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Abstract 
 
Systems that use f+1 computer nodes to tolerate f node 

failures ordinarily require that the computer nodes have 
strong failure semantics, i.e. a node should either produce 
correct results, or no results at all. We show that this 
requirement can be relaxed for control applications, as 
control algorithms inherently compensate for a class of 
value failures. Value failures occur when an error 
escapes the error detection mechanisms in the computer 
node and an erroneous value is sent to the actuators of 
the control system. Fault injection experiments show that 
89% of the value failures caused by bit-flips in a CPU 
had no or minor impact on the controlled object. 
However, the experiments also show that 11% of the 
value failures had severe consequences. These failures 
were caused by bit-flips affecting the state variables of 
the control algorithm. Another set of fault injection 
experiments show that the percentage of the value failures 
with severe consequences was reduced to 3% when the 
state variables were protected with executable assertions 
and best effort recovery mechanisms. 

 

1. Introduction 

The primary task for many embedded computer 
systems is to execute control algorithms. Embedded 
control systems are used in safety-critical applications 
such as fly-by-wire systems, jet-engine controllers, 
electronic throttles and active suspension. Applications 
requiring extreme levels of dependability, such as fly-by-
wire often use massive redundancy and majority voting to 
achieve fault tolerance, see e.g. [1]. Today replication is 
usually introduced at the computer node level. Thus, 
classical TMR (triple modular redundancy) [2] requires 
three nodes to tolerate one node failure. In the general 

case, 2f+1 nodes are required to tolerate f faulty nodes. 
Some systems are designed to tolerate Byzantine faults, 
which requires as much as 3f+1 nodes to tolerate f node 
failures [3] [4]. 

An advantage of using massive redundancy is that the 
failure semantics1 of the computer nodes can be weak. 
Weak failure semantics implies that a node can exhibit a 
wide range of failure classes, including value failures and 
timing failures. Massive redundancy is, however, 
considered too expensive for a wide range of embedded 
control applications. A more cost-effective approach is to 
use nodes with strong failure semantics. Examples of 
strong failure semantics are when a node exhibits only 
fail-stop or omission failures [5], i.e. the node should 
either produce correct results, or no result at all. 

Systems using computer nodes with strong failure 
semantics need only f+1 nodes to tolerate f faulty nodes. 
An example of such a system is the classical duplex 
system, which uses two computer nodes to tolerate one 
node failure.  Strong failure semantics makes the task of 
identifying a faulty node simple in a duplex system. 
Duplex systems are commonly used in safety-critical or 
mission critical systems such as jet engine controllers, 
satellites, and satellite launchers.  They are also preferred 
in the cost-sensitive automotive industry. Using computer 
nodes with strong failure semantics also simplifies the 
design of control systems that must ensure safe shutdown.   

In order to achieve strong failure semantics, a 
computer node must be equipped with internal error 
detection mechanisms.  Duplication and comparison can 
be used to achieve strong failure semantics for random 
hardware faults, but this is an expensive solution since 
each node then consists of two computers (with weak 
failure semantics) and extra logic for comparing results. 
Thus, we need 2(f+1) computers to tolerate f computer 
failures. 

                                                        
1 The concept of failure semantics was introduced in [5]. 



 

In cost-sensitive applications, strong failure semantics 
are achieved by combining low-cost hardware and 
software error detection mechanisms. These include 
hardware mechanisms such as error correcting codes, 
memory management units, hardware exceptions, control-
flow checking and watchdog timers. Examples of 
software error detection mechanisms are executable 
assertions, software implemented exceptions, time 
redundant execution of tasks, and acceptance tests. Some 
of these mechanisms have the capability to detect errors 
caused by software faults, which is not possible with 
hardware duplication and comparison. 

Unfortunately, most of these techniques also have 
rather low coverage for value errors, i.e. errors that affect 
the result, but not the control flow or the timing of a 
computation. Time redundant execution of tasks is one 
way to improve the coverage of such errors, but as 
demonstrated in [6] the coverage may still be less than 
100%.  

In this paper, we address the problem of dealing with 
value failures in control applications. A value failure 
occurs when an error escapes the error detection 
mechanisms in a computer node and an erroneous result is 
sent to the actuators of the control system. We consider 
value failures caused by transient bit-flips occurring in the 
central processing unit (CPU) of a computer node using a 
single CPU. Particles such as heavy-ions, alpha particles 
and high-energetic neutrons are known to be causing bit-
flips in VLSI-circuits in aerospace applications [7]. 
Recent research indicates that such errors also can occur 
at ground level, although with a much lower probability 
than in space or the upper atmosphere [8] [9]. 

In an experimental study of an embedded engine 
controller, we demonstrate that a vast majority of the 
value failures caused by bit-flips in the CPU had no or 
little impact on the engine. The reason for this is that 
control applications in general are inherently robust with 
respect to value failures, provided that their impact on the 
control algorithm is similar to that of external 
disturbances affecting the controlled object. 

