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Abstract. Rippling is a heuristic used to guide rewriting and is typ-
ically used for inductive theorem proving. We introduce a method to
support case-analysis within rippling. Like earlier work, this allows goals
containing if-statements to be proved automatically. The new contribu-
tion is that our method also supports case-analysis on datatypes. By
locating the case-analysis as a step within rippling we also maintain the
termination. The work has been implemented in IsaPlanner and used to
extend the existing inductive proof method. We evaluate this extended
prover on a large set of examples from Isabelle’s theory library and from
the inductive theorem proving literature. We find that this leads to a
significant improvement in the coverage of inductive theorem proving.
The main limitations of the extended prover are identified, highlight the
need for advances in the treatment of assumptions during rippling and
when conjecturing lemmas.

1 Introduction

Inductive proofs are needed to reason about recursion and are thus commonplace
in mathematical theories of concern to computer science, such as lists and trees.
They are also essential for program verification. In practice, inductive proofs
require significant user-guidance and expertise. The theoretical need for this can
be seen by the failure, for inductive theories, of cut elimination and decidabil-
ity [4]. Given the difficulty of automating inductive proofs, it is then sometimes
surprising that informal mathematical texts present many proofs simply as “by
induction”. The ease with which such proofs are informally written is not re-
flected by automatic, inductive theorem proving. In particular, user-guidance is
often needed to specify where case-analysis should be performed.

While earlier inductive proof methods can automatically consider the cases of
an if-statement [14, 7, 19], these systems are first-order and lack pattern match-
ing constructs for inductively defined datatypes. We call these constructs case-
statements. Higher-order systems can express these constructs and frequently
use them to define functions. However, in higher-order domains, systems have
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previously been unable to include the case-analysis steps for pattern-matching
constructs within automatic inductive proof search, without sacrificing termina-
tion.

The work we describe in this paper improves on the coverage of automatic
inductive proof methods by incorporating case-analysis for both if- and case-
statements. Our proof technique extends rippling, which is a heuristic used for
removing the differences between a goal and its inductive hypothesis. It improves
on earlier rippling based methods [5] by supporting analysis of case-statements.
An important property of our method is that it also preserves termination. This
allows many proofs which previously needed explicit user-guidance, or manipu-
lation of the representation, to now be found automatically.

To perform the application of case-analysis within rippling, we introduce
a restricted form of resolution which treats variables at the head of a rule as
requiring an occurrence of their parameters to be found within the goal. This
is then used to guide unification during resolution and avoids the problem that
case-analysis rules otherwise unify with every goal.

Our extension of rippling has been implemented in IsaPlanner [9] allowing
it to be used for proofs in Isabelle [16]. IsaPlanner did not previously support
case-splitting for if- or case-statements. Using our implementation, we tested
a large number of examples from both Isabelle’s library as well as problems
from the inductive theorem proving literature. Our results show that the use
of case-analysis in rippling successfully automates the proof of many problems
that were previously unprovable by IsaPlanner as well as other systems. Our
implementation and more exhaustive details of the experiments are available
online3. We also analyse the cases where our inductive theorem prover fails.
This highlights the need for further work on orthogonal aspects of inductive
proof which are no longer limited by case-analysis.

2 Background

2.1 Rippling

Rippling is a heuristic technique for guiding deduction [5]. It is typically used to
guide the step cases of inductive proofs. We briefly review the terminology as well
as the steps involved by considering a proof of the commutativity of addition.4

The proof, by induction on the first argument, results in the induction hypothesis
∀y. a + y = y + a, called the skeleton. Rippling annotates the parts of the goal
that differ from the skeleton, called wave-fronts. For example, in the step-case

subgoal, shaded boxes annotate the wave-fronts: Suc a +bbc = bbc+ Suc a ;

3 http://dream.inf.ed.ac.uk/projects/isaplanner
4 For the sake of brevity, we do not discuss the various forms of rippling such as

static vs dynamic rippling, and we do not need to concern ourselves with details
of ripple-measures. The work in this paper is based on dynamic rippling using the
sum-of-distances ripple-measure. The interested reader can find further details of
such choices in [5, 9].
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where the wave-fronts are the two Suc symbols. The locations corresponding to
universally quantified variables in the skeleton are called sinks. In our example,
there are two sinks, corresponding to the locations of y, both of which contain
b.

