickcheck [1].

5. Attempt to prove the remaining conjectures. We use the inductive theorem prover

provided by IsaPlanner [8].

6. Use the constraint generation algorithm on the new theorems to produce additional

constraints before the next iteration of synthesis. New theorems are not currently

used to prune the set of earlier produced theorems.

Note that IsaCoSy’s synthesis algorithm is independent of the order in which holes

are instantiated. The term-synthesis machinery and constraint language is designed to

allow experimentation with different search strategies. This also allows implementation

of additional heuristics to exploit particular search strategies. An example is the vari-

able occurrence heuristic from §7, which was implemented in a way that requires the

search strategy to instantiate the left hand side of a rewrite rule before the right hand

side.

8.3 Constraint Propagation

The constraint propagation mechanism is crucial for the synthesis algorithm’s efficiency.

Our constraint language supports expressing ‘future’ constraints which depend on the

instantiations of current holes. These constraints need to be updated and propagated to

any new holes. In particular, we need to manage the propagation of equality-constraints,

which may break up into several new constraints as holes are instantiated. Constraint

propagation also has to take dependencies into account, by checking if constraints are

children of a NotSimult.

Constraint Propagation Algorithm

The constraint propagation algorithm is called when a hole, ?h, is instantiated to a

symbol s, where ?h has constraint C. We use k to stand for some arbitrary constant,

and v to stand for a variable.

If the constraint C is a child-constraint of some other constraint, we will call its

parent, Cp. Furthermore, during synthesis, all such parent constraints are of the form

NotSimult, as IfThen-constraints only have child-constraints that talk about possible

future holes.

Depending on C, the following constraint updates are made:

C = NotSimult[(pos1, C1), . . . , (posi, Ci), . . . , (posn, Cn)]: Assuming posi =?h, the

constraint propagation function is called on the sub-constraint Ci, associated with
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the hole ?h that is being instantiated. In processing Ci, the fact that it is part

of a NotSimult must be taken into account. If the constraint expressed by Ci has

been satisfied, it no longer applies. Hence C is also satisfied, and can be dropped.

On the other hand, if Ci is violated or replaced by a child-constraint, its sibling

constraints and its parent constraint, C, must remain. The constraints are thus

updated as follows:

– if Ci is satisfied: Delete Ci, along with its parent NotSimult-constraint, and any

sibling-constraints.

– if Ci is violated: Delete Ci from its parent. The initial constraint thus becomes:

NotSimult[(pos1, C1), . . . , (posi−1, Ci−1), (posi+1, Ci+1), . . . , (posn, Cn)]

If there is now only one child-constraint in C, then there no need for the NotSi-

mult constraint, and it can be replaced by the remaining child-constraint. For

example, if we get NotSimult[(posj , Cj)], it is sufficient to keep the constraint

Cj on its own.

– if Ci is neither satisfied not violated, then it is replaced by the sub-constraint(s)

associated with the symbol s. Each sub-constraint, C′i is associated with a new

hole, ?h′. We replace Ci by a number of C′is and let pos′i =?h′ in C:

NotSimult[(pos1, C1), . . . , (pos′i, C
′
i), . . . , (posn, Cn)].

If C′i also happens to be a NotSimult-constraint, it is merged with the parent

constraint.

C = NotAllowed(?h, k): This constraint only occurs if it is a sub-constraint of a NotSi-

mult. Otherwise k would have been removed directly from the domain of ?h. Hence,

C must be a sub-constraint of a NotSimult-constraint, Cp.

– If s 6= k: C is satisfied. Cp and all its sub-constraints can be dropped (as

described above).

– Else, s = k: C is violated and removed from Cp, but Cp must remain and is

updated as described above.

C = VarNotAllowed(?h, v): If considering instantiating a hole with a variable, this

constraint is checked at instantiation, ensuring the hole is not instantiated to v. If

it is a sub-constraint of a NotSimult, the process is analogous to the above case for

NotAllowed.

C = IfThen(?h, s′, Cj):

– If s 6= s′: C is satisfied, and can be dropped along with its sub-constraint, Cj .

If any parent constraint exists, this is updated accordingly.

– Else, s = s′: the sub-constraint Cj must be considered. Cj should be attached

to some new hole(s). To determine which one(s), the argument position-types

in the sub-constraint Cj are updated from LocalIndex -type to Hole-type, as

described in §4.1. The IfThen-constraint C is then deleted.

If there is a parent NotSimult-constraint Cp then C is replaced by Cj in the

parent, as described above. Otherwise, if the sub-constraint Cj is of the form

NotAllowed, the domain of the relevant hole is updated accordingly, before Cj

is deleted.

C = UnEqual[(pos1, C1), . . . , (posi, Ci), . . . , (posn, Cn)]: Assuming posi =?h. The

other argument positions correspond to other holes. UnEqual-constraints always

break down into further constraints, until they disallow particular variables or con-

stants. Propagation of equality constraints depends on s:
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– s = v (instantiation to a variable): the other arguments of the equality are not

simultaneously all allowed to be instantiated to v. The following new constraints

are added to express this:

Cj : NotSimult((pos1, Cpos1) . . . (posn, Cposn))

Cpos1 : VarNotAllowed(pos1, v)

...

Cposn : VarNotAllowed(posn, v)

where the NotSimult-constraint is only necessary if there is more than one other

argument involved in the equality-constraint. Finally, the original equality-

constraint, C, is dropped.

– s = k: As for variables but with a NotAllowed(posi, k) for each of the remaining

arguments.

– s = f(?x1 . . .?xm): Given that ?h is instantiated to a function with new holes,

?x1 . . .?xm, we must create future-constraints on the potential instantiations

for the other arguments of C in positions pos1 . . . posn.

The UnEqual-constraint can only be violated if the other positions also are

instantiated to f , and the argument positions of f are instantiated to the same

symbol everywhere. We thus first create the following new equality constraints

on the new holes ?x1 . . .?xm:

Cx1 : UnEqual[?x1, Cpos1 .1 . . . Cposn .1]

...

Cxm : UnEqual[?xm, Cpos1 .m . . . Cposn .m]

Furthermore, we need to create an IfThen-constraint for each position

pos1 . . . posn of the original constraint (the constraints named Cpos1 . . . Cposn

above). These need to specify the further constraints applying to potential new

holes in the argument positions of f :

Cposi : IfThen(posi, f, Cposi′ )

Cposi′ : NotSimult((Cposi .1, Cx1) . . . (Cposi .m, Cxm))

Finally, all of the IfThen-constraints created above are dependent on each other.

