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Abstract. The effects of variations in the workload input when estimating error
detection coverage using fault injection are investigated. Results from scan-
chain implemented fault injection experiments using the FIMBUL tool on the
Thor microprocessor show that the estimated error non-coverage may vary by
more than five percentage units for different workload input sequences. A
methodology for predicting error coverage for a particular input sequence based
on results from fault injection experiments with another input sequence is
presented. The methodology is based on the fact that workload input variations
alter the usage of sensitive data and cause different parts of the workload code
to be executed different number of times. By using the results from fault
injection experiments with a chosen input sequence, the error coverage factors
for the different parts of the code and the data are calculated. The error
coverage for a particular input sequence is then predicted by means of a
weighted sum of these coverage factors. The weight factors are obtained by
analysing the execution profile and data usage of the input sequence.
Experimental results show that the methodology can identify input sequences
with high, medium or low coverage although the accuracy of the predicted
values is limited. The results show that the coverage of errors in the data cache
is preferably predicted using data usage based prediction while the error
coverage for the rest of the CPU is predicted more favourably using execution
profile based prediction.

1 Introduction

Since fault-tolerant computer systems are often used for protecting large investments
and even lives, validating such systems before they are being put to use is imperative.
Experimental validation methods such as fault injection have become particularly
attractive for estimating the dependability of computer systems [8]. As fault-tolerant
systems typically contain several mechanisms for detecting and handling errors in
order to avoid system failures, it is of particular interest to measure the efficiency of
these mechanisms, i.e., to measure the error detection coverage.

It is well known that the workload program has significant impact on the
dependability measures obtained from fault injection experiments [4], [6]. Thus, the
program must be carefully chosen when evaluating fault-tolerant systems. The ideal is
to use the real program that will be used during actual operation of the system.



The results of fault injection experiments may also be affected by the workload
input sequence [3]. Fault injection experiments conducted on a Motorola MVME162
board executing a parser evaluating algebraic expressions clearly show the impact of
the input domain on estimated dependability measures [2]. Thus, both the program
and the input sequence to the program must be considered when validating fault-
tolerant systems.

We have used the FIMBUL tool [5] to investigate the effects of workload input
variations on fault injection results. We show, for three different programs, that
variations in input domain significantly affects the estimated error coverage. A
solution to the problem of accurately estimating error coverage when the input
domain varies could be to perform fault injection experiments for many input
sequences. However, conducting fault injection experiments for a large number of
input sequences is very time consuming. To speed up the validation process, a
methodology for predicting the error coverage for a particular input sequence based
on fault injection results obtained for another input sequence is presented.

The remainder of the paper is organized as follows. The experimental set-up used
for investigating the effects of workload input variations on fault injection results is
described in Sect. 2. In Sect. 3, results obtained from fault injection experiments
clearly demonstrate that the input sequence affects the estimated error coverage. The
methodology for predicting error coverage is presented in Sect. 4 and applied on three
different workloads in Sect. 5. Finally, the conclusions of this study are given in
Sect. 6 together with a discussion about the advantages/disadvantages of the
methodology and the need for further research.

2 Experimental set-up

The target system for the fault injection experiments was the Thor microprocessor, a
32 bit stack oriented RISC processor developed and sold by Saab Ericsson Space AB
[10]. The Thor processor is primarily intended for embedded systems in space
applications and includes several advanced error detection mechanisms to support
fault tolerance. Access to the internal logic of the CPU is provided via internal and
boundary scan chains using a Test Access Port (TAP).

The FIMBUL (Fault Injection and Monitoring Using Built-in Logic) tool was used
to conduct the fault injection experiments on Thor. FIMBUL is able to inject faults
into the internal logic of Thor via scan-chain implemented fault injection (SCIFI).
This technique can be more than 100 times faster than e.g. simulation based fault
injection, and yet produce very similar results [5].

This section gives a short overview of Thor and FIMBUL, and a description of
how they were configured during the experiments.

2.1 The Thor processor

The Thor processor uses a stack oriented instruction set architecture which gives
compact machine code due to frequent use of an implicit operand addressing mode. A
stack based architecture also provides a high locality of data references resulting in



high hit rates of the data cache and fast context switching since only the stack pointer
needs to be updated.

