
Abstract
This paper describes and compares three physical

fault injection techniques—heavy-ion radiation, pin-level
injection, and electromagnetic interference—and their use
in the validation of MARS, a fault-tolerant distributed
real-time system. The main features of the injection tech-
niques are first summarized, and then the MARS system is
described. The distributed testbed set-up and the common
test scenario implemented to perform a coherent set of
experiments by applying the three fault injection tech-
niques are also described. The results are presented and
discussed; special emphasis is put on the comparison of
the specific impact of each technique.
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1 Introduction
The dependability assessment of a fault-tolerant sys-

tem is a complex task that requires the use of different lev-
els of evaluation and related tools. Besides and in
complement to other possible approaches such as proving
or analytical modelling whose applicability and accuracy
are significantly restricted in the case of complex fault-tol-
erant systems,fault-injection has been recognized to be
particularly attractive and valuable. Indeed, by speeding
up the occurrence of errors and failures, fault injection is
in fact a method fortesting the fault tolerance algorithms/
mechanisms with respect to their own specific inputs:the
faults.

Fault injection can be applied either on a simulation
model of the target fault-tolerant system (e.g., see [4, 7])
or on a hardware-and-software implementation (e.g., see
[1, 26]).

Clearly simulation-based fault injection is desirable as
it can provide early checks in the design process of fault
tolerance algorithms/mechanisms. Nevertheless, it is
worth noting that fault injection on a prototype featuring
the actual interactions between the hardware and software
dimensions of the fault tolerance algorithms/mechanisms

supplies a more realistic and necessary complement to val-
idate their implementation in a fault-tolerant system. Until
recently, most studies related to the application of fault
injection on a prototype of a fault-tolerant system relied on
physical fault injection, i.e., the introduction of faults
through the hardware layer of the target system [1, 6, 22].
A trend favouring the injection of errors through the soft-
ware layer for simulating physical faults (i.e., software-
implemented fault injection) has recently emerged (e.g.,
see [8, 23]). Although such an approach facilitates the
application of fault injection, the correspondence between
the types of errors that can be injected this way, and the
actual faults is not yet confidently established. In spite of
the difficulties in developing support environments and
realizing experiments, physical fault injection enables real
faults to be injected in a very close representation of the
target system without any alteration to the software being
executed.

Among the large number of experiments reported
concerning physical fault injection, all used widely differ-
ent techniques and/or were applied to distinct target sys-
tems. This significantly hampers the possibility to identify
the difficulties/benefits associated to each fault injection
technique and to analyse the results obtained.

This study relies on two major objectives. The first
one is to get a better understanding of the impact and fea-
tures of the three physical fault injection techniques that
are considered and in which the sites have gained expertise
in developing and applying dedicated experimental tools
or in using standard support environments, respectively:
heavy-ion radiation, pin-level injection and electromag-
netic interferences (EMI). The distributed fault-tolerant
system architecture MARS (Maintainable Real-Time Sys-
tem) developed by the Technical University of Vienna [10]
is being used as the target system to carry out these exper-
iments. Thus, the other driving objective is to evaluate the
coverage of the built-in fault tolerance features of the
MARS system. A distributed testbed architecture featuring
five MARS nodes and a common test scenario have been
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implemented at all three sites to perform a coherent set of
experiments.

The remaining part of this paper is decomposed into
six sections. Section 2 presents the main features of the
fault injection techniques considered. The fault tolerance
aspects of the MARS architecture and the structure of the
MARS nodes are described in Section 3. Section 4 defines
the approach considered for the experimental evaluation
and the predicates characterizing the behaviour of the tar-
get system in the presence of injected faults. Section 5
depicts the common testbed set-up being used by all sites
to carry out the experiments. The results are presented and
discussed in Section 6. Finally, concluding remarks are
provided in Section 7.

2 The Fault Injection Techniques
In this section, we briefly present the main features of

the three fault injection techniques considered for the
experimental assessment of the MARS system. Note that
the pin-level and heavy-ion techniques have been largely
reported in the literature, while the EMI technique has not
previously been used for evaluation of error detection
mechanisms.

2.1 Heavy-Ion Radiation
Heavy-ion radiation from a Californium-252 source

can be used to inject single event upsets, i.e., bit flips at
internal locations in integrated circuits. The heavy-ion
method has been used to evaluate several hardware- and
software-implemented error detection mechanisms for the
MC6809E microprocessor [6, 15]. The irradiation of the
target circuit must be performed in a vacuum as heavy-
ions are attenuated by air molecules and other materials.
Consequently, the packaging material that cover the target
chip must also be removed. In these experiments, a minia-
ture vacuum chamber containing the target circuit and the
Cf-252 source was used. A comprehensive description of
the heavy-ion fault injection technique and of the support-
ing tools is given in [9].

A major feature of the heavy-ion fault injection tech-
nique is that faults can be injected into VLSI circuits at
locations which are impossible to reach by other tech-
niques such as pin-level and software-implemented fault
injection. The faults are also reasonably well spread within
a circuit, as there are many sensitive memory elements in
most VLSI circuits. Thereby, the injected faults generate a
variety of error patterns which allows a thorough testing of
fault handling mechanisms.

2.2 Pin-Level Injection
Pin-level fault injection, i.e., the injection of faults

directly on the pins of the ICs of a prototype was until now

the most widely applied physical fault injection technique.
It has been used for (i) the evaluation of the coverage of
specific mechanisms (in particular for error detection by
means of signature analysis [22], and (ii) the validation of
fault-tolerant distributed systems (e.g., [2, 26]). Flexible
tools supporting some general features have been devel-
oped (e.g., the test facility used on the FTMP [13], MES-
SALINE at LAAS-CNRS [1] or RIFLE [14] at the
University of Coimbra). The tool MESSALINE that will
be used in these experiments is a flexible tool capable of
adapting easily to various target systems and to different
measures. It supports two implementations of pin-level
fault injection:
• forcing, where the fault is directly applied by means of

multi-pin probes on IC(s) pin(s) and associated equipo-
tential line(s),

• insertion, where the IC(s) under test is(are) removed
from the target system and inserted on a specific box
where transistor switches ensure the proper isolation of
the IC(s) under test from the system.

