
A Calculus for Conjecture Synthesis

Moa Johansson1, Lucas Dixon2, and Alan Bundy3

1 Dipartimento di Informatica, Università degli Studi di Verona ??

2 Google, New York
3 School of Informatics, University of Edinburgh

moakristin.johansson@univr.it, ldixon@google.com, a.bundy@ed.ac.uk

Abstract. IsaCoSy is a theory formation system which synthesises and
proves conjectures in order to produce a background theory for a new for-
malisation within a proof assistant. To make synthesis tractable, IsaCoSy
only considers synthesis of terms that are not ‘more complex versions of
already known terms’. This lets IsaCoSy avoid synthesis of undesirable
terms, such as instances of left-hand sides of rewrite rules. In this pa-
per, we present a formal language for constraining synthesis such that
synthesis does not construct terms that can be matched by any of a
given set of constraint-terms. We give a mathematical account of the
algorithms involved, and prove their correctness. In particular, we prove
the correctness property for IsaCoSy’s approach to synthesis: given a set
of constraint-terms as input, IsaCoSy produces only terms that are not
instances of any of the constraint-terms.

1 Introduction

IsaCoSy is an automated theory formation system for inductive theories [7]. The
key idea to make the conjecture synthesis process tractable and the resulting
conjectures interesting, is that synthesis is constrained to only construct terms
that do not match any term in a set of constraint terms. IsaCoSy takes as input
a set of constants to be used in synthesis and a set of known terms, called
constraint terms, which we want to avoid synthesising ‘more complex’ variants
of. In contrast, a naive version, which simply considers all possible terms, will
generate a huge number of terms, many of which are instances of the same smaller
term. For example, suppose we have a rewrite rule Suc(x) +y = Suc(x+y), and
add its left-hand side as a constraint term. IsaCoSy will not generate any terms
matching Suc(x) + y. A naive generate-and-test style synthesis algorithm would
however consider all terms, including Suc(x+x) + y , Suc(x+x+x) + y and so
on. These terms are instances of the constraint term and can be rewritten. Such
terms are deemed not interesting by IsaCoSy. In addition to serving as a criteria
for interestingness, experimental results suggest that the avoidance of matching
terms cuts down the synthesis search space for IsaCoSy by an exponential factor
with respect to a naive synthesis algorithm [7].

?? This research was funded by EPSRC grant EPE/005713/1 as well as grant 2007-
9E5KM8 of the Ministerio dell’ Università e Ricerca.

a + b = b + a a ∗ b = b ∗ a
(a + b) + c = a + (b + c) (a ∗ b) ∗ c = a ∗ (b ∗ c)

(a ∗ b) + (c ∗ b) = (a + c) ∗ b (a ∗ b) + (a ∗ c) = (b + c) ∗ a
rev(rev a) = a (rev a) @ (rev b) = rev (b @ a)

rev(map a b) = map a(rev b) (map a b) @ (map a c) = map a (b @ c)
Table 1. Some examples of synthesised theorems about natural numbers and lists.
These all occur in Isabelle’s library. The symbol @ denotes append.

IsaCoSy builds progressively larger conjectures, starting from a given top-
level symbol. The system then passes synthesised conjectures to a counter-
example checker, which filters out obviously false statements. The remaining
conjectures are given to an automatic inductive prover. Any theorems found are
used to generate additional constraints on the synthesis process and improve
proof automation.

IsaCoSy has been applied to generate equations in inductive theories, with
the aim of producing results that can be used as intermediate lemmas within
a user’s, or a proof tool’s, subsequent attempts to prove further theorems. The
implementation and evaluation of IsaCoSy has been described in [7]. IsaCoSy
was able to generate most of the relevant inductive lemmas occurring in Isabelle’s
libraries for natural number and lists4, which were hand-created by a human user.
We performed a precision/recall analysis, which showed that IsaCoSy achieved
high recall, as most library lemmas were found, but somewhat lower precision,
as additional theorems also were synthesised. The few library-lemmas missed
out could typically be derived easily from ones that were generated. Despite the
lower precision, the number of additional theorems synthesised, not occurring in
the libraries, was relatively small. A few sample theorems synthesised by IsaCoSy
are shown in Table 1. The complete synthesised theories from these experiments
are available online5.

To complement the algorithmic description given in [7], we here present a
higher-level, more succinct and general formal description of IsaCoSy’s con-
straint generation and synthesis machinery. Using this account, we prove the
fundamental correctness property for our system: it generates only terms in the
language that are not instances of any term in the constraint-term set. In par-
ticular, when the constraint-term set consists of the left-hand sides of a set of
rewrite rules, we show that only irreducible terms are synthesised.

Since IsaCoSy 1.0, which was described in [7], the following improvements
have been implemented6:

– IsaCoSy can now generate constraints from arbitrary terms, not just left-
hand sides of equations. This enables some additional heuristics to be nat-

4 http://www.cl.cam.ac.uk/research/hvg/Isabelle/dist/library/HOL/index.

html
5 http://dream.inf.ed.ac.uk/projects/lemmadiscovery/synth_results.php
6 Available at http://dream.inf.ed.ac.uk/projects/isaplanner

urally encoded. For instance, a sequence of two or more successor symbols
can be disallowed by introducing a constraint-term of the form Suc(Suc(x)).

– When constraints are generated from left-hand sides of rewrite rules, IsaCoSy
first attempts to orient the equation to ensure it is a valid rewrite rule. This
avoids over-generation of constraints, which occasionally occurred in version
1.0.