However, the experiments also show that bit-flips 
affecting the state variables of the control algorithm could 
cause value failures with unacceptable consequences, 
such as permanently locking the engine’s throttle at full 
speed. By adding executable assertions and best effort 
recovery mechanisms to the control program, we 
managed to significantly reduce the probability of value 
failures.  In particular, failures that locked the throttle at 
full speed were not observed when the target system was 
running the modified control program.  

The engine control algorithm was taken from a design 
library supplied with Simulink [10], a toolbox for 
MATLAB, which is widely used for design of control 

algorithms. The control program was executed on the 
Thor CPU [11], which has been specifically designed for 
use in critical embedded space applications. Bit-flips were 
injected into the Thor CPU using a new fault injection 
tool called GOOFI. We have previously evaluated the 
hardware implemented error detection mechanisms in 
Thor [12]. In this paper we use software techniques to 
handle errors that escape the hardware mechanisms. 

The remainder of the paper is organized as follows. 
Section 2 describes the engine control algorithm. Section 
3 describes the experimental set up. The results are 
presented in Section 4. Finally, the conclusions are 
presented in Section 5. 

2. The engine controller 

The engine controller investigated in this study was 
developed with the MATLAB toolbox Simulink, which is 
a software package for modeling, simulating and 
analyzing dynamical systems. Simulink provides a 
graphical user interface for building block diagrams of 
models using click-and-drag mouse operations and 
generating the corresponding software code that 
implements the model. The Ada code used for our model 
was generated with the product Real-Time Workshop Ada 
Coder, which is an extension for Simulink. 

The controller is a proportional-integral (PI) controller 
used for controlling the speed of an engine. The target 
system for the fault injection experiments executed only 
the code generated for the PI controller block in Figure 1.  
 

 

 
Figure 1.  Simulink model of the engine control 

system. 
 
 

The code generated for the rest of the engine control 
system in Figure 1 was used to simulate the controlled 
object (i.e. the engine) and was executed on a Unix 
workstation and was not subjected to fault injection. The 
workstation hosted the board containing the target system 
and was also executing the fault injection tool. 

The PI controller is shown in detail in Figure 2. It 
controls the speed of the engine by adjusting the opening 



 

angle of the engine’s throttle, which lies between 0.0 and 
70.0 degrees. The control error signal e is calculated as 
the difference between the reference value r (speed 
wanted) and the actual engine speed y by: 
 

)()()( kykrke −=  (1) 

 
where k is the sample number. The PI controller consists 
of an integrating part and a proportional part. The 
integrating part integrates the error signal e (multiplied 
with the integral gain Ki) as: 
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where T is the sample interval.  In addition, the 
proportional part directly scales the control error signal e 
by the proportional gain Kp, and the desired throttle angle 
is the sum of the integral and the proportional parts, as: 
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The output signal u(k) can assume values outside the 

interval 0.0 to 70.0 degrees. The limit output function in 
Figure 2, assures that the output signal u_lim lies within 
this interval. There is also an anti-windup function that 
cuts off the integration if the input y from the engine is 
not responding to the output u_lim from the controller 
when the signal is limited (i.e. at 0.0 or 70.0 degrees). 
 

 

 
Figure 2.  PI controller block from Figure 1, 

executing on the target system. 
 
 

This results in the control error signal e not being 
equal to zero. An example could be a full throttle angle of 
70 degrees (upper limit) but a heavy load holding the 
engine speed down resulting in e > 0 that erroneously 
increase the value of the state x (above the upper limit) 
according to equation (2). In this case, the integration will 
be stopped until u_lim is back within the defined limits. 

 
 

A simplified algorithm of the PI controller workload 
can be expressed as: 

 
 
 
 
 
 
 
 

 
 

 
Algorithm I.  The PI controller algorithm. 

 
In our experiments, a sequence of 650 iterations of the 

PI controller algorithm was executed. This corresponds to 
a total time interval of 10 seconds with a sample interval 
of 15.4 milliseconds. As shown in Figure 3, the reference 
speed r was kept constant at 2000 rpm for the first half of 
the 10 second interval and was then changed momentarily 
to 3000 rpm. The figure also shows the actual engine 
speed y.  

 

Figure 3.  Reference speed r (white) vs.  
actual engine speed y (grey). 

 
 

Figure 4 shows how the engine load varies during the 
observed time interval. The variations of the engine load 
cause the differences between the reference speed and the 
actual engine speed at time 3 < t < 4 and 7 < t < 8 as 
shown in Figure 3. The variations in engine load may 
occur when the engine is used to move a vehicle at a 
desired speed in hilly terrain. The output of the PI control 
algorithm under fault-free conditions is shown in  
Figure 5. 
 
