
On the Design of Robust Integrators for Fail-Bounded Control Systems

Jonny Vinter1, Andreas Johansson2, Peter Folkesson1, Johan Karlsson1

1Department of Computer Engineering 2Control Engineering Group
 Chalmers University of Technology Luleå University of Technology
 S-412 96 Göteborg, Sweden S-971 87 Luleå, Sweden
 +46 31 7721667, +46 31 7723663 fax +46 920 492334, +46 920 491558 fax
 {vinter, peterf, johan}@ce.chalmers.se andreas.johansson@sm.luth.se

Abstract

This paper describes the design and evaluation of a
robust integrator for software-implemented control
systems. The integrator is constructed as a generic
component in the Simulink design tool, and can thus be
used for robust implementation of a wide range of control
algorithms. The integrator is designed to support the fail-
bounded failure model for transient bit-flips that may
occur in the CPU, main memory and I/O circuits of a
control system. In particular, it allows the control system
to detect and recover from bit-flips that cause data errors.
Robustness is achieved by sequentially executing
duplicated integrator code on the same processor to
support error detection, and through the use of a recovery
buffer that allows a roll-back to the previous integrator
state when an error is detected. The effectiveness of the
robust integrator was evaluated through fault injection
experiments with a PI controller, where single bit flips
were injected inside the CPU of the control system. No
violations of the fail-bounded model were observed in the
experiments.

1. Introduction

One of the major challenges for designers of highly
dependable control systems is to ensure that internal faults
in the CPU, main memory, I/O interfaces and other parts
of the controller do not cause the system to produce
unacceptable or dangerous outputs. An increasingly
important class of faults in computer hardware is radiation
induced transient bit-flips, also known as soft errors.
Particles such as heavy-ions, alpha particles and neutrons
are known to cause soft errors in VLSI circuits [1]. So far,
this has been a problem mainly for electronic equipment
in airplanes, satellites and other aerospace applications.
However, recent studies indicate that background
radiation together with manufacturing residuals will cause

significantly higher soft error rates in future VLSI devices
also for ground-based systems [2, 3].

In this paper we present a software implementation of a
generic integrator, which is robust with respect to soft
errors. The integrator is constructed as a generic building
block in the Simulink design tool, and can thus be used
for the implementation of a wide range of dependable
control algorithms. In particular, it allows the control
system to detect and recover from bit-flips that cause data
errors, which affect the state variables of the control
algorithm [4]. The integrator is intended for systems that
are fail-bounded [5, 6] for soft errors. This implies that the
system should, in the presence of soft errors, produce
either correct outputs, no outputs or incorrect outputs that
have a minor or negligible impact on the controlled
process.

 The design requirements for a dependable control
system typically include a failure model that the system
must fulfill. One such model is the fail-silent model [7],
which implies that the controller should produce either
correct output or no output at all. Implementation of the
fail-silence property is generally expensive as it requires
perfect error detection coverage [8]. Many software-
implemented techniques suitable for detecting data errors
in fail-silent systems, for example code duplication [9, 10]
or double execution [11] often features a code or time
overhead of at least 100%.

Using the fail-bounded failure model is particularly
suitable for control applications, and is less costly than
using the fail-silent model. A fail-bounded control system
is allowed to produce incorrect outputs provided the
deviation in the output does not exceed a predefined
bound. The bound is selected to ensure that the output
errors have no significant impact on the controlled object.

The robust integrator detects data errors by a
comparison of duplicated integrator state variables. The
state variables are calculated in duplicated integrator code
executed sequentially. When an error is detected, the
integrator performs a best-effort recovery by loading a

0-7695-1959-8/03 $17.00 (c) 2003 IEEE
Proceedings of the 2003 International Conference on Dependable Systems and Networks (DSN’03)

previous fault free state from a recovery buffer into the
state variables. Thus, the design builds on the assumption
that a roll-back by one sample interval is acceptable. The
inputs to the integrator are protected by range checks
based on the physical limitations of the controller inputs.
The range checks ensure that the controller converges to a
nominal behavior in a timely manner for errors caused by
input disturbances and bit-flips in non-replicated input
data. We have conducted a set of fault injection
experiments in which we compare the effectiveness of the
robust integrator with a conventional integrator in a PI
control algorithm. Using scan-chain implemented fault
injection, we injected single bit-flips inside the CPU that
executed the control algorithms.

The remainder of the paper is organized as follows.
Section 2 analyzes dependability weaknesses of controllers
with respect to data errors, in view of a general controller
structure. The design of the robust integrator, based on the
analysis in Section 2, is presented in Section 3. The setup
for the experimental evaluation of the integrator is
described in Section 4, and the results of the evaluation
are presented in Section 5. Finally, the conclusions are
presented in Section 6.

2. A general controller

f(·) z–1 h(·)v(k) u(k)
x(k)x(k+1)

Figure 1. General controller structure.

Figure 1 is a graphical representation of a general
controller u(k) = h(x(k), v(k)) and x(k+1) = f(x(k), v(k)).
The input v = [v1 v2 … vp]

T is a vector that contains all the
signals that are processed by the controller, i.e. both
reference signals (set-points) and measurements (sensor
values). The sensors measure the quantities that are
subject to control. The output u = [u1 u2 … uq]

T of the
controller consists of signals sent to the actuators of the
controlled object, while the state x = [x1 x2 … xn]

T are the
variables that need to be stored from one sampling instant
to the next. The functions f and h may, in general, be
nonlinear and z−1 represents the unit delay, i.e., delay from
one sampling instant to the next. In this general structure,
any controller can be represented, provided it has constant
sampling rate and bounded dimension of the state vector.
However, this representation does not specify e.g.
execution order and is therefore not sufficient for uniquely
representing the implementation of the controller.