An annotation for a goal can be constructed from the skeleton and stored
separately using embeddings [11, 18]. For the purposes of this paper, it suffices
to consider an embedding simply as way to construct the annotations for a goal.
When the skeleton does not embed into the goal, there is no way to annotate
the goal such that removing the wave-fronts leaves an instance of the skeleton.
Because the correspondence between the skeleton and the goal is lost when there
is no way to annotate the goal, such goals are typically considered as worse than
those for which there is an embedding.

Informally, one can understand rippling as deduction that tries to move the
wave fronts to the top of the term tree, remove them, or move them to the
locations of sinks. When all wave-fronts are moved into sinks, or removed, the
skeleton can typically be used to prove the goal. This is called fertilisation. When
the skeleton is an equation, using it to perform substitution in the goal is called
weak fertilisation. In contrast to this, strong fertilisation refers to the case when
the goal can be resolved directly with the skeleton. An example proof of the
commutativity of addition ending in weak-fertilisation is presented in Fig. 1.

A rippling measure defines a well-founded order over the goals, and is con-
structed from annotated terms. The purpose of a measure is to ensure termina-
tion and guide rewriting of the goal to allow fertilisation. Ripple-measures are
defined such that, when they are sufficiently low, fertilisation is possible. Each
step of rewriting which decreases the ripple measure is called a ripple-step.

Definition 1 (Rippling, Ripple-Step). A ripple step is defined by an infer-
ence of the form:

W, s, a2 ` g2
W, s, a1 ` g1

((t1 ⇒ t2) ∈W )
g1 ≡ t1σ g2 ≡ t2σ
a1 ∈ annot(s, g1)
a2 ∈ annot(s, g2)
Mess(a2) < Mess(a1)

The first two conditions identify a rewrite rule in the context W that matches
the current goal g1 and rewrites it to the new goal g2. The next two conditions
ensure that the goals have rippling annotations, a1 and a2 respectively, for the
skeleton s. The last condition ensures that the ripple measure decrease, where
Mess(ai) is the measure with respect to the skeleton s of annotated term ai.
Rippling is the repeated application of ripple-steps.

When there is no rewrite which reduces the measure, either fertilisation is
possible, or the goal is said to be blocked. The need for a lemma is typically ob-
served when a proof attempt is blocked, or when fertilisation leaves a non-trivial
subgoal5. There are various heuristics for lemma discovery, the most successful

5 By non-trivial, we mean that automatic methods such as simplification cannot prove
the subgoal.
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Suc a + bbc = bbc + Suc ay Ripple using: (Suc X) + Y = Suc (X + Y )

Suc(a + bbc) = bbc + Suc a
↑

y Ripple using: X + (Suc Y) = Suc (X + Y)

Suc(a + bbc) = Suc(bbc + a)y Weak fertilisation

Suc (b + a) = Suc (b + a)

Fig. 1. A rippling proof for the step-case goal of the commutativity of addition. Ripple-
steps move wave-fronts higher up in the term tree and then weak fertilisation is applied.

being lemma calculation which applies common subterm generalisation to the
goal and attempts to prove the resulting lemma by induction [5, 13, 9, 1].

An important difference between rippling and other rewriting techniques is
that the rippling measure is not based on a fixed ordering over terms, but on the
relationship between the skeleton, the previous rippling steps, and the goal being
considered. This gives rise to two notable features of rippling: its termination
is independent of the rules it is given, and, within a single proof, it may apply
an equation in both directions. The interested reader can find a more detailed
account of rippling in [5, 9].

2.2 Isabelle/IsaPlanner

Isabelle is a generic interactive theorem prover which implements a range of
object logics, such as higher-order logic (HOL) and Zermelo-Fraenkel set the-
ory, among others [16]. Isabelle follows the LCF-approach to theorem proving,
where new theorems can only be obtained from previously proved statements
through manipulations by a small set of trusted inference rules. More complex
proof methods, called tactics are built by combining these basic rules in differ-
ent ways. This ensures that the resulting proofs rely only on the fixed trusted
implementation of the basic inference rules.

