
Abstract
This paper compares two fault injection techniques:

scan chain implemented fault injection (SCIFI), i.e. fault
injection in a physical system using built in test logic, and
fault injection in a VHDL software simulation model of a
system. The fault injections were used to evaluate the error
detection mechanisms included in the Thor RISC micro-
processor, developed by Saab Ericsson Space AB. The
Thor microprocessor uses several advanced error detec-
tion mechanisms including control flow checking, stack
range checking and variable constraint checking. A newly
developed tool called FIMBUL (Fault Injection andMoni-
toring usingBUilt in Logic), which uses the Test Access
Port (TAP) of the Thor CPU to do fault injection, is pre-
sented. The simulations were carried out using the MEFIS-
TO-C tool and a highly detailed VHDL model of the Thor
processor. The results show that the larger fault set avail-
able in the simulations caused only minor differences in the
error detection distribution compared to SCIFI and that
the overall error coverage was lower using SCIFI (90-94%
vs. 94-96% using simulation based fault injection).

Keywords: fault injection, experimental validation,
concurrent error detection, boundary scan, VHDL

1 Introduction
Fault injection has become an established method for

testing and evaluating the fault handling capabilities of
fault-tolerant and fail-safe systems [1]. Techniques for
fault injection fall into two categories (i) fault injection in
software simulation models of systems, and (ii) fault injec-
tion into physical systems, i.e. prototypes or actual sys-
tems.

Techniques in the two categories complement each
other as they are used in different phases of the design
process. One advantage of simulation-based fault injection
is that it can be employed early in the design process
allowing early detection of design faults, which thus
reduces the cost for correcting such faults. It also provides

a high degree of controllability and observability. The
main drawback to simulation-based fault injection is the
time overhead involved in simulations, which puts practi-
cal limitations on the amount hardware and software activ-
ity that can be simulated.

Fault injection in physical systems is important
because it tests the actual implementation of fault handling
mechanisms. However, techniques for injecting faults in
physical systems, such as pin-level fault injection [2][3] or
software implemented fault injection (SWIFI) [4][5][6]
provides limited controllability and observability. Also,
these techniques may not be able emulate the effects of all
faults since they suffer from a lack of physical reachabil-
ity.

One way of improving reachability as well as observ-
ability and controllability in the evaluation of physical sys-
tems is to use scan-chain implemented fault injection
(SCIFI). This technique injects faults via the built-in test
logic, i.e. boundary scan chains and internal scan chains,
present in many modern VLSI circuits.

To this end, we have developed a tool called FIMBUL
(Fault Injection andMonitoring usingBUilt-in Logic) for
fault injection via the test access port (TAP) of microproc-
essors. We have used the tool to evaluate the error detec-
tion mechanisms included in the Thor microprocessor, a
32 bit stack oriented RISC processor developed by Saab
Ericsson Space AB [7].

The Thor microprocessor is primarily intended for
embedded systems in space applications. The objective of
the fault injection experiments was to assess Thor’s capa-
bility of handling single event upsets caused by ionizing
particles in the space environment. To model the effects of
such faults we injected single bit-flips into the internal
state elements (flip-flops and latches) of Thor. The fault
locations were selected randomly among the 2250 state
elements that are accessible via the TAP of Thor. We also
conducted fault injection experiments using a detailed
VHDL simulation model of Thor in order to assess the

A Comparison of Simulation Based and Scan Chain Implemented Fault Injection

Peter Folkesson, Sven Svensson, Johan Karlsson

Laboratory for Dependable Computing
Department of Computer Engineering
Chalmers University of Technology

S-412 96 Göteborg, Sweden

accuracy of the SCIFI technique. The simulation model
allowed us to inject faults into all of the 3971 state ele-
ments included in Thor. This way, we could investigate the
differences in the results obtained by the two fault injec-
tion techniques.

In the next section of this paper we describe the archi-
tecture of the Thor microprocessor and its error detection
mechanisms. In Section 3 an overview of the FIMBUL
tool and the VHDL simulation tool is presented. Section 4
describes the experimental set-ups, while Section 5
presents the results of the experiments. Finally, a discus-
sion and conclusions are presented in Section 6.

2 Overview of the Thor processor
The Thor microprocessor is designed and sold by

Saab Ericsson Space AB. It is a 32-bit RISC processor
based on a stack-oriented instruction set architecture and
is intended for embedded real-time applications with high
dependability requirements. The Thor processor has on-
chip support for real-time processing specifically for the
Ada language including task scheduling and dispatch,
communication between tasks, time handling, accurate
delays and fast interrupt handling. The support for depend-
ability includes several internal error detection mecha-
nisms and the possibility to run the processor in a pair
configuration with a comparator function (master/slave
comparator configuration).

2.1 Architecture
The stack-oriented instruction set architecture gives

compact machine code due to frequent use of an implicit
operand addressing mode. The drawback of requiring the
operands to be located at the stack top, present in regular
stack architectures, is eliminated by the implementation of
a stack relative addressing mode. Because of the compact
machine code Thor requires less main memory than con-
ventional microprocessors. This reduces weight and power
consumption, which is important in space applications. A
reduction of memory size also improves reliability since
memory is particularly vulnerable to single event upsets.

A feature of a stack based architecture is the high
locality of data references. This property results in a high
hit rate of the data cache. Another consequence of a stack
based architecture is that fast context switching can be per-
formed since only a stack pointer needs to be updated.

In Figure 1 the main blocks of the processor are
depicted. The instruction pipeline is found in the middle of
the figure. It consists of anInstruction Fetch stage (IF)
including a four instruction word prefetch buffer, an
Address Generation stage (AG), an Operand Fetch stage
(OF) incorporating a 128 byte direct mapped write-back
data cache (32 words) and anEXecute stage (EX). An
instruction enters the pipeline in the IF stage and is then

passed from one stage to the next each system clock cycle
except when a pipeline stall occurs. This can happen for
example when the EX stage is performing a multicycle
operation or the EX stage is waiting for a write operation
to slow memory.

Figure 1: Block diagram of the Thor processor.

Actions for the control of the pipe are managed by the
Pipe Control block. All memory bus accesses requested
from different blocks of the processor are managed by the
Bus Controlblock. Task handling is implemented in the
Ada Supportblock, which can administer up to 8 tasks and
also features a 64-bit real-time clock for scheduling pur-
poses.

The error detection mechanisms are controlled and
supervised by theError Detection block. Most of these
mechanisms are implemented in the pipeline blocks but
the error detection and correction of data transfers
between Thor and external memory is implemented in a
separate block, theEDAC block.

