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Abstract 

This paper describes the design and evaluation of a 
robust integrator for software-implemented control 
systems. The integrator is constructed as a generic 
component in the Simulink design tool, and can thus be 
used for robust implementation of a wide range of control 
algorithms. The integrator is designed to support the fail-
bounded failure model for transient bit-flips that may 
occur in the CPU, main memory and I/O circuits of a 
control system. In particular, it allows the control system 
to detect and recover from bit-flips that cause data errors. 
Robustness is achieved by sequentially executing 
duplicated integrator code on the same processor to 
support error detection, and through the use of a recovery 
buffer that allows a roll-back to the previous integrator 
state when an error is detected. The effectiveness of the 
robust integrator was evaluated through fault injection 
experiments with a PI controller, where single bit flips 
were injected inside the CPU of the control system. No 
violations of the fail-bounded model were observed in the 
experiments. 

1. Introduction 

One of the major challenges for designers of highly 
dependable control systems is to ensure that internal faults 
in the CPU, main memory, I/O interfaces and other parts 
of the controller do not cause the system to produce 
unacceptable or dangerous outputs. An increasingly 
important class of faults in computer hardware is radiation 
induced transient bit-flips, also known as soft errors. 
Particles such as heavy-ions, alpha particles and neutrons 
are known to cause soft errors in VLSI circuits [1]. So far, 
this has been a problem mainly for electronic equipment 
in airplanes, satellites and other aerospace applications. 
However, recent studies indicate that background 
radiation together with manufacturing residuals will cause 

significantly higher soft error rates in future VLSI devices 
also for ground-based systems [2, 3]. 

In this paper we present a software implementation of a 
generic integrator, which is robust with respect to soft 
errors. The integrator is constructed as a generic building 
block in the Simulink design tool, and can thus be used 
for the implementation of a wide range of dependable 
control algorithms. In particular, it allows the control 
system to detect and recover from bit-flips that cause data 
errors, which affect the state variables of the control 
algorithm [4]. The integrator is intended for systems that 
are fail-bounded [5, 6] for soft errors. This implies that the 
system should, in the presence of soft errors, produce 
either correct outputs, no outputs or incorrect outputs that 
have a minor or negligible impact on the controlled 
process.   

 The design requirements for a dependable control 
system typically include a failure model that the system 
must fulfill. One such model is the fail-silent model [7], 
which implies that the controller should produce either 
correct output or no output at all. Implementation of the 
fail-silence property is generally expensive as it requires 
perfect error detection coverage [8]. Many software-
implemented techniques suitable for detecting data errors 
in fail-silent systems, for example code duplication [9, 10] 
or double execution [11] often features a code or time 
overhead of at least 100%.   

Using the fail-bounded failure model is particularly 
suitable for control applications, and is less costly than 
using the fail-silent model. A fail-bounded control system 
is allowed to produce incorrect outputs provided the 
deviation in the output does not exceed a predefined 
bound. The bound is selected to ensure that the output 
errors have no significant impact on the controlled object.  

The robust integrator detects data errors by a 
comparison of duplicated integrator state variables. The 
state variables are calculated in duplicated integrator code 
executed sequentially. When an error is detected, the 
integrator performs a best-effort recovery by loading a 
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previous fault free state from a recovery buffer into the 
state variables. Thus, the design builds on the assumption 
that a roll-back by one sample interval is acceptable. The 
inputs to the integrator are protected by range checks 
based on the physical limitations of the controller inputs. 
The range checks ensure that the controller converges to a 
nominal behavior in a timely manner for errors caused by 
input disturbances and bit-flips in non-replicated input 
data. We have conducted a set of fault injection 
experiments in which we compare the effectiveness of the 
robust integrator with a conventional integrator in a PI 
control algorithm.  Using scan-chain implemented fault 
injection, we injected single bit-flips inside the CPU that 
executed the control algorithms. 

The remainder of the paper is organized as follows. 
Section 2 analyzes dependability weaknesses of controllers 
with respect to data errors, in view of a general controller 
structure. The design of the robust integrator, based on the 
analysis in Section 2, is presented in Section 3. The setup 
for the experimental evaluation of the integrator is 
described in Section 4, and the results of the evaluation 
are presented in Section 5. Finally, the conclusions are 
presented in Section 6. 

2. A general controller 

f(·) z–1 h(·)v(k) u(k)
x(k)x(k+1)

Figure 1. General controller structure. 