We thus create a top-level NotSimult-constraint to express the dependency

between the positions of the original constraint:

C′ : NotSimult((pos1, Cpos1) . . . (posn, Cposn))

An UnEqual-constraint C, may have several parent constraints for its different

argument positions. If there was a parent NotSimult-constraint, Cp, for the hole

?h, then the constraints Cx1 . . . Cxm on the new holes ?x1 . . . ?xm replace C in Cp.

If a parent constraint exists for any of the other arguments of C (pos1 . . . posn),

then C is replaced by the new constraint C′ in Cp.



19

8.4 After Synthesis

After the synthesised terms have been filtered through the counter-example checker,

the remaining conjectures are passed on to IsaPlanner which tries to prove them. Isa-

Planner applies induction with rippling, lemma calculation and case-analysis. Lemma

calculation applies when there is a non-trivial subgoal remaining after the inductive

hypothesis has been applied. If this subgoal can be proved by a separate induction, the

resulting lemma concludes the proof. This is helpful in many proofs, as a conjecture

may sometimes need a lemma that has not been synthesised yet. An example is the

proof of rev(rev l) = l, for which IsaPlanner calculates and proves a needed lemma:

rev(l @ [h]) = h#(rev l). Without lemma calculation, the proof above would have to

wait until synthesis had found the theorem (rev a) @ (rev b) = rev(b @ a), which is

a more general variant of the lemma above. Furthermore, the calculated lemmas are

also fed into the next iteration of constraint generation so that they further cut down

the synthesis space.

IsaCoSy will occasionally produce theorems that might be considered special cases

of other theorems, e.g. (a + b) + a = (b + a) + a as well as the general version

(a + b) + c = (b + a) + c. This is because constraints are only used after synthesis

finishes producing all conjectures and theorems of a given size. Thus theorems, such

as associativity, will only be used to prune further synthesis at the next round. As the

specialised variants are rarely of interest, IsaCoSy has a subsumption check to filter

theorems for which a more general variant exists.

9 Case Study: A Small Theory about Natural Numbers

To illustrate how IsaCoSy works, consider a minimal theory about natural numbers,

with one recursive function, +, defined in the usual way. In total we have three function

symbols: +, Suc and =, as well as the constant 0. To generate initial information about

constraints and argument domains, we have the injectivity and distinctness rules for

Suc, reflexivity as well as the two rules defining +. Finally, we also assume that the

heuristic for only allowing fresh variables in the left-hand side of an equation is used.

We do not impose any restrictions on how many different variables are allowed, nor do

we attempt to eagerly discover associativity and commutativity theorems. Using this

configuration, we compare the number of conjectures synthesised by IsaCoSy with a

naive version of synthesis that generates all terms [16]. The naive version constructs

all terms that are type-correct combinations of a given set of function symbols and free

variables. Like IsaCoSy, it does not create any terms containing lambda-abstractions

and never places a free variable at the head of a compound term.

We will use the notation x ∈ {. . .} to specify the set of constants used to incremen-

tally instantiate x. For instance, x ∈ {0, Suc} means that x can be instantiated to the

constant 0 or to a term of the form Suc ?x2. Addition will initially have the following

associated information about argument domains and constraints:

Name: x + y

Min size: 3

Argument Domains: x ∈ {+}
y ∈ {0, Suc,+}

Term-Size: -

Constraints: -
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Recall that the omission of 0 and Suc from the domain of the first argument comes

from the defining equations being treated as rewrite rules.

For =, the initial information is:

Name: l = r

Min size: 3

Argument Domains: l ∈ {0, Suc,+}
r ∈ {0, Suc,+}

Term-Size: |l| ≥ |r| (Commutativity)

Constraints: C1 : NotSimult((l, Cl1), (r, Cr1)) (Injectivity)

Cl1 : NotAllowed(l, Suc)

Cr1 : NotAllowed(r, Suc)

C2 : NotSimult((l, Cl2), (r, Cr2)) (Distinctness)

Cl2 : NotAllowed(l, Suc)

Cr2 : NotAllowed(r, 0)

C3 : UnEqual(l, r) (Reflexivity)

Finally the initial information for Suc is:

Name: Suc n

Min size: 2

Argument Domains: n ∈ {0, Suc,+}
Term-Size: -

Constraints: -

We want to synthesise equations. This means we have to start synthesising terms of

size 3, with = as the top level symbol and two holes, each of size 1. The initial term is

thus:

?h1︸︷︷︸
size 1

= ?h2︸︷︷︸
size 1

The holes, represented by the meta-variables ?h1 and ?h2 will, in addition to their

specified size, inherit the restrictions specified for the corresponding arguments of =

above.

Size 3

We can generate two terms of size 1, the constant 0 or a variable a. Putting these

together, IsaCoSy synthesises only one term: a = 0 (out of a possible five for the naive

version of synthesis). The synthesised term is not a theorem, so it is discarded after

counter-example checking. Note that IsaCoSy does not synthesise a = a or 0 = 0

thanks to the equality constraint from reflexivity. Neither does it synthesise 0 = a or

a = b, as both of these have variables in the right-hand side that do not occur on the

left.

Size 4

For terms of size 4, IsaCoSy start from the template ?h1︸︷︷︸
size 2

= ?h2︸︷︷︸
size 1

. Note that we do not

consider terms where the right-hand side is larger than the left, due to the constraint

arising from the commutativity of equality.
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IsaCoSy only synthesises one non-theorem (which is caught by counter-example

checking) for this size:

Suc a = a

Note that conjectures of the form Suc(. . .) = 0 are not generated as this can be written

to False by the distinctness theorem.

The naive version produces ten non-theorem conjectures of size 4 (we use / to

separate alternative right-hand sides):

a = Suc 0 / Suc a / Suc b 0 = Suc 0 / Suc a

Suc a = 0 / a / b Suc 0 = 0 / a

Size 5

For terms of size 5, we get two possibilities to start from:

?x1︸︷︷︸
size 2

= ?x2︸︷︷︸
size 2

and ?y1︸︷︷︸
size 3

= ?y2︸︷︷︸
size 1

From the size restriction, the former can only attempt to generate terms of the form

Suc ?x = Suc ?y, but this is disallowed due to the injectivity of Suc, so IsaCoSy will

not generate any conjectures in this case.