The TAP control and Debug blocks implements the
test and debug facilities. The TAP conforms to the IEEE
1149.1 standard for boundary scan. It provides access to
the 101 chip-pin signals via a boundary scan-chain, as well
as all memory elements in the cache and 18 internal regis-
ters (marked with an asterisk in Figure 1) via an internal
scan-chain. The TAP also gives access to a debug scan-
register, which allows the user to set break-points. When a
break-point is reached, the processor halts and the values
of the memory elements in the scan-chain can be read or

EDAC
Bus

Control

IF AG OF EX

Pipe
Control

TAP
Control Debug

Error
Detection

PPC TOS*
BOS*
EOS*
TP*

EAR*

UM

CACHE
TOP*
RR*
SR*
CR*
IR

ER*
RTL*
RTM*
SIR*
SOR*

DR*

TR*

TCB*

TREG

Ada
Support

PC*

Prefetch

Instr. Instr. Instr.

Src

Dst Dst

Operand

Data Out

Data In

Address

Register Bus

Exception

Control
Status

Test
Access
Port

EDAC
Status

Data

Address

Bus
Control

Bus
Arbitration

Signals

Tag Data

*Internal registers accessible via the TAP

written via the TAP. The user can program the debug scan-
register to halt the processor when it accesses a particular
address or a range of addresses, uses a particular data
value or a range of data values, executes a specific instruc-
tion, or at a specific time determined by the real-time
clock. This feature provides very powerful support for
fault injection.

2.2 Error detection mechanisms
The error detection mechanisms supported by Thor

can be divided intocontrol flow checking, run-time checks,
memory data checks andmaster/slave comparator opera-
tion.

The control flow checking mechanism is a signature
monitoring scheme that checks the control flow of the pro-
gram execution. For each basic block (i.e. branch free
interval) in the program, a signature is calculated using the
arithmetic sum of the opcodes of the instructions in the
basic block. At run-time a dedicated monitor calculates the
signature from the instructions fetched by the processor.
This signature is compared by a special NOP instruction,
executed at the end of the basic block, with the correct sig-
nature which is provided as an operand to the NOP
instruction by the compiler. For a general description of
control flow checking techniques see [8].

The run-time checks are implemented as hardware
exceptions in Thor, see Table 1. Some of the run-time
checks are commonly found in other microprocessors such
as illegal opcode detection, division by zero check, etc.
Some checks, however, are Thor specific. These are the
data error, constraint error and storage error exceptions.
Data errors occur when thememory data check mechanism
detected an error. This mechanism uses a (39,32) modified
Hamming code to correct single-bit errors and detect dou-
ble-bit errors in the main memory. Constraint errors occur
when the checks made by the run-time assertion instruc-
tions Compare Lower Limit (CLL) and Compare Upper
Limit (CUL) fail. These can be used to check index
bounds of arrays or variable value ranges. The storage
error exception is used for detecting attempts to access
memory outside a task’s designated stack area in user
mode. The exceptions numbered 8 to 14 provides hard-
ware support for exceptions required by the Ada language.

The master slave comparator operation, which
detects errors by comparing the results from two Thor
microprocessors, is suitable for applications requiring
100% coverage of internal CPU errors.

The goal of this study was to evaluate the effective-
ness of the control flow checking mechanism and the run-
time checks with respect to single event upsets occurring
inside the CPU. These are the primary mechanisms for
detecting CPU faults when Thor is used in a single proces-
sor configuration. The memory data check mechanism and

master/slave comparator configuration were not evaluated.

3 The fault injection tools
This section provides an overview of FIMBUL and

the MEFISTO-C tool. The latter was used for the simula-
tion based fault injections experiments using the VHDL
model of Thor.

3.1 The FIMBUL tool
FIMBUL (Fault Injection andMonitoring usingBUilt

in Logic) is a tool that can inject faults via the TAP facili-
ties of the Thor CPU. Transient faults can be injected into
any of the locations accessible by the boundary and inter-
nal scan-chains of the Thor CPU using the bit-flip fault
model. The points in time when a fault is injected can be
chosen by setting break-points using the Thor debug scan
register. The selection of when and where to inject a fault
can be made either randomly or non-randomly within the
limitations of the Thor hardware.

Figure 2 shows an overview of FIMBUL. The FIM-
BUL software consists of a fault injection program written
in GNU Ada and several analysis programs written mainly
in the Perl programming language which all execute on a
UNIX workstation. The hardware consists of a Thor evalu-
ation board [9], featuring the Thor CPU and memory cir-
cuits, installed on a Sun UNIX workstation using an SBus
interface. All communication between FIMBUL and the
Thor CPU is performed via UNIX device drivers.

There are three phases involved in conducting fault

No Exception
Corresponding
Ada exception Description

1 BUS ERROR - Bus time-out on external memory access

2 ADDRESS
ERROR

- Chip input signalAE (Address Exception) is
asserted, or an operand effective address was
larger than 2Gbyte

3 DATA ERROR - Chip input signalDE (Data Exception) is
asserted

4 INSTRUCTION
ERR.

- Attempt to execute a privileged instruction in
user mode or an illegal instruction

5 JUMP ERROR - Attempt to jump, call or return to a target
address outside memory address space

6 - - Reserved

7 - - Reserved

8 CONSTRAINT
ERROR

CONSTRAINT
ERROR

A constraint of a CLL or CUL instruction not
satisfied

9 ACCESS CHECK CONSTRAINT
ERROR

Attempt to follow a null pointer

10 STORAGE
ERROR

STORAGE
ERROR

Attempt to access memory outside the task’s
stack in user mode

11 OVERFLOW
CHECK

NUMERIC
ERROR

Overflow of signed integer and float arithmetic
operations

12 UNDERFLOW
CHECK

NUMERIC
ERROR

Underflow or denormalized result of float arith-
metic operations

13 DIVISION
CHECK

NUMERIC
ERROR

Divide by zero for integer division

Divide by±0 for float division

14 ILLEGAL OPER. NUMERIC
ERROR

Illegal operation for float and double arithmetic
instructions involving 0 and∞

15 TASKING ERROR TASKING
ERROR

Reserved for future use

Table 1: Hardware exceptions in Thor

injection campaigns using the FIMBUL tool: theset-up,
fault injection andanalysis phases.

Figure 2: FIMBUL overview

3.1.1 The set-up phase. In the set-up phase, the
workload chosen for fault injection experiments is ana-
lysed either manually or by an analysis tool in order to
produce configuration data for the experiments. The con-
figuration data contains information about when and
where to inject faults and the total number of faults to be
injected during the fault injection campaign, i.e. the
number of fault injection experiments to perform. The
configuration data also contains information about the ter-
mination conditions for the fault injection experiments. A
fault injection experiment can be terminated either when a
time-out value has been reached, an error has been
detected or the execution of the workload ends, whichever
comes first. When the execution of the workload should
end is also defined in the configuration data. The workload
either consists of an infinite loop that should be executed a
certain number of times or a program that terminates by
itself.