All closed loop control systems have the ability to

handle disturbances in the input signals, provided that the
disturbances have a reasonable magnitude. Many bit-flips
in the controller hardware that result in data errors have
the same effect as pulse disturbances in the input signals.
An obvious example of this is when a bit flip occurs in a
variable that holds a sensor value. Assuming that the
controller and the controlled process are linear, the effects
of such disturbances converge to zero exponentially, since
the closed loop system is exponentially stable. The
assumption of linearity is valid if the magnitude of the
disturbance is not too large. One way to ensure that the
effects of disturbances converge to zero within an
acceptable time is to introduce range checks on the inputs
and outputs of the control system.

For most input signals v it is straightforward to
associate an allowed range to each signal, i.e.

],[)(iii VVkv ∈ for some constants iV and iV . This

range may, for a measurement input, be the range of the
corresponding sensor while, for a reference signal, it is the
set of allowed set points. In a similar manner, a range

],[ii UU can often be associated to each output signal ui,

derived from the range of the corresponding actuator.
The impact of such range checks can be analyzed in the

case of a linear controller and process using, e.g. the
methods in [12] for state-space systems. The following
analysis is for controllers in transfer function form.
Assume a general 2-degrees-of-freedom controller
u(k) = Fr(z)r(k) – Fy(z)y(k) and a linear process
y(k) = G(z)u(k), where the vector y represents the
measurement signals that are subject to control and the
vector r contains the corresponding reference signals.
When affected by disturbances, the produced output signal
is (the arguments are excluded for readability),
u = Fr(r+ϕr) − Fy(y+ϕy) + ϕu where ϕr, ϕy, and ϕu are the
disturbances that affect the set-point inputs, the
measurement inputs, and the controller outputs,
respectively. The closed loop transfer functions from the
disturbance to the measurement can then be calculated as
y = Gcr + Gcϕr − Tϕy + SGϕu where Gc = (I + GFy)

−1GFr

is the servo system, S = (I + GFy)
−1 is the sensitivity

function and T = (I + GFy)
−1GFy is the complementary

sensitivity function.
In a properly designed control system, the above

transfer functions have the following properties:

• T is the transfer function from measurement
disturbance to measurement and is therefore designed
to be small.

• Gc is the servo system and is generally ≈ 1 for low
frequencies and ≈ 0 for high frequencies. In the
common case of a 1-degree of freedom controller,
Gc = T.

0-7695-1959-8/03 $17.00 (c) 2003 IEEE
Proceedings of the 2003 International Conference on Dependable Systems and Networks (DSN’03)

• SG is designed to be small due to the problem of
control signal saturation.

In conclusion, a well-designed control system is
inherently equipped to handle bit-flips that occur in the
controller output and in the controller input provided that
they are captured by a range check and thus bounded in
magnitude.

Designing range checks for the state of the controller is
difficult in the general case. Methods for observer-based
fault detection could be utilized [13], but these tend to
have a complexity that is comparable to, or even higher
than, the complexity of the controller. Bit-flips in a state
variable may result in an almost arbitrarily large
erroneous value, compared to the correct state. Thus, it
may take an unacceptably long time to converge to
nominal behavior. Furthermore, nonlinear effects, e.g.
actuator limits, may come into effect, preventing the
system from converging at all. Consequently, we need to
provide a mechanism, which ensures that the effect of
errors in the state becomes bounded, and this mechanism
must in the general case be more sophisticated than a
range check.

In an implementation of a controller we distinguish
between local and global variables and constants. The
global variables store the state x, while the local variables
and constants are required when calculating the functions
f and h, or for holding the input and output signals during
one sampling interval. Thus, local variables and constants
are only used during one sampling interval, while the
global variables store the state over time.

Below we give a few examples of errors that may lead
to unbounded failures in the controller outputs:

• Errors in a local variable containing an element of the
input v, which occur after the input range check has
been executed.

• Errors that occur in a local variable or constant in the
calculation of the function f.

• Errors that occur directly in a global variable holding
an element of the state x.

Constants can be protected, for example by using
checksums or by storing them in a protected memory.
Since local variables in procedures or functions are re-
created for each call, faulty values in those variables will
only affect the controller output for one sampling instant
and thus handled by the control system if captured by
range checks. The same is true for global variables that
are assigned new data each iteration of the control loop.
The main problem is global variables that use their old
(potentially faulty) values for calculating the new value,
which may result in an erroneous state of the controller.

Thus, the parts of a control algorithm most vulnerable to
transient data errors, are the integrator state variables.

3. A generic robust integrator

In this section, we present the design of a robust
integrator aimed at ensuring the fail-bounded property in
the presence of bit-flips occurring in the controller
hardware. The integrator handles bit-flips affecting the
global state x. The bit-flips may affect the state either
directly or indirectly through a local variable or constant
in the function f. Note that bit-flips may permanently
affect constants and that such faults are not handled by the
robust integrator. However, as mentioned in Section 2,
constants can be protected by checksums or by storing
them in protected memory.

