
IsaCoSy: Synthesis of Inductive Theorems

Moa Johansson, Lucas Dixon, and Alan Bundy

University of Edinburgh
Informatics Forum, 10 Crichton Street, Edinburgh EH8 9AB, UK.

{moa.johansson, l.dixon, a.bundy}@ed.ac.uk

Abstract. We have implemented a program for inductive theory for-
mation, called IsaCoSy, which synthesises conjectures about recursively
defined datatypes and functions. Only irreducible terms are generated,
which keeps the search space tractably small. The synthesised terms are
filtered through counter-example checking and then passed on to the au-
tomatic inductive prover IsaPlanner. Experiments have given promising
results, with high recall of 83% for natural numbers and 100% for lists
when compared to libraries for the Isabelle theorem prover. However,
precision is somewhat lower, 38-63%.

1 Introduction

Discovering unknown theorems and lemmas is a major challenge for automated
inductive theorem proving. It has generally been assumed that such discovery
requires user intervention. Consequently, most theorem provers rely on the user
to supply any additional lemmas that might be needed for a proof. Interactive
theorem provers, such as Isabelle [?], often come with large theory libraries of
previously proved theorems and lemmas. Automating the formation of these
theory libraries is an important challenge. Given a set of initial definitions of
recursive datatypes and functions, we aim to automatically produce a useful set
of theorems, that will be useful as lemmas in further proofs, by either a human or
an automated theorem prover. The set of synthesised theorems can also provide
a ‘sanity check’, ensuring that the theory has been appropriately axiomatised by
ensuring no unintended theorems are included.

Although a number of theory formation systems exists, [?,?,?], only the
MATHsAiD system has previously been applied to inductive theories [?,?]. The
main difference between IsaCoSy and MATHsAiD is how new theorems are pro-
duced. While IsaCoSy follows a generative approach, where conjectures are syn-
thesised and then counter-example checked and proved, MATHSAiD follows a
deductive approach, attempting to produce new theorems by reasoning forward
from known facts.

2 Overview of the IsaCoSy system

The IsaCoSy system (Isabelle Conjecture Synthesis) is built on top of the proof-
planner IsaPlanner [?,?] and Isabelle. IsaCoSy synthesises conjectures from avail-
able constants and variables in a ‘bottom-up’ fashion. It incrementally builds

larger terms using the set of available constants and function symbols in a given
theory. The key idea for making this tractable is to turn rewriting upside down:
only irreducible terms (those not matching any rewrite rule) are synthesised.
In terms of the implementation, these restrictions turn into constraints on the
term-synthesis process, thus avoiding a naive and inefficient generate-and-test
style procedure. Counter-example checking is still used to prune out obviously
false conjectures, but as this can be rather slow, we want to use it as little as pos-
sible. The remaining conjectures are given to IsaPlanner to prove automatically
by induction using the rippling heuristic [?]. Any theorems found can then be
used to generate further constraints as synthesis is attempted on larger terms.

The aim of the IsaCoSy system is to automatically generate inductive theo-
rems and lemmas that are interesting or will be useful in further proofs. IsaCoSy
does not attempt to invent new concepts or definitions, it will only synthesise
theorems about given datatypes and function definitions.

The implementation of IsaCoSy consists of three main parts:

– A language for expressing constraints on synthesis.
– A constraint generator, which produces constraints from available theorems.
– The synthesis engine itself, including procedures for updating and propagat-

ing constraints.

In addition, IsaCoSy also has a set of additional heuristics which can be config-
ured by the user. These include:

– The number of different variables allowed in a term. From studying theorems
in Isabelle’s library, the default value for this is 1 + maximum arity of any
function involved.

– Where variables are allowed to occur. When synthesising equations, a com-
mon heuristic from rewriting is to only allow rules where the variables in the
right-hand side are a subset of those on the left.

– Eager checks for associativity and commutativity. Knowing whether func-
tions that are associative and/or commutative provides IsaCoSy with useful
constraints on the synthesis search space. By checking for these properties
prior to synthesis, the initial search space is much smaller.