– The choice of automated prover and counter-example checker is now given
as a parameter to IsaCoSy, and thus controlled by the user. The default
prover is IsaPlanner’s rippling-based prover [4], and the default counter-
example checker is QuickCheck [1]. However, the user can easily plug in
other induction tactics and counter-example finders.

– The top-level function for synthesis is now an input parameter to synthesis.
This makes it easier to generate terms other than equations.

The formalisation in this paper highlighted some redundancies in IsaCoSy’s con-
straint language, which led to the development of a more succinct language (see
§5). This has however not yet been implemented.

2 Related Work

Other theory-formation systems, such as MATHsAiD [9], IsaScheme [10] and
Theorema [2, 5] have been applied to inductive theories. However, none of the
algorithms used in those systems, or any other theory formation system that we
know of, have yet enjoyed a mathematical analysis of their properties.

IsaScheme is a theory formation system which generates conjectures by in-
stantiating a set of schemes, which are higher-order terms, by a given set of closed
terms, in all possible ways [10]. While IsaCoSy will consider all terms that are
not instances of any of its constraint terms, IsaScheme further restricts its search
space by only considering those that also are instances of its given schemes and
which have been instantiated by its input set of closed terms. IsaScheme orients
candidate equations to exclude any conjectures that are not valid rewrite rules
and then applies Knuth-Bendix completion. Candidate theorems are normalised
and thus form a rewrite system together with the initial background lemmas
from the theory. IsaScheme employs Isabelle’s QuickCheck and Nitpick tools
for counter-example checking and either IsaPlanner’s rippling-based prover or a
custom tactic, which can be given as a parameter by the user, for proofs.

The purpose of the MATHsAiD system is to construct theorems that would
be consider interesting by a human mathematician [8, 9]. It takes an axiomatic
description of the initial theory as input and reasons forward, and sometimes
backwards, to derive logical consequences of these. A range of heuristic measures
are built into the generation process to avoid generating theorems not deemed
‘interesting’.

QuickSpec is a tool for automatically deriving algebraic specifications for
functional programs written in Haskell or Erlang [3]. Unlike IsaCoSy, QuickSpec
simply generates all possible terms up to a given size, and then explores which

ones are equal by testing (using a counter-example finder). It then employs fil-
tering to discard equations that are derivable from the remaining set. QuickSpec
does not employ an inductive theorem prover, and thus cannot attempt to prove
the conjectures it produces.

3 Preliminaries

We introduce some notation which will be used throughout the paper. We use
HOL terminology, where predicates are treated simply as functions returning a
boolean value. All expressions are thus terms, and no distinction is made between
terms and formulas.

For our purposes, it is convenient to define (possibly partially synthesised)
terms as n-ary trees, captured by the following datatype7:

Definition 1 (Synthesis Terms)

Atom := Const of k | Hole of ?h

Term := App of (Atom ∗ Term list)

Atom is either a hole, representing part of a term still to be synthesised, denoted
?h, or a named constant symbol k . The App constructor is used to represent
function application with the Term list being the function’s arguments. A term
that consists of a constant, k, with no arguments is represented by App(k , []).

During synthesis, only holes are allowed to be instantiated as they represent
term-positions still to be synthesised. Synthesis may insert variables, implicitly
bound by universal quantifiers, into the term but these are not allowed to be
further instantiated during synthesis and are thus treated as constants.

IsaCoSy does not currently synthesise terms containing lambda-abstractions.
This is equivalent to function synthesis and would greatly increase the size of
the search space.

We write hd(t) to denote the symbol in the head position of a term, e.g.
hd(App(f , args)) = f . denote substitutions on terms. The symbols = and 6= on
terms denote syntactic equality and disequality respectively. We use ?h ≡ s
to represent the instantiation of a hole ?h by a term s. Instantiation of holes
can be viewed as traditional substitution of a free variable for a term. A ground
synthesised term is thus a term which does not contain any holes. A substitution
σ is called a grounding substitution on a term t if it produces a ground term tσ
by instantiating all remaining holes.

Positions in terms are expressed as paths. These are lists of argument po-
sitions within a term, with the empty list being the top of the term. As an
example, consider the term f(x, g(y)). We show a tree-representation of this
term in Figure 1 with each position tagged by its path-representation.

7 We have abstracted away type information as it adds no interesting complexity.

f

Path[1]

Path[2,1]

Path[2] x

y

g

Path[]

Fig. 1. Term-tree with path-representations of each position.

Initial
Theory

Constraint
Generator

Constraint
Table

Theory
Constraints

Synthesis
Engine

Counter-Example
Checker

Inductive
Prover

Open
Conjectures

Theorems

False
Conjectures

Synthesis
Constraints

Conjectures

Not Falsified
Conjectures

Fig. 2. IsaCoSy’s synthesis process.

We write t[s]p for a term t with a subterm s in position defined by the path
p. The term s may also be referred to by t|p. We write p[i,j] for a path that has
the path pi as a prefix, and is extended by j, where j is an integer. In other
words, p[i,j] is the position j immediately below pi in the term tree. To append
two paths to each other we write pi @ pj .

4 Overview of IsaCoSy

Figure 2 illustrates the synthesis procedure of IsaCoSy.
The initial input to configure IsaCoSy is a set of constant symbols, with which

to synthesise new terms, and a set of constraint-terms. Typically the constants
are those from the basic definitions in a theory. For instance, we give an example
toy-theory for natural numbers in Figure 3; here the constant symbols are +, 0
and Suc. Most of the initial constraints are generated from the left-hand sides
of defining equations, as well as the left-hand side of other rewrite rules. In our
example, this is the definition of + and the lemma Suc-Injective.

