

Reducing Critical Failures for Control Algorithms

Using Executable Assertions and Best Effort Recovery

Jonny Vinter, Joakim Aidemark, Peter Folkesson, Johan Karlsson
Department of Computer Engineering
Chalmers University of Technology

S-412 96 Göteborg, Sweden
+46 31 772 1667, +46 31 772 3663 fax

{vinter, aidemark, peterf, johan}@ce.chalmers.se

Abstract

Systems that use f+1 computer nodes to tolerate f node

failures ordinarily require that the computer nodes have
strong failure semantics, i.e. a node should either produce
correct results, or no results at all. We show that this
requirement can be relaxed for control applications, as
control algorithms inherently compensate for a class of
value failures. Value failures occur when an error
escapes the error detection mechanisms in the computer
node and an erroneous value is sent to the actuators of
the control system. Fault injection experiments show that
89% of the value failures caused by bit-flips in a CPU
had no or minor impact on the controlled object.
However, the experiments also show that 11% of the
value failures had severe consequences. These failures
were caused by bit-flips affecting the state variables of
the control algorithm. Another set of fault injection
experiments show that the percentage of the value failures
with severe consequences was reduced to 3% when the
state variables were protected with executable assertions
and best effort recovery mechanisms.

1. Introduction

The primary task for many embedded computer
systems is to execute control algorithms. Embedded
control systems are used in safety-critical applications
such as fly-by-wire systems, jet-engine controllers,
electronic throttles and active suspension. Applications
requiring extreme levels of dependability, such as fly-by-
wire often use massive redundancy and majority voting to
achieve fault tolerance, see e.g. [1]. Today replication is
usually introduced at the computer node level. Thus,
classical TMR (triple modular redundancy) [2] requires
three nodes to tolerate one node failure. In the general

case, 2f+1 nodes are required to tolerate f faulty nodes.
Some systems are designed to tolerate Byzantine faults,
which requires as much as 3f+1 nodes to tolerate f node
failures [3] [4].

An advantage of using massive redundancy is that the
failure semantics1 of the computer nodes can be weak.
Weak failure semantics implies that a node can exhibit a
wide range of failure classes, including value failures and
timing failures. Massive redundancy is, however,
considered too expensive for a wide range of embedded
control applications. A more cost-effective approach is to
use nodes with strong failure semantics. Examples of
strong failure semantics are when a node exhibits only
fail-stop or omission failures [5], i.e. the node should
either produce correct results, or no result at all.

Systems using computer nodes with strong failure
semantics need only f+1 nodes to tolerate f faulty nodes.
An example of such a system is the classical duplex
system, which uses two computer nodes to tolerate one
node failure. Strong failure semantics makes the task of
identifying a faulty node simple in a duplex system.
Duplex systems are commonly used in safety-critical or
mission critical systems such as jet engine controllers,
satellites, and satellite launchers. They are also preferred
in the cost-sensitive automotive industry. Using computer
nodes with strong failure semantics also simplifies the
design of control systems that must ensure safe shutdown.

In order to achieve strong failure semantics, a
computer node must be equipped with internal error
detection mechanisms. Duplication and comparison can
be used to achieve strong failure semantics for random
hardware faults, but this is an expensive solution since
each node then consists of two computers (with weak
failure semantics) and extra logic for comparing results.
Thus, we need 2(f+1) computers to tolerate f computer
failures.

1 The concept of failure semantics was introduced in [5].

In cost-sensitive applications, strong failure semantics
are achieved by combining low-cost hardware and
software error detection mechanisms. These include
hardware mechanisms such as error correcting codes,
memory management units, hardware exceptions, control-
flow checking and watchdog timers. Examples of
software error detection mechanisms are executable
assertions, software implemented exceptions, time
redundant execution of tasks, and acceptance tests. Some
of these mechanisms have the capability to detect errors
caused by software faults, which is not possible with
hardware duplication and comparison.

Unfortunately, most of these techniques also have
rather low coverage for value errors, i.e. errors that affect
the result, but not the control flow or the timing of a
computation. Time redundant execution of tasks is one
way to improve the coverage of such errors, but as
demonstrated in [6] the coverage may still be less than
100%.

In this paper, we address the problem of dealing with
value failures in control applications. A value failure
occurs when an error escapes the error detection
mechanisms in a computer node and an erroneous result is
sent to the actuators of the control system. We consider
value failures caused by transient bit-flips occurring in the
central processing unit (CPU) of a computer node using a
single CPU. Particles such as heavy-ions, alpha particles
and high-energetic neutrons are known to be causing bit-
flips in VLSI-circuits in aerospace applications [7].
Recent research indicates that such errors also can occur
at ground level, although with a much lower probability
than in space or the upper atmosphere [8] [9].

In an experimental study of an embedded engine
controller, we demonstrate that a vast majority of the
value failures caused by bit-flips in the CPU had no or
little impact on the engine. The reason for this is that
control applications in general are inherently robust with
respect to value failures, provided that their impact on the
control algorithm is similar to that of external
disturbances affecting the controlled object.