The fault models supported are stuck-at (0 or 1). Tem-
porary faults can be injected on the pins of the ICs to sim-
ulate the consequences of such faults on the pins of the
faulted IC(s).

2.3 EMI
An important class of computer failures are those

caused by electro-magnetic interference (EMI). Such dis-
turbances are common, for example, in motor cars, trains
and industrial plants. Consequently, we decided to investi-
gate the use of EMI for the evaluation of the MARS sys-
tem. The fault injector used in the experiments generates
bursts conforming to IEC 801-4 standard (CEI/IEC), i.e.,
the duration of the bursts is 15 ms, the period is 300 ms,
the frequency is 1.25, 2.5, 5, or 10 kHz, and the voltage
may be selected from 225 V to 4400 V (see Figure 1).
These bursts are similar to those, which arise when switch-
ing inductive loads with relays or mechanical circuit-
breakers.

Figure 1: Electro-magnetic bursts

The faults were injected into the target system, which
consisted of a single computer board, in two different
ways (see Figure 2). In the first way, the computer board
was placed between two conducting plates connected to
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probe that could expose a smaller part of the board to the
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disturbances. In order to direct the faults to specific parts
of the computer board, such a the CPU buses, small pieces
of wire functioning as antennas were connected to the pins
of specific ICs. The antennas were used with both the
probe and the plates. In addition, experiments were also
conducted using the probe without the antennas.

3 The MARS Architecture
This section summarizes the main fault tolerance fea-

tures of the MARS architecture [10]. Fault tolerance issues
at system-level are discussed first, then the structure of a
special-purpose processing node designed to support these
features in an optimal way are briefly described [21, 24].
Finally, special attention is paid to the identification and
characterization of the error detection mechanisms.

Figure 3: System structure of MARS

3.1 Fault Tolerance
A fault-tolerant distributed real-time system can be

built up with a number of autonomous, fail-silent [17]
processing nodes that are interconnected by a real-time
network and which communicate by exchanging mes-
sages. The MARS system is the realization of such an
approach. In MARS all active and passive components are
replicated to prevent a single failure of such a component
from causing a system failure. Up to three processing
nodes execute identical software and form a Fault-Tolerant
Unit (FTU). The FTUs communicate via the real-time net-
work that is implemented as a replicated broadcast channel
(see Figure 3).

MARS uses a two-layered mechanism to achieve
fault-tolerance. The bottom layer (node layer) is responsi-
ble for error detection and error confinement (i.e., node
shutdown on error). These functions are carried out by the
processing nodes, which are therefore called “fail-silent”.
The task of fail-silent nodes is to detect all internal errors
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and to prevent their propagation. Therefore, the top layer
(system layer) needs not to care about erroneous data, it
only has to provide enough redundancy to tolerate (silent)
failures of parts of the system. The major functions of the
top layer are handling of redundant data and reconfigura-
tion of the system in case of a node failure [5].

To achieve a deterministic timing behaviour even in
the presence of faults, the MARS system uses active
redundancy for all processing and communication activi-
ties: each process is executed simultaneously at all nodes
of an FTU and each message is transmitted quasi-simulta-
neously on each of the broadcast channels. Due to the fail-
silence property, the results of all three nodes of an FTU
are assumed to be correct and may be used interchangea-
bly. Since we need only two nodes to tolerate a single fail-
ure of a fail-silent node (i.e., the loss of a message), the
optional third node, the shadow node, does not transmit
any message on the real-time network as long as both
active nodes are operational. Only if an active node fails,
the shadow node immediately starts to transmit its results,
thus restoring the initial degree of redundancy.

3.2 Structure of the Processing Node
The single board implemented node consists of two

independent processing units (see Figure 4), the applica-
tion unit and the communication unit. Each unit is based
on a 68070 CPU, a processor resembling the 68000 and
including a memory management unit, a two-channel
DMA controller, a UART (universal asynchronous
receiver and transmitter) interface (RS232), an Inter-IC
(I2C) bus, and an interrupt controller [16]. Further, each
unit features a 16 bit parallel I/O-port and an EPROM. The
application unit also contains a dynamic RAM, and two
bidirectional FIFOs, one of which serves as an interface to
external add-on hardware, the other one connects the
application unit to the communication unit. Additional
hardware for the communication unit comprises a Static
Random Access Memory (SRAM), two Ethernet control-
lers, two Clock Synchronization Units (CSU) required for
maintaining a global time base, and a watchdog timer.

3.3 The Error Detection Mechanisms
Three levels of error detection mechanisms (EDMs)

are implemented in the MARS nodes: (i) the hardware
EDMs, (ii) the system software EDMs implemented in the

Figure 2: Coupling of EMIs
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operating system [11, 19, 20] and support software (i.e.,
the Modula/R compiler [25]), and (iii) the application
level EDMs at the highest level. The error detection mech-
anisms provide the fail-silence property of the MARS
nodes and are described in the following subsections.

3.3.1 Hardware EDMs.Whenever an error is detected by
one of the hardware EDMs, in general, an exception is
raised and the CPU will then wait for a reset issued by a
watchdog timer. This watchdog timer is the only device,
which may cause a reset of all devices including the CPU.

Two categories of hardware EDMs can be distin-
guished: the mechanisms provided by the CPU and those
provided by special hardware on the processing board. In
addition, faults can also trigger unexpected exceptions
(i.e., neither the EDMs built into the CPU nor the mecha-
nisms provided by special hardware are mapped to these
exceptions).

The EDMs built into the CPU [16] are: bus error,
address error, illegal op-code, privilege violation, division
by zero, stack format error, uninitialized vector interrupt
and spurious interrupt. These errors cause the processor to
jump to the appropriate exception handling routines,
which save the error state to a non volatile memory and
then restart the node. Upon restart, a detailed error
description is written to a serial port.