Isabelle also has a large theorem library, especially for higher-order logic. The
work presented in this paper has been carried out for Isabelle/HOL, although
in principle, following Isabelle’s design methodology, it can be applied within
Isabelle’s other object logics. Isabelle/HOL provides powerful definitional tools
that allow the expression of datatypes as well as provably terminating functions
over them. When the user specifies a datatype, Isabelle automatically derives its
defining equations and creates a constant for case-based pattern matching [15].
For example, writing Nat = 0 | (Suc Nat) defines the fresh constants 0 :: Nat
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(this is Isabelle’s notation for ‘0 is of type Nat’), and Suc :: Nat ⇒ Nat and
derives theorems such as 0 6= (Suc x) and (Suc x = Suc y) = (x = y). A
constant nat case : α ⇒ (Nat ⇒ α) ⇒ Nat ⇒ α, is also automatically defined
in order to support definition by pattern-matching. When case-constants are
applied to their arguments, Isabelle’s pretty printing machinery writes them in
the more conventional style: case n of 0 ⇒ c1 | Suc n′ ⇒ c2, where n is the
third argument, c1 is the first, and finally c2 is the second argument, with n′

being c2’s parameter of type Nat. We call such expressions case statements.
To facilitate interactive proof, Isabelle has a number of automatic tactics,

including a powerful simplification tool which is configured by specifying the set
of rules it will apply. The simplification procedure can, for restricted cases, in-
troduce a case-split on the condition of an if-statement; this is discussed further
in §6.3. IsaPlanner is a proof-planner for Isabelle [9]. It provides additional ab-
stractions for writing more complex tactics. In particular, an automatic inductive
theorem prover based on rippling has been developed in [9, 11].

Notation: We will follow Isabelle’s notational conventions:

– Theorems with assumptions are written JP ; QK =⇒ R, stating that P and
Q are assumptions for the conclusion R.

– Variables that are allowed to be instantiated by unification, are differentiated
from those that are not. Meta-variables are allowed to be instantiated, and
are prefixed by ‘?’, e.g. ?P .

– The list cons function is written as ‘#’, and we use the ‘@’-symbol for append.

3 Case-Analysis for Rippling

Isabelle/HOL allows both if-statements, which are directly built into HOL, and
case-statements, which are derived for each datatype. Case-statements are more
general than if-statements and may introduce new bound variables. Moreover,
they provide a convenient way to break datatypes into difference cases without
having to introduce well-formedness conditions. More generally, datatypes and
their corresponding case-statements are widely used in typed-functional pro-
gramming. In Isabelle’s list library, 16 out of 31 function definitions involve
conditional statements, 6 of which use case-statements. Examples include list
operations, such as member (∈) and delete, as well as subtraction and ≤ for
natural numbers. Properties of these functions are typically proved interactively
by induction and case-analysis.

Our approach to automate such proofs with rippling is to treat the splitting
of conditional statements eagerly – as part of the ripple-step that introduced the
conditional statement. After each ripple-step, the case splitting techniques for
case- and if-statements are tried. The case- and if-splitting techniques involve
two stages: first they attempt to prove that a particular branch will be taken,
avoiding the need for a case-analysis. If that fails, then the appropriate case- or
if-split is introduced. If the goal does not contain a case- or if-statement, then
none of the case-splitting techniques apply and the goal is unchanged. Either
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ripple step = apply ripple step THEN ensure measure decrease;

rippling = solved OR blocked OR (ripple step THEN rippling);

ripple step with splits = apply ripple step

THEN (take if branch OR split if

OR take case branch OR split case OR id)

THEN ensure measure decrease;

rippling with splitting = solved OR blocked OR

(ripple step with splits THEN rippling with splitting);

Fig. 2. The top-level tactic-style presentation of rippling its extension to include case-
analysis for case- and if-statements. The tactic apply ripple step performs a single
step of rippling and succeeds when it satisfies the first three conditions of definition 1
and ensure measure decrease ensures the last two conditions and tries to prove any
non-rippling goals by simplification.

way, rippling then continues to try to apply further ripple-steps. The top-level
tactic-style script for rippling, and its extension for case-analysis, is shown in
Fig. 2 and an illustrative example of its application is presented in § 3.1.

The condition used to ensure that rippling terminates is that each ripple-
step decreases the ripple measure. For rippling with case-splits, the ripple-step
is modified to include case splitting, and the ripple-measure is checked for each
goal after all case-splits are applied. This preserves the termination of rippling,
even when performing case analysis on arbitrary datatypes. We discuss, in §3.5,
the motivation for eager case-splitting as opposed to considering the introduction
and elimination of case- and if-statements as ripple-steps. In §3.3 and §3.4 we
give the details of the techniques to handle case- and if-statements respectively.