However, the experiments also show that bit-flips
affecting the state variables of the control algorithm could
cause value failures with unacceptable consequences,
such as permanently locking the engine’s throttle at full
speed. By adding executable assertions and best effort
recovery mechanisms to the control program, we
managed to significantly reduce the probability of value
failures. In particular, failures that locked the throttle at
full speed were not observed when the target system was
running the modified control program.

The engine control algorithm was taken from a design
library supplied with Simulink [10], a toolbox for
MATLAB, which is widely used for design of control

algorithms. The control program was executed on the
Thor CPU [11], which has been specifically designed for
use in critical embedded space applications. Bit-flips were
injected into the Thor CPU using a new fault injection
tool called GOOFI. We have previously evaluated the
hardware implemented error detection mechanisms in
Thor [12]. In this paper we use software techniques to
handle errors that escape the hardware mechanisms.

The remainder of the paper is organized as follows.
Section 2 describes the engine control algorithm. Section
3 describes the experimental set up. The results are
presented in Section 4. Finally, the conclusions are
presented in Section 5.

2. The engine controller

The engine controller investigated in this study was
developed with the MATLAB toolbox Simulink, which is
a software package for modeling, simulating and
analyzing dynamical systems. Simulink provides a
graphical user interface for building block diagrams of
models using click-and-drag mouse operations and
generating the corresponding software code that
implements the model. The Ada code used for our model
was generated with the product Real-Time Workshop Ada
Coder, which is an extension for Simulink.

The controller is a proportional-integral (PI) controller
used for controlling the speed of an engine. The target
system for the fault injection experiments executed only
the code generated for the PI controller block in Figure 1.

Figure 1. Simulink model of the engine control

system.

The code generated for the rest of the engine control
system in Figure 1 was used to simulate the controlled
object (i.e. the engine) and was executed on a Unix
workstation and was not subjected to fault injection. The
workstation hosted the board containing the target system
and was also executing the fault injection tool.

The PI controller is shown in detail in Figure 2. It
controls the speed of the engine by adjusting the opening

angle of the engine’s throttle, which lies between 0.0 and
70.0 degrees. The control error signal e is calculated as
the difference between the reference value r (speed
wanted) and the actual engine speed y by:

)()()(kykrke −= (1)

where k is the sample number. The PI controller consists
of an integrating part and a proportional part. The
integrating part integrates the error signal e (multiplied
with the integral gain Ki) as:

)()1()(keKTkxkx i ⋅⋅+−= (2)

where T is the sample interval. In addition, the
proportional part directly scales the control error signal e
by the proportional gain Kp, and the desired throttle angle
is the sum of the integral and the proportional parts, as:

).()()(kxkeKku p +⋅= (3)

The output signal u(k) can assume values outside the

interval 0.0 to 70.0 degrees. The limit output function in
Figure 2, assures that the output signal u_lim lies within
this interval. There is also an anti-windup function that
cuts off the integration if the input y from the engine is
not responding to the output u_lim from the controller
when the signal is limited (i.e. at 0.0 or 70.0 degrees).

Figure 2. PI controller block from Figure 1,

executing on the target system.

This results in the control error signal e not being
equal to zero. An example could be a full throttle angle of
70 degrees (upper limit) but a heavy load holding the
engine speed down resulting in e > 0 that erroneously
increase the value of the state x (above the upper limit)
according to equation (2). In this case, the integration will
be stopped until u_lim is back within the defined limits.

A simplified algorithm of the PI controller workload
can be expressed as:

Algorithm I. The PI controller algorithm.

In our experiments, a sequence of 650 iterations of the

PI controller algorithm was executed. This corresponds to
a total time interval of 10 seconds with a sample interval
of 15.4 milliseconds. As shown in Figure 3, the reference
speed r was kept constant at 2000 rpm for the first half of
the 10 second interval and was then changed momentarily
to 3000 rpm. The figure also shows the actual engine
speed y.

Figure 3. Reference speed r (white) vs.
actual engine speed y (grey).

Figure 4 shows how the engine load varies during the
observed time interval. The variations of the engine load
cause the differences between the reference speed and the
actual engine speed at time 3 < t < 4 and 7 < t < 8 as
shown in Figure 3. The variations in engine load may
occur when the engine is used to move a vehicle at a
desired speed in hilly terrain. The output of the PI control
algorithm under fault-free conditions is shown in
Figure 5.

x : float -- state of the controller

function PI_Controller(r, y : float)
 Kp, T: constant float -- constants
 e, u, u_lim, Ki : float -- controller variables
begin
 e = r – y -- calculate control error
 u = e * Kp + x -- calculate output signal
 u_lim = limit_output(u) -- range check of u
 if anti_windup_activated then
 Ki = 0.0 -- disable integration
 else
 Ki = integral_gain -- enable integration
 end if
 x = x + T * e * Ki -- integrate, update x
 return u_lim
end

Figure 4. Engine load.

Figure 5. Fault-free output u_lim

from the PI controller.