The following errors are detected by mechanisms
implemented by special hardware on the node: silent shut-
down of the CPU of the communication unit, power fail-
ure, parity error, FIFO over/underflow, access to
physically non-existing memory, write access to the real-
time network at an illegal point in time, error of an exter-
nal device and error of the other unit. We call these “NMI
mechanisms”, as they raise a Non-Maskable Interrupt
when an error is detected.

An NMI leads to the same exception handling as the
error detection mechanisms built into the CPU and can
only be cleared by resetting the node, which is done by the
watchdog timer.

3.3.2 System Software EDMs.The EDMs implemented
by system software include mechanisms produced by the
compiler (i.e., Compiler Generated Run-Time Assertions,
CGRTA): value range overflow of a variable and loop iter-
ation bound overflow.

The others are built into the operating system as asser-
tions or as integrity checks on data: processing time over-
flow; various checks on data, done by the operating
system; and various assertions coded into the operating
system.

When an error is detected by any of these mecha-
nisms, a trap instruction is executed, which leads to a node
restart.

3.3.3 Application Level EDMs. The application level
EDMs include end-to-end checksums for message data
and double execution of tasks. The end-to-end checksums
are used to detect mutilation of message data and is there-
fore used for implementing the extended fail-silence prop-
erty of the nodes, i.e., the node is also considered to be
fail-silent even when a corrupted message is sent, if the
receiver detects the error and discards the message. Dou-
ble execution of tasks in time redundancy can detect errors
caused by transient faults that cause different output data
of the two instances of the task. Combined with the con-
cept of message checksums, task execution in time redun-
dancy forms the highest level in the hierarchy of the error
detection mechanisms. These mechanisms also trigger the
execution of a trap instruction, which causes a reset of the
node.

4 Measurements
The fail silence property of a MARS node when sub-

jected to faults was assessed by means of fault injection
campaigns using each of the techniques described in
Section 2. In this section, we first provide an overview of
the method supporting the experimental assessment, then
we precisely define the predicates considered to perform
the analyses. The common testbed set-up implemented for

Figure 4: Block diagram of the processor board
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carrying out the fault injection experiments with the three
techniques is described in Section 5.

4.1 Experimental Assessment
Each campaign consists of several experiment runs.

During each experiment a fault is injected into one node
(node under test), another node (golden node) serves as a
reference and a third node (comparator node) is used to
compare the messages sent by the two previous nodes.
Fault injection takes place until the node under test is
declared to be failed by the comparator node. Then the
node under test is shut down by the comparator node to
clear all error conditions for the new experiment run. After
some time, power is reinstalled and the node under test is
reloaded for the next experiment run.

The assessment of the fail-silence property is obtained
by monitoring the error detection information provided by
EDMs of the node under test or by means of message
checksum detections at the comparator node. Several com-
binations of enabled/disabled EDMs have been analysed,
in order to study their impact on the fail silence property.

Although these measurements provide very valuable
inputs for assessing the fail silence coverage of a MARS
node, it is worth noting that estimating the ‘real’ coverage
of the EDMs is a much more difficult task. The reason is
that the real fault set usually is not known in detail, and
even less is known about the probability of occurrence of
the individual faults. In principle, an estimate of the ‘real’
coverage can be calculated as a weighted mean of the cov-
erage factors obtained by different fault injection methods
(e.g., see [18]). However, the lack of knowledge about the
‘real’ faults makes it very difficult—and in many practical
cases impossible—to calculate the weight factors.

Each fault injection technique used here should there-
fore be considered strictly as a ‘benchmark’ method that
can be used to evaluate the relative effectiveness of differ-
ent EDMs. Combining several fault injection techniques
improves the possibility to investigate coverage sensitivity
with respect to changes in the error set.

4.2 Predicates
Four failure types can be distinguished for the node

under test:
1) The node’s EDMs detect an error and the node

stops sending messages on the MARS bus; in this case the
node stores the error condition into a non-volatile memory
and resets itself by means of the watchdog timer.

2) The node fails to deliver the expected application
message(s) for one or several application cycles, but no
error is detected by the node’s EDMs.

3) The node delivers a syntactically correct message
with erroneous content. This is a fail-silence violation in
the value domain, which is recognized as a mismatch

between the messages sent by the node under test and the
golden node.

4) The node sends a message at an illegal point in
time, and thus disturbs the traffic on the MARS bus. This
is a fail-silence violation in the time domain.

On every restart the node under test writes its previ-
ously saved error data, if available (i.e., if an error was
detected by the node’s EDMs), and data about its state to
two serial ports, where it can be read and stored for further
processing. From these data, the following predicates
(events) can be derived:

Warmstart (WS): Warmstart (reset) of the node under
test caused by the detection of (i) an error by the node’s
EDMs (Internal WS) or, (ii) an incoming or outgoing link
failure by means of the top layer of the fault-tolerance
mechanism, i.e., the membership protocol [10] (External
WS).

Message loss (ML): One message (or more) from the
node under test was lost (i.e., not received by the compara-
tor node).

Message mismatch (MM): Reception by the compara-
tor node of differing messages from golden node and
tested node.

System Failure (SF): Failure of either the golden, data
generation, or comparator nodes.

Coldstart (CS): Coldstart (power on) of the node
under test is made after every experiment run, except when
a system failure occurred.

The first four predicates roughly corresponds to the
four failure types mentioned above. TheCS predicate indi-
cates the end of each data set. The assertion (occurrence)
of theWS predicate in the data corresponds to the normal
case when the node under test detects the error (failure
type 1). The assertion ofML corresponds to a message loss
failure (failure type 2); this behaviour is not a fail-silence
violation, because no erroneous data is sent, but the error
is not detected by the EDMs in the node under test. Irre-
spective of the other events, the assertion ofMM (failure
type 3) corresponds to a fail silence violation (in the data
domain). There are two ways in which anSF failure may
occur: (i) a fail silence violation in the time domain (fail-
ure type 4) affect the operation of the other nodes, or
(ii) another node than the node under test experience a real
hardware failure during the experiments. (Although, noSF
failures were observed in the experiments, this failure type
is described for the sake of completeness.)