During a case-split, it is often the case that some branch can no longer be
annotated with respect to the skeleton. Such goals are called non-rippling goals.
Like earlier accounts of conditional-rippling, the ripple-step succeeds when such
subgoals can be solved easily. In our case, this means by simplification, although
other accounts used weaker proof methods (by assumption) [7]. When a non-
rippling goal is unsolved by simplification the measure-decrease check fails caus-
ing the ripple-step to fail and for search to backtrack. Occasionally, all subgoals
after a case-split may be non-rippling goals and are solved by simplification,
in which case the solved branch of rippling will be taken. Typically, this indi-
cates that the problem did not require proof by induction, but only proof by
case-analysis.

3.1 A Simple Example

Below we present a simple example of the application of the case-analysis tech-
nique. Due to lack of space, more advanced theorems are available on the web6.

6 http://dream.inf.ed.ac.uk/projects/lemmadiscovery/case_results.php
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It is possible to define the max function for natural numbers as follows:

max 0 y = y (1)

max (Suc x) y = (case y of 0⇒ (Suc x) | (Suc z)⇒ Suc (max x z)) (2)

In an inductive proof of the commutativity of the max function, the step-case
is:

Inductive hypothesis (IH): ∀b. max a b = max b a

Step-case goal: max Suc a bb′c = max bb′c Suc a (3)

By applying rule 2 (apply ripple step), the left hand side of the step-case is
rippled to:

case b′ of 0⇒ (Suc a) | (Suc z)⇒ Suc(max a bzc) = max bb′c Suc a

At this point, a case-statement has been introduced. Because there are no if-
statements, the take if branch and split if techniques do not apply. The
take case branch also fails as there is no information about the structure of b′,
as needed to proceed down either branch of the case-statement. The split case

technique is then applied. This performs a case-split on b′, which allows the proof
to proceed and results in the subgoals for the zero and successor cases:

b′ = 0 =⇒ Suc a = max b′ (Suc a) (4)

b′ = Suc z =⇒ Suc(max a bzc) = max bb′c Suc a (5)

Goal 4 cannot be annotated but is solved by Isabelle’s simplification tactic
(within ensure measure decrease). Goal 5 is measure-decreasing but then be-
comes blocked. As discussed in §2 the step-case technique then applies weak-
fertilisation and simplification, which in this case completes the proof.

3.2 Applying Case Splits: Restricted Unification in Resolution

To apply a case split, we use a theorem derived for each datatype by Isabelle’s
definitional machinery. For instance, the following theorem is automatically de-
rived for natural numbers:

J?n = 0 =⇒?P (?f1); ∀x. (?n = Suc x) =⇒?P (?f2 x)K =⇒
?P (case ?n of 0 ⇒?f1 | (Suc x) ⇒ (?f2 x)) (6)

Applied to a case-statement, the meta-variable ?P matches the context in which
the case-statement occurs. Such theorems allow a case split, to be implemented
as a single resolution step. In an interactive setting, the user can specify an
instantiation for ?P . However, in terms of automatic proof by resolution using
higher-order unification, the meta-variable ?P occurs in head position and thus
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Fig. 3. Examples of zippers with the focus marked by a dashed box. The $-symbol
denotes application at the level of the abstract term syntax. [Left] A zipper on the
term ?P (f ?a ?b), with focus on the subterm f ?a ?b. [Right] A zipper on g(f x y),
with focus on the subterm f x y.

allows the theorem to be applied to any goal, not just goals that contain case-
statements. Furthermore, even when applied to goals containing case-statements,
trivial unifiers are found (imitations that throw away the arguments). We want
such rules to only find unifiers for goals that contains the meta-variable’s argu-
ment, which we call the subterm of interest.

A simple algorithm, implemented in IsaPlanner, for resolution with such
theorems uses a restricted form of unification that first instantiates the head-
positioned meta-variable and then performs regular resolution. Our implemen-
tation uses zippers to traverse the goal term in order to identify the location of
the subterm of interest. The zipper maintains the context of this subterm which
is used to construct the desired instantiation for the head-variable.

Zippers, as introduced by Huet [12], were motivated by the common problem
of needing to represent a tree with a subtree that is the focus of attention.
The focus of attention can then be moved left, right, up or down the tree.
Figures 3 illustrates zippers over term-trees, where the focus is marked by a
dashed box. Using zippers to move around a term has time proportional to
the distance moved. Access to the focused subterm and its context is constant
time. Importantly, traversal maintains the context. This allows zippers to give
programmatic means by which to work on both the subterm of interest and the
context in which it occurs.