The constraint-terms are fed into IsaCoSy’s constraint generation machinery,
which computes a set of initial constraints for synthesis, referred to as theory
constraints. Theory constraints are stored in a table, indexed by the head-symbol

datatype Nat =

0

| Suc of Nat

fun plus : Nat => Nat => Nat

where

0 + y = y

| Suc x + y = Suc(x + y)

lemma Suc-Injective:

(Suc n = Suc m) = (n = m)

Fig. 3. An example theory to which IsaCoSy can be applied. It contains the definition
of a recursive datatype Nat, the definition of a function plus and an additional lemmas
capturing the injectivity property of Suc. This lemma is derived automatically by
Isabelle’s definitional machinery for datatypes when the Nat type is declared.

in the term that generated the constraint. Constraint generation is described in
§5.1.

In addition to the constraints from rewrite rules, IsaCoSy may also constrain
synthesis by ordering the arguments for functions that are commutative. We
refer to [7] for more details about heuristics related to commutativity, as it is
not the focus of this paper.

The input to the synthesis engine is a term containing holes, standing for
the parts yet to be synthesised. At each step of synthesis, a hole is picked and
instantiated with a symbol. If this is a function symbol, new holes are also
introduced, corresponding to the arguments of the function. The symbol chosen
to instantiate a hole is picked from the set of constant symbols allowed by the
synthesis constraints.

During the synthesis process, IsaCoSy imports theory constraints for the con-
stants which are used to instantiate a hole (typically these constants are function
symbols). The set of constraints applicable to a particular synthesis attempt are
referred to as synthesis constraints. Synthesis constraints are updated and mod-
ified as the term becomes instantiated, while theory constraints remain static.
Figure 4 shows the steps of the synthesis engine in more detail. IsaCoSy will
thus synthesise a set of terms adhering to the relevant constraints.

Example 1. Consider a partially synthesised term ?h1+?h2 =?h3, and suppose
we pick ?h1 to be instantiated next. The synthesis algorithm now has to pick
a symbol to instantiate ?h1. The synthesis constraints on the term will forbid
picking 0 or Suc as either of these would produce a term that matches one of the
two rewrite rules from the definition of addition in Figure 3. The algorithm may
however choose to instantiate ?h1 with +, resulting in an updated term with
two new holes: (?h4+?h5)+?h2 =?h3. After instantiation, any new applicable
constraints are imported from the theory constraints of the newly introduced

Theory Constraint
Table

Synthesis
Constraints

Term

Instantiate Hole
in Term

Import Theory
Constraints

Update Synthesis
Constraints

Fig. 4. The synthesis engine. While there are still open holes in the term, IsaCoSy picks
a hole and a symbol to instantiate it with, in accordance with the constraints. New
constraints for new holes are imported for the relevant symbol, and old constraints are
updated to take the instantiation into account.

symbol. Here, we import constraints about +, which will restrict instantiations
of ?h4 and ?h5.

IsaCoSy divides synthesis into iterations, starting from a given smallest term
size, and incrementally increasing the size. For each term size, a set of terms
are synthesised. After each iteration the set of synthesised terms are filtered
through counter-example checking and then passed on to the prover. Any theo-
rems proved are used to generate additional theory constraints. This means that
the space of synthesisable terms is incrementally reduced and kept manageable
even when larger term-sizes are considered. Proved theorems are also used by
the prover in subsequent proofs. This makes the prover more powerful as more
theorems are discovered. The synthesis algorithm is described in more detail in
§6.

5 Constraint Language

The purpose of the constraint language is to express restrictions on synthesis in
order to avoid generating any terms that match known terms from the constraint-
term set. For instance, when the constraints are generated from rewrite rules, no
terms containing a redex matching a known rewrite rule should be synthesised.
This keeps the synthesis search space size manageable and avoids the generation
of more complex versions of already known theorems. The constraints specify
which positions are not allowed to be instantiated to certain constants, as well
as which positions are not allowed to be instantiated to equal terms.

A term t satisfies a constraint c, if it cannot be unified with the term from
which c was generated. In the case where the constraint was generated from the
left-hand side of a rewrite rule, this corresponds to t not being a redex for that
rule. Otherwise, we say that t violates the constraint. Def. 5 in §5.2 specifies the

Satisfies relation. For a synthesised term, we require that all its subterms satisfy
all constraints, meaning that no subterm of a synthesised term is an instance of
any of the constraint terms (see Theorem 3).

The constraints refer to positions as paths from the top of the term tree,
which allows us to simplify and revise the constraint language presented in [7],
which was unnecessarily complicated as the constraints were built as a tree-
like structure reflecting the underlying term. The simplified definition for the
constraint language is:

Definition 2 (Constraint Language)

Constr := NotConst(pi, k) | UnEqual(p1, . . . , pn) | c1 ∨ c2 | > | ⊥

The NotConst constraints express that a constant symbol k is not allowed to oc-
cur in position pi. The UnEqual constraints specify a list of positions, p1, . . . , pn,
which are not allowed to be instantiated to equal terms. In addition, the lan-
guage allows disjunctions of constraints, c1 ∨ c2, and contains the two constant
constraints > and ⊥, which are trivially satisfied and violated respectively8.