The data input generation module of FIMBUL (see
Figure 2) is used for generating input data to the workload
and obtaining the results produced by the workload, e.g.
acting as the sensors and actuators of the target system. In
order for the data input generation module to know where
to store the input data and where to look for the results
produced by the workload, pointers to the memory loca-
tions of the input and output data within the target system
are also given in the configuration data. Using FIMBUL to
simulate the environment of the target system in this way
is optional but in order to identify system failures (see Sec-
tion 3.1.3), FIMBUL must know where to look for the

Fault

Hex File

THOR

Monitor

Analysis

Results

FIMBUL

Analysis

User

Set-up phase

Fault injection phase

Analysis phase

Workload

Oden
Compiler

Simulation
Results

Tool

Configuration
Data

Experiment
Initialization

Injection
Data Input
Generation

FIMBUL
Log File

Evaluation
Board

results produced by the workload.
The configuration data also contains the operation

mode for the FIMBUL fault injection module. There are
four operation modes:

• Normal: The CPU state is logged only when a fault
injection experiment terminates. This is the normal
operation mode of FIMBUL.

• Normal reference: The same as normal mode but no
fault injection is performed.

• Detail: The CPU state is logged after each instruction
executed since fault injection. This produces an execu-
tion trace allowing the error propagation to be analysed
in detail.

• Detail reference: Produces an execution trace of the
whole workload execution without injecting any faults.
This is compared with execution traces obtained in
detail mode in order to study the impact of errors.

The CPU state logged always includes the contents of
the Thor scan-chains and the contents of the memory loca-
tions where the results produced by the workload are
stored, together with information about when and where
any faults were injected.

3.1.2 The fault injection phase. In the fault injection
phase, the configuration data is read and interpreted by
FIMBUL. The Thor evaluation board is initialized and the
workload is downloaded to the evaluation board.

If FIMBUL operates in normal mode, a reference exe-
cution of the workload without performing any fault injec-
tion is made first, i.e. FIMBUL operates in normal
reference mode first. The Thor evaluation board is then
reset and the execution of the first fault injection experi-
ment begins.

The configuration data contains information about
when a fault should be injected. A break-point is set
according to this information and the CPU starts executing
the workload. When the break-point condition has been
fulfilled, execution of the workload stops and fault injec-
tion takes place. Fault injection is made by reading the
contents of the boundary and internal scan-chains of the
Thor CPU, inverting the bits stated in the configuration
data and writing back the fault injected scan-chains to
Thor. The execution then starts from where the CPU was
halted and continues until the termination condition stated
in the configuration data is reached. The CPU state is then
logged and the Thor evaluation board is reset and another
fault injection experiment begins.

When FIMBUL operates in detail mode, fault injec-
tion is performed using the procedure described for the
normal mode operation. The only differences are that the
CPU executes each workload instruction step-by-step after
fault injection has been made and that the CPU state is

logged after each step instead of only once when the fault
injection experiment terminates.

If FIMBUL operates in detail reference mode, no fault
injection is made and the CPU executes each workload
instruction step-by-step until the termination condition
given in the configuration data is reached. The CPU state
is logged after each workload instruction executed.

3.1.3 The analysis phase. In the analysis phase, the
data logged in the fault injection phase is analysed to
obtain dependability measures about the target system.
The scripts used to calculate the measures must be devel-
oped specifically for the target system. For the evaluation
of Thor, the analysis scripts compare the CPU states
logged during normal mode operation with the CPU state
produced in the normal reference mode to identify:

• Detected errors: The fault injection experiments where
an error was detected by an error detection mechanism.

• System failures: The fault injection experiments where
incorrect results were produced by the workload or the
violation of any timeliness requirements were made, e.g.
the results were delivered to late.

• Latent errors: The fault injection experiments where dif-
ferences in the CPU states logged at the end of each
experiment and the normal reference mode are observed
but which could not be identified as either detected
errors or system failures.

• Overwritten errors: The fault injection experiments
where no differences between the CPU states logged at
the end of each experiment and normal reference mode
are observed.

The detected errors are further classified into errors
detected by either the control flow checking mechanism or
each of the run-time checks of the Thor CPU (see Section
2.2), or asother errors, i.e. when the information about
which mechanism that detected the error is unavailable.

Due to a lack of observability using the FIMBUL tool
on the Thor processor (2612 of 3917 state elements are
observable using FIMBUL), some errors can not be classi-
fied with absolute certainty. These are the errors detected
by the control flow mechanism and the system failures
where the timeliness requirements are violated.

The following errors generate the same observable
behaviour of the Thor CPU as a control flow error:

• An exception occurred during exception processing.

• HALT instruction in the EX stage.

The FIMBUL analysis scripts try to classify these
errors as either control flow errors or other errors, but may
not always make the correct classifications.

The timeliness requirement used in this study is that a
correct result should not be delayed more than 50 clock
cycles, otherwise it is classified as a system failure. FIM-

BUL uses the built in real-time clock of the Thor CPU for
detecting if the timeliness requirement is violated. How-
ever, the contents of the real-time clock registers may
sometimes be incorrect due to fault injection. An error
which should be classified as a latent error may therefore
be incorrectly classified as a system failure.

3.2 The MEFISTO-C tool
MEFISTO-C is a tool developed at Chalmers Univer-

sity of Technology for conducting fault injection experi-
ments using VHDL simulation models. The tool is an
improved version of the MEFISTO tool which was devel-
oped jointly by LAAS-CNRS and Chalmers [10]. (A simi-
lar tool called MEFISTO-L has been developed at LAAS-
CNRS). MEFISTO-C uses the Vantage Optium VHDL
simulator and injects faults via simulator commands in
variables and signals defined in the VHDL model. It offers
the user a variety of predefined fault models as well as
other features to set-up and automatically conduct fault
injection campaigns on a network of UNIX workstations.

4 Experimental set-up
The FIMBUL tool was implemented on a 50 MHz

Sun Sparc Classic workstation with a Thor evaluation
board connected to the SBus interface. The Thor evalua-
tion board used a 12.5 MHz clock and was equipped with
512 KB RAM. The workstation was connected via a local
network to a file server where all results were stored.

For the simulation experiments we used a structural
VHDL model of the Thor CPU and a 512 KB RAM. The
Thor model was highly detailed with all internal state ele-
ments available as signal objects. The simulation experi-
ments were conducted by MEFISTO-C using five 70 MHz
Sun Sparc 5 workstations, each having its own 1 Gbyte
disk space for storing results.