A block diagram of the Thor chip is given in Fig. 1. A four stage instruction
pipeline is found in the middle of the figure. The pipeline consists of an Instruction
Fetch stage (IF), an Address Generation stage (AG), an Operand Fetch stage (OF)
incorporating a 32 word (128 byte) direct mapped write-back data cache, and an
EXecute stage (EX). An instruction enters the pipeline in the IF stage and is then
passed from one stage to the next each system clock cycle except when a pipeline stall
occurs, e.g., when the EX stage is performing a multicycle operation or waits for a
write operation to slow memory.
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On-chip support for real-time processing specifically for the Ada language is
available on Thor and is handled by the Ada support block. This includes task
scheduling and dispatch, communication between tasks, time handling, accurate
delays and fast interrupt handling.

The support for fault tolerance includes several internal error detection
mechanisms. The error detection mechanisms are controlled and supervised by the
Error Detection block and consist of control flow checking, run-time checks, memory
data checks and master/slave comparator operation. In this study, we consider
estimation of the error detection coverage of the run-time checks and control flow
checking mechanism. The run-time checks include those which are commonly found
in other microprocessors (division by zero checks etc.), as well as Thor specific
checks such as index array bound checks. The control flow checking mechanism uses
a signature monitoring scheme that checks the control flow of the program execution
during run-time (see [9] for a general description of this technique).

The TAP control and Debug blocks implements the test and debug facilities. The
TAP conforms to the IEEE 1149.1 standard for boundary scan [7]. It provides access
to 101 chip-pin signals via a boundary scan-chain, and all the memory elements in the
cache and 18 internal registers (marked with an asterisk in Fig. 1) via an internal scan-
chain. The TAP also gives access to a debug scan-register, which allows the user to
set breakpoints. When a breakpoint condition is fulfilled, the processor halts and the
values of the memory elements in the scan-chains can be read or written via the TAP.
This feature provides very powerful support for fault injection.

2.2 The FIMBUL tool

The test and debug facilities included in the Thor processor is used for fault injection
by the FIMBUL tool. Transient bit-flip faults can be injected into any of the locations
accessible by the boundary and internal scan-chains of the Thor CPU. The points in
time for fault injection are chosen by programming the debug scan-register to halt the
processor when a particular address is accessed.

The tool uses a Thor evaluation board [11], featuring the Thor CPU, memory
circuits and I/O ports, installed on a Sun UNIX workstation using an SBus interface.
All communication between FIMBUL and the Thor CPU is performed via UNIX
device drivers. The software needed to communicate with Thor in order to inject
faults and collect data is executed on the workstation. The workstation is also used for
workload generation and data analysis.

There are three phases involved in conducting fault injection campaigns using
FIMBUL: the set-up, fault injection and analysis phases. The workload chosen for
fault injection experiments is analysed in the set-up phase to produce configuration
data for the experiments. The configuration data contains all the information needed
to perform fault injection experiments, e.g. when and where to inject faults, the
number of faults to inject and which workload to use. The configuration data also
determines the operation mode for the FIMBUL fault injection module. There are four
operation modes: normal, normal reference, detail and detail reference. In normal
mode, the CPU state, i.e. the contents of the Thor scan-chains, is logged when a fault
injection experiment terminates. In detail mode, the CPU state is logged after each



instruction executed since fault injection allowing the error propagation to be
analysed in detail. No fault injection is performed in the corresponding reference
modes to obtain data from fault free executions.

The configuration data is read and interpreted by FIMBUL in the fault injection
phase. After initializing the Thor evaluation board, the workload is downloaded and
FIMBUL starts operating in reference mode. Then, the first fault injection experiment
is performed according to the information given in the configuration data. Fault
injection is made by programming the debug-scan register to halt the processor when
an address given in the configuration data is accessed. The contents of the boundary
and internal scan-chains of Thor are then read and the bits stated in the configuration
data are inverted and written back to the CPU. The workload execution is then
resumed (the CPU state is now logged after each instruction executed since fault
injection if FIMBUL operates in detail mode). Workload execution continues until a
time-out value has been reached, an error has been detected or the program finishes its
execution, whichever comes first. Then, the CPU state is logged and the Thor
evaluation board is reinitialized and another fault injection experiment begins.