 

x : float -- state of the controller  

function PI_Controller(r, y : float) 
 Kp, T: constant float -- constants 
 e, u, u_lim, Ki : float -- controller variables 
begin 
 e = r – y  -- calculate control error 
 u = e * Kp + x -- calculate output signal 
 u_lim = limit_output(u) -- range check of u 
 if anti_windup_activated then 
   Ki = 0.0 -- disable integration 
 else 
   Ki = integral_gain -- enable integration 
 end if 
 x = x + T * e * Ki -- integrate, update x  
 return u_lim 
end 



 

 
Figure 4.  Engine load. 

 

 
Figure 5.  Fault-free output u_lim  

from the PI controller. 

3. Experimental Setup  

The experiments were conducted using a new fault 
injection tool called GOOFI (Generic Object-Oriented 
Fault Injection tool) [13]. The GOOFI tool was executed 
on a UNIX workstation hosting a processor board based 
on the Thor microprocessor [11], which was configured as 
the target system for the fault injection experiments (see 
Figure 6). 

3.1. The Thor microprocessor 

The Thor microprocessor executed the code generated 
for the PI controller algorithm described in Section 2. 
Thor is a 32-bit CPU with a four-stage pipeline and a 128 
byte data cache located within the pipeline. Several error 
detection mechanisms, see Table 1, and support for Ada 
tasking are included in the processor. Thor also features 
advanced scan-chain logic that allows read access to more 
than 3000 of the almost 4500 internal state elements of 
the CPU and write access to more than 2700 internal state 
elements. 

So far, Thor has been used in space applications, 
where low weight, small volume and low power 
consumption are important factors to be considered in 

addition to high dependability. The processor has been 
used for attitude-control of the ODIN satellite and will be 
used in on board instruments on the comet explorer 
mission ROSETTA and the Mars Express mission. 

 
Table 1.  Error detection mechanisms of Thor. 

Error Detection 
Mechanism 

Description 

BUS ERROR Bus time-out on external memory access 

ADDRESS ERROR Access to non-existing or protected memory  

INSTRUCTION ERROR Attempt to execute a privileged instruction in user mode or 
an illegal instruction 

JUMP ERROR Attempt to jump, call or return to a target address outside 
memory address space 

CONSTRAINT ERROR A run-time assertion failed 

ACCESS CHECK Attempt to follow a null pointer 

STORAGE ERROR Attempt to access memory outside the task’s stack in user 
mode 

OVERFLOW CHECK Overflow of signed integer and float arithmetic operations 

UNDERFLOW CHECK Underflow or denormalized result of float arithmetic 
operations 

DIVISION CHECK Divide by zero for integer division. Divide by ±0 for float 
division 

ILLEGAL OPERATION Illegal operation for float and double arithmetic instructions 
involving 0 and  

DATA ERROR Uncorrectable error in data read from memory 

CONTROL FLOW 
ERROR 

A control flow error (wrong sequence of instructions) 
occurred 

MASTER/SLAVE 
COMPARATOR 
ERROR 

An error was detected when comparing the results from two 
Thor processors (not used in this study) 
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Figure 6.  Overview of the experimental setup. 



 

3.2. The GOOFI tool 

The GOOFI tool can perform fault injection campaigns 
using different fault injection techniques on different 
target systems. A major objective of the tool is to provide 
a user-friendly fault injection environment with a 
graphical user interface and an underlying generic 
architecture that assists the user when adapting the tool 
for new target systems and new fault injection techniques. 

In addition, the tool is highly portable between 
different host platforms since the tool was implemented 
using the Java programming language and all data is 
saved in a SQL compatible database. GOOFI was 
designed using object orientation to facilitate 
maintainability and portability. 

3.3. Campaign configuration 

As shown in Figure 6, conducting fault injection 
campaigns using GOOFI involves four phases: the 
configuration, set-up, fault injection and analysis phase. 

 
3.3.1. Configuration phase. The configuration phase 
involves adapting the GOOFI tool to the chosen fault 
injection technique and target system. The current version 
of GOOFI supports pre-runtime Software Implemented 
Fault Injection (SWIFI) and Scan-Chain Implemented 
Fault Injection (SCIFI). In SCIFI, faults are injected via 
boundary scan-chains or internal scan-chains  in a VLSI 
circuit [12]. This allows faults to be injected into the pins 
and many of the internal state elements of the target 
circuit. The scan-chains are also used to observe the 
internal state of the circuit before and after a fault is 
injected. In this study, the GOOFI tool was configured to 
use the SCIFI technique on the Thor microprocessor. 
 
3.3.2. Set-up phase. In the set-up phase, the user selects a 
target system and a workload, and chooses the fault 
injection locations from a hierarchical list of possible 
locations presented in a window.  The user must also 
select the fault models to use, the points in time when 
faults should be injected, and the total number of faults in 
the fault injection campaign. 