We also clarify the difference between theory constraints and synthesis con-
straints:

– Theory constraints are generic constraints associated with particular con-
stant symbols. They arise from terms given to IsaCoSy’s constraint genera-
tion algorithm.

– Synthesis constraints are associated with a particular synthesis attempt and
are updated during the synthesis process, as the term is built.

To disambiguate, we write theory constraints with a subscript T and synthesis
constraints with a subscript S, e.g. NotConstT and NotConstS .

5.1 Constructing Constraints

Suppose we want to generate the theory constraints from a term t:

– For each position p in t containing a constant symbol k we produce a con-
straint NotConstT (p, k).

– If there are several distinct positions pj , . . . pm in t, that contain the same
variable, we produce a constraint UnEqualT (pj , . . . , pm).

A constraint term will often give rise to a set of constraints for various positions.
They express instantiations not simultaneously allowed if we are to ensure that
the synthesised term is not an instance of the constraint term (see Example 2).
Synthesis may violate some of these constraints, but not all of them, so the final
step of constraint generation is to create a disjunction of all the constraints for
the rule. This is formally expressed as:

8 The disjunction subsumes the IfThen and NotSimult constructors from [7]. Also
note that NotConst subsumes both the constraints NotAllowed and VarNotAllowed
in [7].

Definition 3 (Theory Constraints for a term t)

ThyConstrs(t) :=∨
({NotConstT (p, k) : t|p = k ∧ IsConst(k)} ∪

{UnEqualT (pj , . . . , pm) : t|pj
= . . . = t|pm

∧ pj 6= pm ∧ IsVar(t|pj
)})

Here we let
∨

stand for the disjunction of the constraints in a given set. The
predicate IsConst, is true iff a term is a constant, while IsVar is true iff the term
is a variable.

Example 2. Suppose IsaCoSy generates a constraint from the term 0 + y (from
the left-hand side of the rewrite rule 0 + y = y, in the definition of addition
in Figure 3). As there are no variables occurring more than once, IsaCoSy first
generates two constraints forbidding the constants + and 0 in their respective
positions: NotConstT (Path[],+) and NotConstT (Path[1], 0). Synthesised terms
must satisfy at least one of the two, hence IsaCoSy create the disjunction:

NotConstT (Path[],+) ∨NotConstT (Path[1], 0)

This specifies that if a position contains the symbol +, then it is forbidden to
instantiate the first argument of + to be 0. A similar constraint is generated for
the Suc-case.

Example 3. As a slightly more complex example, consider a term f(x, g(x)).
The position Path[] contains the symbol f , while position Path[2] contains the
symbol g and positions Path[1] and Path[2, 1] both contain the variable x. This
produces the constraint:

NotConstT (Path[], f)∨NotConstT (Path[2], g) ∨UnEqualT (Path[1], Path[2 , 1])

The theory constraints are stored in a map from a function symbol f to sets
of constraints where f occurs in the head position (i.e. the theory constraints
containing a disjunct forbidding f in the position Path[]).

Definition 4 (Theory constraints of a function f) Let TC denote the set
of all theory constraints generated from the given constraint-terms. The theory
constraints for a particular function f is thus:

ThyConstrs(f) = {c : c ∈ TC , NotConstT (Path[], f) ∈ c}

We use the notation NotConstT (Path[], f) ∈ c to specify any constraint where
NotConstT (Path[], f) is one of the disjuncts in c.

5.2 Semantics of Constraints

We define a function Satisfies(t, c) below, which takes a ground term t and
a constraint c and returns returns True iff the term satisfies the constraint.
Otherwise t violates the constraint. Recall that because t is ground, it does not
contain any holes.

Definition 5 (Semantics for Constraints) The Satisfies function is defined
below for the constructs of the constraint language:

NotConst:
Satisfies(t , NotConst(p, k)) =⇒ t|p 6= k

UnEqual:

Satisfies(t,UnEqual(p1, . . . , pn)) =⇒
∨

1≤i,j≤n

t|pi 6= t|pj

Or:
Satisfies(t, c1 ∨ c2) =⇒ Satisfies(t, c1) ∨ Satisfies(t, c2)

Top:
Satisfies(t, >) =⇒ True

Bottom:
Satisfies(t, ⊥) =⇒ False

If the constraint refers to paths longer than is possible in t, the constraint is
trivially satisfied.

The constraint update mechanism (see Def. 7 in §7), is a lazy unfolding of
Satisfies, operating over the terms being synthesised, where the terms being
synthesised may contain holes.

5.3 Correctness of the Constraint Generation Algorithm

We will now prove the constraint generation mechanism is correct, in the sense
that it produces exactly those constraints which exclude terms matching any of
those in the constraint-term set. In the case of constraints from rewrite rules,
this means excluding any reducible terms.

The correctness properties below were stated in [7], but not proved. Using
the Satisfies function (Def. 5) allows us to prove this theorem. Our correctness
proof consists of two parts. We first show the sufficient coverage property: that
the constraints generated cover all instances of the term from which they were
generated. We then show that the constraints only correspond to the terms from
which they were generated, the no over-coverage property.

We refer to terms from which constraints have been generated as constraint
terms and use the notation Constraints(r) for the disjunction of constraints the
algorithm generates for the term r. We say that a term s is an instance of r if
there is a substitution σ such that s = rσ.

Lemma 1 (Sufficient coverage). Given a term s and a constraint-term r, if
s is an instance of r, then s violates Constraints(r).