Below we give an overview of our algorithm for restricted resolution. As an
example, assume we have a rule of the form ?P (?a) =⇒?P (f ?a ?b) which we
wish to resolve with the goal g(f x y).

1. Find the argument of the top-level meta-variable: Check if there in-
deed is a top-level meta-variable in the conclusion of the rule, otherwise it is
safe to proceed with normal resolution. If there is a top-level meta-variable,
its argument should match some subterm of the goal that is to be resolved.
In our example, the top-level meta-variable, ?P in the rule, has the argument
(f ?a ?b). We use a zipper to find this subterm, as shown in Figure 3-left.

2. Find a matching subterm in the goal: Using a zipper we traverse the
term-tree of the goal until a subterm matching the argument of the meta-
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variable is found. In the example, ?P has one argument, (f ?a ?b), which
matches the subterm (f x y) in the goal. Figure 3-right shows the zipper of
the goal, focused on the unifying subterm.

3. Instantiate the top-level meta-variable: The term context surrounding
the focused subterm in the goal (everything outside the dashed box in figure
3-right) is used to construct an instantiation for the rule’s top-level meta-
variable. The instantiation is created by replacing the focused subterm in
the goal with a bound variable and abstracting over it. In our example, this
gives the instantiation ?P ≡ λ z. g(z).

4. Resolve with the instantiated theorem: In our example, resolution is
performed with g(?a) =⇒ g(f ?a ?b), which instantiates the remaining vari-
ables, and results in the new sub-goal g(x).

If resolution had been performed without first instantiating ?P , an extra result-
ing goal would also be a possibility, namely (λ z. g(f x y)) ?a (by imitation in
higher-order unification), which reduces the goal to g(f x y), which is the same
as the goal we started with. For rules which have a head-positioned meta-variable
in both the conclusion and some assumption, ordinary higher-order unification
will find trivial unifiers that result in the same goal as the one that was trying
to be proved in the first place. Our technique avoids this problem.

3.3 Case-Statements

As mentioned earlier, each datatype defined in Isabelle has an associated case-
constant. This comes with pattern-matching rules for each branch of the case
statement. For the datatype of natural numbers these are:

(case 0 of 0⇒?f1 | (Suc x)⇒?f2 x) = ?f1

(case (Suc ?n) of 0⇒?f1 | (Suc x)⇒?f2 x) = ?f2 ?n

Our case-analysis technique first attempts substitution with one of the above
theorems, and if successful it will continue rippling on that branch. If all substi-
tution attempts fail, a case-split is introduced by applying restricted resolution
with the appropriate case-splitting theorem. For example, returning to the com-
mutativity of max (§3.1), the step-case subgoal containing the case-statement
is:

case b′ of 0⇒ (Suc a) | (Suc z)⇒ Suc(max a bzc) = max bb′c Suc a

(7)
Recall the case-split rule for natural numbers (theorem 6, page 7). This can be
used to perform a case-split on b′ by restricted resolution. This involves first
using zippers to partially instantiating ?P ≡ λ x. x = max b′ (Suc a), and then
resolution produces the new ‘split’ subgoals:

b′ = 0 =⇒ Suc a = max b′ (Suc a) (8)

b′ = Suc z =⇒ Suc(max a bzc) = max bb′c Suc a (9)
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Observe that following a case-split, an equational assumption, stating the
particular value that the case-split term takes, is introduced for each branch. The
equation is then substituted in each goal’s conclusion. In our example, this means
replacing b′ in the conclusions of goals 8 and 9, with 0 and Suc z respectively. This
is the final step involved in splitting a case-statement into its possible constructor
cases. Not performing the substitution complicates further rippling and lemma
calculation. For lemma calculation, the substitution frequently removes the need
to consider the assumption further, and thus allows one construct more general
lemmas. For further rippling, it can cause goals to have no valid annotations or
for sinks to contain different, but provably equivalent, terms.

3.4 If-Statements

On encountering an if-statement, our case-analysis technique will first attempt
to go down either one of the two branches by substitution using the library
theorems:

?P =⇒ (if ?P then ?x else ?y) =?x (10)

¬?P =⇒ (if ?P then ?x else ?y) =?y (11)

Applying either of these results in two subgoals. For theorem 10, one subgoal in-
volves proving the condition ?P and the other requires proving the then-branch
which has substituted the if-statement for ?x. Similarly, applying theorem 11
involves proving that ?P is false, and then proving the else-branch. The subgoal
arising from the condition is solved either by resolution with an existing assump-
tion, or by simplification. The other subgoal (the then or else branch) is passed
back to rippling.