The generic structure enables the integrator to be used
as a component in Simulink or any similar model-based
design tool. The integrator is based on the Forward Euler
method. We first discuss and compare the Forward Euler
method with two other methods for implementing
integrators, and then describe the implementation of the
robust integrator.

3.1. Methods for implementing integrators

The Forward Euler method is also known as Forward
Rectangular, or left-hand approximation. A realization of
the Forward Euler method is shown as a block diagram in
Figure 2. The integrator input is scaled by the sample
interval T. The Unit Delay holds the state x(k+1) from one
sampling instant to another. In the implementation of the
Forward Euler method it is important to consider the
sequence of the operations represented in the block
diagram. The sampling of the controller input is often
controlled by a timer interrupt or an independent
hardware unit to minimize the sampling jitter, and is thus
executed independently of code that implements the
control algorithm, including the integrator. The integrator
code first sends the current state x(k) to the integrator
output so the algorithm can produce the controller output.
Then the new state x(k+1) is calculated by using the
current state together with the integrator input calculated
earlier in the control algorithm.

x(k+1) x(k) 1

Integrator
Output

z

1

Unit DelaySum

T

Sample
Interval

1

Integrator
Input

Figure 2. Realization of a Forward Euler
integrator.

0-7695-1959-8/03 $17.00 (c) 2003 IEEE
Proceedings of the 2003 International Conference on Dependable Systems and Networks (DSN’03)

Other approaches for implementing integrators such as
the Backward Euler and the Tustin (also known as
Trapezoidal) methods uses a different execution order, as
illustrated by the pseudo-code implementations for the
simple controller below (see also Figures 1-2). Note that
the integrator code is shown in bold.

Forward Euler
1. loop
2. v(k) := read_controller_input
3. u(k) := calculate_output(x(k), v(k))
4. actuate_system(u(k))
5. integrator_input(k) := calculate_ii(v(k))
6. x(k + 1) := x(k) + integrator_input(k) * T
7. k := k + 1
8. wait_until_next_sample
9. end loop

Backward Euler
1. loop
2. v(k) := read_controller_input
3. integrator_input(k) := calculate_ii(v(k))
4. x(k + 1) := x(k) + integrator_input(k) * T
5. u(k) := calculate_output(x(k + 1), v(k))
6. actuate_system(u(k))
7. k := k + 1
8. wait_until_next_sample
9. end loop

Tustin
1. loop
2. v(k) := read_controller_input
3. integrator_input(k) := calculate_ii(v(k))
4. x(k + 1) := x(k) + integrator_input(k) * T/2
5. u(k) := calculate_output(x(k) + x(k + 1), v(k))
6. actuate_system(u(k))
7. k := k + 1
8. wait_until_next_sample
9. end loop

Which implementation method to choose for the
integrator, depends on the application. However, a major
advantage of using the Forward Euler method compared
to the Backward Euler or the Tustin method is that the
integrator output (i.e. the state x(k)) calculated in the
previous sampling interval can be used immediately for
calculating the controller output. The controller can
therefore actuate the system before the state is updated (in
pseudo-code line 4 instead of in line 6). The
computational delay in the control algorithm is minimized
and thereby also the overall possible control delay. A
control delay is the time between related sampling and
actuation actions.

Timing problems in real-time control systems [14] can
arise from i) control delays (e.g. computational delays and
network delays), ii) jitter (i.e. time-variations in actual
start times of actions) and iii) transient errors. This paper
addresses the task of handling transient data errors in
control systems. We use software-implemented error
detection and recovery in a robust integrator which

introduces additional computational delay. By using the
Forward Euler method for the robust integrator, we
minimize the computational delay.

3.2. The robust integrator

The fault models assumed for the robust integrator are:

• Single or multiple transient bit-flips affecting not
more than one of the two duplicated integrator states,
concurrently.

• Transient erroneous controller inputs (e.g. sensor
noise or a non-valid reference signal).

Figure 3 shows a Simulink block diagram of the robust
integrator. It consists of one primary and one secondary
integrator block as well as two rc blocks that implement
the input range checks based on the physical limitations of
the controller inputs, e.g. sensor ranges or allowed set-
points. Errors detected by an rc block are handled by
setting its output to zero and thereby disabling the
integration for one sample. This operation acts as an
impulse disturbance at the input, which the controller,
according to the analysis in Section 2, is able to handle.
The comparator block c detects errors in the state
variables by comparing the states x1(k) and x2(k). If no
error is detected, the state x1(k) is passed through the
switches to the integrator output. Otherwise, the previous
fault-free state x4(k) is fetched from a recovery buffer and
used as output. Note from Figure 3 that in the fault-free
case the state x3(k) has the same value as x1(k), and that
x4(k) has the previous value of x1(k), namely x1(k–1). The
primary and secondary block in Figure 3 has separate
feed-back connections to prevent error propagation
between the two blocks.

One incorrect output value with an arbitrary
magnitude, lasting for one sample, is allowed for the
integrator, usually limited at the output of the control
algorithm or by physical limitations of the actuators.
Thus, we do not use a range check on the integrator
output. It is assumed that the sampling time is chosen
short enough so that a saturated control signal, with a
duration of one sample does not have serious
consequences, e.g. brings the system to instability.
Satisfying this condition is facilitated by the inherent low-
pass filter characteristics of actuators, which filters out
sudden changes in the control signal. The control signal
delay, brought upon by a rollback recovery, can be
regarded as a disturbance with a duration of one sample.
This situation is therefore guaranteed to be acceptable if
the above condition on the sample time is satisfied.