Proof. Constraints(r) is a disjunction: c1 ∨ . . . ∨ cn. The constraint is violated
when Satisfies(s, c1 ∨ . . . ∨ cn) evaluates to false.

There are two cases, depending on the type of each disjunct:

NotConst: By construction, each position pi in r containing a constant symbol
k, will have contributed a constraint NotConstT (pi, k). However, as s is
assumed to be an instance of r, the position pi in s must contain k, or
else s 6= rσ. Hence, Satisfies(s, NotConstT (pi, k)) evaluates to false for all
disjuncts that are NotConstT constraints.

UnEqual: By construction, each set of positions pj , . . . pm in r containing the
same variable x, will contribute a constraint:

UnEqualT (pj , . . . , pm)

By assumption s = rσ and the substitution σ must map the variable x to
the same term everywhere it occurs in r, namely the term represented by
the sub-trees starting at pj , . . . , pm in s, which must be identical.
By the semantics for UnEqualT in Def. 5:

Satisfies(s, UnEqualT (pj , . . . , pm))

will evaluate to false when the sub-trees rooted at s|pj
, . . . s|pm

are identical.

Thus Satisfies(s, c1 ∨ . . . ∨ cn) evaluates to false, as s violatesConstraints(r).

Lemma 2 (No over-coverage). Given a constraint-term r, if s is a term that
violates Constraints(r), then s is an instance of r.

Proof. By contradiction, assume s violates Constraints(r) and is not an instance
of r. Constraints(r) is a disjunction: c1 ∨ . . . ∨ cn. As s violates the constraints,
we know that Satisfies(s, c1 ∨ . . . ∨ cn) =⇒ False. By Def. 5, we hence have
Satisfies(s, ci) =⇒ False for each ci, 1 ≤ i ≤ n. We have two cases, depending
on the type of each ci:

NotConst: By construction, each position pi in r containing a constant sym-
bol k, will have contributed a constraint NotConstT (pi, k). We know that
Satisfies(s, NotConstT (pi, k)) = False, so we must have s|pi = k for each
position pi. Hence s and r contain the same constant symbols in the same
positions.

UnEqual: By construction, all position pj . . . pm containing the same variable
x in l, will have contributed a constraint

UnEqualT (pj , . . . , pm)

As Satisfies(UnEqualS (s, pj , . . . , pm) =⇒ False, s must contain identical
subterms s|pj

= . . . = s|pm
. Hence there exist a substitution σ such that

s = rσ where σ{x 7→ s|pj
}.

As s and r agree on all positions of constant symbols, and we can find a sub-
stitution for the variables in r with subterms of s, then s is an instance of r,
contradicting our assumption. Hence, s violates Constraints(r) whenever it is an
instance of l.

Theorem 1 (Exact coverage). Given a term s and a constraint-term r, the
constraint produced by the constraint generation algorithm is satisfied by s iff s
does not match r.

Proof. Follows from lemmas 1 and 2.

6 The Synthesis Algorithm

When synthesising a term, IsaCoSy picks an open hole and explores all instanti-
ations adhering to the constraints. The synthesis algorithm applies the inference
rules specified in Def. 6 to a partially synthesised term, t, that contains some
uninstantiated hole ?h.

In addition to a partially synthesised term, t, the synthesis rules refer to a
collection of synthesis constraints, C, associated with t, denoted by C ‖ t. We
write Ch for the constraints in C which contain a reference to the (position
of) hole ?h. We use Dom(?h) as the set from which synthesis selects candidate
instantiations of a compatible type for a hole ?h. Synthesis tries all instantiations
from Dom(?h) that are not forbidden by the presence of a singleton NotConstS
constraint9. When a function symbol f is picked to instantiate a hole, the theory
constraints associated with that function symbol, denoted by ThyConstrs(f), are
imported as new synthesis constraints. As we wish the new synthesis constraints
to refer to the subterm rooted at the newly instantiated hole, we prefix all
paths in the theory constraints by the path to the hole. Prefixing all paths
in a constraint c, denoted by ∀pj ∈ Paths(c), by another path pi is written
c[∀pj ∈ Paths(c). pj 7→ pi @ pj].

Existing synthesis constraints must also be updated to capture the instan-
tiation of a hole. The function Update, takes a constraint (which might be a
conjunction of dependent constraints) on the instantiated hole and updates it
according to the constraint update algorithm (see Def. 7).

Definition 6 (Synthesis Algorithm) The synthesis algorithm instantiates holes
by the following two rules:

Function: ?h ≡ f(?h1 . . .?hn)

C ‖ t[?h]pi

(C 7→ (∀ c ∈ Ch. Update(c))) ∪ Constrs(f) ‖ t[f(?h1 . . .?hn)]pi

if

{
f ∈ Dom(?h)
NotConstS (?h, f) /∈ Ch}

where Constrs(f) =

{c : c′ ∈ ThyConstrs(f), c = c′[∀pj ∈ Paths(c′). pj 7→ pi @ pj]

Constant: ?h ≡ k

C ‖ t[?h]pi

C 7→ (∀ c ∈ Ch. Update(c)) ‖ t[k]pi

if
{

NotConstS(?h, k) /∈ Ch

9 In the implementation, constant symbols occurring in singleton constraints are in
fact removed from the domain of the relevant hole, but for the purpose of clarity the
constraints have been made explicit in here.

The criteria for correctness of the synthesis algorithm is that it maintains
the invariant that, after each step where a hole is instantiated, no synthesis
constraint in C is violated (see Lemma 3).