Using the second template, IsaCoSy produces 8 conjectures:

a+ b = 0 / a / b a+ 0 = 0 / a

a+ a = 0 / a Suc(Suc a) = a

The list above includes only one theorem: a + 0 = a. The remaining conjectures are

filtered out by counter-example checking. The theorem found can be proved automati-

cally and is then given to the constraint generator, which will conclude that we should

no longer generate terms where 0 is the second argument to +. The naive version of

synthesis generates a 45 conjectures of size 5.

We will revisit this case-study in §10.1.1, where we evaluate IsaCoSy and compare

its performance with the naive version on several larger theories. We will also discuss

the effect of additional heuristics on the synthesis space.

10 Evaluation and Methodology

Our evaluation is based on inductive theories involving natural numbers, lists and

binary trees. IsaCoSy is given the task of synthesising equational theorems. We consider

the following main hypotheses:

– IsaCoSy has an exponentially smaller synthesis-space than naive synthesis. This

makes synthesis of many useful and interesting theorems computationally feasible.

– IsaCoSy produces useful theorems. In particular, the kind of theorems found in

Isabelle’s libraries and which can be used by automatic proof tools.

In order to select the other heuristic parameters with which to explore these hy-

potheses, we performed a preliminary case-study, detailed in §10.1.1, which extends

the basic theory of addition we started in §9. In this study, we compare the effects of

IsaCoSy’s two optional heuristics (presented in §7) on the size of the synthesis space.

Recall that the optional heuristics concern whether to attempt to prove associativity
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and commutativity properties prior to synthesis, as well as restrictions on the number

of different variables allowed in terms. These experiments provide evidence that the

heuristics are beneficial to synthesis.

We also carried out preliminary experiments to check the maximum size of terms

that IsaCoSy can synthesise before it runs out of memory. For the theories involving

append and reverse, memory ran out most quickly and conjectures greater than size

14 could not be synthesised with a memory limit of 500MB. Having established this,

and observed that all theorems in the comparable theories in the Isabelle library are

smaller, all further experiments were limited to size 14.

With these basic settings, we then perform the main analysis using six larger the-

ories with IsaCoSy’s optional heuristics switched on. Here, we recorded the run-time

for the different tasks in synthesis, as well as the size of the synthesis space, and which

conjectures were synthesised, and which of these were then proved. The theories used

are:

– Natural Numbers:

– addition and multiplication

– Lists:

– append, reverse, length

– append, reverse, map

– append, reverse, quick-reverse (qrev)

– append, foldl, foldr

– Binary Trees:

– mirror, height, nodes, max.

The definitions of the functions above can be found in Appendix A. We found that

most theorems in Isabelle’s library contain around three function symbols, which is

why we limit our evaluation-theories to either three or four function symbols each.

The experiments were run on a computer with a 2 GHz Intel Xenon processor. Full

results from the experiments are available on-line6, including all theorems, conjectures,

proofs and run-time statistics for each theory. The synthesised theorems from the

experiments are listed in Appendix B.

10.1 Evaluating the Size of the Synthesis Space

The main difficulty with term synthesis is that the number of possible terms grows

exponentially as term size is increased. As a result, many interesting conjectures are

too large to be synthesised naively. In this section we examine the size of the synthesis

space in IsaCoSy. We first present a brief evaluation of IsaCoSy’s optional heuristics

in §10.1.1, illustrating their effect on the synthesis space size. Having established the

benefits of these heuristics, in §10.1.2, we present a comparison of the synthesis space

size for IsaCoSy and the naive version of synthesis on the larger theories listed above.

As we see in §10.1.3, the overall run-time of IsaCoSy is proportional to how many terms

are generated and have to be counter-example checked. Hence, we do not provide any

run-times for the naive version but only compare how many terms are generated by

each algorithm, bearing in mind that this is proportional to the overall run-time in

most cases.

6 http://dream.inf.ed.ac.uk/projects/lemmadiscovery/synth_results.php
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Fig. 1 The number of equational terms generated up to size 13 about natural numbers with
addition for a naive version of synthesis, IsaCoSy’s basic version of synthesis and synthesis with
additional heuristics. The graph shows the synthesis space reduction achieved by adding a pre-
processing step to look for associativity and commutativity properties, as well as restricting
the number of different variables allowed in synthesised terms. Note that the y-axis scale is
logarithmic for better visibility.

10.1.1 Effect of Heuristics

We now continue where we left the case-study about addition on natural numbers from

§9. Figure 1 summarises the number of terms synthesised for increasingly large term

sizes. As well as the naive variant and IsaCoSy’s basic version of synthesis, which was

described in §9, results are also included for two versions of synthesis using the optional

heuristics described in §7. The first of these is restricted to only allow three different

variables in the synthesised terms (the arity of + is 2, so we allow 3 variables). Because

synthesis is highly constrained in this example, this heuristic only has a noticeable

effect when large numbers of terms are generated. The other version of synthesis has the

variable occurrence restriction as well as eagerly attempting to synthesise associativity

and commutativity properties prior to commencing synthesis. As we shall see, this

version of synthesis performs the best and is thus used in further experiments.

The number of terms increases exponentially for the naive version, until it runs

out of memory when reaching size 13 (given a limit of 500MB). IsaCoSy’s basic syn-

thesis version performs considerably better. When reaching size 7, the commutativity

of addition is discovered, which allows the arguments to be ordered, cutting out many

symmetries. In fact, IsaCoSy synthesises fewer terms of size 8 than size 7. The largest

number of conjectures are synthesised for size 11. At this point, the associativity of

addition is discovered. All theorems in our small theory (adhering to the constraints of
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Size Theorem
5 a + 0 = a
7 a + Suc b = Suc(a + b)
7 a + b = b + a
11 (a + b) + c = (b + a) + c
11 (a + b) + c = (a + c) + b
11 (a + b) + c = (c + b) + a

Table 1 Theorems about addition discovered by IsaCoSy without optional heuristics.

the synthesis algorithm) have now been discovered, and all corresponding constraints

are available. The domains for the arguments of addition are now empty, meaning

no function symbols is allowed occur in these positions. If asked to continue, only 10

terms are considered of size 12 and 13. These are ‘silly’ non-theorems of the form

Suc(. . . Suc(Suc(a + b))) = a + b, stacking up lots of successor functions.