2250 fault locations of the 3000 state elements of Thor 
accessible via the scan-chain logic were chosen for fault 
injection. The fault injection locations were selected 
randomly using uniform sampling among the 2250 state 
elements. 

Using the GOOFI tool with the SCIFI technique 
requires break-points to be set according to the points in 
time when faults should be injected. The break-points are 
set via the scan-chains in the fault injection phase and 
allow the Thor processor to be halted for fault injection 

when a machine instruction is to be executed.  The points 
in time for fault injection are selected by analyzing the 
workload code. In this study, the points in time for fault 
injection were selected randomly using a uniform 
sampling distribution among the points in time each of 
the instructions of the workload begin their execution. 

The fault model used was single bit-flip faults, which 
model the effects of transients occurring in the CPU. 

The termination conditions for the experiments are 
also selected in the set-up phase. A fault injection 
experiment is terminated by a debug event (generated via 
the scan chains) i.e., an error has been detected or the 
execution of the workload ends, whichever comes first. 
The workload may consist of a program that either 
terminates by itself or is executed as an infinite loop. For 
an infinite loop, such as the PI controller used in this 
study, the user must specify the maximum number of 
iterations that should be executed before the fault 
injection experiment is terminated. 650 loop iterations 
were used in this study (see Section 2). In each loop 
iteration, data may be exchanged with a user provided 
environment simulator program emulating the target 
system environment. In our case the environment 
simulator was the Simulink generated model of the engine 
shown in Figure 1 (excluding the PI controller). The 
environment simulator was executed on the same host 
computer as the GOOFI tool. 

Information about the memory locations holding input 
and output data within the target system as well as the 
points in time the data exchange occurs, e.g. when each 
loop iteration finishes, must also be selected by the user.  

All set-up data is stored in a database for use during 
the fault injection phase. 

 
3.3.3. Fault injection phase.  In the fault injection phase, 
the GOOFI tool starts by reading the campaign 
information from the database. The target system is 
initialised and the workload and initial input data is 
downloaded to the system. Then a reference execution of 
the workload is made, logging the fault-free system state 
to the GOOFI database. After this, each fault injection 
experiment begins by reinitialising the target system and 
downloading the workload and initial input data. 

For each fault injection experiment, a breakpoint is set 
via the scan-chains at the instruction to be executed when 
a fault should be injected. When the break-point condition 
has been fulfilled, the fault is injected by reading the 
scan-chains, inverting the bits corresponding to the fault 
location, and then writing back the altered scan-chain 
data. 

After injecting a fault, the execution starts from where 
the target system was halted and continues until the 
termination condition occurs. The system state is then 



 

logged to the database. Finally, the target system is 
reinitialized and a new fault injection experiment begins. 

GOOFI can be operated in either normal or detail 
mode. In normal mode, the system state is logged only 
when the termination condition is fulfilled. In detail mode 
the system state is logged as frequently as the target 
system allows, in this case before the execution of each 
machine instruction, which increases the time-overhead. 
The detail mode operation is used to produce an 
execution trace, allowing the error propagation to be 
analyzed in detail. The logged system state includes the 
contents of all the locations in the target system that are 
observable as well as the workload input and output 
values, together with information about when and where 
any faults were injected. 

 
3.3.4. Analysis phase. The final phase involved when 
conducting fault injection campaigns using GOOFI is the 
analysis phase. In this phase, the data in the database is 
analyzed in order to obtain various dependability 
measures. Currently, there is no support for automatic 
generation of software that analyses the logged data. The 
user must write tailor made scripts or programs that query 
the database for the required information. However, this 
is typically done once for each new target system.  

4. Results 

In this section, we first describe the error and failure 
classification scheme used in the presentation of the 
results. We then present the results of a fault injection 
campaign evaluating the PI controller algorithm described 
in Section 2 (Algorithm I), which is followed by a 
description of a modified algorithm aimed at reducing 
critical failures (Algorithm II). Finally, the results of fault 
injection experiments using Algorithm II are presented 
and compared with the results for Algorithm I. 

4.1.  Error and failure classification 

The errors are classified into either effective or non-
effective errors in the results from the fault injection 
experiments. 
 