The data logged in the fault injection phase is analysed in the analysis phase to
obtain dependability measures about the target system. The dependability measures
obtained include the percentage of detected, latent and overwritten errors as well as
the percentage of faults leading to incorrect results, i.e. the error non-coverage.

2.3 Experiments conducted

FIMBUL executed on a 50 MHz Sun Sparc Classic workstation equipped with a Thor
evaluation board. The evaluation board used 512 KB RAM and was clocked with
12.5 MHz. The workstation used its own 2 GB disk space for storing results and
managing the experiments. FIMBUL operated in normal mode since most of the
experiments were focused on measuring error non-coverage. Using this set-up,
FIMBUL injected approximately one fault every two seconds. The detail reference
mode was sometimes used for further investigation, e.g. studying the impact of input
domain variations on workload execution.

The faults injected were single bit-flips in the internal state elements (latches and
flip flops). Single bit-flip faults were selected to model the effects of Single Event
Upsets, which are common in the space environment. The FIMBUL tool is capable of
injecting faults into 2250 of the 3971 internal state elements of Thor (see Fig. 1). The
data cache of Thor contains 1824 of the injectable state elements while 426 injectable
state elements are located in the other parts of Thor, hereafter called register part or
registers. The injected faults were selected randomly by sampling the fault space
using a uniform sampling distribution. We define the fault space as the Cartesian
product F = L × T , where L is the set of all fault locations (state elements) and T the
set of all time points when faults can be injected.

Three different workloads written in the Ada language were considered. One is an
implementation of the Quicksort algorithm. It uses recursion to sort an array
containing seven data elements of the Ada predefined type float. The size of this
workload is 756 bytes and it utilizes 27 of the 80 instructions of the Thor CPU. The
execution time is close to a few thousand clock cycles depending on the initial sort



order of the elements. The second workload is an implementation of the non-recursive
Shellsort algorithm. Again, a seven element array of the Ada predefined type float is
sorted. The size of the workload is 600 bytes and it utilizes 29 of the 80 instructions of
Thor. Execution time is a bit lower than for the Quicksort workload, but again varies
depending on the initial sort order of the elements. The third workload implements an
algorithm solving the Towers of Hanoi puzzle. The size is 1724 bytes and it utilizes
27 different instructions. Execution time varies around five thousand clock cycles
depending on the input sequence used.

Seven elements were sorted by the sort workloads in the experiments. Twenty-five
initial permutations of these seven elements were chosen among all the 5040 possible
permutations as input sequences for the workloads. These are alphabetically denoted
A-Y, where the sort order varies from A=”the seven elements are already sorted” to
Y=”the elements are sorted backwards”. Seven different input sequences were used
for the Towers of Hanoi workload, see Sect. 5.3.

3 Results for the Quicksort workload

The results for the Quicksort workload, obtained when injecting 4000 faults for each
of the input sequences A-Y, are given in Fig. 2. The observed error non-coverage is
shown for each input sequence. Major differences can be observed. Only 7.80% non-
covered errors were obtained for input sequence N while 13.67% non-covered errors
were obtained for input sequence Y with the corresponding 95% confidence intervals
for the two sequences of ±0.94% and ±1.10% respectively. Thus, error non-coverage
was estimated with a difference of more than five percentage units. These results
clearly demonstrate that the input sequence affects the error detection coverage.
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4 A methodology for predicting error coverage

The goal of a fault injection experiment is usually to provide a single error coverage
factor which can be used in an analytical model for calculating the reliability,
availability or safety of the target system. Such a single measure of error detection
coverage, c, can be obtained as a weighted sum of the coverage factors obtained for
different input sequences:

∑ ⋅=
=

Q

L

LL ZFF
1

(1)

where ci is the coverage estimated for input sequence i and wi is the weight factor for
input sequence i. Clearly wi is the probability of occurrence for input sequence i
during real operation.

There are several practical problems in estimating the coverage factor this way.
First, the probability distribution of the input sequences must be established, which
could be a difficult task for many applications. Second, the number of input sequences
could be extremely large and it would therefore be impossible to perform fault
injection experiments to estimate the coverage factor for each input sequence.