Figure 1 is a graphical representation of a general 
controller u(k) = h(x(k), v(k)) and x(k+1) = f(x(k), v(k)). 
The input v = [v1 v2 … vp]

T is a vector that contains all the 
signals that are processed by the controller, i.e. both 
reference signals (set-points) and measurements (sensor 
values). The sensors measure the quantities that are 
subject to control. The output u = [u1 u2 … uq]

T of the 
controller consists of signals sent to the actuators of the 
controlled object, while the state x = [x1 x2 … xn]

T are the 
variables that need to be stored from one sampling instant 
to the next. The functions f and h may, in general, be 
nonlinear and z−1 represents the unit delay, i.e., delay from 
one sampling instant to the next. In this general structure, 
any controller can be represented, provided it has constant 
sampling rate and bounded dimension of the state vector. 
However, this representation does not specify e.g. 
execution order and is therefore not sufficient for uniquely 
representing the implementation of the controller. 

All closed loop control systems have the ability to 

handle disturbances in the input signals, provided that the 
disturbances have a reasonable magnitude. Many bit-flips 
in the controller hardware that result in data errors have 
the same effect as pulse disturbances in the input signals. 
An obvious example of this is when a bit flip occurs in a 
variable that holds a sensor value. Assuming that the 
controller and the controlled process are linear, the effects 
of such disturbances converge to zero exponentially, since 
the closed loop system is exponentially stable. The 
assumption of linearity is valid if the magnitude of the 
disturbance is not too large. One way to ensure that the 
effects of disturbances converge to zero within an 
acceptable time is to introduce range checks on the inputs 
and outputs of the control system. 

For most input signals v it is straightforward to 
associate an allowed range to each signal, i.e. 

],[)( iii VVkv ∈  for some constants iV  and iV . This 

range may, for a measurement input, be the range of the 
corresponding sensor while, for a reference signal, it is the 
set of allowed set points. In a similar manner, a range 

],[ ii UU  can often be associated to each output signal ui,

derived from the range of the corresponding actuator.  
The impact of such range checks can be analyzed in the 

case of a linear controller and process using, e.g. the 
methods in [12] for state-space systems. The following 
analysis is for controllers in transfer function form. 
Assume a general 2-degrees-of-freedom controller 
u(k) = Fr(z)r(k) – Fy(z)y(k) and a linear process 
y(k) = G(z)u(k), where the vector y represents the 
measurement signals that are subject to control and the 
vector r contains the corresponding reference signals. 
When affected by disturbances, the produced output signal 
is (the arguments are excluded for readability),
u = Fr(r+ϕr) − Fy(y+ϕy) + ϕu where ϕr, ϕy, and ϕu are the 
disturbances that affect the set-point inputs, the 
measurement inputs, and the controller outputs, 
respectively. The closed loop transfer functions from the 
disturbance to the measurement can then be calculated as  
y = Gcr + Gcϕr − Tϕy + SGϕu where Gc = (I + GFy)

−1GFr

is the servo system, S = (I + GFy)
−1 is the sensitivity 

function and T = (I + GFy)
−1GFy is the complementary 

sensitivity function. 
In a properly designed control system, the above 

transfer functions have the following properties: 

• T is the transfer function from measurement 
disturbance to measurement and is therefore designed 
to be small. 

• Gc is the servo system and is generally ≈ 1 for low 
frequencies and ≈ 0 for high frequencies. In the 
common case of a 1-degree of freedom controller, 
Gc = T.
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• SG is designed to be small due to the problem of 
control signal saturation. 

In conclusion, a well-designed control system is 
inherently equipped to handle bit-flips that occur in the 
controller output and in the controller input provided that 
they are captured by a range check and thus bounded in 
magnitude.  

Designing range checks for the state of the controller is 
difficult in the general case. Methods for observer-based 
fault detection could be utilized [13], but these tend to 
have a complexity that is comparable to, or even higher 
than, the complexity of the controller. Bit-flips in a state 
variable may result in an almost arbitrarily large 
erroneous value, compared to the correct state. Thus, it 
may take an unacceptably long time to converge to 
nominal behavior. Furthermore, nonlinear effects, e.g. 
actuator limits, may come into effect, preventing the 
system from converging at all. Consequently, we need to 
provide a mechanism, which ensures that the effect of 
errors in the state becomes bounded, and this mechanism 
must in the general case be more sophisticated than a 
range check. 

In an implementation of a controller we distinguish 
between local and global variables and constants. The 
global variables store the state x, while the local variables 
and constants are required when calculating the functions 
f and h, or for holding the input and output signals during 
one sampling interval. Thus, local variables and constants 
are only used during one sampling interval, while the 
global variables store the state over time.    