When restricting IsaCoSy to only 3 different variables (each of which may occur

several times), even fewer terms are generated for larger sizes. The same theorems are

still discovered. The greatest difference comes from the AC pre-processing heuristic

which, in this toy theory, manages to discover all relevant theorems as consequences of

associativity or commutativity. Table 1 shows the theorems discovered and proved by

IsaCoSy using the basic setting. These are, as expected, the commuted variants of the

definition of plus, as well as commutativity and associativity. Associativity appears in

a few different variants, but not in the common form: (x + y) + z = x + (y + z).

This is because the constraint imposed after discovering the commutativity of addition

requires that the first argument of addition has greater or equal size compared to the

second argument.

10.1.2 Synthesis Space Reduction over Naive Synthesis

We now consider slightly larger theories. IsaCoSy is configured to use all the optional

heuristics and the number of different variables allowed is restricted to one more than

the maximum arity of any function in the theory. IsaCoSy is also set to perform pre-

processing steps looking for associativity and commutativity theorems prior to the start

of synthesis.

Figure 2 compares the total number of terms, up to size 11, generated by IsaCoSy

and by the naive version of synthesis. The six evaluation theories are combinations

of functions on natural numbers, lists and trees. For term-sizes larger than 11, the

naive version runs out of memory. The large difference between IsaCoSy and the naive

approach on the natural number theory is due to both addition and multiplication

being associative and commutative. These properties produce useful constraints which

significantly cut down the synthesis space. The more structure a theory has, the more

efficient synthesis is.

IsaCoSy’s synthesis space is largest for the quick-reverse theory. This is because

many of these theorems require generalisation of an accumulator variable, which is

beyond the current capabilities IsaPlanner. As the theorems cannot be proved, they

are not used to generate additional constraints, so the synthesis space remains relatively

large. We discuss this in more detail in §10.3.

Figure 3 shows the ratio in the size of the synthesis space between the naive version

and IsaCoSy. This is computed on term sizes from 3 up to 11. Beyond size 11 the naive
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Fig. 2 Number of terms generated up to size 11 for IsaCoSy and for a naive version of
synthesis. The different theories are combinations of functions on natural numbers, lists and
trees. The synthesis-space for IsaCoSy is considerably smaller: the y-axis scale is logarithmic
to make the diagram more readable.

algorithm runs out of memory. The factor by which IsaCoSy’s synthesis space is smaller

grows as the term size increases.

10.1.3 Run-time and Space Usage

We found that the run-time and space usage of IsaCoSy increases exponentially with the

size of the terms synthesised. Furthermore, the time taken per iteration is proportional

to the number of synthesised terms of that size. Figure 4 illustrates this on the theory

about natural numbers. The number of terms generated has been plotted together with

the run-time for each size. The graphs increase exponentially, and clearly mirror each

other.

The reason for the correlation between the number of terms and the run-time is

that IsaCoSy spends most of its time doing counter-example checking on the terms it

generates. Proof attempts make up a considerably smaller proportion of the total time.

This is because the vast majority of terms generated are non-theorems and filtered out

by counter-example checking. The total run-times, as well as timings for the different

tasks making up the synthesis process are summarised in Table 2. This shows that

for all theories in the experiments, IsaCoSy spends the majority of time performing

counter-example checking. Comparatively little time is spent on proof attempts.
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Sheet2

Page 1

app-rev-map trees

3 5 5 5 5 5 5

4 10 7 5 5 0 9

5 6.82 6.73 5.77 5.28 5.56 7.57

6 15.29 10.21 8.93 7.39 4.29 11

7 28.22 15.48 12.84 8.8 11.88 13.1

8 94.56 19.52 16.62 10.65 7.82 25.46

9 103.8 28.06 24.84 17.12 20.47 44.53

10 331.33 44.93 42.03 28.07 16.01 38.2

11 542.69 75.91 73.8 38.72 54.72

12 367.69 31.01 28.46 33.99 88.32
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Fig. 3 The ratio, in terms of the size of the synthesis space, between the naive version of
synthesis and IsaCoSy. Term sizes 3 - 11 are shown. The number of conjectures is calculated
on six theories involving functions on natural numbers, lists and binary trees. The factor by
which IsaCoSy’s synthesis space is smaller grows with increasing term size. Note that the y-axis
scale is logarithmic.

Theory Total time Counter-examples Proof Search Synthesis
plus-mult 1h 22 min 1h 20 min 1 min 48 sec
app-rev-len 15h 56 min 15h 30 min 17 min 9 min
app-rev-map 17h 21 min 16h 51 min 17 min 11 min
app-rev-qrev 18h 43 min 17h 20 min 1h 11 min 12 min
app-foldl-foldr 6h 8 min 6h 5 min 3 sec 3 min
trees 9h 46 min 9h 41 min 3 min 2 min

Table 2 Total run-time for IsaCoSy on six theories up to size 14, along with a breakdown of
how much time was spent on each sub-task during the synthesis process. Times are rounded
up to nearest hours and minutes. Note that for all theories, the largest proportion of time is
spent on counter-example checking.

10.2 Precision/Recall Analysis

To assess the quality of the theorems produced by IsaCoSy we performed a preci-

sion/recall analysis using Isabelle’s library as the reference. However, Isabelle does not

have a standard library for binary trees, so this theory could not be analysed here. The

quick-reverse function is also not included in the library, and was thus excluded.

10.2.1 Natural Numbers

The theorems synthesised in the theory natural numbers, involving addition and mul-

tiplication, are shown in Table 3 in Appendix B. The standard commutativity and

associativity theorems are synthesised, along with commuted versions of the function

definitions. IsaCoSy also synthesises theorems for the distributivity of multiplication

over addition.
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Fig. 4 The two graphs show the time taken and the number of synthesised terms for each
iteration from size 3 - 14 of synthesis. This is for the theory about natural numbers with
addition and multiplication. The graphs mirror each other, hence we can conclude that the
run-time is approximately proportional to the number of terms synthesised for each size. The y-
axis uses a logarithmic scale, which means that the growth in synthesis space size is exponential
as the size of terms synthesised is increased.