4.1.1. Effective errors. Effective errors are errors which 
were either detected by the error detection mechanisms of 
the Thor processor (see Table 1) or errors causing 
undetected wrong results (value failures) to be produced 
by the PI controller: 

Detected errors: Errors detected by the error detection 
mechanisms in Thor. These errors are further 
classified into errors detected by each of the various 
mechanisms or other errors. Other errors are errors 

that were detected, but the GOOFI analysis software 
could not determine which mechanism that detected 
the error. 
Undetected wrong results: The controller produced an 
incorrect result, i.e. a value failure. These failures are 
classified into severe or minor value failures 
depending on their impact on the controlled object 

Severe: The value failure has a severe impact on 
the controlled object. These failures are either: 

Permanent: The output from the controller is 
either at maximum value (70.0 degrees) or 
minimum value (0.0 degrees) from the time the 
value failure first appears until the end of the 
observed time interval, see Figure 7. Note that 
the observed time interval is limited to 10 
seconds (650 iterations of the control 
algorithm) and that the output may converge 
towards the fault-free output sequence later. 
Semi-permanent: The output from the 
controller differs strongly (more than 0.1 
degrees) from the fault-free output during more 
than one iteration, but the output starts to 
converge towards the fault-free output 
sequence within the observed time interval, see 
Figure 8: 

Minor: The value failure has a minor impact on 
the controlled object. These failures are classified 
into: 

Transient: The output from the controller 
differs strongly (more than 0.1 degrees) from 
the fault-free output during one iteration and 
then rapidly starts to converge towards the 
fault-free output, see Figure 9. 
Insignificant: The output from the controller is 
almost identical to the fault-free output. We 
define an insignificant error to have a deviation 
from the fault-free output less than 0.1 degrees. 
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Figure 7.  Severe undetected wrong result 

(permanent). 



 

Incorrect output delivered from the PI controller
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Figure 8.  Severe undetected wrong result  

(semi-permanent). 
 
 

Incorrect output delivered from the PI controller
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Figure 9.  Minor undetected wrong result 

(transient). 
 
4.1.2. Non-effective errors. The non-effective errors are 
errors, which could not be identified as either Detected 
errors or Undetected wrong results. These errors are 
classified into latent or overwritten 
errors: 

Latent errors: The fault injection 
experiments where differences 
between the correct system state 
logged after the reference 
execution and the system state 
logged after the fault injection 
experiment terminated could be 
observed, but which could not be 
identified as either Detected errors 
or Undetected wrong results. 
Overwritten errors: The fault 
injection experiments for which 
no difference between the correct 
system state logged after the 
reference execution and the 
system state logged after the fault 
injection experiment terminated 
could be observed. 

4.2.  Results for Algorithm I  

Table 2 shows the results obtained for the PI controller 
implemented according to Algorithm I. The first two 
columns present the results separately for faults injected 
into the data cache of Thor (denoted "Cache" in the table) 
and into all other parts of the CPU (denoted "Registers"). 
The last column presents the total results for all faults 
injected into the CPU. The percentage of errors obtained 
for each of the categories presented in Section 3 and their 
corresponding 95% confidence intervals are given in the 
table together with the observed number of errors (#). The 
results show that most of the undetected wrong results 
caused by bit-flips in the CPU were minor value failures 
having no or minor impact on the controlled object 
(4.48% of all faults injected). However, 0.54% of the 
faults injected had severe impact on the controlled object 
(severe undetected wrong results) corresponding to 
10.73% of all the value failures produced. 

The results also show that faults injected into the data 
cache of Thor produced a higher percentage of undetected 
wrong results (6.06%) than faults injected into the 
registers (0.91%). A detailed investigation revealed that 
most of the severe undetected wrong results were caused 
by faults injected into the cache lines where the global 
variable x representing the state, see Algorithm I, is 
stored. Since x represents the state, any errors in x will 
propagate to the next iteration of the algorithm and cause 
a permanent or semi-permanent value failure, see Figure 
7 and 8. 

 
 

 

 
 
 

Table 2.  Results for Algorithm I. 
Part of CPU fault injected

 (no. of state elements)
Type of Errors and Wrong Results # # #
Latent Errors 0,05% ( � 0,05% ) 4 59,99% ( � 2,22% ) 1126 12,16% ( � 0,66% ) 1130
Overwritten Errors 72,28% ( � 1,02% ) 5358 19,98% ( � 1,81% ) 375 61,71% ( � 0,99% ) 5733
Total (Non Effective Errors) 72,33% ( � 1,02% ) 5362 79,97% ( � 1,81% ) 1501 73,88% ( � 0,89% ) 6863

