
1

Evaluation of the Thor Microprocessor
Using Scan-chain-Based and Simulation-

Based Fault-Injection

Peter Folkesson, Sven Svensson and Johan Karlsson
Chalmers University of Technology

Göteborg, Sweden

Joakim Ohlsson
SAAB Ericsson Space AB

Göteborg, Sweden

EXTENDED ABSTRACT

Submitted to EWDC-8, 1997

Fault injection has become an established method for testing and evaluating the fault
handling capabilities of fault-tolerant and fail-safe systems [1]. Techniques for fault
injection fall into two categories.

• fault injection in software simulation models of systems, and

• fault injection in physical systems, i.e. either prototypes or actual systems

These two categories complement each other as they are used in different phases of the
design process. The advantage of simulation-based fault injection is that it can be
employed early in the design, which facilitates early detection of design faults, which
thus reduces the cost for correcting such faults. It also provides a high degree of con-
trollability and observability. The main drawback to simulation-based fault injection is
the time overhead involved in simulations, which puts practical limitations on the
amount hardware and system activity that can be simulated.

Fault injection in physical systems is important because it tests the actual implementa-
tion of fault handling mechanisms. However, techniques for injecting faults in physical
systems, such as pin-level fault injection or software implemented fault injection pro-
vides limited controllability and observability. Also, these techniques may not be able
emulate the effects of all faults since they suffer from a lack of physical reachability.

One way of improving reachability as well as observability and controllability in phys-
ical fault injection experiments is to use the built-in testing logic present in many mod-
ern VLSI circuits.



2

We here describe on-going work aiming towards an extensive evaluation of the effec-
tiveness of the error detection mechanisms included in the Thor microprocessor [3]. To
this end, we are developing a tool called FIMBUL for fault injection via the microproc-
essor’s test access port (TAP). We are also using a detailed VHDL model of Thor to do
fault injection using the MEFISTO-tool [2].

The Thor microprocessor is designed by SAAB Ericsson Space, Göteborg. It is a 32-bit
RISC based on a stack-oriented instruction set architecture and is intended for embed-
ded real-time applications with high requirements on reliability. The support for real-
time processing and specifically for the Ada language includes: on-chip task handling
and scheduling, rendezvous, Ada exceptions and time handling, accurate delays and
fast interrupt handling. The error detection support implemented in Thor includes: dou-
ble error detection/single error correction of memory transfers, parity on address bus,
control flow checking, stack limit checks, exceptions and master/slave operation. Thor
is equipped with a Test Access Port (TAP) with functionality according to the IEEE
standard 1149.1. This port enables access to boundary, internal and debug scan regis-
ters that are used to perform fault-injection.

The major goal of this work is to measure the coverage and latency of the error detec-
tion mechanisms included in Thor. Another goal is to compare the effectiveness of
built-in physical fault injection and simulation-based fault injection. Which of the two
methods are most cost-effective? Are the methods really complementary, or could the
essential results be obtained using only one of the methods? A third goal is to develop a
tool that analyses the hardware usage during program execution so that the injection of
faults that do not affect the operation of the microprocessor can be avoided.

The FIMBUL tool

FIMBUL (Fault Injection and Monitoring using BUilt in Logic) is a tool that uses the
TAP facilities of the Thor CPU to do fault-injection, i.e. built in fault-injection. Tran-
sient faults can be injected into any of the locations accessible by the Boundary and
Internal Scan Registers of the Thor CPU using the bit-flip fault model. The points in
time when fault-injection should occur can be chosen by setting break-points using the
Thor Debug Scan Register. Fault-injection is triggered either when a specific address
has been read or written ton times or when the PC (Program Counter) has had the same
value as a specific addressn times. The selection of when and where to fault-inject can
be made either randomly or non-randomly within the limitations of the Thor hardware.

Figure 1 shows an overview of FIMBUL. In theset-up phase, the chosen workload is
analysed either manually or by an analysis tool in order to create the experimental con-
trol file (ECF). The ECF tells FIMBUL when and where to fault-inject, the number of
times fault-injection should occur as well as the timeout value that is used for restarting
the experiment if no error occurred after fault-injection.