Below we give a few examples of errors that may lead 
to unbounded failures in the controller outputs: 

• Errors in a local variable containing an element of the 
input v, which occur after the input range check has 
been executed.  

• Errors that occur in a local variable or constant in the 
calculation of the function f.

• Errors that occur directly in a global variable holding 
an element of the state x.

Constants can be protected, for example by using 
checksums or by storing them in a protected memory. 
Since local variables in procedures or functions are re-
created for each call, faulty values in those variables will 
only affect the controller output for one sampling instant 
and thus handled by the control system if captured by 
range checks. The same is true for global variables that 
are assigned new data each iteration of the control loop. 
The main problem is global variables that use their old 
(potentially faulty) values for calculating the new value, 
which may result in an erroneous state of the controller. 

Thus, the parts of a control algorithm most vulnerable to 
transient data errors, are the integrator state variables. 

3. A generic robust integrator 

In this section, we present the design of a robust 
integrator aimed at ensuring the fail-bounded property in 
the presence of bit-flips occurring in the controller 
hardware. The integrator handles bit-flips affecting the 
global state x. The bit-flips may affect the state either 
directly or indirectly through a local variable or constant 
in the function f. Note that bit-flips may permanently 
affect constants and that such faults are not handled by the 
robust integrator. However, as mentioned in Section 2, 
constants can be protected by checksums or by storing 
them in protected memory. 

The generic structure enables the integrator to be used 
as a component in Simulink or any similar model-based 
design tool. The integrator is based on the Forward Euler 
method. We first discuss and compare the Forward Euler 
method with two other methods for implementing 
integrators, and then describe the implementation of the 
robust integrator. 

3.1. Methods for implementing integrators 

The Forward Euler method is also known as Forward 
Rectangular, or left-hand approximation. A realization of 
the Forward Euler method is shown as a block diagram in 
Figure 2. The integrator input is scaled by the sample 
interval T. The Unit Delay holds the state x(k+1) from one 
sampling instant to another. In the implementation of the 
Forward Euler method it is important to consider the 
sequence of the operations represented in the block 
diagram. The sampling of the controller input is often 
controlled by a timer interrupt or an independent 
hardware unit to minimize the sampling jitter, and is thus 
executed independently of code that implements the 
control algorithm, including the integrator. The integrator 
code first sends the current state x(k) to the integrator 
output so the algorithm can produce the controller output. 
Then the new state x(k+1) is calculated by using the 
current state together with the integrator input calculated 
earlier in the control algorithm. 

x(k+1) x(k) 1

Integrator
Output

z

1

Unit DelaySum

T

Sample
Interval

1

Integrator
Input

Figure 2. Realization of a Forward Euler 
integrator. 
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Other approaches for implementing integrators such as 
the Backward Euler and the Tustin (also known as 
Trapezoidal) methods uses a different execution order, as 
illustrated by the pseudo-code implementations for the 
simple controller below (see also Figures 1-2). Note that 
the integrator code is shown in bold. 

Forward Euler 
1. loop 
2. v(k) := read_controller_input 
3. u(k) := calculate_output(x(k), v(k)) 
4. actuate_system(u(k)) 
5. integrator_input(k) := calculate_ii(v(k)) 
6. x(k + 1) := x(k) + integrator_input(k) * T 
7. k := k + 1 
8. wait_until_next_sample  
9. end loop 

Backward Euler 
1. loop 
2. v(k) := read_controller_input 
3. integrator_input(k) := calculate_ii(v(k)) 
4.  x(k + 1) := x(k) + integrator_input(k) * T 
5. u(k) := calculate_output(x(k + 1), v(k))
6. actuate_system(u(k)) 
7. k := k + 1 
8. wait_until_next_sample 
9. end loop

Tustin 
1. loop 
2. v(k) := read_controller_input 
3. integrator_input(k) := calculate_ii(v(k)) 
4.  x(k + 1) := x(k) + integrator_input(k) * T/2 
5. u(k) := calculate_output(x(k) + x(k + 1), v(k))
6. actuate_system(u(k)) 
7. k := k + 1 
8. wait_until_next_sample 
9. end loop 

Which implementation method to choose for the 
integrator, depends on the application. However, a major 
advantage of using the Forward Euler method compared 
to the Backward Euler or the Tustin method is that the 
integrator output (i.e. the state x(k)) calculated in the 
previous sampling interval can be used immediately for 
calculating the controller output. The controller can 
therefore actuate the system before the state is updated (in 
pseudo-code line 4 instead of in line 6). The 
computational delay in the control algorithm is minimized 
and thereby also the overall possible control delay. A 
control delay is the time between related sampling and 
actuation actions. 