3 Motivating Examples

Unless we employ heuristics and constraints, the search space for conjecture
synthesis is very large. We want to avoid generating conjectures that are consid-
ered to be more complicated versions of known theorems. IsaCoSy’s approach
to achieve this is to only produce irreducible terms, that cannot be rewritten
by any existing rule. To illustrate a few useful types of constraints to restrict
term synthesis, we shall in this section consider a few examples about natural
numbers.

Example 1: Definition of Addition. Addition is defined by the two equa-
tions 0 + y = y and Suc(x) + y = Suc(x + y). The definitions can be used as

rewrite rules. The first applies to any term that has 0 in the first argument
position of +, while the second applies to any term that has a Suc in the
first position (regardless of what the Suc is applied to). Any such terms are
excluded by IsaCoSy.

Example 2: Injectivity of Suc. Isabelle automatically derives some theorems
about user-defined datatypes. This include injectivity. The injectivity of Suc
is expressed in Isabelle as the rewrite rule (Suc n = Suc m) = n = m. To
avoid synthesising terms to which this rewrite is applicable, IsaCoSy generate
a constraint that forbids the two arguments of = to both be instantiated to
Suc at the same time.

Example 3: Reflexivity. Reflexivity can be expressed as the rewrite rule (x =
x) = True. The constraint we derive from this theorem is that the two
arguments of = never should be equal in a term we have synthesised.

Example 4: Commutativity. Suppose we know that addition is commuta-
tive: a + b = b + a. Commutativity is not typically allowed as a rewrite
rule, as it is non-terminating. However, IsaCoSy can identify commutativity
theorems, and will derive constraints on the order of arguments of the com-
mutative function. Currently, we introduce a constraint specifying that the
first argument has to be of larger or equal size to the second, which cuts out
many symmetric theorems. As the commutativity of equality is available as
a library theorem, IsaCoSy automatically introduces this type of constraint
for equality from the start.

4 Results and Conclusions

Automation of inductive theorem proving can be improved by providing richer
background theories. IsaCoSy has been evaluated on several inductive theories
about natural numbers, lists and binary trees (see [?], chapter 8). We verified
that IsaCoSy is more efficient than a naive version of synthesis, which explores
the whole search space, and that it produces good quality theorems, of the kind
that are found in Isabelle’s libraries. In particular, we compared IsaCoSy to
a naive version of synthesis on several different inductive theories, showing an
exponential reduction in search space size. IsaCoSy is thus not only faster, but
also able to explore larger term-sizes before running out of memory.

To evaluate the quality of theorems found by IsaCoSy, we compared them
with those in the Isabelle’s libraries (when available). IsaCoSy produces many
good theorems, resulting in high recall of 83% for natural numbers and 100%
for lists. It does however produce a number of other, perhaps less interesting
theorems too, so precision is lower, 63% for natural numbers and 38% for lists.
Tables 1 and 2 show some examples of synthesised theorems, that also appear in
Isabelle’s libraries. A full list of synthesised theorems, also including run-times,
can be found on-line1. With positive experimental results, theory formation by
conjecture synthesis seems a promising area for further research.

1 dream.inf.ed.ac.uk/projects/lemmadiscovery/synth_results.php

a + 0 = a a + Suc b = Suc(a + b)
a ∗ 0 = 0 a ∗ Suc b = a + (a ∗ b)

a + b = b + a a ∗ b = b ∗ a
(a + b) + c = a + (b + c) (a ∗ b) ∗ c = a ∗ (b ∗ c)

(a ∗ b) + (c ∗ b) = (a + c) ∗ b (a ∗ b) + (a ∗ c) = (b + c) ∗ a
Table 1. Some synthesised theorems about addition and multiplication. These all occur
in Isabelle’s library.

a @ [] = a (a @ b) @ c = a @ (b @ c)
rev(rev a) = a (rev a) @ (rev b) = rev (b @ a)

rev(map a b) = map a(rev b) (map a b) @ (map a c) = map a (b @ c)
foldl a (foldl a b c) d = foldl a b (c @ d) foldr a b (foldr a c d) = foldr a (b @ c) d

len(rev a) = len a
Table 2. Some synthesised theorems about lists, also occurring in Isabelle’s library.
Note that @ denotes append.