Isabelle’s library contains 12 equational theorems about addition and multiplica-

tion, 10 of which are synthesised by IsaCoSy:

a + 0 = a a + Suc b = Suc(a + b)

a ∗ 0 = 0 a ∗ Suc b = a+ (a ∗ b)
a + b = b + a a ∗ b = b ∗ a

(a + b) + c = a + (b + c) (a ∗ b) ∗ c = a ∗ (b ∗ c)
(a ∗ b) + (c ∗ b) = (a + c) ∗ b (a ∗ b) + (a ∗ c) = (b + c) ∗ a

Using Isabelle’s 12 theorems as a benchmark for ‘interestingness’ we can calculate

precision and recall for IsaCoSy. With ten of our theorems included in the library, this

gives recall of 83%. IsaCoSy synthesised a total of 16 theorems for this theory, which

gives precision of 63%.

The two theorems from Isabelle’s library that are not synthesised are:

add suc shift: (Suc m) + n = m + (Suc n)

nat left commute: x+ (y + z) = y + (x+ z)

These theorems are trivially derivable by simplification from theorems we do syn-

thesise. The theorem add suc shift is not synthesised as its left-hand side is identical to

the left-hand side of the definition of addition. Should we wish to derive theorems of this

form, one solution would be to add them to the set of theorems IsaCoSy tries to prove

when discovering that a function is commutative. Currently, it derives the commuted

versions of the function’s definition. For example the theorem b+(Suc a) = Suc(b+a).

This could easily be extended to also include trying to prove theorems of the same

form as add suc shift, without having to relax constraints on synthesis. The theorem
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nat left commute is not synthesised because of the size-constraint coming from com-

mutativity requires the first argument of addition to be greater than or equal to the

second argument in size.

10.2.2 Lists

The theorems synthesised for the list theories are shown in Tables 5, 6 and 7 in Ap-

pendix B. IsaCoSy produces a total of 24 theorems in these theories, while Isabelle’s

list theory contains 9 relevant theorems. All 9 of these are synthesised, giving a recall

of 100%. These ‘interesting’ theorems are:

a @ [ ] = a (a @ b) @ c = a @ (b @ c)

rev(rev a) = a (rev a) @ (rev b) = rev (b @ a)

rev(map a b) = map a(rev b) (map a b) @ (map a c) = map a (b @ c)

foldl a (foldl a b c) d = foldl a b (c @ d) foldr a b (foldr a c d) = foldr a (b @ c) d

len(rev a) = len a

Because of the 14 extra synthesised theorems which are not in Isabelle’s library,

the precision is just 38%. Most of these extra theorems concern reverse and append.

10.3 Allowing Unfalsified Conjectures to Generate Constraints

Quick-reverse (qrev) is the tail recursive version of reverse. The proof of many theorems

about tail recursive functions, such as qrev, require generalisation of the accumulator

variable. IsaPlanner does not currently have the capabilities to discover such general-

isations, which is why it fails to prove many synthesised theorems in this theory. One

example is the theorem qrev a [ ] = rev a, which needs the more general theorem

(rev a) @ b = qrev a b to complete the proof. In total IsaPlanner proves 19 theorems

about qrev (see table 8 in Appendix B), while a further 46 conjectures pass counter-

example checking, but fail to be proved. As a consequence of failing to prove many

theorems, few constraints are generated and the synthesis space remains relatively

large compared to the other theories, as shown in figure 2 on page 25. Another con-

sequence is that some of the synthesised theorems that IsaPlanner manages to prove

are rather contrived; but if the generalised case could be proved they would not be

synthesised.

A solution that results in IsaCoSy generating fewer terms when IsaPlanner fails to

prove conjectures, is to allow conjectures that have passed counter-example checking,

but not been proved, to also generate constraints. This would benefit synthesis in

many theories, including the theory of quick-reverse. We observed that many of the

conjectures in this theory which pass counter-example checking, but are not proved by

IsaPlanner, appear to be theorems. A random selection of 20 out of the 46 unproved

conjectures were proved by hand, and no non-theorems were found, which supports

our confidence in Isabelle’s counter-example checker for simple equational theories.

We repeated the experiment on the theory about quick-reverse, this time allowing

unproved conjectures to generate constraints. The run-time for generating terms up to

size 14 was reduced by 11 hours, now only taking 7 hours and 40 minutes. 11 fewer

theorems were generated, but it was only the larger, more contrived ones that were

cut out. Theorems L23-24 and L26-31 in Table 8 (Appendix B) were still generated.
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As an example, theorem L25: qrev (qrev a b)[ ] = qrev b a, is no longer generated

as the simpler (but unproved) theorem qrev a [ ] = rev a is now allowed to generate

constraints. There were also significantly fewer unproven conjectures, only 8 as opposed

to 46, as larger variants of previous unproven conjectures were no longer generated.

Allowing unproved conjectures to generate constraints makes IsaCoSy less depen-

dent on the underlying theorem prover and lets it operate efficiently even when many

conjectures remain unproved. There is of course a risk of missing desired theorems if

any non-theorems slip through counter example checking.

10.4 Restricting Polymorphic Types

Large gains in run-time can also be obtained by disallowing instantiations of poly-

morphic type variables to another polymorphic type. For instance, this would disallow

nested lists (lists of lists) and nested trees. We noticed that many non-theorems in the

list domain contained highly nested lists. As an example of terms that it would be ben-

eficial to prune from the term space, consider a term ?h0 # l, which is of type ?α list,

with ?h0 :: ?α. Suppose ?h0 gets instantiated to another cons-operator, which also

instantiates the type variable ?α to ?β list. The original term is now (?h1 # ?h2)# l ::

?β list list. Subsequent instantiations may cause even deeper nesting of lists. The re-

striction we suggest is to limit type-variables, such as ?α above, from being instantiated

with types beyond a certain size.

We repeated the synthesis experiments on some of the list theories with a specialised

lists datatypes over natural numbers, rather than polymorphic lists. The same theorems

as before were still found, but the number of non-theorems decreased significantly and

IsaCoSy ran considerably faster. However, the figures for precision and recall from §10.2

were not affected: the same theorems were still discovered. The results are summarised

below:

Theory Run-time Non-theorems

polymorphic non-polymorphic polymorphic non-polymorphic

app-rev-len 15h 56 min 5h 8 min 601 405 229 104

app-rev-map 17h 21 min 4h 31 min 636 361 195 800

app-foldl-foldr 6h 8 min 17 min 249 404 14 503

11 Limitations and Further Work

IsaCoSy can be applied to generate theorems about any recursively defined datatype

in Isabelle. However, as IsaCoSy relies on the counter-example checker and the auto-

mated prover to be able to produce theorems efficiently, the performance of these tools

are important limitations. For example, both the current prover and counter-example

checker perform poorly when applied to conjectures with many nested assumptions.