Timing problems in real-time control systems [14] can 
arise from i) control delays (e.g. computational delays and 
network delays), ii) jitter (i.e. time-variations in actual 
start times of actions) and iii) transient errors. This paper 
addresses the task of handling transient data errors in 
control systems. We use software-implemented error 
detection and recovery in a robust integrator which 

introduces additional computational delay. By using the 
Forward Euler method for the robust integrator, we 
minimize the computational delay. 

3.2. The robust integrator 

The fault models assumed for the robust integrator are: 

• Single or multiple transient bit-flips affecting not 
more than one of the two duplicated integrator states, 
concurrently.  

• Transient erroneous controller inputs (e.g. sensor 
noise or a non-valid reference signal).  

Figure 3 shows a Simulink block diagram of the robust 
integrator. It consists of one primary and one secondary 
integrator block as well as two rc blocks that implement 
the input range checks based on the physical limitations of 
the controller inputs, e.g. sensor ranges or allowed set-
points. Errors detected by an rc block are handled by 
setting its output to zero and thereby disabling the 
integration for one sample. This operation acts as an 
impulse disturbance at the input, which the controller, 
according to the analysis in Section 2, is able to handle. 
The comparator block c detects errors in the state 
variables by comparing the states x1(k) and x2(k). If no 
error is detected, the state x1(k) is passed through the 
switches to the integrator output. Otherwise, the previous 
fault-free state x4(k) is fetched from a recovery buffer and 
used as output. Note from Figure 3 that in the fault-free 
case the state x3(k) has the same value as x1(k), and that 
x4(k) has the previous value of x1(k), namely x1(k–1). The 
primary and secondary block in Figure 3 has separate 
feed-back connections to prevent error propagation 
between the two blocks. 

One incorrect output value with an arbitrary 
magnitude, lasting for one sample, is allowed for the 
integrator, usually limited at the output of the control 
algorithm or by physical limitations of the actuators. 
Thus, we do not use a range check on the integrator 
output. It is assumed that the sampling time is chosen 
short enough so that a saturated control signal, with a 
duration of one sample does not have serious 
consequences, e.g. brings the system to instability. 
Satisfying this condition is facilitated by the inherent low-
pass filter characteristics of actuators, which filters out 
sudden changes in the control signal. The control signal 
delay, brought upon by a rollback recovery, can be 
regarded as a disturbance with a duration of one sample. 
This situation is therefore guaranteed to be acceptable if 
the above condition on the sample time is satisfied. 
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x2(k)

x1(k)x1(k+1)

x2(k+1)

x4(k)x3(k)

1

Integrator
Output

rc2

rc1

rc

~=

c

z

1

Unit Delay

z

1

z

1

z

1

SwitchSum

T2

T1

Sample
Interval

1

Integrator
Input

Figure 3. The robust integrator. 

All components in Figure 3 are vectorized, meaning 
that the robust integrator can be used as a SISO (single 
input - single output) or MIMO (multiple input - multiple 
output) integrator. 

By defining a comparison function 





≠
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=
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zyxc
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),,(

and a range check function, where L  and U denotes the 
lower and upper range limit respectively 


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 ≤≤

=
otherwise,0
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),,(
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ULirc

the robust integrator can be expressed by the general 
controller structure in Figure 1 by defining the state vector 
as x = [x1 x2 x3 x4]

T and the functions f and h as 
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Note that the sample interval 1T  = 2T , the lower range 

limit 1L  = 2L  and upper range limit 1U  = 2U , i.e., the 

constants T, L and U are duplicated.
Since the representation above does not specify the 

execution order for the robust integrator within a control 
algorithm, the corresponding pseudo-code for calculating 
the controller output and the new integrator states x1(k+1)
and x2(k+1) is also given. The code that implements the 
robust integrator is given in bold. 