The fault injection experiments were carried out using
two different workloads. One is a digital control applica-
tion (Powerpos) and the other is an implementation of the
quick-sort algorithm (Qsort). It is well known that the
workload have a substantial impact on the results of a fault
injection campaign [11][12][13]. The digital controller
was chosen because it represents an application which is
common in embedded systems. The quick sort application
was chosen because it has been commonly used in fault
injection experiments, and thus provides an opportunity
for comparing our results with those obtained in other
experiments. Both workloads were written in Ada and
compiled by the Oden Ada compiler system [14], which
has been developed specifically for the Thor processor.

The remainder of this section provides detailed infor-
mation about the workloads and the fault injection cam-
paigns, as well as a short comparison of the FIMBUL and
the MEFISTO-C tools.

4.1 The Powerpos workload
The task of the Powerpos workload is to control the

transfer of an object to a position given by aset-point
value. This is done by controlling an actuator that applies a
force on the object. The digital controller acquires data
from sensors measuring speed and position of the object
(the state variables of the system), and calculates new con-
trol values for output to the actuator.

By using an emulation model of the system environ-
ment including the controlled object, a close to authentic
representation of the state data (sensor data) is achieved.
The emulation of the system environment is done by the
data input generation module in FIMBUL, and by VHDL
code in the simulation model when using MEFISTO-C.

The workload is based on a repeated program
sequence wherein Thor readsstate data (represented by
sensor measurements) from the controlled object and a
set-point value from the control input, calculates the value
of the control signal and sends it to the actuator, thereby
closing the control loop. The workload is designatedtask 1
of the eight tasks supported on-chip. To force Thor to per-
form a scheduling operation, a delay instruction is inserted
at the end of the control loop. This operation invokes a
dummy task, task 0. After the specified delay has passed,
task 1 is allocated the CPU again and the next execution of
the control loop starts.

The size of the Powerpos workload is 900 bytes and it
utilizes 33 of the 80 instructions of the Thor CPU. The
execution time is 2350 cycles, which corresponds to three
repetitions of the control loop. Fault injection is performed
during the second iteration of the control loop.

4.2 The Qsort workload
The sort workload (Qsort) implements a recursive

quick-sort algorithm. It sorts a list containing seven data
elements of the Ada predefined typefloat. The size of this
workload is 756 bytes and it utilizes 27 of the 80 instruc-
tions of the Thor CPU. The execution time is 1755 cycles
and fault injection is performed in any of these cycles.

4.3 Fault injection campaigns
Table 2 summarizes the fault injection campaigns

conducted to evaluate the error detection mechanisms in
Thor. As already mentioned, the fault model used was sin-
gle bit-flips in latches and flip-flops (state elements). The
injected faults were selected randomly by sampling the
fault space using a uniform sampling distribution. We
define the fault space as the Cartesian product

, where L is the set of all fault locations (state
elements) andT the set of all time points when faults can
be injected.

The time resolution is one machine instruction for

F L T×=

FIMBUL and one clock cycle in the simulations. Since
most instructions are executed in one clock cycle, the dif-
ference in time resolution is small. It should be noted that
the injected faults sets are identical for campaign 3 and 4b.
This allowed us to verify that the tools produced identical
results when the same faults were injected. To verify that
the responses indeed were identical, it was necessary to
use the detailed operation mode for FIMBUL.

Each of the fault injection campaigns consists of up to
six sub-campaigns, in which faults were injected into one
functional block of Thor. That is, we used stratified sam-
pling [15] by dividing theL set into six strata. The Thor
CPU was divided into the following functional blocks, or
strata: The IF stage, AG stage, CACHE, EX stage and Ada
Support block (ADA). A sixth strata, unavailable for fault
injection using the FIMBUL tool, called the MISC block
(containing the Pipe Control block, Bus Control block,
Error Detection block, EDAC block and the OF stage
without the cache), was used in campaign 2 and 4a.

4.4 Comparison of the fault injection tools

Table 3 summarizes some of the key characteristics of
the two fault injection tools. It is shown that FIMBUL in
normal mode is much faster than MEFISTO-C (0.25 faults
injected per second vs. 0.002 faults/s for each workstation
participating in the simulations). When FIMBUL executes
in detail mode, the performance of the two techniques is
similar. The maximum time resolution for FIMBUL is one
instruction as Thor only can be halted between two
instructions. The time resolution for MEFISTO-C is user
definable during the campaign set-up. We decided to use a
time resolution of one clock cycle.

Campaign
 No.

Tool Workload
Operation mode
(FIMBUL only)

Fault space

L (No. of fault
locations)

T
(No. of time points)

1 FIMBUL Powerpos Normal 2250 ~700 (instructions)

2 MEFISTO-C Powerpos - 3971 ~800 (clock cycles)

3 FIMBUL Qsort Detailed 2250 ~1300 (instructions)

4a MEFISTO-C Qsort - 3971 ~1800 (clock cycles)

4b MEFISTO-C Qsort - 2250 ~1300 (instructions)

Table 2: Fault injection campaigns

FIMBUL
(Scan chain implemented

fault injection)

MEFISTO-C
(Simulation based

fault injection)

No. of fault injection locations (state elements) 2250 3971
Time resolution for fault injection one instruction

(= one clock cycle for most
instructions)

one clock cycle, or
less

No. of observable state elements 2612 3971
Performance
(faults injected per second)

Normal mode: 0.25 faults/s
Detail mode: 0.003 faults/s

0.002 faults/s per
workstation used

Table 3: Comparison of FIMBUL and MEFISTO-C

5 Results
In this section we first describe the error classification

scheme and the formulas used for calculating confidence
intervals. We then present the results of fault injection
campaign 1, 2, 3 and 4a in which the two tools used differ-
ent fault sets, as the faults were sampled from the entire
fault space available in each tool. Finally, we compare the
results of campaign 3 and 4b, in which identical fault sets
were used for the two tools.

5.1 Error classification
In the subsequent sections, the results from the fault

injection campaigns are presented using tables where the
errors are divided into several error categories. The errors
are divided into two main categories: “Non Effective
Errors” and “Effective Errors”. The “Non Effective
Errors” are further divided into “Latent Errors” and “Over-
written Errors”. The “Effective Errors” are further divided
into errors leading to system failures (“System Failure”) or
detected errors. The detected errors are those detected by
an exception (“Exceptionn” categories), detected by the
control flow mechanism (“Control Flow Errors”), or other-
wise detected (“Other Errors”), as explained in Section
3.1.3. The error coverage (“Coverage”) is defined as the
percentage of errors that are either detected or non effec-
tive, i.e. overwritten or latent.

The observed relative frequency of the error catego-
ries, for each functional block, or strata, of the Thor CPU
are presented in the results. In addition, the weighted total

relative frequency, , is given for each error category.