A practical solution to these problems would be to use a manageable number of
input sequences which, for example, are selected based on educated guesses about the
input sequence distribution. Even if the number of input sequences is reduced to, say,
between 10 and 100, it is quite time consuming to conduct fault injection experiments
to estimate the error coverage (or non-coverage) for every input sequence. To speed
up this process, we propose a methodology for predicting the error coverage for a
particular input sequence based on the results from fault injection experiments with
another base- or reference-, input sequence. Thus, the goal of our research is to find
efficient ways to estimate the ci values in (1). Estimation of the weight factors, wi, is
another problem which is not addressed in this paper.

Two different techniques for predicting the error coverage are proposed. One is
based on the fact that workload input variations cause different parts of the workload
code to be executed different number of times. The other takes into account that the
input variations alter the usage of data.

4.1 Execution profile based prediction

One reason for the observed coverage variations is that the execution profile of a
program varies for different input sequences. A program can be divided into basic
blocks [1], and each basic block is executed a different number of times depending on
the input sequence. An example of how the workload execution profile may vary for
two different input sequences is given in Fig. 3.

Let Pnce,i  denote the probability that a fault results in a non-covered error, given
that the fault is activated during execution of basic block i. It is reasonable to assume
that the probabilities Pnce,a and Pnce,b for two basic blocks a and b varies, but that the
probability Pnce,i  is constant for each basic block i for all input sequences since the



activity of the system during execution of the basic block is the same regardless of
input sequence used, i.e. the same instructions are always executed.

Assume that Pnce,C > Pnce,n for all blocks n ∈{A, B, D, E}  in Fig. 3. The non-
coverage is then higher for a system that processes input X than input Y (assuming
faults activated with equal probability for all points in time during the execution of the
workload) since the proportion of the time spent executing block C is
14*8/(7*1+3*0+14*8+9*8+3*1)*100%=58% for input X and only
14*3/(7*1+3*1+14*3+9*3+3*1)*100%=53%  for input Y.

A

B

C

D

E

A

B

C

D

E

Input X Input Y

7 times 2 times

Block
No. of
clock cycles

No. of times
executed for
input X

No. of times
executed for
input Y

A

B

C

D

E

7

3

14

9

3

1

0

8

8

1

1

1

3

3

1

Fig. 3. Workload execution profile varies for different input data.

The execution profile based prediction technique calculates the predicted non-
coverage c ep  for a particular input sequence p using the following equation:

∑ ⋅=
=
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where the basic blocks of the workload are numbered 1 to n. LQFH3 ,  is estimated using
fault injection experiments for the base input sequence as
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where nnce,i is the observed number of faults activated when block i is executing
resulting in non-covered errors, and ne,i is the total number of faults activated during
execution of block i.

wep,i is the weight factor for block i, i.e. the proportion of faults activated during
execution of block i for input sequence p out of the total number of faults activated for
input sequence p. If all faults are assumed to be activated with an equal probability for
all points in time, the weight factor can be estimated as the proportion of the whole
execution time spent executing block i, for input sequence p. Assume that block i
executes for ki clock cycles that the workload executes for lp clock cycles for input



sequence p. wep,i  is then calculated as wep, i =
ki

lp
⋅ xp , i  where xp,i is the number of

executions of block i for input sequence p.

4.2 Data usage based prediction

Another reason for variations in error detection coverage is that different input
sequences lead to different usage of data. (We here use the term data in a generic
sense covering all types of data used by a program, including the program counter,
hardware and user stack pointers, pointers used by the application program,
application data, etc.) Error detection coverage clearly varies for different classes of
data items. For example, errors in application data are less likely to affect control flow
or memory access behaviour, than errors affecting application pointers or the program
counter. Thus, when error detection relies on control flow checking and memory
access checking, the error detection coverage is lower for errors that affect application
data compared to errors that affect application pointers or the program counter. The
amount of application data used by a program varies for different input sequences,
which leads to variations in error detection coverage.

Based on these observations, a technique for predicting error coverage, or non-
coverage, for a particular input sequence can be proposed. The different types of data
items used by a program are divided into n classes, such that the error detection
coverage is similar for the data items in a given class. As an approximation, we
assume that the error detection coverage is the same for all data items in each class.
Clearly, the classification must be made such that this approximation is valid.