3. Experimental Setup

The experiments were conducted using a new fault
injection tool called GOOFI (Generic Object-Oriented
Fault Injection tool) [13]. The GOOFI tool was executed
on a UNIX workstation hosting a processor board based
on the Thor microprocessor [11], which was configured as
the target system for the fault injection experiments (see
Figure 6).

3.1. The Thor microprocessor

The Thor microprocessor executed the code generated
for the PI controller algorithm described in Section 2.
Thor is a 32-bit CPU with a four-stage pipeline and a 128
byte data cache located within the pipeline. Several error
detection mechanisms, see Table 1, and support for Ada
tasking are included in the processor. Thor also features
advanced scan-chain logic that allows read access to more
than 3000 of the almost 4500 internal state elements of
the CPU and write access to more than 2700 internal state
elements.

So far, Thor has been used in space applications,
where low weight, small volume and low power
consumption are important factors to be considered in

addition to high dependability. The processor has been
used for attitude-control of the ODIN satellite and will be
used in on board instruments on the comet explorer
mission ROSETTA and the Mars Express mission.

Table 1. Error detection mechanisms of Thor.

Error Detection
Mechanism

Description

BUS ERROR Bus time-out on external memory access

ADDRESS ERROR Access to non-existing or protected memory

INSTRUCTION ERROR Attempt to execute a privileged instruction in user mode or
an illegal instruction

JUMP ERROR Attempt to jump, call or return to a target address outside
memory address space

CONSTRAINT ERROR A run-time assertion failed

ACCESS CHECK Attempt to follow a null pointer

STORAGE ERROR Attempt to access memory outside the task’s stack in user
mode

OVERFLOW CHECK Overflow of signed integer and float arithmetic operations

UNDERFLOW CHECK Underflow or denormalized result of float arithmetic
operations

DIVISION CHECK Divide by zero for integer division. Divide by ±0 for float
division

ILLEGAL OPERATION Illegal operation for float and double arithmetic instructions
involving 0 and

DATA ERROR Uncorrectable error in data read from memory

CONTROL FLOW
ERROR

A control flow error (wrong sequence of instructions)
occurred

MASTER/SLAVE
COMPARATOR
ERROR

An error was detected when comparing the results from two
Thor processors (not used in this study)

Configuration phase

Setup phase

Fault injection phase

Analysis phase

Target
System Data

Setup Fault
Injection

Campaigns

Configure
Target System

SCIFI Fault
Injection
Engine

Analysis

Logged
System State

Campaign
Data

Thor
Microprocessor

Board

PI Controller

Engine Control
System

(Excluding the
PI Controller)

Host Computer

Target System

Figure 6. Overview of the experimental setup.

3.2. The GOOFI tool

The GOOFI tool can perform fault injection campaigns
using different fault injection techniques on different
target systems. A major objective of the tool is to provide
a user-friendly fault injection environment with a
graphical user interface and an underlying generic
architecture that assists the user when adapting the tool
for new target systems and new fault injection techniques.

In addition, the tool is highly portable between
different host platforms since the tool was implemented
using the Java programming language and all data is
saved in a SQL compatible database. GOOFI was
designed using object orientation to facilitate
maintainability and portability.

3.3. Campaign configuration

As shown in Figure 6, conducting fault injection
campaigns using GOOFI involves four phases: the
configuration, set-up, fault injection and analysis phase.

3.3.1. Configuration phase. The configuration phase
involves adapting the GOOFI tool to the chosen fault
injection technique and target system. The current version
of GOOFI supports pre-runtime Software Implemented
Fault Injection (SWIFI) and Scan-Chain Implemented
Fault Injection (SCIFI). In SCIFI, faults are injected via
boundary scan-chains or internal scan-chains in a VLSI
circuit [12]. This allows faults to be injected into the pins
and many of the internal state elements of the target
circuit. The scan-chains are also used to observe the
internal state of the circuit before and after a fault is
injected. In this study, the GOOFI tool was configured to
use the SCIFI technique on the Thor microprocessor.

3.3.2. Set-up phase. In the set-up phase, the user selects a
target system and a workload, and chooses the fault
injection locations from a hierarchical list of possible
locations presented in a window. The user must also
select the fault models to use, the points in time when
faults should be injected, and the total number of faults in
the fault injection campaign.

2250 fault locations of the 3000 state elements of Thor
accessible via the scan-chain logic were chosen for fault
injection. The fault injection locations were selected
randomly using uniform sampling among the 2250 state
elements.

Using the GOOFI tool with the SCIFI technique
requires break-points to be set according to the points in
time when faults should be injected. The break-points are
set via the scan-chains in the fault injection phase and
allow the Thor processor to be halted for fault injection

when a machine instruction is to be executed. The points
in time for fault injection are selected by analyzing the
workload code. In this study, the points in time for fault
injection were selected randomly using a uniform
sampling distribution among the points in time each of
the instructions of the workload begin their execution.

The fault model used was single bit-flip faults, which
model the effects of transients occurring in the CPU.