Example 4. Recall Example 1, where a the hole ?h1 in the term t: ?h1+?h2 =?h3
was instantiated by ?h4+?h5. Def. 6. The set of constraints C associated with
t is updated: Any existing constraints associated with the hole ?h are updated,
and new constraints on ?h4 and ?h5 may be added.

The hole to be instantiated, ?h1, occurs in position Path([1, 1]). The set of
synthesis constraints associated with ?h1 is:

{NotConstS(Path([1, 1]), 0),NotConstS(Path([1, 1]),Suc)}

which came from the left-hand sides of the equations defining + (see Figure 3).
As ?h1 is instantiated to +, both of these are satisfied, so they can be dropped.

For the new subterm rooted at the position of ?h1, we also import constraints
for the new holes ?h4 and ?h5, from the theory constraints for +:

{NotConstT (Path([1]), 0),NotConstT (Path([1]),Suc)}

To produce synthesis constrains referring to the right subterm of t, we must prefix
the paths in the theory constraints by the path to ?h1 (namely Path([1, 1]):

{NotConstS(Path([1, 1, 1]), 0),NotConstS(Path([1, 1, 1]),Suc)}

These constraints state that, like ?h1, which also was in the first argument
position of a +, ?h4 is not allowed to be instantiated to 0 or Suc.

7 Constraint Update Algorithm

After each instantiation during synthesis, the constraints associated with the
term must be updated to reflect any new holes created, and propagate existing
constraints onto these. This is done by the function Update, mentioned in the
previous section. This is essentially a lazy unfolding of the Satisfies relation.
We write ph for the position of the most recently instantiated hole ?h. The
Update function is defined structurally on the type of the given constraint. If the
constraint is not mentioning the instantiated hole ?h, then Update(c) = c.

Definition 7 (Constraint Update Function)

NotConst-violation: ?h ≡ s, hd(s) = k.

Update(NotConstS(ph, k)) =⇒ ⊥

NotConst-satisfied: ?h ≡ s, hd(s) 6= k.

Update(NotConstS(ph, k)) =⇒ >

UnEqual-Fun: ?h ≡ f(?h1 . . .?hm)

Update(UnEqualS(ph, p1, . . . , pn)) =⇒
NotConstS(p1, f) ∨ . . . ∨NotConstS(pn, f) ∨

UnEqualS(ph1 , p[1, 1], . . . p[n, 1])∨ . . .∨UnEqualS(phm , p[1, m], . . . p[n, m])

UnEqual-Const: ?h ≡ k

Update(UnEqualS(ph, p1, . . . , pn)) =⇒
NotConstS(p1, k) ∨ . . . ∨NotConstS(pn, k)

Or-Top:
Update(> ∨ c) =⇒ >

Or-Bottom:
Update(⊥ ∨ c) =⇒ Update(c)

Or:
Update(c1 ∨ c2) =⇒ Update(c1) ∨Update(c2)

The correctness of the constraint update machinery is crucial to the efficiency
and correctness of the entire synthesis process. We will now prove this by showing
that the value of the Satisfies-function is the same as before after updating a
constraint. Recall that the Satisfies function works with ground terms. We will
thus prove that satisfiability/violation of updated constraints are preserved over
all possible instantiations of remaining holes. That is, if the term t satisfied a
constraint, it will also satisfy the updated constraint.

Theorem 2 (Correctness of Constraint Update). Suppose we have a term
t[?h]ph

and instantiate the hole ?h ≡ th. For each constraint c ∈ Ch, satisfiability
is preserved over Update:

Satisfies((t[th]ph
)σ, c) = Satisfies((t[th]ph

)σ, Update(c))

for all grounding substitutions σ instantiating remaining holes.

Proof. Let t′ = (t[th]ph
)σ and c′ = Update(c). There are three cases, depending

on the type of c:

1. c is of the form NotConstS(ph, k):

(a) Assume ?h ≡ th and th 6= k. The rule NotConst-satisfied applies,
which returns the updated constraint >. Applying the Satisfies function
to both c and c′ gives:

c′ : Satisfies(t′, >)⇒ True

c : Satisfies(t′, c)⇒ s 6= k ⇒ True

Hence both the old and updated constraint evaluates to true.

(b) Assume ?h ≡ k. Then the rule NotConst-violated applies, which re-
turns the updated constraint c′ = ⊥, The constraints c and c′ are eval-
uated to:

c′ : Satisfies(t′, ⊥)⇒ False

c : Satisfies(t′, c)⇒ k 6= k ⇒ False

Hence both the old and updated constraint evaluates to false.
2. c is of the form UnEqual(ph, q1, . . . , qn):

(a) Assume ?h ≡ k for some constant k. Then the rule UnEqual-Const
applies. The updated constraint c′ returned is:

c′ : NotConstS(q1, k) ∨ . . . ∨NotConstS(qn, k)

Evaluating the updated and old constraints respectively gives:

c′ : Satisfies(t′, c′)⇒ hd(t′|q1) 6= k ∨ . . . ∨ hd(t′|qn) 6= k

c : Satisfies(t′, c)⇒ (t′|q1) 6= k ∨ . . . ∨ (t′|qn) 6= k

– If Satisfies(t′, c) =⇒ True then at least one of t′|qi 6= k holds. Then
also Satisfies(t′, c′) =⇒ True, as c′ contains the corresponding dis-
junct hd(t′|qi) 6= k, which also holds.