If the technique fails to show that either the condition ?P or its negation
holds, a split on the condition is introduced. This is performed by restricted
resolution with the library theorem:

J?Q =⇒?P (?y); ¬?Q =⇒?P (?z) K =⇒ ?P (if ?Q then ?y else ?z) (12)

As before, this results in two new sub-goals. Typically, the skeleton embeds into
only one of them, in which case that goal is called the rippling goal. Before
rippling continues on the rippling goal(s), if there is a non-rippling goal, it is
passed to the simplifier and must be solved before rippling continues.

Example. Consider the following theorem: x ∈ (l @ m) = x ∈ l ∨ x ∈ m. The
proof starts by induction on l and then uses the definition of member:

x ∈ (h#t) = if (x = h) then True else x ∈ t

Rippling with this rule results in the step-case subgoal:

if (x = h) then True else x ∈ (l @ m)) = x ∈ (h # l ) ∨ x ∈ m
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The case-analysis technique is then triggered by the discovery of an if-statement
in the goal. It is not possible to prove the condition (x = h) or its negation
by simplification, so a split is introduced. Restricted resolution with theorem 12
gives two new subgoals:

x = h =⇒ True = x ∈ (h # l) ∨ x ∈ m (13)

x 6= h =⇒ x ∈ (l @ m) = x ∈ (h # l ) ∨ x ∈ m (14)

The skeleton does not embed into goal 13 and so it is passed to the simplifier,
which successfully solves it. Goal 14 is then rippled further by rewriting the right
hand side to:

x 6= h =⇒ x ∈ (l @ m) = if (x = h) then True else x ∈ l) ∨ x ∈ m

This time, taking the else-branch succeeds, as the assumption introduced by the
previous case-split can be used to show the negation of the condition. The proof
is now finished by strong fertilisation.

3.5 Eager Case-Splits

Case-splitting is interleaved with rippling, and applied eagerly whenever a rule
introduces a case- or if-statement. The rule introducing the case statement, fol-
lowed by application of the case-split itself, is regarded as a single ripple-step.
This has two main advantages over waiting until rippling is blocked, or including
the case-split as a separate rule in rippling, as in previous approaches [5].

Firstly, some ripple measures are not reduced between the goal containing
a case-statement and the resulting goal after the split. In the example proof of
goal 7, the case-statement has a wave-front in the same position, with respect
the skeleton, as the goal (9) after the split. Ripple measures which are invariant
on the size of wave fronts hence filter out such steps as they are not measure
decreasing. By treating a rule’s application and the following case-split as a single
ripple-step, all known ripple-measures decrease with respect to the previous goal
(3). Similarly, for splitting data-types, substitution with the introduced case-
assumption is typically not measure decreasing and hence needs to be included
as part of the compound ripple-step.

Secondly, when case- and if-statements can be reduced to a known branch,
such that an actual case-split is not required, our technique proceeds directly
down the relevant branch. If the case- or if-statement is allowed to remain in
the goal, redundant rippling steps might be applied to a branch which is later
discarded. Eager application of the case-splits is thus more efficient on such
problems.

4 Evaluation

Functions defined using if- and case-statement are very common, but many
proofs requiring the corresponding case- analysis could not previously be found
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by rippling based methods. Rippling with the case-analysis technique has been
evaluated, in IsaPlanner, on a set of 87 theorems involving lists, natural num-
bers and binary trees. These are defined using if- or case-statements, none of
which IsaPlanner could prove previously. 47 of the theorems can now be proved
automatically using our case-analysis technique. Of the theorems in this evalu-
ation corpus, 41 of the proofs involve if-statements, 41 involve case-statements
and 5 involve both. Most of the theorems in the corpus are a subset of induc-
tive theorems from Isabelle’s libraries for lists and natural numbers7. Some are
more programmatic in character and taken from the CLAM system [13] and
from problems arising from dependently typed programming [20]. The criteria
used to select the theorems was simply that they require inductive proof and
involve some function(s) defined using if- or case-statements. We also added
some further theorems to check that our machinery worked with other common
properties and definitions. The evaluation corpus and full results, including the
run-times are available on-line8.

We did not expect IsaPlanner to prove all theorems even with the new case-
analysis technique. Many of the remaining 40 theorems require, in addition to
case-analysis, support for generating conditional lemmas or more elaborate rea-
soning about side-conditions than IsaPlanner currently is capable of. These the-
orems are included in the corpus to identify areas for further development of the
prover. With case-analysis techniques now available, we propose further exten-
sions to IsaPlanner in §5.