0-7695-1959-8/03 $17.00 (c) 2003 IEEE
Proceedings of the 2003 International Conference on Dependable Systems and Networks (DSN’03)

x2(k)

x1(k)x1(k+1)

x2(k+1)

x4(k)x3(k)

1

Integrator
Output

rc2

rc1

rc

~=

c

z

1

Unit Delay

z

1

z

1

z

1

SwitchSum

T2

T1

Sample
Interval

1

Integrator
Input

Figure 3. The robust integrator.

All components in Figure 3 are vectorized, meaning
that the robust integrator can be used as a SISO (single
input - single output) or MIMO (multiple input - multiple
output) integrator.

By defining a comparison function





≠
=

=
yxz

yxx
zyxc

,

,
),,(

and a range check function, where L and U denotes the
lower and upper range limit respectively



 ≤≤

=
otherwise,0

,
),,(

UiLi
ULirc

the robust integrator can be expressed by the general
controller structure in Figure 1 by defining the state vector
as x = [x1 x2 x3 x4]

T and the functions f and h as

),,(),(

),,(),,(

),,(),,(

),,(),,(

),(

421

3

4211111

4122222

4211111

xxxcixh

x

xxxcTULirc

xxxcTULirc

xxxcTULirc

ixf

=



















+
+
+

=

Note that the sample interval 1T = 2T , the lower range

limit 1L = 2L and upper range limit 1U = 2U , i.e., the

constants T, L and U are duplicated.
Since the representation above does not specify the

execution order for the robust integrator within a control
algorithm, the corresponding pseudo-code for calculating
the controller output and the new integrator states x1(k+1)
and x2(k+1) is also given. The code that implements the
robust integrator is given in bold.

-- perform a range check on the integrator input
function rc1(input, lower_limit, upper_limit)

if (input >= lower_limit) and (input <= upper_limit)
return (input) else return (0.0)

function rc2(input, lower_limit, upper_limit)
if (input >= lower_limit) and (input <= upper_limit)

return (input) else return (0.0)

-- compare states, actuate system and update states
loop
 v(k) := read_controller_input

if x1(k) = x2(k) then
 u(k) := calculate_output(x1(k), v(k))
 actuate_system(u(k))
 x1(k+1) := x1(k) + rc1(integrator_input(k), L1, U1) * T1
 x2(k+1) := x2(k) + rc2(integrator_input(k), L2, U2) * T2
 else
 u(k) := calculate_output(x4(k), v(k))
 actuate_system(u(k))
 x1(k+1) := x4(k) + rc1(integrator_input(k), L1, U1) * T1
 x2(k+1) := x4(k) + rc2(integrator_input(k), L2, U2) * T2
 end if
 x3(k+1) := x1(k+1)
 x4(k+1) := x3(k)
 k := k + 1
 wait_until_next_sample
end loop

3.3. Recovery buffer

A Triple Modular Redundancy (TMR) system of
integrators would theoretically have been able to detect
data errors and make a true (exact) recovery. But if the
state used for calculating the new states is set to a faulty
value after the comparison, the fault will propagate into
all three replicated states when they are being updated (via
their closed loop connections, see for example Figure 2).
The comparison in the following iteration of the control
loop will not detect the fault since all three states will have
the same faulty value.

Instead we use a duplex system with a recovery buffer
which will not perform a true recovery but still is
sufficient according to the fail-bounded model and have
the following advantages compared to a TMR system:

• Less space and time overhead.
• Ability of recover from errors after the comparison is

made by use of the recovery buffer.
• The recovery buffer is extendable to tolerate

subsequent transient faults.

When an error is detected by the comparison function
c, the recovery block is switched in. The recovery block
uses a unit delay buffer of size n + 1, where n is the
number of subsequent transient errors tolerated for the
state x1(k+1). Therefore by using a buffer with size two,
the output of the recovery block can not be updated
erroneously if the assumption is that the same signal can
not be corrupted in two subsequent samples. For example,
to be able to tolerate a semi-permanent fault that directly
affects the state x1(k+1) during two subsequent samples,
we increase the buffer size to three, etc. The maximum
allowed size of the buffer depends on the control
application. After recovery, n fault-free samples are
required to refresh the buffer. In our experiments and in

RECOVERY BUFFER

PRIMARY BLOCK

SECONDARY BLOCK

0-7695-1959-8/03 $17.00 (c) 2003 IEEE
Proceedings of the 2003 International Conference on Dependable Systems and Networks (DSN’03)

the remainder of this paper, a buffer of size two is used.
Table 1 shows how transient data errors will be

handled by the robust integrator for sample k. Observe
that if one fault occurs in the state x1(k) after the
comparison, the robust integrator will return a transient
faulty state value that will be limited at the output of the
controller or by actuator limits. Since the feed-back
connections to the primary and secondary integrator
blocks now will have different values, the state x1(k+1)
will be updated with a faulty value but x2(k+1) will be
updated correctly. This error is detected by the comparison
function c in the next sample and a recovery is then
performed by using the fault-free state x4(k).

Table 1. Internal error detection and recovery
in the robust integrator.