The termination conditions for the experiments are
also selected in the set-up phase. A fault injection
experiment is terminated by a debug event (generated via
the scan chains) i.e., an error has been detected or the
execution of the workload ends, whichever comes first.
The workload may consist of a program that either
terminates by itself or is executed as an infinite loop. For
an infinite loop, such as the PI controller used in this
study, the user must specify the maximum number of
iterations that should be executed before the fault
injection experiment is terminated. 650 loop iterations
were used in this study (see Section 2). In each loop
iteration, data may be exchanged with a user provided
environment simulator program emulating the target
system environment. In our case the environment
simulator was the Simulink generated model of the engine
shown in Figure 1 (excluding the PI controller). The
environment simulator was executed on the same host
computer as the GOOFI tool.

Information about the memory locations holding input
and output data within the target system as well as the
points in time the data exchange occurs, e.g. when each
loop iteration finishes, must also be selected by the user.

All set-up data is stored in a database for use during
the fault injection phase.

3.3.3. Fault injection phase. In the fault injection phase,
the GOOFI tool starts by reading the campaign
information from the database. The target system is
initialised and the workload and initial input data is
downloaded to the system. Then a reference execution of
the workload is made, logging the fault-free system state
to the GOOFI database. After this, each fault injection
experiment begins by reinitialising the target system and
downloading the workload and initial input data.

For each fault injection experiment, a breakpoint is set
via the scan-chains at the instruction to be executed when
a fault should be injected. When the break-point condition
has been fulfilled, the fault is injected by reading the
scan-chains, inverting the bits corresponding to the fault
location, and then writing back the altered scan-chain
data.

After injecting a fault, the execution starts from where
the target system was halted and continues until the
termination condition occurs. The system state is then

logged to the database. Finally, the target system is
reinitialized and a new fault injection experiment begins.

GOOFI can be operated in either normal or detail
mode. In normal mode, the system state is logged only
when the termination condition is fulfilled. In detail mode
the system state is logged as frequently as the target
system allows, in this case before the execution of each
machine instruction, which increases the time-overhead.
The detail mode operation is used to produce an
execution trace, allowing the error propagation to be
analyzed in detail. The logged system state includes the
contents of all the locations in the target system that are
observable as well as the workload input and output
values, together with information about when and where
any faults were injected.

3.3.4. Analysis phase. The final phase involved when
conducting fault injection campaigns using GOOFI is the
analysis phase. In this phase, the data in the database is
analyzed in order to obtain various dependability
measures. Currently, there is no support for automatic
generation of software that analyses the logged data. The
user must write tailor made scripts or programs that query
the database for the required information. However, this
is typically done once for each new target system.

4. Results

In this section, we first describe the error and failure
classification scheme used in the presentation of the
results. We then present the results of a fault injection
campaign evaluating the PI controller algorithm described
in Section 2 (Algorithm I), which is followed by a
description of a modified algorithm aimed at reducing
critical failures (Algorithm II). Finally, the results of fault
injection experiments using Algorithm II are presented
and compared with the results for Algorithm I.

4.1. Error and failure classification

The errors are classified into either effective or non-
effective errors in the results from the fault injection
experiments.

4.1.1. Effective errors. Effective errors are errors which
were either detected by the error detection mechanisms of
the Thor processor (see Table 1) or errors causing
undetected wrong results (value failures) to be produced
by the PI controller:

Detected errors: Errors detected by the error detection
mechanisms in Thor. These errors are further
classified into errors detected by each of the various
mechanisms or other errors. Other errors are errors

that were detected, but the GOOFI analysis software
could not determine which mechanism that detected
the error.
Undetected wrong results: The controller produced an
incorrect result, i.e. a value failure. These failures are
classified into severe or minor value failures
depending on their impact on the controlled object

Severe: The value failure has a severe impact on
the controlled object. These failures are either:

Permanent: The output from the controller is
either at maximum value (70.0 degrees) or
minimum value (0.0 degrees) from the time the
value failure first appears until the end of the
observed time interval, see Figure 7. Note that
the observed time interval is limited to 10
seconds (650 iterations of the control
algorithm) and that the output may converge
towards the fault-free output sequence later.
Semi-permanent: The output from the
controller differs strongly (more than 0.1
degrees) from the fault-free output during more
than one iteration, but the output starts to
converge towards the fault-free output
sequence within the observed time interval, see
Figure 8:

Minor: The value failure has a minor impact on
the controlled object. These failures are classified
into:

Transient: The output from the controller
differs strongly (more than 0.1 degrees) from
the fault-free output during one iteration and
then rapidly starts to converge towards the
fault-free output, see Figure 9.
Insignificant: The output from the controller is
almost identical to the fault-free output. We
define an insignificant error to have a deviation
from the fault-free output less than 0.1 degrees.

Incorrect output delivered from the PI controller

0

10

20

30

40

50

60

70

0,0 0,8 1,6 2,3 3,1 3,9 4,6 5,4 6,2 6,9 7,7 8,5 9,3 10,0

Time (seconds)

A
n

g
le

 (
d

eg
re

es
)

Correct output

Permanent error

Figure 7. Severe undetected wrong result

(permanent).