Address Error 16,84% ( � 0,85% ) 1248 4,37% ( � 0,92% ) 82 14,32% ( � 0,71% ) 1330
Data Error 0,00% ( � 0,00% ) 0 0,37% ( � 0,28% ) 7 0,08% ( � 0,06% ) 7
Instruction Error 1,50% ( � 0,28% ) 111 2,08% ( � 0,65% ) 39 1,61% ( � 0,26% ) 150
Jump Error 0,07% ( � 0,06% ) 5 0,05% ( � 0,10% ) 1 0,06% ( � 0,05% ) 6
Constraint Check 0,01% ( � 0,03% ) 1 0,00% ( � 0,00% ) 0 0,01% ( � 0,02% ) 1
Access Check 0,01% ( � 0,03% ) 1 0,27% ( � 0,23% ) 5 0,06% ( � 0,05% ) 6
Storage Error 0,13% ( � 0,08% ) 10 9,80% ( � 1,35% ) 184 2,09% ( � 0,29% ) 194
Overflow 0,00% ( � 0,00% ) 0 0,11% ( � 0,15% ) 2 0,02% ( � 0,03% ) 2
Illegal Operation 2,29% ( � 0,34% ) 170 0,80% ( � 0,40% ) 15 1,99% ( � 0,28% ) 185
Control Flow Errors 0,71% ( � 0,19% ) 53 1,07% ( � 0,46% ) 20 0,79% ( � 0,18% ) 73
Other Errors 0,01% ( � 0,03% ) 1 0,32% ( � 0,26% ) 6 0,08% ( � 0,06% ) 7
Undetected Wrong Results (Severe) 0,66% ( � 0,18% ) 49 0,05% ( � 0,10% ) 1 0,54% ( � 0,15% ) 50
Undetected Wrong Results (Minor) 5,40% ( � 0,51% ) 400 0,85% ( � 0,42% ) 16 4,48% ( � 0,42% ) 416
Total (Effective Errors) 27,67% (�� 1,02% ) 2051 20,03% (�� 1,81% ) 376 26,12% ( �� 0,89% ) 2427

Total (Faults Injected) 100,00% 7413 100,00% 1877 100,00% 9290

Total (Undetected Wrong Results) 6,06% ( � 0,54% ) 449 0,91% ( � 0,43% ) 17 5,02% ( � 0,44% ) 466
Coverage 93,94% ( � 0,54% ) 99,09% ( � 0,43% ) 94,98% ( � 0,44% )

Total

%      (95 % conf) %      (95 % conf)
(426) (2250)

Cache Registers

%      (95 % conf)
(1824)

 



 

4.3.  Adding executable assertions and best effort 
recovery 

The results for Algorithm I show that errors in the state 
variables stored in the data cache caused severe value 
failures. One way to avoid single bit-flips affecting the 
sensitive data stored in the cache is to use a parity 
protected cache. Since parity protected caches may not be 
available in commercial off-the-shelf (COTS) 
microprocessors and the cost for using custom-designed 
microprocessors with parity protected caches may be 
unacceptable, a cost-effective software-based solution for 
reducing the amount of severe value failures is presented. 
The solution is based on protecting the state variables and 
output signals with executable assertions and best effort 
recovery mechanisms. 

Three approaches where adopted to make the control 
algorithm more robust with respect to severe value 
failures: 
 
1. The state variable and output were protected by 

executable assertions2 to detect errors using the 
physical constraints of the controlled object. The 
constraints used in this study are based on the 
physical limitations of the engine throttle. Assertions 
are made on the state variable x and the limited 
output signal u_lim just before a back-up of the 
variables is made, thereby reducing the probability of 
error propagation. 

2. When an incorrect state is detected by an executable 
assertion during one iteration of the control 
algorithm, a recovery is made by using the state 
backed-up during the previous iteration in the 
calculations instead. Note that this is not a true 
recovery, since the input to the controller may differ 
from the input used in the previous iteration. This 
may result in the output being slightly different from 
the fault-free output, thus creating a minor value 
failure. We therefore call this a best effort recovery. 

3. When an incorrect output is detected by an 
executable assertion, recovery is made by delivering 
the output produced in the previous iteration instead. 
The state variable is also set to the state of the 
previous iteration that corresponds to the delivered 
output. This approach is also a best effort recovery 
since the effects on the output will be similar to those 
of approach 2.  

 
A modified algorithm with executable assertions and 

best effort recovery mechanisms is shown in Algorithm II. 

                                                        
2 An executable assertion is a software implemented check verifying that 
a variable fulfills limitations given by a specification. 

Changes from the original Algorithm I are in bold: 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
Algorithm II.  The PI controller algorithm  

with executable assertions and best effort 
recovery mechanisms. 

 
A general approach for making a control algorithm 

with an arbitrary number of states variables and an 
arbitrary number of output signals more robust can be 
summarized as: 
1. Before making a back-up of any state xi(k), 0 < i < 

totalNrOfStates, an assertion is made validating the 
correctness of xi(k). If an erroneous value is detected, 
then a best effort recovery is made by executing  
xi(k) = xi(k - 1), 0 < i < totalNrOfStates, otherwise 
the state is backed-up by executing xi(k - 1) = xi(k), 0 
< i < totalNrOfStates.  