Given the above failure types, the number of fail-
silence violations can be counted as:

where# Exp.⊇ X counts the number of experiments where
a X-type failure was diagnosed (i.e., predicateX was
asserted).

#FS Viol. #Exp. MM⊇ #Exp. SF⊇+=



5 Common Experimental Set-up
The experimental set-up used by all sites consists of

five MARS nodes and is similar to the one used in [3]. The
workload is a realistic control application.

5.1 Test Application
As error detection coverage is highly dependent on

the system activity, it is important to use a realistic work-
load in fault injection experiments. We selected a typical
real-time application—a control problem—as workload in
the MARS experiments. The control problem was taken
from the rolling ball experiment [12] in which a ball is
kept rolling along a circular path on a tiltable plane by
controlling the two horizontal axes of the plane by servo
motors and observing the position of the ball with a video
camera. The tiltable plane and the camera are not present
in our set-up; instead, the data from the camera is simu-
lated by a data generation task. An additional task was
provided, which compares the results of the two actively
redundant computing nodes, both of which execute the
control task.

The application executed during the fault injection
experiments basically consists of three tasks (see also
Figure 5):

1) Thedata generation task generates the input data
for the control task. The input data include the nominal
and actual values of the position, speed and acceleration of
the ball.

2) Thecontrol task, which does not preserve any data
or state information between its periodic executions,
receives the emulated data from the data generation task
and performs calculations on these data, i.e., calculates the
desired acceleration for the ball.

3) Thecomparator taskreceives the results delivered
by the two nodes that run the control-task in active redun-
dancy, and compares them. This task also gives status
information about the experiment, and assists in control-
ling the fault injection devices (i.e., it indicates when fault
injection may take place) and the power supply of the node
under test.

Figure 5: Tasks and message flow
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The entire application has a period of 40 ms, i.e., all
application tasks are started every 40 ms and hence pro-
duce a result in the same time interval. The application
software is written in Modula/R [25] a Modula-2 like pro-
gramming language with real time support for MARS.

5.2 Hardware Configuration
For the experiments five MARS nodes are needed (see

Figure 6). One serves as a gateway between the depart-
ment’s local area network and the MARS-bus and is
required for loading the entire application and for reload-
ing the node under test. Another node executes the data
generation task. The control task is performed on two
actively working redundant nodes, one of which serves as
a golden node, the other one is subjected to fault injection.
The fifth node executes the comparator task. A UNIX
workstation is used to control the experiments and to col-
lect data for further analysis.

This experimental set-up is based on the assumption
that the nodes arereplica determinate, i.e., two replicated
nodes produce always the same results if provided with the
same input data. The MARS architecture supports this
property.

Figure 6: Detailed set-up architecture

5.3 Detailed Operation of the Experimental Set-
up

Figure 6 describes the detailed set-up architecture and
identifies the interactions with the fault injector devices. In
the case of heavy-ion (HI), the target circuit is inserted in a
miniature vacuum chamber containing a Cf-252 source;
radiation can be controlled by an electrically manoeuvred
shutter [9]. For pin-level injection, the pin-forcing (PF)
technique is used; thus, the injection probe is directly con-
nected to the pins of the target IC [1]. For EMI, both the
technique using the two plates and the probe was used for
the injections.

The experiments are controlled by the comparator
MARS node and a UNIX workstation. The workstation is
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also responsible for data collection. When the comparator
node detects an error (error type ML or MM, see Section
4.2), it reports the error type to the workstation and turns
off the power to the node under test with the signal AL 6.
Signal AL 7 is used to discontinue fault injection (e.g., by
closing the shutter mechanism of the vacuum chamber in
the case of HI). Then the node under test is powered-up
again and restarted. Upon restart, the application unit and
the communication unit in the node under test send error
data to the workstation via two serial lines. (If the error is
not detected by the node under test itself, then the node has
no error information available and sends only a status mes-
sage). Once the node under test has been restarted, the
workstation immediately starts to download the applica-
tion. When the application has been restarted, the compa-
rator node enables fault injection (signal AL 7) and a new
experiment begins.

6 Results
The goal for the comparison of the fault injection

techniques is to identify similarities and differences in the
error sets generated by the three techniques. If the error
sets are found to be disjoint, the fault injection techniques
can be judged as fully complementary. In this case, apply-
ing all three techniques in the validation of a fault-tolerant
system would improve the confidence of the validation
results. In our case, the error sets were observed indirectly
via the distribution of error detections among the various
EDMs. To achieve as much similarity as possible among
the error sets, faults were only injected inside, on the pins,
or in the vicinity of either the application CPU or the com-
munication CPU of the node under test.

Three different combinations of the application level
EDMs have been evaluated for the three fault injection
techniques considered. We use the following acronyms for
these combinations: NOAM (no application level mecha-
nisms, i.e., single execution and no checksums), SEMC
(single execution, message checksums), DEMC (double
execution, message checksums), see also Table 1. In addi-
tion a fourth combination, TEMC (triple execution, mes-
sage checksums), was used in the heavy-ion experiments
(see Section 6.1).

Table 1: Experimental combinations

In the following paragraphs, we present in sequence
the results obtained by the application of each technique.
Then, these results are analysed and compared in a subse-
quent paragraph.

Combination no. Execution Message Checksum Acronym
1 Single No NOAM
2 Single Yes SEMC
3 Double Yes DEMC
4 Triple Yes TEMC

6.1 Heavy-Ion Radiation
Two circuits in the node under test were irradiated in

separate experiments: the CPU of the application unit and
the CPU of the communication unit. The irradiation was
performed using a miniature vacuum chamber containing
the irradiated circuit and a Cf-252 source (nominal activity
37 kBq); the distance between the source and the IC was
approximately 35 mm. The IC’s pin connections extended
through the bottom plate of the miniature vacuum cham-
ber, so that the chamber could be plugged directly into the
socket of the irradiated IC in the MARS system.