The data usage based prediction technique calculates the predicted non-coverage
c dp  for a particular input sequence p using the following equation:
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where the data classes are numbered 1 to n. LQFG3 ,  is the probability that a fault in a
data item in class i leads to a non-covered error, estimated using the fault injection
experiments for the base input sequence as
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where nncd,i is the observed number of faults injected in data items in class i resulting
in non-covered errors, and nd,i is the total number of faults injected into data items in
class i. The technique relies on the assumption that LQFG3 ,  is approximately constant
for different input sequences.

wdp,i is the weight factor for data class i for input sequence p. The weight factor is
calculated as the percentage of the fault space F = L × T  (see Sect. 2.3) containing
data in class i during the execution using input sequence p. The weight factor is
obtained by investigating the state space of the microprocessor during a single fault
free run of the application program using input sequence p.



5 Applying the methodology

5.1 Predictions for the Quicksort workload

The FIMBUL tool is not always able to identify the basic block executing when a
non-covered error is activated. We therefore assume, as an approximation, that this
block is the same as the one executing when the fault is injected. This is a reasonable
approximation for the register part since most of the faults injected in the register part
resulting in non-covered errors have short activation latencies. However, the
approximation is inadequate for the data cache since the fault injected cache lines are
often used during execution of basic blocks other than the one executing when the
fault is injected. Data usage based prediction is better suited for predicting the effects
of faults injected into the data cache. To demonstrate how the two prediction
techniques work for different parts of the processor, the results are presented
separately for the register part and the data cache.

Table 1 shows the execution profiles of the Quicksort workload for the input
sequences used in this study. Several differences can be observed between the
profiles, e.g. block C93 is executed between one and nine times depending on the
input sequence and block CF6 is not executed at all for input sequence A and up to
five times using other input sequences.

For each basic block, the right-most column of Table 1 gives the estimated
probability that a fault injected into the register part results in a non-covered error,
given that the fault is activated during execution of the basic block. The predictions
are based on 1500 faults injected into the register part during execution of each basic
block for input sequence M. (The Quicksort workload contains 21 basic blocks,
therefore a total of 31500 faults were injected). The last two rows of Table 1 show the
error non-coverage predicted using equation (2) vs. the observed error non-coverage
when injecting 4000 faults into the Thor register part for each input combination.

The results show that the execution profile based prediction technique correctly
predicts that input sequences F, J, T and Y should have the highest error non-coverage
and A the lowest. However, the predicted non-coverage is sometimes much higher
than the observed non-coverage, e.g. for sequences A, D and P. One reason for the
discrepancies between the predicted and observed non-coverage may be the low
number of non-covered errors observed leading to a low confidence in the results. The
95% confidence intervals for the observed non-coverage values are around ±0.2%.
Another reason may be that the assumption that the block executing when a fault is
activated is the same as the one executing when the fault is injected, sometimes is
inaccurate.

The results of execution profile based prediction on the register part is also shown
in the left diagram in Fig. 4. The right diagram in Fig. 4 shows the results of data
usage based prediction on the register part. Again, input sequence M was chosen as
the base input sequence. The data used by the workload was divided into six classes.
One class consists of the elements to be sorted, another of pointers to the elements to
be sorted, three classes contains a particular value of the status register and the sixth
class contains all other data.



Table 1. Execution profiles for different input sequences to the Quicksort workload.
Thor registers fault injected.