-- perform a range check on the integrator input 
function rc1(input, lower_limit, upper_limit)

if (input >= lower_limit) and (input <= upper_limit) 
return (input) else return (0.0)

function rc2(input, lower_limit, upper_limit)
if (input >= lower_limit) and (input <= upper_limit) 

return (input) else return (0.0)

-- compare states, actuate system and update states 
loop 
 v(k) := read_controller_input 

if x1(k) = x2(k) then
  u(k) := calculate_output(x1(k), v(k)) 
  actuate_system(u(k)) 
      x1(k+1) := x1(k) + rc1(integrator_input(k), L1, U1) * T1 
      x2(k+1) := x2(k) + rc2(integrator_input(k), L2, U2) * T2 
 else 
      u(k) := calculate_output(x4(k), v(k)) 
  actuate_system(u(k)) 
      x1(k+1) := x4(k) + rc1(integrator_input(k), L1, U1) * T1 
      x2(k+1) := x4(k) + rc2(integrator_input(k), L2, U2) * T2 
 end if 
 x3(k+1) := x1(k+1) 
 x4(k+1) := x3(k) 
 k := k + 1 
 wait_until_next_sample 
end loop 

3.3. Recovery buffer 

A Triple Modular Redundancy (TMR) system of 
integrators would theoretically have been able to detect 
data errors and make a true (exact) recovery. But if the 
state used for calculating the new states is set to a faulty 
value after the comparison, the fault will propagate into 
all three replicated states when they are being updated (via 
their closed loop connections, see for example Figure 2). 
The comparison in the following iteration of the control 
loop will not detect the fault since all three states will have 
the same faulty value. 

Instead we use a duplex system with a recovery buffer 
which will not perform a true recovery but still is 
sufficient according to the fail-bounded model and have 
the following advantages compared to a TMR system: 

• Less space and time overhead. 
• Ability of recover from errors after the comparison is 

made by use of the recovery buffer. 
• The recovery buffer is extendable to tolerate 

subsequent transient faults. 

When an error is detected by the comparison function 
c, the recovery block is switched in. The recovery block 
uses a unit delay buffer of size n + 1, where n is the 
number of subsequent transient errors tolerated for the 
state x1(k+1). Therefore by using a buffer with size two, 
the output of the recovery block can not be updated 
erroneously if the assumption is that the same signal can 
not be corrupted in two subsequent samples. For example, 
to be able to tolerate a semi-permanent fault that directly 
affects the state x1(k+1) during two subsequent samples, 
we increase the buffer size to three, etc. The maximum 
allowed size of the buffer depends on the control 
application. After recovery, n fault-free samples are 
required to refresh the buffer. In our experiments and in 

RECOVERY BUFFER

PRIMARY BLOCK 

SECONDARY BLOCK 
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the remainder of this paper, a buffer of size two is used. 
Table 1 shows how transient data errors will be 

handled by the robust integrator for sample k. Observe 
that if one fault occurs in the state x1(k) after the 
comparison, the robust integrator will return a transient 
faulty state value that will be limited at the output of the 
controller or by actuator limits. Since the feed-back 
connections to the primary and secondary integrator 
blocks now will have different values, the state x1(k+1)
will be updated with a faulty value but x2(k+1) will be 
updated correctly. This error is detected by the comparison 
function c in the next sample and a recovery is then 
performed by using the fault-free state x4(k). 

Table 1. Internal error detection and recovery  
in the robust integrator. 

Leading to 
recovery  
in sample  

k

Leading to 
recovery  
in sample 
k := k+1

Integrator 
output 

in sample 
k

Integrator 
output 

in sample 
k := k+1

x1(k) is affected  
before comparison 

� x4(k) x1(k)

x1(k) is affected  
after comparison 

� x1(k)* x4(k)

x2(k) is affected  
before comparison 

� x4(k) x1(k)

x2(k) is affected  
after comparison 

� x1(k) x4(k)

* An undetected faulty value is given as output.  

4. Experimental evaluation 

4.1. Target application 

Most controllers in the industry are based on PI or PID 
controllers. The derivative part of a PID controller, 
assuming an Backward Euler approximation, is calculated 
as e(k) – e(k–1), where e denotes the control error. 
Therefore, the derivative part is less important to protect, 
since a bit-flip error that corrupts the control error will 
affect the controller output during at most two sample 
intervals and with opposite signs. However, sometimes the 
derivative part of the controller is filtered, in order to 
reduce the increased noise due to the differentiation. In 
this case, it may be desirable to protect the state variables 
of this filter in a manner similar to the protection of the 
integrator state. 

We have used an engine control system based on a PI 
controller to investigate the effectiveness of the robust 
integrator. The engine control system was taken from an 
example library of Simulink and the PI controller was 
modified to use a constant sampling interval. Some 
continuous blocks were also converted into discrete 
blocks, facilitating the use of an Ada coder [15], 

generating the source code for the experimental 
evaluation. Figure 4 shows the block diagram of the 
engine control system highlighting the PI controller.  