2. Before returning the output results, uj(k), 0 < j < 
totalNrOfOutputs, an assertion is made validating the 
correctness of uj(k), 0 < j < totalNrOfOutputs. If an 
incorrect output result is detected, a best effort 
recovery is made by executing uj(k) = uj(k - 1), 0 < j 
< totalNrOfOutputs and xi(k) = xi(k - 1),  0 < i < 
totalNrOfStates . 

3. Back-up the output signals by executing  
uj(k - 1) = uj(k), 0 < j < totalNrOfOutputs. 

4. Return the output signals uj(k), 0 < j < 
totalNrOfOutputs. 

4.4.  Results for Algorithm II 

Table 3 shows the results obtained for the modified PI 
controller Algorithm II. Most of the undetected wrong 
results had no or minor impact on the controlled object, 
similar to what is observed for Algorithm I (5.06% of all 
faults injected lead to minor undetected wrong results).  

x : float -- state of the controller  
x_old, u_old : float -- two back-up states 

function PI_Controller(r, y : float) 
 Kp, T : constant float -- constants 
 e, u, u_lim: float -- controller variables 
begin 
 e = r - y -- calculate control error 
 if not in_range(x) -- x out of limits? 
   x = x_old -- ERROR! recover state x 
 else 
   x_old = x -- save state x 
 end if 
 u = e * Kp + x -- calculate output signal 
 u_lim = limit_output(u) -- range check of u 
 if anti_windup_activated then 

Ki = 0.0 -- disable integration 
 else 

Ki = integral_gain -- enable integration 
 end if 
 x = x + T * e * Ki -- integrate, update x  
 if not in_range(u_lim) -- u_lim out of limits? 
   u_lim = u_old -- ERROR! get last output 
   x = x_old -- and corresponding state  
 end if 
 u_old = u_lim -- save output 
 return u_lim 
end 



 

The results also show that 0.17% of the faults injected 
had severe impact on the controlled object (caused severe 
undetected wrong results), which corresponds to 3.23% of 
all value failures produced using the Algorithm II. Thus, 
the percentage of severe undetected wrong results are 
significantly reduced for Algorithm II compared to 
Algorithm I, where 10.7% of the value failures were 
classified as severe.  

 

 

 
Figure 10.  Fault-free output vs. undetected 
wrong result not detected by the assertions. 

 

 
A detailed investigation of the 

severe undetected wrong results 
shows that no permanent value 
failures were observed for Algorithm 
II. However, since 0.17% of all 
errors still lead to severe undetected 
wrong results which were semi-
permanent, additional research 
focusing on more sophisticated 
assertions capable of detecting the 
remaining errors is required. One 
explanation for the undetected wrong 
results produced by Algorithm II is 
shown in Figure 10. The figure 
shows the controller output when the 
state variable x changes from a 
correct value of approximately 10 
degrees to an incorrect value of 69 

degrees at time t = 6.  
The assertions will not detect such errors since x is 

within the valid range (i.e. between 0.0 and 70.0 in our 
case). After approximately 1 second, the output stabilizes, 
but the output sequence will be classified as a severe 
undetected wrong result that is semi-permanent. 

 

4.5. Comparison of results for Algorithm I and II 

Table 4 shows a detailed comparison of the undetected 
wrong results (value failures) obtained for Algorithm I 
and II. The table shows that the percentage of severe 
value failures (permanent and semi-permanent) are 
reduced for Algorithm II while the percentage of minor 
value failures (transient and insignificant) increased. The 
reason for this is that the best effort recovery mechanisms 
of Algorithm II managed to detect many potential severe 
value failures resulting in minor value failures being 
produced instead. Thus, the total percentage of undetected 
wrong results is almost equal for Algorithm I and II 
(5.02% vs. 5.23%). 

The percentage of permanent value failures is 0.12% 
for Algorithm I while no permanent value failures at all 
are observed for Algorithm II. The percentage of semi-
permanent value failures decreased from 0.42% for 
Algorithm I to 0.17% for Algorithm II. This corresponds 
to a total reduction of the percentage of severe value 
failures, from 0.54% for Algorithm I to 0.17% for 
Algorithm II. Although, the results for Algorithm II are 
based on only 2372 injected faults vs. 9290 injected faults 
for Algorithm I, the corresponding 95% confidence 
intervals indicate that the total percentage of severe value 
failures is lower for Algorithm II. 