– If Satisfies(t′, c) =⇒ False then all its conjuncts are false, which
means that t′|q1 = k ∧ . . . ∧ t′|qn = k holds. Then also t′|qi =
hd(t′|qi) = k for all qi, so Satisfies(t′, c′) =⇒ False.

(b) Assume ?h ≡ f(?h1, . . .?hm) for a function f , introducing new holes
?h1, . . .?hm for its arguments. Let t′ abbreviate (t[f(?h1, . . . , ?hm)]ph

)σ
for any grounding substitution σ. The rule UnEqual-Fun applies and
returns the updated constraint c′:

NotConstS(q1, f) ∨ . . . ∨NotConstS(qn, f)

i=m∨
i=1

UnEqual(p[h, i], q[1, i], . . . q[n, i])

We evaluate c′ to:

Satisfies(t′, c′) =⇒ hd(t′|q1) 6= f ∨ . . . ∨ hd(t′|qn) 6= f ∨
∀i ∈ {1 . . . n}. t′|p[h,1] 6= t′|q[i,1] ∨ t

′|q[1,1] 6= t′|q[i,1] ∨. . .∨ t
′|q[n,1] 6= t′|q[i,1]

∨ . . .∨
∀i ∈ {1 . . . n}. t′|p[h,m]

6= t′|q[i,m]
∨ t′|q[1,m]

6= t′q[1,m]
∨. . .∨ t′|q[n,m]

6= t′|q[1,m]

(7.1)

The original constraint c, given the instantiation ?h ≡ f(?h1, . . .?hm)
evaluates to:

Satisfies(t′, c) =⇒
t′|q1 6= f(?h1, . . . , ?hm)σ ∨ . . . ∨ t′|qn 6= f(?h1, . . . , ?hm)σ (7.2)

– Assume Satisfies(t′, c) =⇒ True.
Then for some i, we have that t′|qi 6= f(?h1, . . . , ?hm)σ. This is true
when either
• hd(t|qi) 6= f holds, which is also a disjunct in (7.1), hence also

Satisfies(t′, c′) =⇒ True.
• hd(t|qi) = f , for all positions qi, 1 ≤ i ≤ n, and the difference

is further down the term tree in t′: there must exist positions
where t′|p[h,j] 6= t′|q[i,k] holds, with j, k ranging over the positions
of the arguments of f : 1 ≤ j, k ≤ m. All such positions occur
as conjuncts in (7.1), and as at least one of them must hold, we
also have that Satisfies(t′, c′) =⇒ True.

– Assume Satisfies(t′, c) =⇒ False.
Then all disjuncts (t′|qi) 6= f(?h1, . . . , ?hm)σ in (7.2) are false. In
other words, we must have all t′|qi equal. In this case, all disjuncts
in (7.1) also evaluates to false and Satisfies(t′, c′) =⇒ False.

3. c is of the form c1 ∨ c2:
By induction on the structure of c1 and c2. Cases (1) and (2) above are the
base cases. Assuming Satisfies(t′, ci) = Satisfies(t′,Update(ci)) for i ∈ {1, 2},
then clearly also Satisfies(t′, c1∨c2) = Satisfies(t′,Update(c1)∨Update(c1)).

Hence, the constraint update function is correct, it always returns a constraint
which preserves satisfiability of the original constraint after the instantiation of
a hole.

8 Correctness of the Synthesis Algorithm

Having established the correctness of the constraint update algorithm, we can
now prove the correctness of the synthesis algorithm.

Lemma 3 (No instances of constraint-terms). After each instantiation of
some hole by the synthesis algorithm, the partially synthesised term t does not
contain any subterm that is an instance of any constraint-term.

Proof. By contradiction. Assume there is a subterm s in t which matches some
constraint-term r: g(x1, . . . , xn), hence g(x1, . . . , xn)σ ≡ s, for some substitution
σ. Then s must have the same top-level constant symbol as the constraint-term,
namely g, which must have been introduced by the rule Function from Def. 6.

This instantiation would have added the set of constraints associated with g,
Constrs(g), to the set of constraints C associated with the term t that we are
synthesising. Constrs(g) include the particular constraint cr associated with the
constraint-term r.

Furthermore, there must have been one last hole ?h, in a position mentioned
in cr

10, that was instantiated in s[?h]ph
to allow it to match r. Assume cr is a

disjunction cr1 ∨ crn . There are three cases, depending on the position ph of the
last hole in s to allow it to match r:
10 Thus, ?h is assumed to be in some position not corresponding to a singleton variable

in r, as such positions have no associated constraints.

1. ph correspond to a position of a constant k in r:
The constraint cr will contain a disjunct NotConstS(ph, k). As ?h is the last
hole, we may assume that all other constraints in the disjunction have been
violated, as s already match r in all other positions.
To make smatch r, we must apply the the Constant rule from Def. 6, instan-
tiating ?h with k. However, there is a single constraint NotConstS(ph, k), so
the side-condition of the Constant rule forbids k as an instantiation. Hence,
s cannot be synthesised and we have a contradiction.

2. ph correspond to a position of a variable (occurring more than once) in r:
The constraint cr will contain a disjunct UnEqualS(p1, . . . , ph, . . . , pn). As
we assume ?h is the last hole to be instantiated of those mentioned in the con-
straint, all other positions p1, . . . , pn must have been instantiated to the same
constant k. This would have updated the constraint by the rule UnEqual-
Const, to a disjunction of n NotConstS constraints. All of these except the
one mentioning ph must have been violated. As above, this prevents synthesis
from instantiating ?h to k, and hence we cannot synthesise s.