In thefault-injection phase, the ECF is read and interpreted by FIMBUL. The work-
load is downloaded to the Thor Target System (which consists of a Thor Evaluation
Board installed on a Sun workstation). A break-point is then set according to the infor-
mation given in the ECF and execution of the workload is started. When the break-
point has been reached the number of times that is stated in the ECF, the workload
stops executing and fault-injection takes place. Fault-injection is made by reading the
contents of the Boundary and Internal Scan Registers of the Thor CPU, inverting the



3

bits stated in the ECF and then writing back the fault-injected scan registers to Thor.
The workload then starts executing from where it left off until an error occurs or the
timeout value given in the ECF is reached, whichever comes first.

Figure 1. FIMBUL overview

The contents of the Thor scan registers and Thor Evaluation Board memory are then
read and logged into a file. Information logged also include when and where faults
were injected and whether or not a timeout occurred. The Thor Target System is then
reset and another experimental run begins (if stated in the ECF).

In theanalysis phase, the log file is analysed and results about the effectiveness of the
Thor error detection mechanisms are derived (e.g. total error detection coverage and
the distribution of errors detected by the various error detection mechanisms).

The MEFISTO tool

MEFISTO (Multi-level Error and Fault Injection Simulation TOol) is a tool for injec-
tion of simulated faults into VHDL models on various levels of abstraction. With the
tool it is possible to inject a wide variety of faults, e.g. permanent or temporary stuck-
at-faults, bit-flips and user-defined functional faults. A fault-injection campaign using
MEFISTO can be divided into three phases:set-up, simulationand data processing.

Theset-up phase involves selecting VHDL objects and applying selected fault-models
to the objects. The purpose of this operation is to build up a fault-set. Also in the set-up
phase experiments are defined by choosing faults from the fault-set and applying the
faults to an activation time.

Experimental

Fault Injector

Object CodeControl THOR

Monitor

Logfile

Analysis

Results

FIMBUL

Control file Analysis Tool

Simulation

Results

User

Set-up phase

Fault-injection phase

Analysis phase

(Workload)



4

Thesimulation phase starts with a reference simulation run and then the experiments in
the campaign are scheduled and run on a number of workstations. The need for simula-
tion of the time interval from start until a fault is activated is highly reduced by using
check-pointing. That is, MEFISTO restores the state of the simulator with the reference
check-point having a time stamp that is immediately before the fault activation time.

After the fault-injection campaign is finished thedata processing phase follows. Dur-
ing this phase the data can be analysed with respect to some property e.g. error detec-
tion coverage or error detection latency.

Current status of work

Currently, the FIMBUL tool is able to inject transient bit-flip faults in all locations
accessible by the TAP, i.e. at about 3000 internal locations of the Thor CPU. The possi-
bility of implementing injection of permanent faults is under investigation.

The work on simulation based fault-injection has so far resulted in the run of a pilot-
campaign. This campaign has generated simulation specific data that will be used to
properly set parameters of the MEFISTO-tool. Under preparation is a valid campaign,
wherein bit-flip faults will be injected in all memory elements (e.g. flip-flops and regis-
ters) of the Thor microprocessor core (about 3500 locations).

A workload that will be executed on Thor in the fault-injection campaigns has also
been designed. It represents an application suitable for the processor: a digital state
model control algorithm. The workload is based on a repeated program sequence
wherein Thor receives state data from a simulation model of the controlled object, cal-
culates control data and closes the control loop by sending the control data to the plant
model. By using a simulation model of the object, an almost authentic representation of
the state data can be achieved. This will result in an execution of the Thor workload as
if the processor had been situated in a real system.

References

[1] Iyer, R.K., “Experimental Evaluation,” Special Issue of Proc. 25th Int.
Symp. on Fault-Tolerant Computing (FTCS-25), Pasadena, CA, USA,
1995.

[2] Jenn E., Arlat J., Rimén M., Ohlsson J., Karlsson J., “Fault Injection into
VHDL Models: The MEFISTO Tool”, inProc. 24th Annual IEEE Interna-
tional Symposium on Fault-Tolerant Computing, FTCS-24, pp. 66-75,
Austin, TX, USA, June 1994.

[3] SAAB Ericsson Space,Microprocessor Thor, Product Information, Sep-
tember 1993.