Incorrect output delivered from the PI controller

0

10

20

30

40

50

60

70

0,0 0,8 1,6 2,3 3,1 3,9 4,6 5,4 6,2 6,9 7,7 8,5 9,3 10,0

Time (seconds)

A
n

g
le

 (
d

eg
re

es
)

Correct output

Semi-permanent error

Figure 8. Severe undetected wrong result

(semi-permanent).

Incorrect output delivered from the PI controller

0

10

20

30

40

50

60

70

0,0 0,8 1,6 2,3 3,1 3,9 4,6 5,4 6,2 6,9 7,7 8,5 9,3 10,0

Time (seconds)

A
n

g
le

 (
d

eg
re

es
)

Correct output

Transient error

Figure 9. Minor undetected wrong result

(transient).

4.1.2. Non-effective errors. The non-effective errors are
errors, which could not be identified as either Detected
errors or Undetected wrong results. These errors are
classified into latent or overwritten
errors:

Latent errors: The fault injection
experiments where differences
between the correct system state
logged after the reference
execution and the system state
logged after the fault injection
experiment terminated could be
observed, but which could not be
identified as either Detected errors
or Undetected wrong results.
Overwritten errors: The fault
injection experiments for which
no difference between the correct
system state logged after the
reference execution and the
system state logged after the fault
injection experiment terminated
could be observed.

4.2. Results for Algorithm I

Table 2 shows the results obtained for the PI controller
implemented according to Algorithm I. The first two
columns present the results separately for faults injected
into the data cache of Thor (denoted "Cache" in the table)
and into all other parts of the CPU (denoted "Registers").
The last column presents the total results for all faults
injected into the CPU. The percentage of errors obtained
for each of the categories presented in Section 3 and their
corresponding 95% confidence intervals are given in the
table together with the observed number of errors (#). The
results show that most of the undetected wrong results
caused by bit-flips in the CPU were minor value failures
having no or minor impact on the controlled object
(4.48% of all faults injected). However, 0.54% of the
faults injected had severe impact on the controlled object
(severe undetected wrong results) corresponding to
10.73% of all the value failures produced.

The results also show that faults injected into the data
cache of Thor produced a higher percentage of undetected
wrong results (6.06%) than faults injected into the
registers (0.91%). A detailed investigation revealed that
most of the severe undetected wrong results were caused
by faults injected into the cache lines where the global
variable x representing the state, see Algorithm I, is
stored. Since x represents the state, any errors in x will
propagate to the next iteration of the algorithm and cause
a permanent or semi-permanent value failure, see Figure
7 and 8.

Table 2. Results for Algorithm I.
Part of CPU fault injected

 (no. of state elements)
Type of Errors and Wrong Results # # #
Latent Errors 0,05% (� 0,05%) 4 59,99% (� 2,22%) 1126 12,16% (� 0,66%) 1130
Overwritten Errors 72,28% (� 1,02%) 5358 19,98% (� 1,81%) 375 61,71% (� 0,99%) 5733
Total (Non Effective Errors) 72,33% (� 1,02%) 5362 79,97% (� 1,81%) 1501 73,88% (� 0,89%) 6863

Address Error 16,84% (� 0,85%) 1248 4,37% (� 0,92%) 82 14,32% (� 0,71%) 1330
Data Error 0,00% (� 0,00%) 0 0,37% (� 0,28%) 7 0,08% (� 0,06%) 7
Instruction Error 1,50% (� 0,28%) 111 2,08% (� 0,65%) 39 1,61% (� 0,26%) 150
Jump Error 0,07% (� 0,06%) 5 0,05% (� 0,10%) 1 0,06% (� 0,05%) 6
Constraint Check 0,01% (� 0,03%) 1 0,00% (� 0,00%) 0 0,01% (� 0,02%) 1
Access Check 0,01% (� 0,03%) 1 0,27% (� 0,23%) 5 0,06% (� 0,05%) 6
Storage Error 0,13% (� 0,08%) 10 9,80% (� 1,35%) 184 2,09% (� 0,29%) 194
Overflow 0,00% (� 0,00%) 0 0,11% (� 0,15%) 2 0,02% (� 0,03%) 2
Illegal Operation 2,29% (� 0,34%) 170 0,80% (� 0,40%) 15 1,99% (� 0,28%) 185
Control Flow Errors 0,71% (� 0,19%) 53 1,07% (� 0,46%) 20 0,79% (� 0,18%) 73
Other Errors 0,01% (� 0,03%) 1 0,32% (� 0,26%) 6 0,08% (� 0,06%) 7
Undetected Wrong Results (Severe) 0,66% (� 0,18%) 49 0,05% (� 0,10%) 1 0,54% (� 0,15%) 50
Undetected Wrong Results (Minor) 5,40% (� 0,51%) 400 0,85% (� 0,42%) 16 4,48% (� 0,42%) 416
Total (Effective Errors) 27,67% (�� 1,02%) 2051 20,03% (�� 1,81%) 376 26,12% (�� 0,89%) 2427

Total (Faults Injected) 100,00% 7413 100,00% 1877 100,00% 9290

Total (Undetected Wrong Results) 6,06% (� 0,54%) 449 0,91% (� 0,43%) 17 5,02% (� 0,44%) 466
Coverage 93,94% (� 0,54%) 99,09% (� 0,43%) 94,98% (� 0,44%)