Leading to
recovery
in sample

k

Leading to
recovery
in sample
k := k+1

Integrator
output

in sample
k

Integrator
output

in sample
k := k+1

x1(k) is affected
before comparison

� x4(k) x1(k)

x1(k) is affected
after comparison

� x1(k)* x4(k)

x2(k) is affected
before comparison

� x4(k) x1(k)

x2(k) is affected
after comparison

� x1(k) x4(k)

* An undetected faulty value is given as output.

4. Experimental evaluation

4.1. Target application

Most controllers in the industry are based on PI or PID
controllers. The derivative part of a PID controller,
assuming an Backward Euler approximation, is calculated
as e(k) – e(k–1), where e denotes the control error.
Therefore, the derivative part is less important to protect,
since a bit-flip error that corrupts the control error will
affect the controller output during at most two sample
intervals and with opposite signs. However, sometimes the
derivative part of the controller is filtered, in order to
reduce the increased noise due to the differentiation. In
this case, it may be desirable to protect the state variables
of this filter in a manner similar to the protection of the
integrator state.

We have used an engine control system based on a PI
controller to investigate the effectiveness of the robust
integrator. The engine control system was taken from an
example library of Simulink and the PI controller was
modified to use a constant sampling interval. Some
continuous blocks were also converted into discrete
blocks, facilitating the use of an Ada coder [15],

generating the source code for the experimental
evaluation. Figure 4 shows the block diagram of the
engine control system highlighting the PI controller.

Engine Control System

Nedge180

valve timing

speed
set

point

Load

drag torque

Teng

Tload

N

Vehicle
Dynamics

Thrott le Ang.

Engine Speed, N

Mass Airf low Rate

Throttle & Manifold

Desired rpm

N

Thrott le Ang.

PI controller

T

z-1

Discrete-T ime
Integrator

mass(k+1)

mass(k)

t rigger

Compression

Air Charge

N

Torque

Combustion

PI controller

1

Throttle
Angle

pi/30

rpm
to

rad/s

Kp

Proportional Gain

Limit
OutputIn Out

Integrator

Ki

Integral Gain
0

integrator input

controller output

enable integration

Anti-Windup

2

y

1

r

e

e

w
eKi

u

u

eKp

Figure 4. The PI controller.

The PI controller is equipped with an anti-windup
function that is defined by



 ≥∧≥∨≤∧≤=

otherwise,

))()0(())()0((,0
),(

ieK

UueUue
uew

where U and U are the lower and upper valid limit

(stated in the saturation block Limit Output as well as in
the Anti-Windup block) for the controller output u, and
where e denotes the control error. For a limited output u,
the anti-windup function will examine the sign of e to
determine if the integration should be disabled or not to
prevent integrator windup. This function also serves as an
error detection and recovery mechanism for some data
errors affecting the control algorithm. For example if the
control error e is set to an erroneous value resulting in a
limited output u (that is used as an argument for the anti-
windup function) the anti-windup will be activated and
the integrator input protected (set to zero). But if e is
affected after the calculation of u, the anti-windup will not
be activated and the integrator input will be set to eKi,
thus affected by the erroneous value of e. However, the
robust integrator will detect and handle erroneous
integrator inputs that are not captured by the anti-windup
function.

0-7695-1959-8/03 $17.00 (c) 2003 IEEE
Proceedings of the 2003 International Conference on Dependable Systems and Networks (DSN’03)

4.2. Defining valid ranges

The input to the robust integrator is protected by the
range check function rc in Figure 3. The lower and upper
limit (L and U) are calculated based on the physical
limitations of the sensor and reference values. For the
engine control system these limits were calculated as
follows. Assume that the engine control system is part of a
car cruise control system and the engine speed sensor has
a valid range between 0 and 10 000 rpm. By allowing the
driver of the car to demand a momentary speed change of
±10 000 rpm (which are rather generous limits in this
particular example application), the upper and lower
limits of valid inputs to the integrator can be determined.
The range is transformed to a range set in [rad/s] and
scaled by the integral gain constant Ki = 0.0723 (see
Figure 4) which results in an integrator input within the
interval ±10 000[rpm] * π/30 * 0.0723 ≈ ± 76[degrees/s],
i.e. L = –76 and U = 76. This range is used in our
experiments for the two rc blocks shown in Figure 3.
Observe also from Figure 3 that the integrator input is
scaled by the sample interval T = 0.012[s]. If, for example,
the fault-free integrator input equals the valid limit of
76[degrees/s] and the sign bit is affected by a bit-flip, this
will result in a change to -76.0[degrees/s]. The
maximal contribution to the integration is therefore:
2 * ± 76[degrees/s] * 0.012[s] = ± 1.82[degrees].

The range used for the Limit Output block (and the

Anti-Windup block) is U = 0, and U = 70, due to

physical limitations of the engine actuator.

4.3. Experimental setup

For the experimental evaluation, scan-chain
implemented fault injection with the GOOFI tool [16] was
used. Two versions of the PI controller, one with the
nominal integrator shown in Figure 2 and the other with
the robust integrator shown in Figure 3, executed on an
evaluation board featuring the Thor microprocessor [17].
The evaluation board was connected to the expansion port
of a Sun workstation which executed a simulation of the
controlled engine (see Figure 4). For each experiment, 125
control loop iterations (corresponding to 1.5 s) were
simulated, and one single bit-flip fault was injected
randomly into the data cache or one of the internal- or
programmer visible CPU registers of Thor, uniformly
distributed in space and time. 5063 experiments were
conducted with the PI controller using the nominal
integrator and 4183 experiments with the PI controller
using the robust integrator.