Let denote the observed relative frequency for error

categorye, in stratal. , wherenel is the observed
number of errors in categorye for stratal, andnl is the
total number of fault injections in stratal. The weighted
total relative frequency usingL strata is then given as [15]

whereNl is the size of stratal andN=N1+N2+...+NL is
the total population size.

The corresponding 95% confidence intervals for all
the weighted total relative frequencies are also given.
Based on the normal approximation we can derive an
approximate 95% confidence interval forpe, the overall
probability for error categorye, as

p̂e

p̂el

p̂el

nel

nl
-----=

p̂e

Nl

N
---- p̂el⋅

l 1=

L

∑=

pe p̂e 1.96±=
Nl

N
---- 

 2 p̂el 1 p̂el–()
nl 1–

-------------------------⋅
l 1=

L

∑⋅

5.2 Results obtained using different fault sets
Table 4 shows the results obtained using the Powerpos

workload (campaign 1 and 2). The results show that the
address error-, variable constraint check-, and control flow
error mechanisms are the most efficient mechanisms of the
Thor processor. The CACHE block, containing the 1824
state elements of the data cache, is the functional block
most sensitive to fault injection, i.e. the CACHE block has
the lowest coverage (except for campaign 1 where the EX
block has the lowest coverage). This suggests that a parity
protection of the data cache would improve the overall
error coverage. The coverage is 94% using FIMBUL and
96% using MEFISTO-C, which means that the SCIFI
technique gives a more pessimistic coverage estimation.

The percentage of effective errors is higher using
SCIFI than using simulation-based fault injection (30% vs.
24%) but only 12 error detection mechanisms were trig-
gered using the SCIFI technique compared to all 14 mech-
anisms using the simulation-based technique. The
differences between the techniques are most prominent for
the IF block and least prominent for the ADA block. The
largest differences are observed for the address error
mechanism (exception 2) (15% using FIMBUL vs. 8%
using MEFISTO-C) and for the control flow error mecha-
nism (1.19% vs. 2.91%).

Table 5 shows the results obtained using the Qsort
workload (campaign 3 and 4a). Again, the coverage is
lower using FIMBUL than using MEFISTO-C (90% vs.
94%) and the CACHE block is the functional block most
sensitive to fault injection. The results also show that the
address error-, variable constraint check- and control flow
error mechanisms are among the most triggered mecha-
nisms, similar to what could be observed using the Power-
pos workload.

Again, the percentage of effective errors is higher
using SCIFI than using simulation-based fault injection
(43% vs. 31%). The number of error detection mecha-
nisms triggered is also lower using SCIFI (10 using FIM-
BUL vs. all 14 mechanisms using MEFISTO-C). The
differences are most prominent for the IF block and least
prominent for the ADA block, just as for the Powerpos
workload, but the differences between the total amount of
latent and overwritten errors observed is lower for the
Qsort workload. Again, when looking at the weighted
total, the only major differences are the percentage of the
address error mechanism (exception 2) (18% using FIM-
BUL vs. 11% when using the extended fault set of
MEFISTO-C) and the percentage of control flow errors
(0.57% vs. 2.55%) (excluding the differences in the per-
centage of latent and overwritten errors obtained for each
technique).

Several differences between the workloads can be
observed. The variable constraint checks (exception 8) and

the address error mechanism (exception 2) occur more fre-
quently for Qsort than for Powerpos (7%-9% vs. 1%-3%
for the constraint checks and 11%-18% vs. 8%-15% for
the address error mechanism). The percentage of effective
errors is 31%-43% for the Qsort workload and only 24%-
30% for the Powerpos workload. The total error coverage
is 90%-94% for the Qsort workload and 94%-96% for the
Powerpos workload.

5.3 Results obtained using identical fault sets
Table 6 shows the results obtained using the fault

injection campaigns 3 and 4b where identical fault sets
were used by the two tools. These campaigns were con-
ducted to verify that the tools produced the same results
for identical faults.

A total of 4626 faults were injected. For 386 faults,
the tools produced different results.

The reasons for these discrepancies are given in Table
7. Here, the number of experiments for which the results
differ are given and categorized as follows:

• Classification: The errors which are classified differ-
ently due to the lower observability available in FIM-
BUL, e.g. due to the observability problems described in
Section 3.1.3, or due to the fact that the time-out for
ending the simulations was reached before the error
could be detected.

• Implementation: The experiments which differ because
of differences between the Thor VHDL model and the
actual chip. These discrepancies are most notably
caused by different exceptions being signalled by the
RET (return) instruction when returning to an invalid
address. Exception 5 (“Jump Error”) is signalled in the
VHDL model instead of exception 2 (“Address Error”)

for the actual chip.

• Tool: The discrepancies that exist due to different opera-
tion of the tools. The faults may be injected at slightly
different points in time, or the CPU states may not be
exactly equal during fault injection. The most common
discrepancy of this type is the reset of the IF block
prefetch buffer that occurs when the CPU is halted for
fault injection using FIMBUL. This causes the instruc-
tion flow to be transferred immediately to an erroneous
location if a fault is injected into the program counter
(PC), while the correct instructions in the buffer will be
executed in the simulations. The state of the UM buffer,
i.e. the buffer containing the next dirty cache word to be
written to memory, may be also differ after fault injec-
tion since it is emptied during available free bus cycles.
These cycles may not be equal in the Thor VHDL model
and the actual CPU when a fault has been injected.

• Unknown: We have not been able to identify the reason
for these discrepancies.

The percentage of experiments belonging to each cat-
egory of the total number faults injected are also given in
Table 7. It shows that the most common causes for the dis-
crepancies are the limitations in the observability for the
SCIFI technique (only 2612 of all 3971 locations are
observable) causing some errors to be classified as over-
written instead of latent. These discrepancies account for
5% of all experiments. The percentage of discrepancies
due to implementation differences between the VHDL
model and the actual chip is 0.3%. The most serious dis-
crepancies, those due to different operation of the tools,
account for about 3% of all experiments. The results
clearly demonstrate that the VHDL model is an accurate,
although not perfect, representation of the real Thor CPU.