No. of executions per input sequence (xp,i)Block
start-

address

No. of
instr.
(ki) A B C D E F G H I J K L M N O P Q R S T U V W X Y

LQFH3 ,ˆ

input M

C46 8 3 7 5 6 6 7 7 5 6 7 7 5 6 7 6 7 7 8 6 8 7 7 7 7 6 1.19%

C4F 3 3 7 5 6 6 8 7 5 6 7 8 5 6 7 6 7 7 8 6 8 7 7 7 7 6 2.01%

C52 26 3 6 4 5 5 5 6 5 5 4 6 4 5 6 5 6 5 6 5 6 4 5 6 6 3 0.07%

C6D 12 8 12 11 14 12 9 10 13 12 9 11 8 14 15 11 14 15 9 10 10 8 8 11 14 8 0.40%

C7B 9 5 4 5 7 5 1 2 6 4 2 3 2 5 6 4 6 5 1 3 1 2 1 3 4 2 0.07%

C87 12 8 13 10 11 11 14 14 11 15 8 13 15 16 16 12 14 14 14 12 15 9 12 14 15 8 0.47%

C93 9 5 5 4 4 4 6 6 4 7 1 5 9 7 7 5 6 4 6 5 6 2 5 6 5 2 0.00%

C9D 5 3 8 6 7 7 8 8 7 8 7 8 6 9 9 7 8 10 8 7 9 7 7 8 10 6 0.27%

CA3 21 3 7 5 6 6 7 7 5 6 7 7 5 6 7 6 7 7 8 6 8 7 7 7 7 6 2.04%

CBA 27 3 7 5 6 6 7 7 5 6 7 7 5 6 7 6 7 7 8 6 8 7 7 7 7 6 1.39%

CD8 8 3 7 5 6 6 7 7 5 6 7 7 5 6 7 6 7 7 8 6 8 7 7 7 7 6 0.07%

CE1 5 3 7 5 6 6 7 7 5 6 7 7 5 6 7 6 7 7 8 6 8 7 7 7 7 6 0.40%

CE7 8 3 6 5 5 6 7 7 5 6 7 7 5 6 7 6 6 6 8 6 7 7 7 6 7 6 0.00%

CF0 5 3 8 6 7 7 8 8 7 8 7 8 6 9 9 7 8 10 8 7 9 7 7 8 10 6 0.00%

CF6 4 0 2 2 2 2 3 2 2 3 3 2 2 4 3 2 2 5 2 2 3 3 2 2 4 3 0.07%

CFC 5 3 6 4 5 5 5 6 5 5 4 6 4 5 6 5 6 5 6 5 6 4 5 6 6 3 0.98%

D02 5 1 2 2 3 2 2 2 3 1 2 3 1 2 3 2 3 3 2 2 2 1 1 3 2 1 0.00%

D09 5 3 6 4 5 5 5 6 5 5 4 6 4 5 6 5 6 5 6 5 6 4 5 6 6 3 0.60%

D0F 5 1 3 1 1 2 2 3 1 3 1 2 2 2 2 2 2 1 3 2 3 2 3 2 3 1 0.00%

D16 4 3 6 4 5 5 5 6 5 5 4 6 4 5 6 5 6 5 6 5 6 4 5 6 6 3 0.00%

D24 13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.20%
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The results in Fig. 4 show that the data usage based prediction method fails to
predict whether the error non-coverage is high or low for a particular input sequence,
while the execution based prediction technique correctly identifies the input
sequences with the highest, or lowest, error non-coverage (although the predicted
value is sometimes too high, probably due to the reasons discussed above).

The results using data usage based prediction on the data cache are shown in Table
2. An analysis of the Quicksort workload shows that the data most sensitive to fault
injection in the data cache are the elements to be sorted. Two data classes were
therefore used for the data usage based prediction technique. One class contains the
elements to be sorted while the other class contains all other data. Table 2 gives the
weight factors for these two classes for each input sequence. The right-most column
gives the estimated probability that a fault injected into a cache line containing the
data in the class will lead to a non-covered error. The estimations are based on
examination of 351 fault injected cache lines leading to non-covered errors (out of a
total of 3019 injections) for input sequence M.
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Fig. 4. Predicted vs. observed non-coverage for Quicksort. Thor registers fault injected.

Table 2 also gives the error non-coverage, predicted using equation (4), as well as
the observed values estimated using 3000 faults injected into the data cache for each
input sequence. A comparison shows that the predicted values are generally lower
than the observed values, but that the relative differences between the predicted values
correspond well to the relative differences between the observed values. This shows
that the technique is capable of pointing out the input sequences with the highest (or
lowest) error non-coverages.

Table 2. Weight factors and non-coverage for different input sequences to Quicksort.
Thor data cache fault injected.