Total

% (95 % conf) % (95 % conf)
(426) (2250)

Cache Registers

% (95 % conf)
(1824)

4.3. Adding executable assertions and best effort
recovery

The results for Algorithm I show that errors in the state
variables stored in the data cache caused severe value
failures. One way to avoid single bit-flips affecting the
sensitive data stored in the cache is to use a parity
protected cache. Since parity protected caches may not be
available in commercial off-the-shelf (COTS)
microprocessors and the cost for using custom-designed
microprocessors with parity protected caches may be
unacceptable, a cost-effective software-based solution for
reducing the amount of severe value failures is presented.
The solution is based on protecting the state variables and
output signals with executable assertions and best effort
recovery mechanisms.

Three approaches where adopted to make the control
algorithm more robust with respect to severe value
failures:

1. The state variable and output were protected by

executable assertions2 to detect errors using the
physical constraints of the controlled object. The
constraints used in this study are based on the
physical limitations of the engine throttle. Assertions
are made on the state variable x and the limited
output signal u_lim just before a back-up of the
variables is made, thereby reducing the probability of
error propagation.

2. When an incorrect state is detected by an executable
assertion during one iteration of the control
algorithm, a recovery is made by using the state
backed-up during the previous iteration in the
calculations instead. Note that this is not a true
recovery, since the input to the controller may differ
from the input used in the previous iteration. This
may result in the output being slightly different from
the fault-free output, thus creating a minor value
failure. We therefore call this a best effort recovery.

3. When an incorrect output is detected by an
executable assertion, recovery is made by delivering
the output produced in the previous iteration instead.
The state variable is also set to the state of the
previous iteration that corresponds to the delivered
output. This approach is also a best effort recovery
since the effects on the output will be similar to those
of approach 2.

A modified algorithm with executable assertions and

best effort recovery mechanisms is shown in Algorithm II.

2 An executable assertion is a software implemented check verifying that
a variable fulfills limitations given by a specification.

Changes from the original Algorithm I are in bold:

Algorithm II. The PI controller algorithm

with executable assertions and best effort
recovery mechanisms.

A general approach for making a control algorithm

with an arbitrary number of states variables and an
arbitrary number of output signals more robust can be
summarized as:
1. Before making a back-up of any state xi(k), 0 < i <

totalNrOfStates, an assertion is made validating the
correctness of xi(k). If an erroneous value is detected,
then a best effort recovery is made by executing
xi(k) = xi(k - 1), 0 < i < totalNrOfStates, otherwise
the state is backed-up by executing xi(k - 1) = xi(k), 0
< i < totalNrOfStates.

2. Before returning the output results, uj(k), 0 < j <
totalNrOfOutputs, an assertion is made validating the
correctness of uj(k), 0 < j < totalNrOfOutputs. If an
incorrect output result is detected, a best effort
recovery is made by executing uj(k) = uj(k - 1), 0 < j
< totalNrOfOutputs and xi(k) = xi(k - 1), 0 < i <
totalNrOfStates .

3. Back-up the output signals by executing
uj(k - 1) = uj(k), 0 < j < totalNrOfOutputs.

4. Return the output signals uj(k), 0 < j <
totalNrOfOutputs.

4.4. Results for Algorithm II

Table 3 shows the results obtained for the modified PI
controller Algorithm II. Most of the undetected wrong
results had no or minor impact on the controlled object,
similar to what is observed for Algorithm I (5.06% of all
faults injected lead to minor undetected wrong results).

x : float -- state of the controller
x_old, u_old : float -- two back-up states

function PI_Controller(r, y : float)
 Kp, T : constant float -- constants
 e, u, u_lim: float -- controller variables
begin
 e = r - y -- calculate control error
 if not in_range(x) -- x out of limits?
 x = x_old -- ERROR! recover state x
 else
 x_old = x -- save state x
 end if
 u = e * Kp + x -- calculate output signal
 u_lim = limit_output(u) -- range check of u
 if anti_windup_activated then

Ki = 0.0 -- disable integration
 else

Ki = integral_gain -- enable integration
 end if
 x = x + T * e * Ki -- integrate, update x
 if not in_range(u_lim) -- u_lim out of limits?
 u_lim = u_old -- ERROR! get last output
 x = x_old -- and corresponding state
 end if
 u_old = u_lim -- save output
 return u_lim
end

The results also show that 0.17% of the faults injected
had severe impact on the controlled object (caused severe
undetected wrong results), which corresponds to 3.23% of
all value failures produced using the Algorithm II. Thus,
the percentage of severe undetected wrong results are
significantly reduced for Algorithm II compared to
Algorithm I, where 10.7% of the value failures were
classified as severe.

Figure 10. Fault-free output vs. undetected
wrong result not detected by the assertions.