5. Results

5.1. Classification of the results

One way to quantify the results of fault injection
experiments is to utilize the 1l -norm and ∞l -norm [12],

defined by:

∑=
k

khh)(
1

 and)(sup khh
k

=∞

respectively.
The norm

1
h is the sum of the absolute values over

time for the signal h. The norm ∞h is the maximum

absolute value of the signal h. Let u0 and y0 denote the
control signals and the measurement signals in the
nominal, fault-free case and let uf and yf be the same
signals for the faulty case. The control errors due to the
fault are then defined as ey = y0 − yf and eu = u0 − uf.
Furthermore, let K = {kfirst, kfirst + 1, ..., klast} be the time
interval of the simulation, where kfirst and klast are the first
and the last observed sample number respectively. An
incorrect output is said to have occurred if eu (k) ≠ 0 for
some k ∈ K.

The severity of the consequences of a fault depends a
great deal on the process subject to control. However, one
consequence that is always severe is instability. As
mentioned in Section 2, this may happen if the actuator
limits come into effect. In this case, the 1l -norm of the

error signals eu and ey are unbounded while the

∞l -norm may be bounded, but only due to actuator limits.

If the actuator stays unsaturated, and the control error eu

converges to zero in a controlled manner, the
consequences may still be severe, depending on the
magnitude of eu and the time scale of its convergence. If
the control error converges exponentially to zero, both the

1l -norm and the ∞l -norm of the control error are

defined and provide valuable information on the severity
of the fault. Classifying the effects of an incorrect output
by whether or not the control error converges is, however,
not feasible from a practical point of view, since this is, in
general, impossible to determine from a simulation over
finite time. Therefore, the following practically useful
definitions are made.

• Saturated incorrect output – An incorrect controller
output uf was produced during the simulation period
and is saturated for at least two samples. We consider
this a violation of the fail-bounded property.

0-7695-1959-8/03 $17.00 (c) 2003 IEEE
Proceedings of the 2003 International Conference on Dependable Systems and Networks (DSN’03)

• Non-saturated incorrect output – An incorrect
controller output uf was produced but is not saturated
more than one sample, which we consider as fail-
bounded.

The severity of the incorrect outputs in the Non-
saturated incorrect output class is ranked by the 1l -norm

and ∞l -norm of the control error. Since an experiment

can only be performed for a limited period of time, norms
can not be determined from the experimental results and
therefore the following approximations are used instead

∑
∈

≈
Kk

khh)(
1

 and)(sup khh
k K∈

∞ ≈

The mean value of the above norm approximations
over all experiments in the non-saturated incorrect output
class, together with the percentage of saturated incorrect
outputs are used to compare the PI controller with the
nominal integrator, and the PI controller with the robust
integrator in Section 5.4.

5.2. PI controller with the nominal integrator

Figure 5 shows how the engine control example
presented in section 4.1 responds to a saturated incorrect
controller output. Note that the engine would be saturated
even if the incorrect controller output had not been
saturated by the Limit Output block in Figure 4, since the
engine actuator is also limited. However, the system is
now non-linear because of saturation and will not
converge exponentially as would have been the case for
the linear system. Saturated incorrect outputs were
observed for more than 8% of the experiments leading to
erroneous controller outputs with the PI controller using
the nominal integrator (corresponding to 0.3% of all the
experiments).

5 5.5 6 6.5
0

10

20

30

40

50

60

70

80

90

time

an
gl

e

Saturated controller output

Fault-free
Faulty

5 5.5 6 6.5
0

2000

4000

6000

8000

10000

12000

14000

time

sp
ee

d

Engine speed when controller output is saturated

Fault-free
Faulty

Figure 5. Fault-free vs. faulty controller output
and the resulting engine speed when the
controller output is saturated.

5.3. PI controller with the robust integrator

The robust integrator is designed to handle internal

data errors affecting the state of the integrator as well as
non-valid inputs to the integrator. Saturated incorrect
outputs, such as the one shown in Figure 5, were not
observed in any of the experiments with the robust
integrator. However, transient incorrect outputs with
arbitrary magnitudes, lasting for one sample are allowed
for the integrator. If the magnitude of this output exceeds
the actuator limits, the output is saturated by the actuator.
Figure 6 shows how such a transient incorrect output will
affect the engine.

5 5.5 6 6.5
0

10

20

30

40

50

60

70

80

90

time

an
gl

e

Non-saturated controller output

Fault-free
Faulty

5 5.5 6 6.5
1800

2000

2200

2400

2600

2800

3000

3200

3400

time

sp
ee

d

Engine speed for a transient faulty controller output

Fault-free
Faulty

Figure 6. Fault-free vs. faulty controller output
and the resulting engine speed for a transient
faulty controller output.

In Section 4.2, the valid limits for the integrator input
were calculated to ± 76[degrees/s]. Figure 7 and Figure 8
show the fault-free and faulty output of the engine
controller together with the engine speed for an incorrect
input equal to the valid limits of ± 76[degrees/s]. This is
the worst observed behavior of the PI controller with the
robust integrator.