The theorems were proved only from function definitions, rippling was not
provided with any extra lemmas. The experiments were run on an Intel 2 GHz
processor. All proofs were found in less than one second. Some failed proofs
took slightly longer, with the maximum of 9 seconds for one proof attempt.
For the experiments we used IsaPlanner’s rippling-based inductive prover [9],
which has been extended with our case-analysis technique. We also compared
this prover with one that applies induction followed by Isabelle’s simplifier and
lemma calculation [10]. The simplifier applies rewriting with the definitions from
left to right which ensures termination. However, lemma calculation can lead
to infinite chains of conjectured lemmas. The results of the comparison show
that the simplification-based prover differs from the rippling-based one in two
important respects:

Proved Theorems: The simplification-based prover managed to prove 37 of
the 87 theorems. There are 15 theorems rippling can solve but simplification
cannot, most of these require a split on a case-statement, which simplification is
unable to perform. In general case-splitting for datatypes makes simplification
non-terminating. There are also 6 theorems simplification proves but rippling
fails to prove. These involve more sophisticated reasoning with assumptions than
rippling currently employs. Interestingly, when the standard set of simplification
rules from Isabelle’s library are available, rippling’s performance improves more

7 isabelle.in.tum.de/dist/library/HOL/index.html
8 http://dream.inf.ed.ac.uk/projects/lemmadiscovery/case_results.php
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than the simplification-based technique; there are then 20 theorems provable by
the rippling prover and but not by the simplification-based one. The number of
theorems that simplification can prove, but rippling cannot, is unchanged.

Termination and Conjecturing: On problems that it cannot solve, the sim-
plification based prover fails to terminate. In contrast, the rippling based prover
terminates on all proofs. When asked for alternative proofs, rippling also main-
tains termination while the simplification based prover again fails to terminate.
When analysed in more detail, we observed that conjecturing after simplifica-
tion frequently leads to attempting to prove an infinite chain of increasingly
complicated conjectures. Rippling, on the other hand, does not suffer from this
problem. We conclude that the heuristic guidance of rippling leads to better
lemmas being calculated.

5 Further Work

The implementation of techniques for case-analysis have increased the power of
IsaPlanner’s inductive prover. The failed proofs in the evaluation set highlight a
number of areas for further work that are orthogonal but complementary to case-
splitting. Firstly, this paper has not focused on lemma discovery. An interesting
future direction is to explore automated discovery of conditional lemmas, which
are needed in many proofs. An example is the proof that insertion sort produces a
sorted list: sorted(insertion sort l). IsaPlanner’s current lemma discovery tech-
niques are limited to making conjectures without assumptions. However, in this
case the needed lemma is sorted m =⇒ sorted(insert x m).

Secondly, extensions to improve IsaPlanner’s capabilities to reason about
more complex conditional conjectures, and about goals with multiple assump-
tions would further increase the power of the prover. Such goals occur more
frequently in domains where case-splitting is applied, introducing new assump-
tions. Implementing extensions to fertilisation, as described in [2] may prove
beneficial in these cases. An example where this would be useful is in the proof
of the lemma that needs to be conjectured to prove the correctness of sorting:
sorted m =⇒ sorted(insert x m). The step case would be solved by rippling
forward to prove sorted (h#t) =⇒ sorted t, and rippling backward to prove
sorted (insert x t) =⇒ sorted (insert x (h#t)). This requires both rippling for-
ward from assumptions and, as is currently implemented, backwards from the
goal, respectively.

Finally, for this paper, we have not been concerned with the issue of induction
scheme selection. IsaPlanner’s induction tactic does allow the user to specify a
custom induction scheme, but when running entirely automatic, as in our ex-
periments, IsaPlanner’s default setting is to use structural induction on a single
variable. However, with such an induction scheme, some proofs will then require
many nested case-splits, interleaved with new inductions. As there is a risk of
non-termination, IsaPlanner only allows new inductions in the context of lemma
speculation, and not for non-rippling goals arising after case-splits. Exploring
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heuristics for automatically selecting and applying induction schemes over mul-
tiple variables simultaneously will enable full automation in more of these cases.
An example where this is beneficial is the proof of right-commutativity of sub-
traction, expressed in Isabelle’s library as (i - j) - k = (i - k) - j. However,
even when more elaborate induction schemes are used, there is no guarantee
that case-statements may not be introduced at some intermediate point in the
proof, perhaps from rewrite rules arising from other conditional functions, or
from auxiliary lemmas. Therefore, the case-analysis technique will still be of
use.