IsaCoSy itself could be applied to, for example, inductively defined relations, or even

non-inductive theories, without major implementational changes, as long as an efficient

counter-example checker and prover are available.

The automated prover in IsaPlanner is an active research project whose improve-

ments will contribute to IsaCoSy. Combining IsaCoSy with other proof techniques

might benefit from slightly different constraint configurations. For example, Isabelle’s
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simplifier relies on its rewrite rules being oriented in such a way that rewriting ter-

minates, while rippling terminates regardless of the directions of the rules. However,

rippling requires skeleton preservation, and will sometimes need lemmas in a different,

and sometimes even more specialised form, to those that IsaCoSy produces. For simpli-

fication, it would be interesting to attempt to configure IsaCoSy to produce a confluent

set of rewrite rules by, for example, combining it with Knuth-Bendix completion [14].

In addition to rippling and simplification, another technique to consider is rewriting

modulo associativity and commutativity. With an AC-rewriting technique, IsaCoSy

would not have to consider synthesising commuted versions of theorems.

A limitation to IsaCoSy’s constraint for commutative operations is the use of a very

simple ordering on terms based on their size. As this is not a total order, the measure

will sometimes allow symmetric equations and multiple commutative variants of the

same theorem to be synthesised (see theorems L19/L20 in Table 6 and theorems N9-N16

in Table 3 in Appendix B). Furthermore, with the exception of simple commutativity

theorems, which can be identified and are used to generate size constraints, IsaCoSy’s

constraint mechanism cannot determine if a given theorem is a valid rewrite rule. This

may result in overly restrictive constraints. An example is the theorem len(a @ b) =

len(b @ a). This is not a valid rewrite rule, but IsaCoSy treats it as such and generates

a constraint disallowing @ to occur as an argument to len, which subsequently would

exclude a theorem such as len(a @ b) = (len a) + (len b). A solution to the problem

would be to only allow constraints to be generated if the theorem is a valid rewrite

rule according to some appropriate ordering, such as recursive path ordering [7].

Future Applications

We believe the IsaCoSy program has the potential to be useful for assisting theory

development as well as for generating challenge problems.

In the theory development setting, a synthesis tool could be applied to functions

and datatypes defined by a user. It could then either be left to run to some finite

level of completion (e.g. a specified maximum term size), or possibly left to run in the

background, finding and proving routine lemmas that may be of use for later proofs.

Alternatively, IsaCoSy could be called when the user is stuck in some proof. In this

scenario, synthesis can be further restricted to build lemmas from a schematic term

using the constants and function symbols in the goal.

Secondly, a synthesis tool could be used to automatically generate test-sets for in-

ductive theorem provers, perhaps for inclusion in a library such as TPTP [23]. Here

unfalsified conjectures might also provide interesting challenge problems for the induc-

tive theorem proving community.

12 Related Work

From a foundational point of view, IsaCoSy is the only theory formation system based

on a proof assistant with a small fixed logical kernel. This ensures that the soundness of

the theory produced by IsaCoSy rests only on the implementation of the logical kernel

and the consistency of HOL. The other feature that distinguishes IsaCoSy from other

theory formation systems is that it has the potential to be complete. If the constraints

avoid synthesis of any rule that could be rewritten by a confluent rewrite system, such
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as that produced by the Knuth-Bendix procedure, and the number of variables is not

limited, then an instance of every conjecture up to the memory limit will be produced.

IsaCoSy’s pre-processing step, looking for associativity and commutativity proper-

ties, is similar to how the scheme-based method discovers theorems of a certain form

[2]. The scheme-based model, and other systems such as HR [6], does however also

include the capabilities for forming new concepts. IsaCoSy is not concerned with this

side of theory formation. It is designed to produce conjectures and theorems about ex-

isting functions and datatypes, not to invent new ones. Considering the use of IsaCoSy

for concept definition is left as further work.

Thus far, the only other theory formation system that has been applied to discover

inductive theorems is the MATHsAiD system [17,18]. Its aim is to generate theorems

that a human mathematician would consider interesting, for example, theorems that

occur in mathematics textbooks. MATHsAiD has been applied to inductive theorems

about natural numbers [18], as well as theorems in non-inductive domains such as basic

group theory. The main general difference is that MATHsAiD is a deductive system

in the sense that it deduces new theorems in a forward directed way rather than mak-

ing conjectures. However, for finding inductive theorems, MATHsAiD also uses some

synthesis based techniques. Unlike IsaCoSy, which generates whole terms at once and

then discards most after counter-example checking, MATHsAiD first produces a set of

potential left-hand sides, called terms of interest. Smaller terms of interest can be used

to build larger ones. The generation of interesting terms is guided by heuristics, which

include rules for producing terms about associativity, commutativity and distributivity

for relevant functions. Our system implements a similar idea in the pre-processing step

which searches for AC-properties. However, we do not currently employ any special

heuristics to look for distributivity rules, which might further decrease our the size of

the synthesis space. After generating the terms of interest, MATHsAiD proceeds to

inductively generate theorems by replacing a variable in the term with ‘TWO’ (corre-

sponding to Suc(Suc 0) for natural numbers or [a, b] for lists) and reasoning forward

to find an appropriate right hand side of the equation. This forward reasoning may

have a large search space, which is why MATHsAiD imposes a size limit on poten-

tial right-hand sides, computed as (number of function-symbols in LHS) + number of

function symbols in ‘TWO’ + 2. IsaCoSy’s use of ordering commutativity also imposes

restrictions on the size of left and right-hand sides, requiring the left-hand side to be

larger than or equal to the right-hand side. However, while IsaCoSy’s restriction is more

general - applying to any commutative statement, it is less strict for equality. Thus it

may generate equations with big differences in the size of the left-and right-hand side.

As IsaCoSy works on Isabelle-theories, properties such as well-definedness of func-

tions are proved automatically by Isabelle’s function package. This makes it easy to

apply it to different theories. We have experimented with natural numbers, lists and

binary trees. MATHsAiD cannot be extended to new domains so easily, as much of

the configuration has to be done by adding axioms by hand. MATHsAiD has been

applied to the domain of natural numbers with addition and multiplication [18]. It

generates the common associativity, commutativity and distributivity theorems which

IsaCoSy also finds (although MATHsAiD produces fewer variants of distributivity). It

also produces the following three extra theorems:

a + (Suc 0) = Suc a, a * (Suc 0) = a, (Suc 0) * a = a

IsaCoSy does not generate these theorems as they are subsumed by more general ones.