Weight factors for the data classes for each input sequence (wdp,i) (%)Critical
data class A B C D E F G H I J K L M N O P Q R S T U V W X Y

ˆ P ncd, i

input M

Elements
to sort 24

.7
2

20
.2

0

23
.8

1

20
.8

1

21
.4

9

22
.0

0

20
.9

3

21
.0

6

21
.2

5

24
.9

5

21
.0

6

20
.6

8

20
.7

8

20
.9

3

21
.3

7

20
.3

4

22
.7

3

21
.2

8

22
.9

9

22
.4

1

23
.7

5

22
.2

8

21
.1

0

20
.4

7

26
.3

7 43.05%

Other
data 75

.2
8

79
.8

0

76
.1

9

79
.1

9

78
.5

1

78
.0

0

79
.0

7

78
.9

4

78
.7

5

75
.0

5

78
.9

4

79
.3

2

79
.2

2

79
.0

7

78
.6

3

79
.6

6

77
.2

7

78
.7

2

77
.0

1

77
.5

9

76
.2

5

77
.7

2

78
.9

0

79
.5

3

73
.6

3 3.39%

Predicted
non-cov.

(%)

13
.1

9

11
.4

0

12
.8

3

11
.6

4

11
.9

1

12
.1

1

11
.6

9

11
.7

4

11
.8

2

13
.2

8

11
.7

4

11
.5

9

11
.6

3

11
.6

9

11
.8

6

11
.4

6

12
.4

0

11
.8

3

12
.5

0

12
.2

7

12
.8

1

12
.2

2

11
.7

5

11
.5

1

13
.8

5

Observed
non-cov.

(%)

16
.8

7

11
.3

9

15
.8

4

12
.0

5

12
.1

2

12
.9

1

11
.5

2

11
.9

9

10
.3

5

16
.4

5

11
.4

7

11
.7

5

11
.6

3

9.
60

11
.8

5

10
.2

4

13
.7

8

11
.2

1

15
.3

2

13
.7

0

14
.4

3

13
.4

0

10
.7

3

11
.0

6

16
.7

9

In addition, we have also used execution profile based prediction on the data cache.
In this case, 1000 faults were injected for each basic block. (A total of 21000 faults
were injected).



A comparison of the results obtained when using execution profile based and data
usage based prediction on the data cache is shown in Fig. 5 (input sequence M was
used as the base sequence for both prediction techniques). The diagrams show the
observed vs. predicted error non-coverage for the different input sequences A-Y for
each prediction technique. The observed values are estimated using 3000 faults
injected for each input sequence.

Execution Profile Based Prediction
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Fig. 5.  Predicted vs. observed non-coverage for Quicksort. Thor data cache fault injected.

The results show that the data usage based prediction technique succeeds in
identifying the input sequences with the highest non-coverage (A, C, J, S, U and Y)
while the execution profile based prediction technique is clearly inadequate.

5.2 Predictions for the Shellsort workload

To verify the validity of the observations made in Sect. 5.1, a second workload was
investigated. Fig. 6 shows the observed vs. predicted error non-coverage for various
input sequences using the Shellsort workload when fault injecting the data cache. The
observed error non-coverage is based on 2000 injected faults for each input sequence.
Also in these experiments, the input sequence M was used as the base sequence for
both prediction methods. The left diagram shows the results for execution profile
based prediction based on a total of 4000 faults injected during execution of the whole
workload. The right diagram shows the results for data usage based prediction based
on examination of 744 injected faults leading to non-covered errors.

In contrast to the results for the Quicksort workload, the observed non-coverage
varies much less for the different input sequences. Both prediction methods correctly
point out input sequence A as having the lowest non-coverage but do not find any
input sequence with an exceptionally high non-coverage.
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Fig. 6.  Predicted vs. observed non-coverage for Shellsort. Thor data cache fault injected.

Fig. 7 shows the observed vs. predicted error non-coverage using the Shellsort
workload when fault injecting the register part. The observed error non-coverage is
based on 4000 faults injected for each input sequence. Execution profile based
prediction is based on a total of 4000 injected faults. Data usage based prediction is
based on examination of 435 injected faults leading to non-covered errors.
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Fig. 7.  Predicted vs. observed non-coverage for Shellsort. Thor registers fault injected.

The observed non-coverage differences are much smaller, just as for the data
cache, and neither method finds any input sequence with an exceptionally high non-
coverage. Only the execution profile based prediction method correctly identifies
input sequence A as having the lowest error non-coverage.



5.3 Predictions for the Towers of Hanoi workload

The methodology described in Sect. 4 was applied on a third workload. The workload
chosen is an implementation of an algorithm solving the Towers of Hanoi puzzle, see
Fig. 8.