Fault injection tool FIMBUL MEFISTO-C

Part of CPU fault injected
(no. of state elements)

IF
(30)

AG
(146)

CACHE
(1824)

EX
(90)

ADA
(160)

Weighted total
(2250)

IF
(233)

AG
(206)

CACHE
(1824)

EX
(482)

ADA
(320)

MISC
(906)

Weighted total
(3971)

Latent Errors 0.22% 32.39% 22.98% 26.98% 92.17%28.37% (±0.44%) 0.00% 15.37% 11.65% 12.07% 51.98% 13.11%14.79% (±0.80%)
Overwritten Errors 0.00% 16.10% 46.45% 53.81% 5.76%41.26% (±0.51%) 50.66% 37.48% 57.95% 68.64% 47.45% 74.76%60.75% (±1.18%)
Total (Non Effective Errors) 0.22% 48.49% 69.43% 80.78% 97.94%69.63% (±0.47%) 50.66% 52.85% 69.60% 80.71% 99.43% 87.88%75.54% (±1.05%)

Exception 1 (Bus Error) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.24% 0.05% (±0.04%)
Exception 2 (Address Error) 39.22% 12.64% 16.42% 1.51% 0.00%14.72% (±0.37%) 13.41% 10.54% 13.30% 0.57% 0.00% 4.00%8.42% (±0.74%)
Exception 3 (Data Error) 0.00% 0.00% 0.00% 2.41% 0.00% 0.10% (±0.03%) 0.00% 0.00% 0.00% 1.07% 0.00% 0.00% 0.13% (±0.07%)
Exception 4 (Instruction Error) 42.46% 1.08% 2.66% 0.53% 0.43% 2.84% (±0.17%) 7.62% 1.55% 2.30% 0.71% 0.23% 091% 1.90% (±0.35%)
Exception 5 (Jump Error) 0.22% 0.81% 0.30% 0.08% 0.00% 0.30% (±0.06%) 0.50% 0.00% 0.45% 0.57% 0.00% 0.16% 0.34% (±0.15%)
Exception 8 (Constraint Check) 0.65% 0.81% 1.39% 2.86% 0.00% 1.30% (±0.12%) 2.15% 1.21% 4.25% 1.79% 0.23% 0.79% 2.55% (±0.43%)
Exception 9 (Access Check) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.17% 0.86% 0.00% 0.00% 0.00% 0.00% 0.05% (±0.04%)
Exception 10 (Storage Error) 0.00% 31.49% 0.53% 0.00% 0.00% 2.47% (±0.14%) 4.47% 23.49% 0.30% 0.29% 0.11% 0.44%1.75% (±0.24%)
Exception 11 (Overflow) 0.00% 0.09% 0.27% 0.53% 0.00% 0.25% (±0.05%) 0.66% 0.00% 0.30% 0.43% 0.00% 0.12% 0.26% (±0.13%)
Exception 12 (Underflow) 0.00% 0.00% 0.01% 0.00% 0.00% 0.01% (±0.01%) 0.00% 0.00% 0.00% 0.00% 0.00% 0.04% 0.01% (±0.02%)
Exception 13 (Division Check) 0.00% 0.00% 0.12% 0.30% 0.00% 0.11% (±0.04%) 0.00% 0.00% 0.25% 0.21% 0.00% 0.08% 0.16% (±0.11%)
Exception 14 (Illegal Operation) 1.29% 1.98% 0.53% 0.38% 0.00% 0.59% (±0.08%) 1.16% 2.94% 0.60% 1.00% 0.00% 0.48% 0.73% (±0.20%)
Control Flow Errors 15.52% 0.00% 1.21% 0.00% 0.00% 1.19% (±0.11%) 14.57% 0.69% 0.80% 9.21% 0.23% 2.26%2.91% (±0.33%)
Other Errors 0.43% 2.20% 0.07% 0.00% 0.69% 0.25% (±0.05%) 0.33% 4.84% 1.40% 0.64% 0.00% 0.28% 1.05% (±0.26%)
System Failure 0.00% 0.40% 7.05% 10.63% 0.95% 6.23% (±0.26%) 4.30% 1.04% 6.45% 2.79% 0.00% 2.34% 4.14% (±0.53%)
Total (Effective Errors) 99.78% 51.51% 30.57% 19.22% 2.06%30.37% (±0.47%) 49.34% 47.15% 24.43% 19.29% 0.57% 12.12%24.46% (±1.05%)

Coverage 100.00% 99.60% 92.95% 89.37% 99.05%93.77% (±0.26%) 95.70% 98.96% 93.55% 97.21% 100.00% 97.66%95.86% (±0.53%)

Total no. of faults injected 464 2223 27066 1327 2325 33405 604 579 2000 1400 883 2524 7990

Table 4: Results of campaign 1 and 2

6 Conclusions
We presented a new tool for scan chain implemented

fault injection (SCIFI) called FIMBUL. The tool was used
for evaluation of the error detection mechanisms included
in the Thor microprocessor. Since Thor has been designed
specifically for space applications, our primary goal was to
study the effects of single event upsets caused by ionizing
particles in the space environment. To model the effects of
these faults FIMBUL injected single bit-flips into internal
state elements that are accessible via Thor’s test access
port (TAP). The bit-flips were injected randomly using a

Reason IF AG CACHE EX ADA Total Percentage
of total num-
ber of faults

injected

Classi-
fication

Observability lower for FIM-
BUL (overwritten instead of
latent)

0 0 155 12 55 222 4.80%

Observability lower for FIM-
BUL (result late (System Fail-
ure) instead of latent)

0 0 0 5 7 12 0.26%

Observability lower for FIM-
BUL (Control Flow Error
instead of Other Error)

0 0 3 0 0 3 0.06%

Simulation ended prematurely
using MEFISTO-C (result late
(System Failure) instead of
detected error)

0 0 1 0 0 1 0.02%

Imple-
menta-

tion

RET instruction implementa-
tion differs

0 2 12 0 0 14 0.30%

UDE* signal implementation
differs

0 0 0 1 0 1 0.02%

Tool
Fault injection time differs 1 0 13 4 0 18 0.39%

Prefetch buffer reset after fault
injection using FIMBUL

101 0 0 0 0 101 2.18%

UM buffer emptied at slightly
different times

0 0 9 0 0 9 0.19%

Unknown 1 1 3 0 0 5 0.11%

Total number of discrepancies 103 3 196 22 62 386 8.34%

Table 7: Reasons for discrepancies between
campaign 3 and 4b

uniform fault distribution.
To assess the accuracy of the SCIFI technique we also

conducted simulation-based fault injection experiments
using the MEFISTO-C tool and a detailed VHDL model of
Thor. MEFISTO-C can inject faults into all of the 3971
state elements of Thor, while FIMBUL can inject faults
into 2250 state elements.

Only minor differences in the distribution of detected
errors were observed for the two techniques. The results
show a total error coverage of 90%-94% (depending on
the workload) using FIMBUL compared to 94%-96%
using MEFISTO-C. To verify that the two fault injection
tools produced the same results for identical faults, we
conducted special fault injection campaigns using identi-
cal fault sets. Only about 3% of the faults injected gave
dissimilar results due to different operation of the tools.
Most of these discrepancies were caused by a reset of
Thor’s prefetch buffer when using FIMBUL.