3. ph correspond to a position below a variable (occurring more than once) in
r:
The position ph must have been introduced in the synthesis constraint by
constraint updates. Some position above ?h will have been involved in a
constraint: UnEqualS(p1, . . . pn).
WLOG suppose ph occurs below pn. All subterms of s at positions s|p1 , . . . ,
s|pn−1 must be equal for s to potentially match r. The constraint update
function would thus recursively have introduced new UnEqualS constraints
for each level below these, finishing at the level of ph, where the other holes
must have been instantiated to the same constant k, introducing a disjunc-
tion of n NotConstS constraints. All except the one mentioning ph have been
violated, as ?h is the last hole. As before this prevents instantiating ?h to k,
so s cannot be synthesised.

Theorem 3 (Correctness of synthesis). The synthesis algorithm only pro-
duces terms that are not instances of any constraint-term.

Proof. By induction. The base case trivially holds. For the step-case, by Lemma
3, the synthesis algorithm maintains the invariant that no instantiation pro-
duces a subterm that is an instance of any term in the constraint-term set. This
obviously also holds for the final iteration.

From the above theorem we get the following corollary for the special case
when constraints are generated from rewrite rules:

Corollary 1 (Synthesis of irreducible terms). When the constraint-term
set is derived from the left-hand sides of a set of rewrite rules, the synthesis
algorithm only produces terms that are irreducible.

9 Conclusions and Further Work

We have presented a formal account of term synthesis in IsaCoSy. This introduces
a much simpler constraint language than that previously presented in [7]. Using

this language, we described the constraint generation and synthesis machinery in
a more general fashion than previously, abstracting away implementation details.
This clarifies what the technique does (and does not do), and facilitates future
re-implementation and extension. Moreover, the simplicity of the concept behind
IsaCoSy, along with the mathematical language, admits a mathematical analysis
of the properties of theory exploration.

The mathematical account has allowed us to prove important properties
about IsaCoSy. We proved the correctness of the machinery for generating con-
straints from terms, showing that the constraints generated excludes exactly the
terms that are instances of the constraint term. We also proved the correctness of
constraint updates during synthesis, satisfiability of the constraint is preserved
also when constraints are updated. Finally, we also proved the correctness of
the synthesis algorithm itself: IsaCoSy only produces terms that do not contain
instances of any constraint term. For constraint terms coming from left-hand
sides of rewrite rules, this means that only irreducible terms are synthesised.

We believe that formal accounts of theory exploration will be helpful in en-
abling comparison between different approaches to theory formation by clearly
highlighting the fundamental properties of different systems. This is the first
mathematical account of a property of theory exploration of which we are aware.

As further work, we plan to include the simplified constraint language in
the implementation of IsaCoSy. An interesting direction for further theoretical
work on theory formation, based on IsaCoSy’s approach, is to consider when the
need for generalisation can be avoided by synthesising the needed background
lemmas. Some results showing the potential of this idea, compared to other
lemma-speculation techniques, can be found in [6].

References

1. S. Berghofer and T. Nipkow. Random testing in Isabelle/HOL. In SEFM ’04:
Proceedings of the Software Engineering and Formal Methods, Second International
Conference, pages 230–239. IEEE Computer Society, 2004.

2. B. Buchberger, A. Craciun, T Jebelean, L. Kovacs, T. Kutsia, K. Nakagawa,
F. Piroi, N. Popov, J. Robu, M. Rosenkrantz, and W. Windsteiger. Theorema:
Towards computer-aided mathematical theory exploration. Journal of Applied
Logic, 4(4):470–504, 2006.

3. K. Claessen, N. Smallbone, and J. Hughes. QuickSpec: Guessing formal specifica-
tions using testing. In TAP’10 Proceedings of the 4th international conference on
Tests and proofs, volume 6143 of LNCS, pages 6–21. Springer, 2010.

4. L. Dixon and J. Fleuriot. Higher-order rippling in IsaPlanner. In TPHOLs-17,
LNCS, pages 83–98. Springer, 2004.

5. M. Hodorog and A. Craciun. Scheme-based systematic exploration of natural
numbers. In Synasc-8, pages 26–34, 2006.

6. M. Johansson, L. Dixon, and A. Bundy. Dynamic rippling, middle-out reasoning
and lemma discovery. In Verification, Induction, Termination Analysis, volume
6463 of Lecture Notes in Computer Science, pages 102–116. Springer, 2010.

7. M. Johansson, L. Dixon, and A. Bundy. Conjecture synthesis for inductive theories.
Journal of Automated Reasoning, 47(3):251–289, 2011.

8. R. McCasland and A. Bundy. MATHsAiD: a mathematical theorem discovery
tool. In Proceedings of the 8th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing, pages 17–22. IEEE CS, 2006.

9. R. McCasland, A. Bundy, and S. Autexier. Automated discovery of inductive
theorems. Special Issue of Studies in Logic, Grammar and Rhetoric: Festschrift in
Honor of A. Trybulec, 10(23):135–149, 2007.

10. O. Montano-Rivas, R McCasland, L. Dixon, and A Bundy. Scheme-based synthesis
of inductive theories. In Proceedings of the 9th Mexican International Conference
on Artificial Intelligence, volume 6437 of LNCS, pages 348–361. Springer, 2010.