Because the irradiated ICs were CMOS circuits, they
had to be protected from heavy-ion induced latch-up. A
latch-up is the triggering of a parasitic four layer switch
(npnp or pnpn) acting as a silicon controlled rectifier
(SCR), which may destroy the circuit due to excessive heat
dissipation. The triggering of a latch-up is indicated by a
drastic increase in the current drawn by the circuit. To pre-
vent latch-ups from causing permanent damage to the ICs,
a special device was used to turn off the power to the ICs
when the current exceeded a threshold value.

Table 2 shows the distribution of error detections
among the various EDMs for each of the irradiated CPUs,
and the four combinations given in Table 1. The “Other”
category in Table 2-a shows those errors for which no
error information was given by the unit which contained
the fault injected circuit. Error information was instead
given by the other (fault free) unit of the tested node for
some of these errors (“Other unit” category). This error
information is detailed in Table 2-b. The “No error info.”
category gives the number of errors for which none of the
two units in the MARS node produced error information.

The hardware EDMs, in particular the CPU mecha-
nisms, detected most of the errors. This is not surprising
since the faults were injected into the CPU. The proportion
of errors detected by the hardware EDMs is larger for
faults injected into the communication CPU than for faults
injected into the application CPU. In particular, the cover-
age of the NMI EDMs is higher in the former case. Unex-
pected exceptions (UEE) occur with a frequency of about
15% in all combinations.

Errors detected by the OS EDMs dominate for the
software EDMs, and for application level EDMs, the mes-
sage checksum EDMs dominate.

The percentage of fail silence violations was between
2.4% and 0.5% for the NOAM, SEMC and DEMC combi-
nations when faults were injected into the application
CPU. As expected, the number of fail silence violations is
lower for SEMC than for NOAM, and even lower for
DEMC. When faults were injected into the communica-
tion CPU, only one fail silence violation was observed (for
NOAM).

The observation of fail-silence violations for the



DEMC combination was unexpected. In principle, all
effects of transient faults should be masked by the double
execution of tasks. One hypothesis for explaining these
violations is that an undetected latch-up caused the same
incorrect result to be produced by both executions of the
control task.

To further investigate this hypothesis, experiments
were carried out with the TEMC combination that used a
third time redundant execution of the control task which
was provided with fixed input data for which the results
were known. This made it possible to detect errors by
comparing the produced results with the correct results.
This mechanism, which can be viewed as an on-line test
program, would detect any semi-permanent fault such as
the one suggested by the latch-up hypothesis.

The results show that no fail-silence violations
occurred for the TEMC combination. As Table 2-a shows,
0.8% of the errors were detected by the third execution of
the control task. This result supports the latch-up hypothe-
sis. However, our experimental set-up does not provide
sufficient observability to fully prove the latch-up hypoth-
esis. In principle, the absence of fail-silence violations
may merely be an effect of the change of the software con-
figuration caused by the switch from DEMC to TEMC,
and the errors detected by the third execution may have
been caused by regular transients. Verification of the latch-

up hypothesis, would require the use of a logic analyser so
that the program flow and behaviour of the microprocessor
could be studied in detail.

The OS and NMI EDMs dominate the detections
made by the other unit of the tested node. The communica-
tions between the two units are carried out via two FIFO
buffers, and nearly all of these detections are made by
EDMs signalling empty FIFO. (An empty FIFO can be
detected both by the operating system and the special NMI
mechanism.)

6.2 Pin-Level Injection
The forcing technique was used for the fault injection

experiments carried out on the MARS system. The main
characteristics of the injected faults are listed hereafter:
• one single IC was fault injected at a time (the maximum

number of pins faulted simultaneously — i.e., the multi-
plicity of the fault — being limited tomx = 3),

• uniform distribution over all combination ofmx pins
was used to select themx faulted pins,

• stuck-at-0 and -1 fault models (all 0-1 combinations of
mx pins considered equally probable),

• to facilitate the comparison with the other techniques,
both transient and intermittent (series of transients)
faults were injected.

As the pin-forcing technique is being used, it can be

Table 2: Results for heavy-ion radiation

Error application unit CPU irradiated communication unit CPU irradiated
Detection NOAM SEMC DEMC TEMC NOAM SEMC DEMC

Mechanisms Errors % Errors % Errors % Errors % Errors % Errors % Errors %
Level 1 CPU 3735 47.7% 1410 49.0% 4280 47.4% 2573 51.3% 1113 44.9% 1270 43.2% 1056 43.3%

Hardware UEE 1173 15.0% 459 16.0% 1373 15.2% 736 14.7% 361 14.6% 416 14.1% 326 13.4%
NMI 549 7.0% 173 6.0% 570 6.3% 286 5.7% 500 20.2% 578 19.6% 484 19.9%

Subtotal 5457 69.7% 2042 71.0% 6223 68.9% 3595 71.7% 1974 79.6% 2264 76.9% 1866 76.6%
Level 2 OS 610 7.8% 222 7.7% 687 7.6% 273 5.4% 90 3.6% 144 4.9% 128 5.3%

Software CGRTA 75 1.0% 3 0.1% 30 0.3% 37 0.7% 10 0.4% 7 0.2% 13 0.5%
Subtotal 685 8.8% 225 7.8% 717 7.9% 310 6.2% 100 4.0% 151 5.1% 141 5.8%

Level 3 Double exec. — — — — 75 0.8% 56 1.1% — — — — 11 0.5%
Application Checksum — — 70 2.4% 247 2.7% 231 4.6% — — 48 1.6% 75 3.1%

level Subtotal — — 70 2.4% 322 3.6% 287 5.7% — — 48 1.6% 86 3.5%
Other Other unit 1095 14.0% 381 13.2% 1295 14.3% 566 11.3% 342 13.8% 407 13.8% 293 12.0%