A detailed investigation of the

severe undetected wrong results
shows that no permanent value
failures were observed for Algorithm
II. However, since 0.17% of all
errors still lead to severe undetected
wrong results which were semi-
permanent, additional research
focusing on more sophisticated
assertions capable of detecting the
remaining errors is required. One
explanation for the undetected wrong
results produced by Algorithm II is
shown in Figure 10. The figure
shows the controller output when the
state variable x changes from a
correct value of approximately 10
degrees to an incorrect value of 69

degrees at time t = 6.
The assertions will not detect such errors since x is

within the valid range (i.e. between 0.0 and 70.0 in our
case). After approximately 1 second, the output stabilizes,
but the output sequence will be classified as a severe
undetected wrong result that is semi-permanent.

4.5. Comparison of results for Algorithm I and II

Table 4 shows a detailed comparison of the undetected
wrong results (value failures) obtained for Algorithm I
and II. The table shows that the percentage of severe
value failures (permanent and semi-permanent) are
reduced for Algorithm II while the percentage of minor
value failures (transient and insignificant) increased. The
reason for this is that the best effort recovery mechanisms
of Algorithm II managed to detect many potential severe
value failures resulting in minor value failures being
produced instead. Thus, the total percentage of undetected
wrong results is almost equal for Algorithm I and II
(5.02% vs. 5.23%).

The percentage of permanent value failures is 0.12%
for Algorithm I while no permanent value failures at all
are observed for Algorithm II. The percentage of semi-
permanent value failures decreased from 0.42% for
Algorithm I to 0.17% for Algorithm II. This corresponds
to a total reduction of the percentage of severe value
failures, from 0.54% for Algorithm I to 0.17% for
Algorithm II. Although, the results for Algorithm II are
based on only 2372 injected faults vs. 9290 injected faults
for Algorithm I, the corresponding 95% confidence
intervals indicate that the total percentage of severe value
failures is lower for Algorithm II.

Table 3. Results for Algorithm II.
Part of CPU fault injected

 (no. of state elements)
Type of Errors and Wrong Results # # #
Latent Errors 21,04% (� 1,85%) 391 59,14% (� 4,25%) 304 29,30% (� 1,83%) 695
Overwritten Errors 50,38% (� 2,27%) 936 18,87% (� 3,39%) 97 43,55% (� 2,00%) 1033
Total (Non Effective Errors) 71,42% (� 2,05%) 1327 78,02% (� 3,58%) 401 72,85% (� 1,79%) 1728

Address Error 16,15% (� 1,67%) 300 5,45% (� 1,96%) 28 13,83% (� 1,39%) 328
Data Error 0,00% (� 0,00%) 0 0,58% (� 0,66%) 3 0,13% (� 0,14%) 3
Instruction Error 2,69% (� 0,74%) 50 2,14% (� 1,25%) 11 2,57% (� 0,64%) 61
Jump Error 0,05% (� 0,11%) 1 0,00% (� 0,00%) 0 0,04% (� 0,08%) 1
Constraint Check 0,00% (� 0,00%) 0 0,00% (� 0,00%) 0 0,00% (� 0,00%) 0
Access Check 1,45% (� 0,54%) 27 0,19% (� 0,38%) 1 1,18% (� 0,43%) 28
Storage Error 0,43% (� 0,30%) 8 10,12% (� 2,61%) 52 2,53% (� 0,63%) 60
Overflow 0,00% (� 0,00%) 0 0,00% (� 0,00%) 0 0,00% (� 0,00%) 0
Illegal Operation 0,54% (� 0,33%) 10 1,17% (� 0,93%) 6 0,67% (� 0,33%) 16
Control Flow Errors 0,70% (� 0,38%) 13 0,97% (� 0,85%) 5 0,76% (� 0,35%) 18
Other Errors 0,05% (� 0,11%) 1 0,78% (� 0,76%) 4 0,21% (� 0,18%) 5
Undetected Wrong Results (Severe) 0,22% (� 0,21%) 4 0,00% (� 0,00%) 0 0,17% (� 0,17%) 4
Undetected Wrong Results (Minor) 6,30% (� 1,10%) 117 0,58% (� 0,66%) 3 5,06% (� 0,88%) 120
Total (Effective Errors) 28,58% (�� 2,05%) 531 21,98% (�� 3,58%) 113 27,15% (�� 1,79%) 644

Total (Faults Injected) 100,00% 1858 100,00% 514 100,00% 2372

Total (Undetected Wrong Results) 6,51% (� 1,12%) 121 0,58% (� 0,66%) 3 5,23% (� 0,90%) 124
Coverage 93,49% (� 1,12%) 99,42% (� 0,66%) 94,77% (� 0,90%)

Total

% (95 % conf) % (95 % conf)
(426) (2250)

Cache Registers

% (95 % conf)
(1824)

5. Conclusions

We have demonstrated that bit-flips inside a central
processing unit executing an engine control program can
cause critical failures, such as permanently locking the
engine’s throttle at full speed. These failures were caused
by errors that escaped several hardware implemented
error detection mechanisms included in the CPU. Our
fault injection experiments showed that 11% of the
undetected errors leading to value failures seriously
affected the control of the engine. These critical failures
were caused by errors affecting the state variable of the
control algorithm. By using software assertions and a best
effort recovery mechanism, we managed to reduce the
percentage of the critical failures to 3%. The control
algorithm used in our experiments was a simple PI
controller. Thus, we have demonstrated that software
assertions in combination with best effort recovery can be
very effective in reducing the number of critical failures
for simple control algorithms. In our future research we
will investigate the use of software assertions and best
effort recovery techniques for multiple input and multiple
output control algorithms such as jet-engine controllers.