Engine Control System 

Nedge180

valve timing

speed
set

point
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drag torque
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Tload

N
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Dynamics

Thrott le Ang.
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Throttle & Manifold
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N

Thrott le Ang.

PI controller
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OutputIn Out

Integrator
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Integral Gain
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integrator input
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Figure 4. The PI controller. 

The PI controller is equipped with an anti-windup 
function that is defined by 



 ≥∧≥∨≤∧≤=

otherwise,

))()0(())()0((,0
),(

ieK

UueUue
uew

where U  and U  are the lower and upper valid limit 

(stated in the saturation block Limit Output as well as in 
the Anti-Windup block) for the controller output u,  and 
where e denotes the control error. For a limited output u,
the anti-windup function will examine the sign of e to 
determine if the integration should be disabled or not to 
prevent integrator windup. This function also serves as an 
error detection and recovery mechanism for some data 
errors affecting the control algorithm. For example if the 
control error e is set to an erroneous value resulting in a 
limited output u (that is used as an argument for the anti-
windup function) the anti-windup will be activated and 
the integrator input protected (set to zero). But if e is 
affected after the calculation of u, the anti-windup will not 
be activated and the integrator input will be set to eKi,
thus affected by the erroneous value of e. However, the 
robust integrator will detect and handle erroneous 
integrator inputs that are not captured by the anti-windup 
function. 
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4.2. Defining valid ranges 

The input to the robust integrator is protected by the 
range check function rc in Figure 3. The lower and upper 
limit (L and U) are calculated based on the physical 
limitations of the sensor and reference values. For the 
engine control system these limits were calculated as 
follows. Assume that the engine control system is part of a 
car cruise control system and the engine speed sensor has 
a valid range between 0 and 10 000 rpm. By allowing the 
driver of the car to demand a momentary speed change of 
±10 000 rpm (which are rather generous limits in this 
particular example application), the upper and lower 
limits of valid inputs to the integrator can be determined. 
The range is transformed to a range set in [rad/s] and 
scaled by the integral gain constant Ki = 0.0723 (see 
Figure 4) which results in an integrator input within the 
interval ±10 000[rpm] * π/30 * 0.0723 ≈  ± 76[degrees/s], 
i.e. L = –76 and U = 76.  This range is used in our 
experiments for the two rc blocks shown in Figure 3. 
Observe also from Figure 3 that the integrator input is 
scaled by the sample interval T = 0.012[s]. If, for example, 
the fault-free integrator input equals the valid limit of 
76[degrees/s] and the sign bit is affected by a bit-flip, this 
will result in a change to -76.0[degrees/s]. The  
maximal contribution to the integration is therefore:  
2 * ± 76[degrees/s] * 0.012[s] = ± 1.82[degrees]. 

The range used for the Limit Output block (and the 

Anti-Windup block) is U  = 0, and U  = 70, due to 

physical limitations of the engine actuator. 

4.3. Experimental setup 

For the experimental evaluation, scan-chain 
implemented fault injection with the GOOFI tool [16] was 
used. Two versions of the PI controller, one with the 
nominal integrator shown in Figure 2 and the other with 
the robust integrator shown in Figure 3, executed on an 
evaluation board featuring the Thor microprocessor [17]. 
The evaluation board was connected to the expansion port 
of a Sun workstation which executed a simulation of the 
controlled engine (see Figure 4). For each experiment, 125 
control loop iterations (corresponding to 1.5 s) were 
simulated, and one single bit-flip fault was injected 
randomly into the data cache or one of the internal- or 
programmer visible CPU registers of Thor, uniformly 
distributed in space and time. 5063 experiments were 
conducted with the PI controller using the nominal 
integrator and 4183 experiments with the PI controller 
using the robust integrator.  

5. Results 

5.1. Classification of the results 

One way to quantify the results of fault injection 
experiments is to utilize the 1l -norm and ∞l -norm [12], 

defined by: 

∑=
k

khh )(
1

 and )(sup khh
k

=∞

respectively. 
The norm 

1
h  is the sum of the absolute values over 

time for the signal h. The norm ∞h  is the maximum 

absolute value of the signal h. Let u0 and y0 denote the 
control signals and the measurement signals in the 
nominal, fault-free case and let uf and yf be the same 
signals for the faulty case. The control errors due to the 
fault are then defined as ey = y0 − yf and eu = u0 − uf.
Furthermore, let K = {kfirst, kfirst + 1, ..., klast} be the time 
interval of the simulation, where kfirst and klast are the first 
and the last observed sample number respectively. An 
incorrect output is said to have occurred if eu (k) ≠ 0 for 
some k ∈ K.