No error info. 402 5.1% 122 4.2% 431 4.8% 216 4.3% 62 2.5% 73 2.5% 51 2.1%
Subtotal 1497 19.1% 503 17.5% 1726 19.1% 782 15.6% 404 16.3% 480 16.3% 344 14.1%

Triple execution — — — — — — 42 0.8% — — — — — —
Fail silence violations 186 2.4% 37 1.3% 48 0.5% 0 0% 1 <0.1% 0 0% 0 0%

Total no. of errors 7825 100% 2877 100% 9036 100% 5016 100% 2479 100% 2943 100% 2437 100%

(a) Detection by the EDMs of the unit to which the faulted ICs belong
Error application unit CPU irradiated communication unit CPU irradiated

Detection NOAM SEMC DEMC TEMC NOAM SEMC DEMC
Mechanisms Errors % Errors % Errors % Errors % Errors % Errors % Errors %

Level 1 CPU 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0%
Hardware UEE 3 <0.1% 2 0.1% 0 0% 3 0.1% 0 0% 0 0% 1 <0.1%

NMI 199 2.5% 58 2.0% 243 2.7% 103 2.1% 118 4.7% 147 5.0% 103 4.2%
Subtotal 202 2.6% 60 2.1% 243 2.7% 106 2.1% 118 4.7% 147 5.0% 104 4.3%

Level 2 OS 893 11.4% 321 11.2% 1052 11.6% 460 9.2% 224 8.9% 260 8.8% 189 7.8%
Software CGRTA 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0%

Subtotal 893 11.4% 321 11.2% 1052 11.6% 460 9.2% 224 8.9% 260 8.8% 189 7.8%
Level 3 Double exec. — — — — 0 0% 0 0% — — — — 0 0%

Application Checksum — — 0 0% 0 0% 0 0% — — 0 0% 0 0%
level Subtotal — — 0 0% 0 0% 0 0% — — 0 0% 0 0%

(b) Detection by the EDMs of the other unit (detail of “Other unit” entry in Table (a) above)



confidently considered that all pins of the ICs connected to
an injected pin are tested as well. Accordingly, in the set of
experiments conducted to date, to simplify the accessibil-
ity to the pins of the microprocessors of the application
and communication units, the target ICs were mainly
buffer ICs connected to them. Seven ICs (5 on the applica-
tion unit and 2 on the communication unit) were tested.
These tests resulted in a total of 3,266 error reports.

Table 3 shows the distribution of the errors detected
by the various EDMs for the tested ICs of the tested node
for three combinations of the application-level EDMs,
together with their percentage of the total number of errors
observed in each combination.

The results in Table 3-a indicate a dominant propor-
tion of detections by the hardware EDMs (more than 90%
on application unit side and 75% on communication unit
side). NMI clearly dominates; however, in addition to
CPU exceptions a significant number of UEEs were also
triggered. The difference between UEE and NMI for the
application and communication units can be explained by
the fact that not all ICs tested on the application unit are
directly connected to the processor. For software EDMs,
detections by the OS significantly dominate. Concerning
the application EDMs, the “Checksum” EDM mechanisms
is dominating; no detections were triggered by the “Dou-
ble execution” EDM when this option was enabled. Only a
limited number of fail silence violations were observed:

two occurrences for the SEMC combination when faults
were injected on the application unit side.

Table 3-b shows that NMI error detection types are
also dominating the supplementary detections observed on
the other unit. Here also, a significant difference is
observed between the results concerning the fault injec-
tions affecting the application unit side (from 0.2% to
1.2%) and the communication unit side (from 3.8% to
5.0%); this may indicate that a larger proportion of errors
is propagated to the application unit when faults are
injected in the communication unit rather than the con-
verse.

6.3 EMI
Various fault-injection campaigns were carried out

with a variety of voltage levels, with negative or positive
polarity of the bursts, and with a burst-frequency of
2.5 kHz and 10 kHz. A total number of more than 17,000
errors were observed during all campaigns conducted with
the first method, i.e., when the computer board of the node
under test was mounted between two plates, and more than
30,000 errors were observed using the special probe (see
Section 2.3). Most of the campaigns were conducted with
all application level EDMs enabled.

In the first campaign shown in Table 4 (NOAM(1))
faults were injected into the communication unit using the
two plates. Antenna wires were attached to the so-called

Table 3: Results for pin-level injection

Error ICs belonging to the application unit ICs belonging to the communication unit
Detection NOAM SEMC DEMC NOAM SEMC DEMC

Mechanisms Errors % Errors % Errors % Errors % Errors % Errors %
Level 1 CPU 71 11.2% 53 9.0% 38 7.0% 37 6.9% 37 8.2% 20 3.9%

Hardware UEE 48 7.6% 59 10.0% 41 7.6% 113 21.2% 73 16.2% 103 19.8%
NMI 474 75.0% 430 73.0% 423 78.2% 265 49.7% 260 57.5% 263 50.7%

Subtotal 593 93.8% 542 92.0% 502 92.8% 415 77.9% 370 81.9% 386 74.4%
Level 2 OS 6 0.9% 6 1.0% 7 1.3% 35 6.6% 21 4.6% 30 5.8%

Software CGRTA 0 0% 1 0.2% 0 0% 0 0% 0 0% 0 0%
Subtotal 6 0.9% 7 1.2% 7 1.3% 35 6.6% 21 4.6% 30 5.8%

Level 3 Double exec. — — — — 0 0% — — — — 0 0%
Application Checksum — — 0 0% 0 0% — — 1 0.2% 5 1.0%

level Subtotal — — 0 0% 0 0% — — 1 0.2% 5 1.0%
Other Other unit 1 0.2% 8 1.4% 2 0.4% 23 4.3% 17 3.8% 26 5.0%

No error info. 32 5.1% 30 5.1% 30 5.5% 59 11.1% 43 9.5% 72 13.9%
Subtotal 33 5.2% 38 6.5% 32 5.9% 82 15.4% 60 13.3% 98 18.9%

Fail silence violations 0 0% 2 0.3% 0 0% 1 0.2% 0 0% 0 0%
Total no. of errors 632 100% 589 100% 541 100% 533 100% 452 100% 519 100%