MATHsAiD was designed to aid human mathematicians and has specially designed
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heuristic for what an ‘interesting’ theorem is, which includes the above identities about

‘Suc 0’.

MATHsAiD is considerably faster than IsaCoSy, the theorems for the natural num-

ber theory are generated in just 84 seconds. This is not surprising as MATHsAiD has

more heuristics encoded, including a specific heuristic for distributivity theorems. How-

ever, MATHsAiD has not been applied to higher-order theories (such as lists with map

and fold). Our system can deal with such theories without modifications. The use

of IsaPlanner allows IsaCoSy to prove harder theorems than MATHsAiD, including

higher-order ones. In particular, IsaPlanner uses a lemma calculation critic to prove

theorems that MATHsAiD has to return to later, once an appropriate lemma has been

generated.

13 Conclusions

Automating theory formation is a challenging problem. We have developed a program

for inductive theory formation by conjecture synthesis, called IsaCoSy. To make syn-

thesis computationally feasible, we turn rewriting upside down, and only allow the

synthesis of terms that do not contain subterms that can be rewritten by a set of

rewrite rules. This is enforced by generating constraints from terms assumed to be the

left hand side of a rewrite rule. The constraints restrict the context in which constants

and variables are allowed to occur. We also use the size of terms to restrict the number

of commutative variants produced. Additional heuristics to further constrain synthesis

by restricting the number and location of free variables were also presented.

Once conjectures have been produced, the algorithm filters out non-theorems by

counter-example checking and passes the remaining conjectures to IsaPlanner which

then tries to prove them. As new theorems are derived, more constraints are generated

to restrict further synthesis.

IsaCoSy has been evaluated on several inductive theories about natural numbers,

lists and binary trees. Interestingly, we found that the run-times are proportional to

the number of false conjectures synthesised, as the majority of time is spent in counter-

example checking.

We showed that the system produces ‘good’ theorems in the sense that it produces

most of the theorems found in the corresponding Isabelle libraries. To evaluate the

quality of theorems found by IsaCoSy, we compared them with those in Isabelle’s

libraries. IsaCoSy produces many of the theorems, resulting in high recall of 83% for

natural numbers and 100% for lists. However, it produces a number of less interesting

theorems too, so precision is lower, 63% for natural numbers and 38% for lists. The

extra theorems are mostly variants of distributivity laws and can be removed without

significant difficulty by hand.

We also verified the hypothesis that IsaCoSy is exponentially more efficient than

a naive version of synthesis, but it is still exponential. This was verified by comparing

IsaCoSy to a naive version of synthesis on several different inductive theories. IsaCoSy

is not only faster, but also able to explore larger term-sizes before running out of

memory.

Furthermore, the performance of synthesis can be significantly improved by allowing

conjectures that IsaPlanner is not able to prove, but which counter-example finding also

cannot disprove, to generate constraints. For the equational theories considered, this

optimisation still produces all the ‘good’ theorems, as Isabelle’s counter-example finder
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rarely misses a non-theorem. We also showed that restricting nesting of polymorphic

datatypes, such as lists, can also give large benefits. A range of other improvements

were also suggested as further work.

Given the positive experimental results, and the range of further improvements,

conjecture synthesis seems a promising approach to automated theory exploration,

with important applications to automated reasoning.
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A Function Definitions

A.1 Natural Numbers

datatype nat = 0 | Suc of nat

fun + :: nat ⇒ nat⇒ nat

add-zero: 0 + y = y

add-suc: (Suc x) + y = Suc(x + y)

fun ∗ :: nat ⇒ nat⇒ nat

mult-zero: 0 ∗ y = 0

mult-suc: (Suc x) ∗ y = y + (x ∗ y)

fun exp :: nat ⇒ nat⇒ nat

exp-zero: x0 = Suc 0

exp-suc: xSuc y = x ∗ xy

fun max :: nat ⇒ nat⇒ nat

max-zero: max 0 y = y

max-suc: max (Suc x) y = case y of 0 ⇒ (Suc x) | Suc z ⇒ Suc(max z y)

A.2 Lists

datatype α list = [ ] | # of α ∗ α list

fun @ :: α list ⇒ α list⇒ α list

app-nil: [ ] @ l = l

app-cons: (h # t) @ l = h # (t @ l)

fun len :: α list⇒ nat

len-nil: len [ ] = 0

len-cons: len (h # t) = Suc (len t)

fun rev :: α list⇒ α list

rev-nil: rev [ ] = [ ]

rev-cons: rev(h # t) = (rev t) @ [h]

fun qrev :: α list⇒ α list⇒ α list

qrev-nil: qrev [ ] l = l

qrev-cons: qrev(h # t) l = qrev t (h # l)

fun map :: (α⇒ β)⇒ α list⇒ β list

map-nil: map f [ ] = [ ]

map-cons: map f (h # t) = (f h) # t

fun foldl :: (α⇒ β ⇒ α)⇒ α⇒ β list⇒ α

foldl-nil: foldl f a [ ] = a

foldl-cons: foldl f a (h # t) = foldl f (f a h) t

fun foldr :: (α⇒ β ⇒ β)⇒ α list⇒ β ⇒ β

foldr-nil: foldr f [ ] a = a

foldr-cons: foldr f (h # t) a = f h (foldr f t a)
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A.3 Binary Trees

datatype α Tree = Leaf | Node of α Tree ∗ α ∗ α Tree

fun mirror :: α Tree⇒ α Tree

mirror-leaf: mirror Leaf = Leaf

mirror-node: mirror (Node l data r) = Node (mirror r) data (mirror l)

fun nodes :: α Tree⇒ nat

nodes-leaf: nodes Leaf = 0

nodes-node: nodes (Node l data r) = (Suc 0) + (nodes l) + (nodes r)

fun height :: α Tree⇒ nat

height-leaf: height Leaf = 0

height-node: height (Node l data r) = Suc(max (height l) (height r))
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B Experimental Results for Conjecture Synthesis

The tables below show the theorems synthesised by IsaCoSy for the six evaluation theories
about natural numbers, lists and binary trees. The theorems marked ‘Pre-Processing’ in the
tables below have been discovered by IsaCoSy’s heuristic which attempts to find associativity
and commutativity properties prior to synthesis.