The severity of the consequences of a fault depends a 
great deal on the process subject to control. However, one 
consequence that is always severe is instability. As 
mentioned in Section 2, this may happen if the actuator 
limits come into effect. In this case, the 1l -norm of the 

error signals eu and ey are unbounded while the  

∞l -norm may be bounded, but only due to actuator limits. 

If the actuator stays unsaturated, and the control error eu

converges to zero in a controlled manner, the 
consequences may still be severe, depending on the 
magnitude of eu and the time scale of its convergence. If 
the control error converges exponentially to zero, both the 

1l -norm and the ∞l -norm of the control error are 

defined and provide valuable information on the severity 
of the fault. Classifying the effects of an incorrect output 
by whether or not the control error converges is, however, 
not feasible from a practical point of view, since this is, in 
general, impossible to determine from a simulation over 
finite time. Therefore, the following practically useful 
definitions are made. 

• Saturated incorrect output – An incorrect controller 
output uf was produced during the simulation period 
and is saturated for at least two samples. We consider 
this a violation of the fail-bounded property. 
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• Non-saturated incorrect output – An incorrect 
controller output uf was produced but is not saturated 
more than one sample, which we consider as fail-
bounded. 

The severity of the incorrect outputs in the Non-
saturated incorrect output class is ranked by the 1l -norm 

and ∞l -norm of the control error. Since an experiment 

can only be performed for a limited period of time, norms 
can not be determined from the experimental results and 
therefore the following approximations are used instead 

∑
∈

≈
Kk

khh )(
1

 and )(sup khh
k K∈

∞ ≈

The mean value of the above norm approximations 
over all experiments in the non-saturated incorrect output
class, together with the percentage of saturated incorrect 
outputs are used to compare the PI controller with the 
nominal integrator, and the PI controller with the robust 
integrator in Section 5.4. 

5.2. PI controller with the nominal integrator 

Figure 5 shows how the engine control example 
presented in section 4.1 responds to a saturated incorrect 
controller output. Note that the engine would be saturated 
even if the incorrect controller output had not been 
saturated by the Limit Output block in Figure 4, since the 
engine actuator is also limited. However, the system is 
now non-linear because of saturation and will not 
converge exponentially as would have been the case for 
the linear system. Saturated incorrect outputs were 
observed for more than 8% of the experiments leading to 
erroneous controller outputs with the PI controller using 
the nominal integrator (corresponding to 0.3% of all the 
experiments). 
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Figure 5. Fault-free vs. faulty controller output 
and the resulting engine speed when the 
controller output is saturated. 

5.3. PI controller with the robust integrator 

The robust integrator is designed to handle internal 

data errors affecting the state of the integrator as well as 
non-valid inputs to the integrator. Saturated incorrect 
outputs, such as the one shown in Figure 5, were not 
observed in any of the experiments with the robust 
integrator. However, transient incorrect outputs with 
arbitrary magnitudes, lasting for one sample are allowed 
for the integrator. If the magnitude of this output exceeds 
the actuator limits, the output is saturated by the actuator. 
Figure 6 shows how such a transient incorrect output will 
affect the engine. 
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Figure 6. Fault-free vs. faulty controller output 
and the resulting engine speed for a transient 
faulty controller output. 

In Section 4.2, the valid limits for the integrator input 
were calculated to ± 76[degrees/s]. Figure 7 and Figure 8 
show the fault-free and faulty output of the engine 
controller together with the engine speed for an incorrect 
input equal to the valid limits of ± 76[degrees/s]. This is 
the worst observed behavior of the PI controller with the 
robust integrator. 
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Figure 7. Fault-free vs. faulty controller output 
and engine speed when the integrator input 
assumes a transient maximum valid value = 76. 
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Figure 8. Fault-free vs. faulty controller output 
and engine speed when the integrator input 
assumes a transient minimum valid value = - 76. 
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5.4. Comparison 

Results from the experiments with the nominal and the 
robust integrator are presented and compared in Table 2. 
73.7% and 72.7% of all injected faults resulted in correct 
outputs, i.e. latent or overwritten errors, for the nominal 
and robust integrator respectively. The hardware EDMs of 
the Thor CPU were triggered by 22.6% of the injected 
faults for the nominal integrator vs. 23.0% for the robust 
integrator. When an error was detected by the CPU, an 
exception was triggered causing a reset of the computer 
leading to the start of a new experiment. As mentioned in 
Section 5.2, 0.3% of the experiments resulted in saturated 
incorrect outputs for the nominal integrator corresponding 
to more than 8% of the experiments leading to erroneous 
controller outputs. Most of these faults locked the engine 
throttle at 70.0 degrees during the observed interval (1.5 
s) as shown in Figure 5. No saturated incorrect outputs 
were observed for the robust integrator. The total 
percentage of non-saturated and saturated incorrect 
outputs observed for the nominal integrator is 3.7% vs. 
4.3% for the robust integrator.  