(a) Detection by the EDMs of the unit to which the faulted ICs belong
Error ICs belonging to the application unit ICs belonging to the communication unit

Detection NOAM SEMC DEMC NOAM SEMC DEMC
Mechanisms Errors % Errors % Errors % Errors % Errors % Errors %

Level 1 CPU 0 0% 0 0% 0 0% 0 0% 0 0% 0 0%
Hardware UEE 0 0% 0 0% 0 0% 0 0% 0 0% 2 0.4%

NMI 1 0.2% 7 1.2% 2 0.4% 23 4.3% 17 3.8% 24 4.6%
Subtotal 1 0.2% 7 1.2% 2 0.4% 23 4.3% 17 3.8% 26 5.0%

Level 2 OS 0 0% 1 0.2% 0 0% 0 0% 0 0% 0 0%
Software CGRTA 0 0% 0 0% 0 0% 0 0% 0 0% 0 0%

Subtotal 0 0% 1 0.2% 0 0% 0 0% 0 0% 0 0%
Level 3 Double exec. — — — — 0 0% — — — — 0 0%

Application Checksum — — 0 0% 0 0% — — 0 0% 0 0%
level Subtotal — — 0 0% 0 0% — — 0 0% 0 0%

(b) Detection by the EDMs of the other unit (detail of “Other unit” entry in Table (a) above)



LO-EPROM, in order to disturb the address bus and the
eight low order bits of the data bus. Bursts characterized
by a frequency of 2.5 kHz, negative polarity, and a voltage
of 230 V were injected. The second campaign (SEMC(2))
was conducted using the special probe with the wires con-
nected to the corresponding LO-EPROM in the applica-
tion unit. In this case the burst were characterized by a
frequency of 10 kHz, negative polarity, and a voltage of
300 V. Campaign number three (DEMC(3)) used the two
plates, the bursts had a frequency of 2.5 kHz, negative
polarity, and voltage of 230 V. The wires were attached to
the LO-EPROM of the application unit.

Campaigns 4 to 6 were only using the special probe
for coupling faults into the CPU of the application unit,
i.e., the probe was mounted on top of the CPU, and no
wires were attached to any chip. The chosen frequency for
the bursts was 10 kHz and negative polarity was used for
all these experiments. We used a voltage of 290 V for
campaign 4 and 6, while a slightly higher voltage, 300 V,
was used for campaign 5.

Due to the large number of campaigns made, only
selected campaigns are presented in Table 4, which shows
the distribution of the errors detected by the various EDMs
as total numbers and as percentage. Table 4-a shows the
errors detected by the unit, where fault-injection was
focused to; errors detected by the other unit of the node are
detailed in Table 4-b.

Campaigns 1 and 2 show similar results, although
focus of fault-injection was on different units of the
processing node, the communication unit for campaign
one and the application unit for campaign two. Most of the
errors were detected by the hardware EDMs, where the
CPU EDMs clearly dominate. For the software EDMs,
which only detected a small fraction of the errors, the OS
EDMs dominate. The relatively high amount of no error
information for campaign one partly results from the fact
that for this campaign no information about the errors
detected by the application unit is available, because this is
a result from early experiments, where only the outputs of
the unit under test was recorded, and therefore all errors
which were detected by the application unit are also
counted as “No-error-info”.

A different distribution of errors was observed for
campaign three. There the software EDMs detected most
of the errors, where error detection by OS EDMs domi-
nates. Most of the errors detected by the OS EDMs were
indicating that a message, that was required by the appli-
cation, was lost. Note that campaign one and three both
used the two plates, but the observed results are quite dif-
ferent. Campaigns 1 and 2 had different EMI conditions,
but here the results are very similar. In general very differ-
ent results were observed for similar conditions, e.g.,
slight changes in voltage levels. Thus, reproducibility
appears to be problematic for  EMI fault injection.

Table 4: Results for EMI

Error fault-injection with antennas fault-injection with probe only
Detection NOAM(1) SEMC(2) DEMC(3) NOAM(4) SEMC(5) DEMC(6)

Mechanisms Errors % Errors % Errors % Errors % Errors % Errors %
Level 1 CPU 1195 72.0% 193 76.6% 137 2.2% 4933 99.4% 1692 98.1% 1911 99.2%

Hardware UEE 11 0.7% 8 3.2% 9 0.2% 31 0.6% 17 1.0% 15 0.8%
NMI 48 2.9% 18 7.1% 695 11.4% 0 0% 3 0.2% 0 0%

Subtotal 1254 75.6% 219 86.9% 841 13.8% 4964 100% 1712 99.3% 1926 100%
Level 2 OS 110 6.6% 5 2.0% 5215 85.6% 0 0% 3 0.2% 0 0%

Software CGRTA 5 0.3% 0 0% 1 <0.1% 0 0% 0 0% 0 0%
Subtotal 115 6.9% 5 2.0% 5216 85.6% 0 0% 3 0.2% 0 0%

Level 3 Double exec. – – – – 9 0.2% – – – – 0 0%
Application Checksum – – 1 0.4% 8 0.1% – – 1 <0.1% 0 0%

level Subtotal - - 1 0.4% 17 0.3% - - 1 <0.1% 0 0%
Other Other unit – – 24 9.5% 6 0.1% 0 0% 6 0.3% 0 0%

No error info. 271 16.3% 0 0% 13 0.2% 0 0% 2 0.1% 0 0%
Subtotal 271 16.3% 24 9.5% 19 0.3% 0 0% 8 0.4% 0 0%

Fail silence violations 20 1.2% 3 1.2% 0 0% 0 0% 0 0% 0 0%
Total number of errors 1660 100% 252 100% 6093 100% 4964 100% 1724 100% 1926 100%

(a) Detection by the EDMs of the unit to which the faulted ICs belong
Error fault-injection with antennas fault-injection with probe only