Label Size Theorem
N1* Pre-processing a + 0 = a
N2* Pre-processing a + Suc b = Suc(a + b)
N3* Pre-processing a ∗ 0 = 0
N4* Pre-processing a ∗ Suc b = a+ (a ∗ b)
N5* Pre-processing a + b = b + a
N6* Pre-processing a ∗ b = b ∗ a
N7* Pre-processing (a + b) + c = a + (b + c)
N8* Pre-processing (a ∗ b) ∗ c = a ∗ (b ∗ c)
N9* 13 (a ∗ b) + (c ∗ b) = (a + c) ∗ b
N10 13 (a ∗ b) + (c ∗ a) = (b + c) ∗ a
N11 13 (a ∗ b) + (c ∗ a) = (c + b) ∗ a
N12 13 (a ∗ b) + (c ∗ b) = (c + a) ∗ b
N13* 13 (a ∗ b) + (a ∗ c) = (b + c) ∗ a
N14 13 (a ∗ b) + (a ∗ c) = (c + b) ∗ a
N15 13 (a ∗ b) + (b ∗ c) = (a + c) ∗ b
N16 13 (a ∗ b) + (b ∗ c) = (c + a) ∗ b

Table 3 Theorems discovered about addition and multiplication on the natural numbers.
Theorems marked with * are included in Isabelle’s library for natural numbers. Note that
Isabelle has the equations orientated in the opposite direction for N9 and N13. N13 is further-
more commuted over multiplication, e.g. the RHS of N13 is (b + c) ∗ a, while in Isabelle it
is a ∗ (b + c).

Label Size Theorem
T1 Pre-processing max a b = max b a
T2 Pre-processing max (max a b) c = max a (max b c)
T3 5 max a a = a
T4 5 mirror (mirror a) = a
T5 6 nodes (mirror a) = nodes a
T6 6 height (mirror a) = height a

Table 4 Theorems found about binary trees with functions max, mirror, nodes and height.
Isabelle has no library for binary trees.
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Label Size Theorem
L1* Pre-processing (a @ b) @ c = a @ (b @ c)
L2* 5 rev(rev a) = a
L3* 5 a @ [ ] = a
L4* 6 len(rev a) = len a
L5 9 len(a @ b) = len(b @ a)
L6 10 rev(a @ (rev b)) = b @ (rev a)
L7* 10 (rev a) @ (rev b) = rev (b @ a)
L8 10 rev((rev a) @ (rev b)) = b @ a
L9 11 rev(a @ [b]) = b # (rev a)
L10 11 rev((rev a) @ [b]) = b # a
L11 14 rev(a @ (b @ (rev c))) = c @ (rev(a @ b))
L12 14 rev(a @ (b # (rev c))) = c @ (b # (rev a))
L13 14 rev((rev a) @ (b # c)) = (rev c) @ (b # a)
L14 14 (rev a) @ ((rev b) @ c) = (rev (b @ a)) @ c
L15 14 (rev a) @ (b # (rev c)) = rev(c @ (b # a))
L16 14 rev((rev a) @ b) @ c = (rev b) @ (a @ c)
L17 14 rev((rev a) @ (b # (rev c))) = c @ (b # a)
L18 14 a @ (rev((rev b) @ c)) = a @ ((rev c) @ b)

Table 5 Theorems discovered about append, reverse and length on lists. Theorems marked
with * are included in Isabelle’s list library. Note that L18 is allowed to be synthesised as
its simpler version, rev(rev b) @ c = (rev c) @ b, could not be proved when it was first
synthesised, and thus did not generate constraints. Its proof require L7 as a lemma, which
was not yet available. The lemma is however available when attempting to prove L18, so this
succeeds.

Label Size Theorem
L19 9 map a (rev b) = rev(map a b)
L20* 9 rev(map a b) = map a(rev b)
L21 9 rev(map a (rev b)) = map a b
L22* 13 (map a b) @ (map a c) = map a (b @ c)

Table 6 Theorems discovered about append, reverse and map on lists. The theorems about
append and reverse from table 5 (theorems L1 - L3 and L6 - L18) were also discovered.
Theorems marked with * are included in Isabelle’s list library.

Label Size Theorem
L42* 14 foldl a (foldl a b c) d = foldl a b (c @ d)
L43* 14 foldr a b (foldr a c d) = foldr a (b @ c) d

Table 7 Theorems discovered about foldl and foldr. Both theorems are included in Isabelle’s
list library. The theorems about append and reverse from table 5 (theorems L1 - L3 and L6 -
L18) were also discovered.
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Label Size Theorem
L23 8 qrev (rev a) b = a @ b
L24 8 (rev a) @ b = qrev a b
L25 9 qrev (qrev a b)[ ] = qrev b a
L26 11 qrev a (qrev b c) = qrev (b @ a) c
L27 11 qrev a (b @ c) = qrev (qrev b a) c
L28 11 qrev a (b @ c) = (qrev a b) @ c
L29 11 qrev (qrev a b) c = qrev b (a @ c)
L30 11 qrev (a @ b) c = qrev b (qrev a c)
L31 11 (qrev a b) @ c = qrev a (b @ c)
L32 12 rev (qrev a (b # c)) = qrev c (b # a)
L33 12 a @ (rev (qrev b [ ])) = rev (qrev b (rev a))
L34 13 rev (a @ (b @ c)) = qrev c (rev (a @ b))
L35 13 rev (a @ (b # c)) = qrev c (b # (rev a))
L36 13 qrev a (rev (b @ c)) = rev (b @ (c @ a))
L37 13 qrev a (b # (rev c)) = rev (c @ (b # a))
L38 13 rev (qrev a (rev (b @ c))) = b @ (c @ a)
L39 13 a @ (rev (b @ c)) = a @ qrev c (rev b)
L40 13 a @ qrev b (rev c) = a @ (rev (c @ b))
L41 13 a @ rev (qrev b (rev c)) = a @ (c @ b)

Table 8 Theorems discovered about append, reverse and qrev on lists. The theorems about
append and reverse from table 5 (theorems L1 - L3 and L6 - L18) were also discovered. The
qrev-function is not defined in Isabelle’s list library, so no comparison can be made. Note
that theorems L39 - L41 are allowed to be synthesised as their simpler versions (excluding
the a @ . . . on both sides) could not be proved. However, other proofs will later discover the
required lemmas by lemma calculation. These lemmas are stored, so IsaPlanner will be able
to re-use them to prove L39 - L41.
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