The most efficient error detection mechanisms of the
Thor processor were the address error-, variable constraint
check- and control flow checking mechanisms. The results
also indicate that adding a parity-bit to the data cache of
Thor would significantly increase the overall error cover-
age.

Our experiments showed that the SCIFI technique can
be more than 100 times faster than simulation-based fault
injection, and yet produce very similar results. Thus we
have demonstrated that SCIFI can be a cost-effective and
accurate technique for evaluating error handling mecha-
nisms. Our results suggest that the SCIFI technique gives a
more pessimistic coverage estimation than the simulation-
based technique. However, additional fault injection
experiments are needed to corroborate that this observa-

Fault injection tool FIMBUL MEFISTO-C

Part of CPU fault injected
(no. of state elements)

IF
(30)

AG
(146)

CACHE
(1824)

EX
(90)

ADA
(160)

Weighted total
(2250)

IF
(233)

AG
(206)

CACHE
(1824)

EX
(482)

ADA
(320)

MISC
(906)

Weighted total
(3971)

Latent Errors 0.00% 65.58% 4.91% 19.38% 95.41%15.80% (±0.91%) 2.48% 32.82% 14.65% 38.32% 66.51% 18.14%22.73% (±0.91%)
Overwritten Errors 0.00% 0.00% 47.64% 57.82% 4.00%41.22% (±2.04%) 45.05% 35.75% 38.95% 41.55% 33.49% 69.53%45.99% (±1.18%)
Total (Non Effective Errors) 0.00% 65.58% 52.56% 77.20% 99.40%57.02% (±2.04%) 47.52% 68.57% 53.60% 79.87% 100.00% 87.67%68.72% (±1.12%)

Exception 1 (Bus Error) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.14% 0.00% 0.16% 0.05% (±0.04%)
Exception 2 (Address Error) 36.95% 3.34% 21.17% 1.63% 0.00%17.93% (±1.67%) 15.02% 2.94% 19.70% 0.36% 0.00% 3.30%10.88% (±0.84%)
Exception 3 (Data Error) 0.00% 0.00% 0.00% 2.61% 0.00% 0.10% (±0.05%) 0.00% 0.00% 0.00% 1.29% 0.00% 0.00% 0.16% (±0.07%)
Exception 4 (Instruction Error) 58.62% 0.45% 1.70% 0.00% 0.00% 2.19% (±0.53%) 4.62% 0.17% 1.90% 0.50% 0.00% 0.75% 1.38% (±0.31%)
Exception 5 (Jump Error) 0.00% 0.00% 0.59% 0.00% 0.00% 0.48% (±0.31%) 0.50% 0.52% 1.10% 0.43% 0.00% 0.20% 0.66% (±0.22%)
Exception 8 (Constraint Check) 0.49% 3.43% 10.29% 7.82% 0.00% 8.88% (±1.24%) 12.54% 3.45% 9.95% 3.58% 0.00% 2.83% 6.57% (±0.65%)
Exception 9 (Access Check) 0.00% 0.45% 0.13% 0.16% 0.00% 0.14% (±0.15%) 0.00% 1.38% 0.05% 0.00% 0.00% 0.04% 0.10% (±0.07%)
Exception 10 (Storage Error) 0.00% 25.56% 0.00% 0.00% 0.00% 1.66% (±0.17%) 4.79% 21.24% 0.10% 0.72% 0.00% 0.31% 1.59% (±0.22%)
Exception 11 (Overflow) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.17% 0.00% 0.00% 0.50% 0.00% 0.04% 0.08% (±0.05%)
Exception 12 (Underflow) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.29% 0.00% 0.00% 0.03% (±0.03%)
Exception 13 (Division Check) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.50% 0.00% 0.00% 0.06% (±0.04%)
Exception 14 (Illegal Operation) 0.49% 1.17% 0.79% 0.33% 0.00% 0.73% (±0.36%) 1.49% 1.21% 0.85% 0.57% 0.00% 0.35% 0.69% (±0.21%)
Control Flow Errors 2.96% 0.00% 0.66% 0.00% 0.00% 0.57% (±0.33%) 11.06% 0.35% 0.65% 9.53% 0.00% 1.88% 2.55% (±0.31%)
Other Errors 0.00% 0.00% 0.13% 0.00% 0.00% 0.11% (±0.15%) 0.17% 0.00% 0.00% 0.29% 0.00% 0.39% 0.13% (±0.07%)
System Failure 0.49% 0.00% 11.99% 10.26% 0.60%10.18% (±1.33%) 2.15% 0.17% 12.10% 1.43% 0.00% 2.08% 6.34% (±0.68%)
Total (Effective Errors) 100.00% 34.42% 47.44% 22.80% 0.60%42.98% (±2.04%) 52.48% 31.43% 46.40% 20.13% 0.00% 12.33%31.28% (±1.12%)

Coverage 99.51% 100.00% 88.01% 89.74% 99.40%89.82% (±1.33%) 97.85% 99.83% 87.90% 98.57% 100.00% 97.92%93.66% (±0.68%)

Total no. of faults injected 203 1107 1526 614 1176 4626 606 579 2000 1396 872 2547 8000

Table 5: Results of campaign 3 and 4a

tion is valid also for other workloads. More research is
also needed to investigate the use of SCIFI for other
microprocessors and other types of circuits. In the near
future we will extend the FIMBUL tool and add support
for injection of permanent- and semi-permanent faults.

Acknowledgements
This work was partially supported by Saab Ericsson

Space AB and the Swedish National Board for Industrial
and Technical Development (NUTEK). We wish to
express our gratitude to Magnus Legnehed, Stefan Asser-
häll, Torbjörn Hult, and Roland Pettersson of Saab Erics-
son Space AB for their support, valuable suggestions and
technical assistance. We would also like to thank Prof. Jan
Torin for his encouragement and many valuable com-
ments. Thanks are also due Joakim Ohlsson and Marcus
Rimén for their support concerning the MEFISTO-C tool.

References
[1] Iyer, R.K., “Experimental Evaluation,” inSpecial Issue of

Proc. 25th Int. Symp. on Fault-Tolerant Computing (FTCS-
25), Pasadena, CA, USA, 1995.

[2] J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J.-C. Fabre, J.-C.
Laprie, E. Martins and D. Powell, “Fault Injection for
Dependability Validation — A Methodology and Some
Applications”,IEEE Transactions on Software Engineering,
16 (2), pp.166-82, February 1990.

[3] H. Madeira, M. Rela, F. Moreira and J. G. Silva, “RIFLE: A
General Purpose Pin-level Fault Injector”, inProc. 1st Euro-
pean Dependable Computing Conf. (EDCC-1),(Berlin,
Germany), pp.199-216, Springer-Verlag, 1994.