Detection NOAM(1) SEMC(2) DEMC(3) NOAM(4) SEMC(5) DEMC(6)
Mechanisms Errors % Errors % Errors % Errors % Errors % Errors %

Level 1 CPU – – 0 0% 0 0% 0 0% 0 0% 0 0%
Hardware UEE – – 0 0% 0 0% 0 0% 0 0% 0 0%

NMI – – 0 0% 6 0.1% 0 0% 0 0% 0 0%
Subtotal – – 0 0% 6 0.1% 0 0% 0 0% 0 0%

Level 2 OS – – 24 9.5% 0 0% 0 0% 6 0.3% 0 0%
Software CGRTA – – 0 0% 0 0% 0 0% 0 0% 0 0%

Subtotal – – 24 9.5% 0 0% 0 0% 6 0.3% 0 0%
Level 3 Double exec. – – – – 0 0% – – – – 0 0%

Application Checksum – – 0 0% 0 0% – – 0 0% 0 0%
level Subtotal – – 0 0% 0 0% – – 0 0% 0 0%

(b) Detection by the EDMs of the other unit (detail of “Other unit” entry in Table (a) above)



In campaigns 4 to 6 almost all of the errors were
detected by the CPU EDMs. Only Campaign 5 shows a
small amount of errors detected by other EDMs than hard-
ware EDMs. When looking at the results of experiments 4
to 6 in more detail, which is not shown in Table 4 for brev-
ity, we discovered that almost all of the detected errors
were spurious interrupts detected by the processor. Spuri-
ous interrupts are interrupts signalled to the processor, but
the processor cannot find the source of the interrupt, i.e.,
the device having raised the interrupt. This shows that the
interrupt lines of a processor are highly sensitive to EMI.

Errors detected by the other unit were only detected
by the NMI EDMs and by the OS EDMs in all campaigns.

6.4 Discussion
Almost all of the fault injection campaigns show that

the hardware EDMs detect most of the errors. However,
one campaign, EMI DEMC(3), shows results which are
drastically different from the other campaigns. In order to
simplify the discussion, we neglect the results from this
campaign, when we compare the different results.

The main difference between the fault injection tech-
niques, when looking at the hardware EDMs, is the
number of errors detected by the CPU and the NMI mech-
anisms, respectively; the CPU EDMs dominate for heavy-
ion radiation and EMI, while the NMI EDMs dominate for
pin-forcing. A closer examination of the results showed
that heavy-ion radiation exercised seven of the eight CPU
EDMs, while EMI exercised five and pin-level exercised
four of the CPU EDMs.

For EMI, when using the probe without antennas, the
detection of spurious interrupts strongly dominated. Con-
sequently, this method generates a very restricted error set,
which clearly demonstrate that the method is not suitable
for evaluation of error detection mechanisms. However,
the variation in the error set was much larger when the
antennas were used.

The proportion of unexpected exceptions is fairly
large for pin-forcing and heavy-ion radiation, but quite
low for the EMI technique.

Pin-forcing exercised 34 different combinations of
NMI detections; the corresponding numbers for the heavy-
ion and EMI techniques were 26 and 16, respectively. This
indicates that pin-forcing may be more effective than the
other techniques in exercising hardware EDMs located
outside of the CPU chip.

One NMI mechanism of particular interest is the time-
slice controller, which prevents access to the MARS bus at
an illegal point in time. The results show that 5.0%, 11.6%
and 1.9% of the errors were detected by the time-slice con-
troller for heavy-ion, pin-forcing and EMI, respectively.
Without this mechanism, the fail-silence property would
have been violated in the time domain, which could lead to

system failure (see Section 4.2). No fail-silence violations
in the time domain were observed during the experiments.

The software EDMs detected the second largest
amount of errors for all techniques. The unbalance
observed in the case of heavy-ion radiation between the
OS and CGRTA EDMs, is amplified when using pin-forc-
ing and EMI: almost no detections by the CGRTAs were
observed for the two latter techniques.

The application level EDMs detected the smallest
amount of errors for all techniques, but when these were
disabled, the fail-silence coverage was reduced (particu-
larly for heavy-ion radiation) which shows the necessity of
using these mechanisms as well.

The heavy-ion radiation stresses the system the most
(i.e., the largest amount of fail-silence violations was
observed for this technique). This technique also generates
the largest error set, as indicated by the spread of the error
detections among the EDMs. The spread of the detections
is approximately the same for pin-forcing and EMI injec-
tions using antennas.

A limitation in this study is that the faults were
injected only into two specific parts of the system—inside
and around the two CPUs in the MARS node. The set-up
also provided restricted observability as the effect of the
errors could only be observed indirectly through the acti-
vations of the EDMs. Improved observability would allow
more accurate comparisons, and can be achieved by incor-
porating a logic analyser in the experimental set-up, or
combining physical experiments with simulation-based
fault injections. Thus, more research is needed to further
assess the relative merits and pitfalls of various fault injec-
tion techniques. Future studies should include other tech-
niques such as software implemented fault injection and
fault injection via boundary and internal scan chains.

7 Conclusion
This paper reported on a unique study devoted to the

comparison of physical fault injection techniques. The
paper described three techniques—heavy-ion radiation,
pin-level fault injection, and EMI—and how they were
used to validate the MARS system.

The results show fairly large differences in the distri-
bution of the error detections among the various EDMs for
the three fault injection techniques. This suggests that the
techniques are rather complementary, i.e., they generate to
a large extent different types of errors. The pin-forcing
technique exercised the hardware EDMs located outside
the CPU more effectively than the other techniques, while
the heavy-ion and EMI techniques appear to be more suit-
able for exercising software and application level EDMs.
Heavy-ion radiation showed the largest spread in the
detections among the EDMs.

The validation of the MARS system showed that the



time-slice controller effectively prevents fail-silence viola-
tions in the time domain. Fail-silence violations in the
value domain were observed for all three techniques when
double time redundant execution of tasks wasnot used. In
general, it was shown that the application level error detec-
tion mechanisms are necessary for improving fail-silence
coverage.
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