The use of the recovery buffer and the range checks in 
the robust integrator do not result in an exact recovery 
(see Section 3), resulting in a small deviation from the 
correct output. Thus, all data errors handled by the error 
detection and recovery mechanisms in the robust 
integrator resulted in non-saturated incorrect outputs. 

If the PI controller was not equipped with the anti-
windup function, more data errors would have resulted in 
saturated incorrect outputs for the nominal integrator but 
they would have been detected and handled by the robust 
integrator (see Section 4.1). 

Table 2. Experimental results. 
PI controller with  
nominal integrator 

PI controller with 
robust integrator 

Correct output 73.7% (#3731) 72.7% (#3039) 
Detected by 
hardware EDMs 22.6% (#1144) 23.0% (#964) 

Saturated 
incorrect output 0.3% (#15) 0% (#0) 

Non-saturated 
incorrect output 3.4% (#173) 4.3% (#180) 

TOTAL 100% (#5063) 100% (#4183) 

Table 3 shows the mean value of the 1l -norm and the 

maximum observed ∞l -norm of the errors, for the faults 

resulting in non-saturated incorrect outputs according to 
the approximations made in Section 5. These results show 
more than a twofold improvement using the robust 
integrator compared to the nominal integrator.

Table 3. Norms for the non-saturated class. 

Norm 
PI controller 
 with nominal 

integrator 

PI controller 
with robust 
integrator 

Improvement 
ratio 

1ue 0.19 0.08 2.38 

1ye 23.10 4.80 4.81 

∞ye 1151.65 rpm 368.98 rpm 3.12 

The overall characteristics of the two versions of the PI 
controller are compared in Table 4. The code and time 
overhead are presented normalized to the nominal version 
of the integrator. The code for the Anti-Windup function 
in the PI controller (see Figure 4) is quite large compared 
to the entire algorithm, which results in a code overhead 
when using the robust integrator of only 20%. The time 
overhead is also 20% for the PI controller with the robust 
integrator. 

The worst observed behavior for the PI controller with 
the nominal integrator was saturated incorrect outputs as 
shown in Figure Figure 5, and with the robust integrator 
the behavior shown in Figures 6-8. 

Table 4. Overall characteristics. 
PI controller with  
nominal integrator 

PI controller with 
robust integrator 

Space overhead 1 1.2 

Time overhead 1 1.2 

Worst observed 
behavior 

Saturated incorrect 
output (e.g. locking 
the engine throttle ) 
as shown in Figure 5 

Non-saturated 
incorrect output as 

shown in 
Figure 6-8 

6. Conclusions and future work 

Starting from a general structure of a control 
algorithm, we have highlighted the weaknesses of control 
systems regarding sensitivity to internal computer errors. 
A solution is suggested and evaluated for a PI controller 
and can be generalized to more advanced controller 
structures. We have designed a robust integrator that 
protects its state from transient faults that may lead to 
instability of the closed loop system. The effectiveness of 
the robust integrator was evaluated through fault injection 
experiments with a PI controller, where single bit-flips 
were injected into the CPU of the control system. No 
violations of the fail-bounded model, defined as incorrect 
controller outputs saturated for more than one sample, 
were observed for more than 4000 experiments with the 
robust integrator. When using a nominal unprotected 
integrator, the observed percentage of violations was more 
than 8% of the experiments leading to erroneous 
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controller outputs. 
Our software-implemented approach is more cost-

effective in terms of code and time overhead compared to 
many other techniques since only the state of the control 
algorithm is protected, instead of the entire algorithm. 
The generic design of the robust integrator facilitates its 
use in a model-based design tool for implementation of 
dependable control algorithms.  

Our future work will focus on investigating software-
implemented fault handling for multiple-input and 
multiple-output control algorithms, such as jet-engine 
controllers. We will design and experimentally validate 
enhancements of the robust integrator for use in 
distributed jet-engine controllers. 
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