[4] Z. Segall, T. Lin, “FIAT: Fault Injection Based Automated
Testing Environment”, inProc 18th Annual IEEE Interna-
tional Symposium on Fault-Tolerant Computing, pp. 102-
107, June 1988.

[5] G. Kanawati, N. Kanawati and J. Abraham, “FERRARI: A
Tool for the Validation of System Dependability Proper-
ties”, in Proc 22nd Annual IEEE International Symposium
on Fault-Tolerant Computing, pp. 336-344, 1992.

[6] Carreira J., Madeira H. and Silva J. G., “Xception: Software
Fault Injection and Monitoring in Processor Functional
Units”, in Proc 5th International Working Conference on
Dependable Computing For Critical Applications (DCCA-
5), pp. 135-149, September 1995.

[7] Saab Ericsson Space AB,Microprocessor Thor, Product
Information, September 1993.

[8] Mahmood A., et al, “Concurrent Error Detection Using
Watchdog Processors - A Survey”,Transactions on Com-
puters, vol. 37, No. 2, February 1988, pp. 160-174.

[9] Saab Ericsson Space AB,Workstation Board Specification,
Doc. no. TOR/TNOT/0015/SE, February 1993.

[10] Jenn E., Arlat J., Rimén M., Ohlsson J., Karlsson J., “Fault
Injection into VHDL Models: The MEFISTO Tool”, in
Proc. 24th Annual IEEE International Symposium on Fault-
Tolerant Computing, FTCS-24, pp. 66-75, Austin, TX,
USA, June 1994.

[11] Chillarege R., Iyer R. K., “Measure-Based Analysis of Error
Latency”, Transactions on Computers, vol. C-36, No. 5,
May 1987, pp. 529-537.

[12] Czeck E. W., Siewiorek D. P., “Observations on the Effects
of Fault Manifestation as a Function of Workload”,Trans-
actions on Computers, vol. 41, No. 5, May 1992, pp. 559-
565.

[13] Gunneflo U., et al., “Evaluation of Error Detection Schemes
Using Fault Injection by Heavy-ion Radiation”, inProc.
19th Annual IEEE International Symposium on Fault-Toler-
ant Computing, Chicago, IL, USA, June, 1989, pp. 340-347.

[14] Saab Ericsson Space AB,Users Guide for ODEN Ada Com-
piler System, Doc. no. TOR/TNT/0010/SE, April 1996.

[15] Powell D., et al., “On Stratified Sampling for High Cover-
age Estimations”, inDependable Computing - EDCC-2,
Lectures Notes in Computer Science, vol. 1150, Springer-
Verlag, Berlin, Germany, 1996, pp. 37-54.

Fault injection tool FIMBUL MEFISTO-C

Part of CPU fault injected
(no. of state elements)

IF
(30)

AG
(146)

CACHE
(1824)

EX
(90)

ADA
(160)

Weighted total
(2250)

IF
(30)

AG
(146)

CACHE
(1824)

EX
(90)

ADA
(160)

Weighted total
(2250)

Latent Errors 0.00% 65.58% 4.91% 19.38% 95.41% 15.80% (±0.91%) 0.00% 65.58% 15.40% 19.71% 100.00%24.64% (±1.49%)
Overwritten Errors 0.00% 0.00% 47.64% 57.82% 4.00% 41.22% (±2.04%) 9.36% 0.00% 37.22% 59.93% 0.00% 32.70% (±1.97%)
Total (Non Effective Errors) 0.00% 65.58% 52.56% 77.20% 99.40% 57.02% (±2.04%) 9.36% 65.58% 52.62% 79.64% 100.00%57.34% (±2.04%)

Exception 1 (Bus Error) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Exception 2 (Address Error) 36.95% 3.34% 21.17% 1.63% 0.00% 17.93% (±1.67%) 35.47% 3.16% 19.86% 1.30% 0.00% 16.83% (±1.63%)
Exception 3 (Data Error) 0.00% 0.00% 0.00% 2.61% 0.00% 0.10% (±0.05%) 0.00% 0.00% 0.00% 2.44% 0.00% 0.10% (±0.05%)
Exception 4 (Instruction Error) 58.62% 0.45% 1.70% 0.00% 0.00% 2.19% (±0.53%) 13.30% 0.45% 1.70% 0.00% 0.00% 1.59% (±0.53%)
Exception 5 (Jump Error) 0.00% 0.00% 0.59% 0.00% 0.00% 0.48% (±0.31%) 0.00% 0.18% 1.18% 0.00% 0.00% 0.97% (±0.44%)
Exception 8 (Constraint Check) 0.49% 3.43% 10.29% 7.82% 0.00% 8.88% (±1.24%) 39.90% 3.52% 10.88% 7.82% 0.00% 9.89% (±1.27%)
Exception 9 (Access Check) 0.00% 0.45% 0.13% 0.16% 0.00% 0.14% (±0.15%) 0.00% 0.45% 0.07% 0.16% 0.00% 0.09% (±0.11%)
Exception 10 (Storage Error) 0.00% 25.56% 0.00% 0.00% 0.00% 1.66% (±0.17%) 0.00% 25.47% 0.00% 0.00% 0.00% 1.65% (±0.17%)
Exception 11 (Overflow) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Exception 12 (Underflow) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Exception 13 (Division Check) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.99% 0.00% 0.00% 0.00% 0.00% 0.01% (±0.02%)
Exception 14 (Illegal Operation) 0.49% 1.17% 0.79% 0.33% 0.00% 0.73% (±0.36%) 0.00% 1.17% 0.85% 0.33% 0.00% 0.78% (±0.38%)
Control Flow Errors 2.96% 0.00% 0.66% 0.00% 0.00% 0.57% (±0.33%) 0.99% 0.00% 0.66% 0.00% 0.00% 0.54% (±0.33%)
Other Errors 0.00% 0.00% 0.13% 0.00% 0.00% 0.11% (±0.15%) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
System Failure 0.49% 0.00% 11.99% 10.26% 0.60% 10.18% (±1.33%) 0.00% 0.00% 12.19% 8.31% 0.00% 10.21% (±1.33%)
Total (Effective Errors) 100.00% 34.42% 47.44% 22.80% 0.60% 42.98% (±2.04%) 90.64% 34.42% 47.38% 20.36% 0.00%42.66% (±2.04%)

Coverage 99.51% 100.00% 88.01% 89.74% 99.40% 89.82% (±1.33%) 100.00% 100.00% 87.81% 91.69% 100.00%89.79% (±1.33%)

Total no. of faults injected 203 1107 1526 614 1176 4626 203 1107 1526 614 1176 4626

Table 6: Results of campaign 3 and 4b