5 5.5 6 6.5
9

10

11

12

13

14

15

16

17

time

an
gl

e

Non-saturated controller output

Fault-free
Faulty

5 5.5 6 6.5
1800

2000

2200

2400

2600

2800

3000

3200

3400

time

sp
ee

d
Engine speed for maximum integrator input value

Fault-free
Faulty

Figure 7. Fault-free vs. faulty controller output
and engine speed when the integrator input
assumes a transient maximum valid value = 76.

5 5.5 6 6.5
9

10

11

12

13

14

15

16

17

time

an
gl

e

Non-saturated controller output

Fault-free
Faulty

5 5.5 6 6.5
1800

2000

2200

2400

2600

2800

3000

3200

3400

time

sp
ee

d

Engine speed for minimum integrator input value

Fault-free
Faulty

Figure 8. Fault-free vs. faulty controller output
and engine speed when the integrator input
assumes a transient minimum valid value = - 76.

0-7695-1959-8/03 $17.00 (c) 2003 IEEE
Proceedings of the 2003 International Conference on Dependable Systems and Networks (DSN’03)

5.4. Comparison

Results from the experiments with the nominal and the
robust integrator are presented and compared in Table 2.
73.7% and 72.7% of all injected faults resulted in correct
outputs, i.e. latent or overwritten errors, for the nominal
and robust integrator respectively. The hardware EDMs of
the Thor CPU were triggered by 22.6% of the injected
faults for the nominal integrator vs. 23.0% for the robust
integrator. When an error was detected by the CPU, an
exception was triggered causing a reset of the computer
leading to the start of a new experiment. As mentioned in
Section 5.2, 0.3% of the experiments resulted in saturated
incorrect outputs for the nominal integrator corresponding
to more than 8% of the experiments leading to erroneous
controller outputs. Most of these faults locked the engine
throttle at 70.0 degrees during the observed interval (1.5
s) as shown in Figure 5. No saturated incorrect outputs
were observed for the robust integrator. The total
percentage of non-saturated and saturated incorrect
outputs observed for the nominal integrator is 3.7% vs.
4.3% for the robust integrator.

The use of the recovery buffer and the range checks in
the robust integrator do not result in an exact recovery
(see Section 3), resulting in a small deviation from the
correct output. Thus, all data errors handled by the error
detection and recovery mechanisms in the robust
integrator resulted in non-saturated incorrect outputs.

If the PI controller was not equipped with the anti-
windup function, more data errors would have resulted in
saturated incorrect outputs for the nominal integrator but
they would have been detected and handled by the robust
integrator (see Section 4.1).

Table 2. Experimental results.
PI controller with
nominal integrator

PI controller with
robust integrator

Correct output 73.7% (#3731) 72.7% (#3039)
Detected by
hardware EDMs 22.6% (#1144) 23.0% (#964)

Saturated
incorrect output 0.3% (#15) 0% (#0)

Non-saturated
incorrect output 3.4% (#173) 4.3% (#180)

TOTAL 100% (#5063) 100% (#4183)

Table 3 shows the mean value of the 1l -norm and the

maximum observed ∞l -norm of the errors, for the faults

resulting in non-saturated incorrect outputs according to
the approximations made in Section 5. These results show
more than a twofold improvement using the robust
integrator compared to the nominal integrator.

Table 3. Norms for the non-saturated class.

Norm
PI controller
 with nominal

integrator

PI controller
with robust
integrator

Improvement
ratio

1ue 0.19 0.08 2.38

1ye 23.10 4.80 4.81

∞ye 1151.65 rpm 368.98 rpm 3.12

The overall characteristics of the two versions of the PI
controller are compared in Table 4. The code and time
overhead are presented normalized to the nominal version
of the integrator. The code for the Anti-Windup function
in the PI controller (see Figure 4) is quite large compared
to the entire algorithm, which results in a code overhead
when using the robust integrator of only 20%. The time
overhead is also 20% for the PI controller with the robust
integrator.

The worst observed behavior for the PI controller with
the nominal integrator was saturated incorrect outputs as
shown in Figure Figure 5, and with the robust integrator
the behavior shown in Figures 6-8.

Table 4. Overall characteristics.
PI controller with
nominal integrator

PI controller with
robust integrator

Space overhead 1 1.2

Time overhead 1 1.2

Worst observed
behavior

Saturated incorrect
output (e.g. locking
the engine throttle)
as shown in Figure 5

Non-saturated
incorrect output as

shown in
Figure 6-8

6. Conclusions and future work

Starting from a general structure of a control
algorithm, we have highlighted the weaknesses of control
systems regarding sensitivity to internal computer errors.
A solution is suggested and evaluated for a PI controller
and can be generalized to more advanced controller
structures. We have designed a robust integrator that
protects its state from transient faults that may lead to
instability of the closed loop system. The effectiveness of
the robust integrator was evaluated through fault injection
experiments with a PI controller, where single bit-flips
were injected into the CPU of the control system. No
violations of the fail-bounded model, defined as incorrect
controller outputs saturated for more than one sample,
were observed for more than 4000 experiments with the
robust integrator. When using a nominal unprotected
integrator, the observed percentage of violations was more
than 8% of the experiments leading to erroneous

0-7695-1959-8/03 $17.00 (c) 2003 IEEE
Proceedings of the 2003 International Conference on Dependable Systems and Networks (DSN’03)

controller outputs.
Our software-implemented approach is more cost-

effective in terms of code and time overhead compared to
many other techniques since only the state of the control
algorithm is protected, instead of the entire algorithm.
The generic design of the robust integrator facilitates its
use in a model-based design tool for implementation of
dependable control algorithms.