Acknowledgements

We would like to thank Martin Fabian of the Dept. of
Control Engineering, Chalmers University of Technology
and Stefan Asserhäll and Thorbjörn Hult at Saab Ericsson
Space for their many valuable suggestions and technical
assistance. This work was supported by the Swedish
Agency for Innovation (VINNOVA), the Swedish
Network for Real-Time Research and Graduate Education
(ARTES), The Swedish Foundation for Strategic
Research (SSF) and Saab Ericsson Space.

References

[1] Y.C. Yeh, "Dependability of the 777
Primary Flight Control System", in 5th
IFIP Working Conference on Dependable
Computing for Critical Applications
(DCCA-5), pp. 3-17, (Urbana Champaign,
IL, USA) Sep. 1995.
[2] J. von Neumann, "Probabilistic
Logics and the Synthesis of Reliable
Organisms from Unreliable
Components", Automata Studies, Annals
of Mathematical Studies, Princeton

University Press, No. 34, pp. 43-98, 1956.
[3] L. Lamport, P. M. Melliar-Smith, "Byzantine Clock
Synchronization", in Proc. Third ACM Symp. Principles of
Distributed Computing, August 1984, pp. 68-84.
[4] R. M. Kieckhafer, C. J. Walter, A. M. Finn, P. M.
Thambidurai, "The MAFT Architecture for Distributed Fault
Tolerance", IEEE Transactions on Computers, vol. 37, no. 4,
pp. 398-404, 1988.
[5] F. Cristian, "Understanding Fault-Tolerant Distributed
Systems", Communications of ACM, Vol. 34, No. 2, 1991, pp.
56-78.
[6] J. Karlsson, P. Folkesson, J. Arlat, Y. Crouzet, G. Leber, J.
Reisinger, “Application of Three Physical Fault Injection
Techniques to the Experimental Assessment of the MARS
Architecture”, in 5th IFIP Working Conference on Dependable
Computing for Critical Applications (DCCA-5), pp. 267-287,
(Urbana Champaign, IL, USA) Sep. 1995.
[7] G. C. Messenger, "Collection of Charge on Junction Nodes
From Ion Tracks". IEEE Trans. on Nuclear Science, Vol. NS-
29, No. 6, Dec. 1982, pp. 2024-2031.
[8] K. Johansson, P. Dyreklev, B. Granbom, M. C. Calvet, S.
Fourtine, O. Feuillatre, "In-Flight and Ground Testing of Single
Event Upset Sensitivity in Static RAMs", IEEE Transaction on
Nuclear Science, vol.45 no.3 June 1998 pp. 1628-1632.
[9] E. Normand, "Single Event Upset at Ground Level", IEEE
Transaction on Nuclear Science, vol. 43, no.6, December 1996,
pp. 2742-2750.
[10] The MathWorks, Inc. "Using Simulink Version 3,
Dynamic System Simulation for MATLAB" January 1999.
[11] Saab Ericsson Space AB, "Microprocessor Thor", Product
Information, September 1993.
[12] P. Folkesson, S. Svensson, J. Karlsson, “A Comparison of
Simulation Based and Scan Chain Implemented Fault
Injection”, in Proc. 28th Int. Symp. on Fault-Tolerant
Computing (FTCS-28), pp. 284-293, (Munich, Germany) June
1998.
[13] J. Aidemark, J. Vinter, P. Folkesson, J. Karlsson, “GOOFI:
Generic Object-Oriented Fault injection tool”, Proceedings
International Conference on Dependable Systems and
Networks, DSN 2001, Gothenburg, Sweden, July 2001.

Table 4. Comparison of results for Algorithm I and II.

#
Total (Non Effective Errors) 73,87% (� 0,89%) 6863 72,85% (� 1,79%) 1728

Total (Detected Errors) 21,11% (� 0,83%) 1961 21,92% (� 1,67%) 520
Undetected Wrong Results (Permanent) 0,12% (� 0,07%) 11 0,00% (� 0,00%) 0
Undetected Wrong Results (Semi-Permanent) 0,42% (� 0,13%) 39 0,17% (� 0,17%) 4
Undetected Wrong Results (Transient) 0,94% (� 0,20%) 87 1,56% (� 0,50%) 37
Undetected Wrong Results (Insignificant) 3,54% (� 0,38%) 329 3,50% (� 0,74%) 83
Total (Undetected Wrong Results) 5,02% (� 0,44%) 466 5,23% (� 0,90%) 124

Total (Effective Errors) 26,12% (�� 0,89%) 2427 27,15% (�� 1,79%) 644

Total (Faults Injected) 100,00% 9290 100,00% 2372

% (95 % conf) % (95 % conf)
Results for Algorithm I Results for Algorithm II