6 Related Work

6.1 Induction-Scheme Based Case-Analysis

Approaches to selecting or deriving induction schemes, such as recursion analy-
sis [3], can avoid the need to perform additional case-splits. This is how systems
such as ACL2 [14] and VeriFun [19] tackle problems that otherwise need case-
analysis. As these system do not have datatypes, unlike Isabelle/IsaPlanner, all
recursive functions are defined using if-statements and destructor constructs.
For example, append is defined by: x @ y = if x=[] then y else hd(x)#(tl(x) @
y). Functions involving case-splits on multiple variables are defined by recur-
sion on several arguments, and hence recursion analysis is able to construct the
appropriate induction scheme. In Isabelle, definitions are typically constructor
style. While and proofs could be translated into destructor style, to avoid deal-
ing with case-statements, this would require translating all function definitions
and auxiliary lemmas as well. By avoiding a translation into destructor-style,
constructor-style definitions can be written by the user and applied directly
in the proof. This helps produce shorter, more readable proofs. Furthermore,
case-analysis, as opposed to selecting and constructing richer induction schemes
sometimes avoids introducing unnecessary base-cases.

Another example when recursion analysis over destructor style definitions is
not appropriate is during function synthesis, where new forms of recursion need
to be derived [6].

6.2 Case-splitting in Other Rippling Based Provers

In version 3 of the CLAM system [8], conditional functions would typically be
defined using several conditional rewrite rules. For example, member would, in
the non-empty case, be written using the rules: x = h =⇒ x ∈ (h # t) = True
and x 6= h =⇒ x ∈ (h # t) = x ∈ t. If one of these is applicable but the con-
dition cannot be proved by simplification, and there exists another rule with a
complementary condition, CLAM’s case-split critic is triggered and introduces a
split on the condition [13]. In Isabelle/IsaPlanner, functions with conditions are
typically defined using an if- or case-statement. This is why our case-analysis
technique works on if- and case-statements, rather than complementary condi-
tional rewrite rules as in CLAM. As CLAM works only in first-order domains,
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it does not include case-statements and its case-analysis critic cannot perform
the corresponding splits on datatypes. Of the 87 theorems in our evaluation
corpus, CLAM could thus not have proved any of the 41 theorems about func-
tions defined using case-statements. The λCLAM system [17], while being able
to express case-statements, had no proof methods working with them.

6.3 Isabelle’s Simplifier

Isabelle’s simplifier can automatically split if-statements, but not case-statements
([15], §3.1.9). In general, splitting case-statements might cause non-termination
for rewriting. The user is therefore required to identify and insert case-splits
where required, or apply a more sophisticated induction scheme, such as si-
multaneous induction on several variables. Our technique, on the other hand
is incorporated as a step within rippling and the rippling measure ensures ter-
mination. Splitting case-statements is safe as long as the ripple-measure de-
creases. IsaPlanner employs the simple default structural induction scheme for
the datatype. Thanks to the case-analysis technique, IsaPlanner still succeeds
in automatically proving theorems such as (i - j) - k = i - (j + k), which in the
interactive proof from Isabelle’s library uses a custom induction scheme chosen
by the user.

7 Conclusions

Performing case-splits is an important feature for an automatic inductive theo-
rem prover. It is needed to prove properties of many functions that are naturally
defined using if- and case-statements. Our case-analysis technique can perform
the needed case-splits for many of these cases. It is triggered during rippling
whenever an if- or case-construct is encountered. If it is possible to prove the as-
sociated condition, the technique proceeds down the corresponding branch, oth-
erwise it introduces a split. Performing such case splits automatically by naive
resolution is applicable to all goals. By introducing a restricted form of resolution
we were able to take advantage of the automatically derived library theorems.
The technique has been fully implemented and tested in IsaPlanner. It is incor-
porated with rippling, which ensures termination. Our evaluation showed that
47 out of 87 theorems which required case-analysis could be prove automatically
by IsaPlanner. Splitting the cases of a pattern matching statement was needed
for 14 of these problems. Other forms of rewriting such as Isabelle’s simplifier,
are non terminating in these cases. More difficult conditional theorems from our
evaluation corpus require the capability to conjecture conditional lemmas and
improved reasoning with assumptions, which we suggest as future work.
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