Our future work will focus on investigating software-
implemented fault handling for multiple-input and
multiple-output control algorithms, such as jet-engine
controllers. We will design and experimentally validate
enhancements of the robust integrator for use in
distributed jet-engine controllers.

Acknowledgements

This work was financed by NFFP (Swedish National
Flight Research Program). We want to specially thank
Torbjörn Norlander and Olof Hannius at Volvo Aero
Corporation, and Torbjörn Hult and Stefan Asserhäll at
Saab Ericsson Space AB, for valuable suggestions and
technical assistance.

References

[1] G.C. Messenger, "Collection of Charge on Junction
Nodes from Ion Tracks". IEEE Transactions on
Nuclear Science, 1982. ns-29(6): pp. 2024-2031.

[2] C. Constantinescu. "Impact of Deep Submicron
Technology on Dependability of VLSI Circuits". in
Proceedings International Conference on Dependable
Systems and Networks. 2002. Los Alamitos, CA, USA:
IEEE Comput. Soc.

[3] P. Shivakumar, M. Kistler, S.W. Keckler, D. Burger,
and L. Alvisi. "Modeling the Effect of Technology
Trends on the Soft Error Rate of Combinational
Logic". in Proceedings International Conference on
Dependable Systems and Networks. 2002. Los
Alamitos, CA, USA: IEEE Comput. Soc.

[4] J. Vinter, J. Aidemark, P. Folkesson, and J. Karlsson.
"Reducing Critical Failures for Control Algorithms
Using Executable Assertions and Best Effort
Recovery". in Proceedings International Conference
on Dependable Systems and Networks. 1-4 July 2001.
2001. Göteborg, Sweden: Soc Los Alamitos CA USA.

[5] J.G. Silva, P. Prata, M. Rela, and H. Madeira,
"Practical Issues in the Use of ABFT and a New
Failure Model". Proceedings of 28th International
Symposium on Fault Tolerant Computing, 1998: pp.
26-35.

[6] J.C. Cunha, R. Maia, M.Z. Rela, and J.G. Silva. "A
Study of Failure Models in Feedback Control
Systems". in Proceedings International Conference on
Dependable Systems and Networks. 1 4 July 2001.
2001. Goteborg, Sweden: Soc Los Alamitos CA USA.

[7] H. Kopetz, A. Damm, C. Koza, M. Mulazzani, W.
Schwabl, C. Senft, and R. Zainlinger, "Distributed
Fault-Tolerant Real-Time Systems: The Mars
Approach". IEEE Micro, 1989. 9(1): pp. 25-40.

[8] T.F. Arnold, "The Concept of Coverage and Its Effect
on the Reliability Model of a Repairable System".
Digest of Papers from the 1972 International
Symposium on Fault-Tolerant Computing, 1972: pp.
200-204.

[9] A. Benso, S. Chiusano, P. Prinetto, and L. Tagliaferri.
"A C/C++ Source-to-Source Compiler for Dependable
Applications". in Proceedings of International
Conference on Dependable Systems and Networks
(includes FTCS 30 30th Annual International
Symposium on Fault Tolerant Computing and DCCA
8). 25 28 June 2000. 2000. New York, NY, USA: Soc
Los Alamitos CA USA.

[10] M. Rebaudengo, M. Sonza Reorda, M. Torchiano, and
M. Violante. "Soft-Error Detection through Software
Fault-Tolerance Techniques". in 1999 Proceedings
IEEE International Symposium on Defect and Fault
Tolerance in VLSI Systems. 1 3 Nov. 1999. 1999.
Albuquerque, NM, USA: Soc Los Alamitos CA USA.

[11] B.W. Johnson, Design and Analysis of Fault-Tolerant
Digital Systems. Addison-Wesley Series in Electrical
and Computer Engineering,. 1989, Reading: Addison-
Wesley. xviii, 584 s.

[12] Ö. Askerdal, M. Gäfvert, M. Hiller, and N. Suri. "A
Control Theory Approach for Analyzing the Effects of
Data Errors in Safety-Critical Control Systems". in
Proceedings Pacific Rim International Symposium on
Dependable Computing. 16-18 December 2002. 2002.
Tsukuba Science City, Japan.

[13] P.M. Frank and X. Ding, "Survey of Robust Residual
Generation and Evaluation Methods in Observer-
Based Fault Detection Systems". Journal of Process
Control, 1997. 7(No. 6): pp. 403-424.

[14] B. Wittenmark, J. Nilsson, and M. Törngren. "Timing
Problems in Real-Time Control Systems". in
Proceedings of 1995 American Control Conference -
ACC'95. 1995. Evanston, IL, USA: American Autom
Control Council.

[15] http://www.mathworks.com.
[16] J. Aidemark, J. Vinter, P. Folkesson, and J. Karlsson.

"GOOFI: Generic Object-Oriented Fault Injection
Tool". in Proceedings International Conference on
Dependable Systems and Networks. 1 4 July 2001.
2001. Goteborg, Sweden: Soc Los Alamitos CA USA.

[17] Saab Ericsson Space AB. "Microprocessor Thor,
Product Information". 1993.

0-7695-1959-8/03 $17.00 (c) 2003 IEEE
Proceedings of the 2003 International Conference on Dependable Systems and Networks (DSN’03)

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