Table 3.  Results for Algorithm II. 
Part of CPU fault injected

 (no. of state elements)
Type of Errors and Wrong Results # # #
Latent Errors 21,04% ( � 1,85% ) 391 59,14% ( � 4,25% ) 304 29,30% ( � 1,83% ) 695
Overwritten Errors 50,38% ( � 2,27% ) 936 18,87% ( � 3,39% ) 97 43,55% ( � 2,00% ) 1033
Total (Non Effective Errors) 71,42% ( � 2,05% ) 1327 78,02% ( � 3,58% ) 401 72,85% ( � 1,79% ) 1728

Address Error 16,15% ( � 1,67% ) 300 5,45% ( � 1,96% ) 28 13,83% ( � 1,39% ) 328
Data Error 0,00% ( � 0,00% ) 0 0,58% ( � 0,66% ) 3 0,13% ( � 0,14% ) 3
Instruction Error 2,69% ( � 0,74% ) 50 2,14% ( � 1,25% ) 11 2,57% ( � 0,64% ) 61
Jump Error 0,05% ( � 0,11% ) 1 0,00% ( � 0,00% ) 0 0,04% ( � 0,08% ) 1
Constraint Check 0,00% ( � 0,00% ) 0 0,00% ( � 0,00% ) 0 0,00% ( � 0,00% ) 0
Access Check 1,45% ( � 0,54% ) 27 0,19% ( � 0,38% ) 1 1,18% ( � 0,43% ) 28
Storage Error 0,43% ( � 0,30% ) 8 10,12% ( � 2,61% ) 52 2,53% ( � 0,63% ) 60
Overflow 0,00% ( � 0,00% ) 0 0,00% ( � 0,00% ) 0 0,00% ( � 0,00% ) 0
Illegal Operation 0,54% ( � 0,33% ) 10 1,17% ( � 0,93% ) 6 0,67% ( � 0,33% ) 16
Control Flow Errors 0,70% ( � 0,38% ) 13 0,97% ( � 0,85% ) 5 0,76% ( � 0,35% ) 18
Other Errors 0,05% ( � 0,11% ) 1 0,78% ( � 0,76% ) 4 0,21% ( � 0,18% ) 5
Undetected Wrong Results (Severe) 0,22% ( � 0,21% ) 4 0,00% ( � 0,00% ) 0 0,17% ( � 0,17% ) 4
Undetected Wrong Results (Minor) 6,30% ( � 1,10% ) 117 0,58% ( � 0,66% ) 3 5,06% ( � 0,88% ) 120
Total (Effective Errors) 28,58% ( �� 2,05% ) 531 21,98% ( �� 3,58% ) 113 27,15% ( �� 1,79% ) 644

Total (Faults Injected) 100,00% 1858 100,00% 514 100,00% 2372

Total (Undetected Wrong Results) 6,51% ( � 1,12% ) 121 0,58% ( � 0,66% ) 3 5,23% ( � 0,90% ) 124
Coverage 93,49% ( � 1,12% ) 99,42% ( � 0,66% ) 94,77% ( � 0,90% )

Total

%      (95 % conf) %      (95 % conf)
(426) (2250)

Cache Registers

%      (95 % conf)
(1824)

 



 

5. Conclusions 

We have demonstrated that bit-flips inside a central 
processing unit executing an engine control program can 
cause critical failures, such as permanently locking the 
engine’s throttle at full speed. These failures were caused 
by errors that escaped several hardware implemented 
error detection mechanisms included in the CPU.  Our 
fault injection experiments showed that 11% of the 
undetected errors leading to value failures seriously 
affected the control of the engine. These critical failures 
were caused by errors affecting the state variable of the 
control algorithm. By using software assertions and a best 
effort recovery mechanism, we managed to reduce the 
percentage of the critical failures to 3%. The control 
algorithm used in our experiments was a simple PI 
controller. Thus, we have demonstrated that software 
assertions in combination with best effort recovery can be 
very effective in reducing the number of critical failures 
for simple control algorithms. In our future research we 
will investigate the use of software assertions and best 
effort recovery techniques for multiple input and multiple 
output control algorithms such as jet-engine controllers. 
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Table 4.  Comparison of results for Algorithm I and II. 

# #
Total (Non Effective Errors) 73,87% ( � 0,89% ) 6863 72,85% ( � 1,79% ) 1728

Total (Detected Errors) 21,11% ( � 0,83% ) 1961 21,92% ( � 1,67% ) 520
Undetected Wrong Results (Permanent) 0,12% ( � 0,07% ) 11 0,00% ( � 0,00% ) 0
Undetected Wrong Results (Semi-Permanent) 0,42% ( � 0,13% ) 39 0,17% ( � 0,17% ) 4
Undetected Wrong Results (Transient) 0,94% ( � 0,20% ) 87 1,56% ( � 0,50% ) 37
Undetected Wrong Results (Insignificant) 3,54% ( � 0,38% ) 329 3,50% ( � 0,74% ) 83
Total (Undetected Wrong Results) 5,02% ( � 0,44% ) 466 5,23% ( � 0,90% ) 124

Total (Effective Errors) 26,12% ( �� 0,89% ) 2427 27,15% (�� 1,79% ) 644

Total (Faults Injected) 100,00% 9290 100,00% 2372

%       ( 95 % conf)   %        (95 % conf)
Results for Algorithm I Results for Algorithm II

 