 

Fig. 8. Towers of Hanoi puzzle.

The purpose is to move the three discs of one tower stick to another by dropping
the discs on any of the three available tower sticks. A larger disc may never be placed
on top of a smaller one. The implementation uses a 3x3 floating point matrix
containing non-zero values, representing the discs, and zero values, representing no
disc. The locations of these values in the matrix determine the current configuration of
the three towers. The algorithm recursively solves the problem of moving the discs to
the right-most tower stick.

Seven different tower configurations (A-G) were used as the initial input sequences
for the algorithm, see Fig. 9. Input sequence A was chosen as the base sequence.

A B C

D E F

G

Fig. 9.  Input sequences for Towers of Hanoi.

Fault injection results show that almost all of the non-covered errors were activated
when fault injecting the cache. The faults injected into the register part are therefore
neglected in these experiments and only the data usage based prediction technique
was used. The critical data was found to be the zeros and floating point values
representing the discs. 50 out of 167 non-covered errors were due to faults injected
into zeros while 100 were due to faults injected into disc values out of a total of 10000
faults injected into the cache.

The error non-coverage predicted using equation (4) is given for each of the input
sequences A-G in Table 3. The predicted error non-coverage is highest for input
sequences E and F. The last row of Table 3 shows the error non-coverage estimated



using around 7500 faults injected into all available fault locations for each of the input
sequences. The results show that the observed error non-coverage is indeed highest
for input sequences E and F (2.55% vs. 2.71%).

Table 3. Predicted non-coverage for Towers of Hanoi. Only data cache considered.

                                                               Input sequence

A B C D E F G

Zero value data usage 0.10668 0.09737 0.10985 0.11450 0.17536 0.13475 0.10909

Disc data (non-zero value) usage 0.05083 0.05524 0.05638 0.05395 0.05346 0.06404 0.06381

Other data usage 0.84249 0.84739 0.83377 0.83155 0.77118 0.80121 0.82710

Zero data non-coverage 0.047 - - - - - -

Disc data non-coverage 0.197 - - - - - -

Other data non-coverage 0.0020 - - - - - -

Predicted non-coverage  (data cache only) 1.67% 1.71% 1.79% 1.77% 2.03% 2.05% 1.93%

Observed non-coverage (whole CPU) 1.87% 1.38% 1.84% 1.67% 2.55% 2.71% 1.79%

6 Conclusion

This paper investigated the impact of workload input domain on fault injection
results. The effects of varying the workload input when estimating error coverage
using the FIMBUL fault injection tool on the Thor processor was examined. The
results show that the estimated error non-coverage can vary more than five percentage
units for different input sequences. This clearly demonstrate that the workload input
domain should be considered and carefully chosen when estimating error coverage.

The problem of accurately estimating error coverage could be solved by
performing several fault injection campaigns using different input sequences. Since
this would be very time consuming, a methodology to speed up the process was
presented. The methodology involves predicting error coverage for different input
sequences based on fault injection experiments conducted using another input
sequence.

Two different techniques for predicting error coverage were proposed. One
technique uses the fact that workload input variations cause different parts of the
workload code, i.e. basic blocks, to be executed. The other technique takes into
account that workload input variations alter the usage of data. Prediction is made by
calculating coverage factors for each basic block or sensitive data based on fault
injection results for a single input sequence. The error coverage for a particular input
sequence is then predicted by means of a weighted sum of these coverage factors. The
weight factors are obtained by analysing either the execution profile or the data usage
profile of the input sequence using a single fault free run of the program.

Another way of estimating error coverage could be to carry out fault injection
campaigns where the input sequence is selected randomly for each injected fault. The
selection should be made according to the input sequence distribution. However,
many of the advantages associated with the prediction methodology would be lost.
Identifying the basic blocks and data most sensitive to faults can be useful when



trying to improve the error coverage of the target system. The prediction based
methodology can also be useful for identifying the input sequences with the lowest
(worst case) error coverage. Also, there is no need to perform any new fault injection
experiments if the input sequence distribution for the target system is altered.

Results show that error coverage for the register part of Thor, i.e. all parts of the
CPU except the cache, is predicted more favourably using execution profile based
prediction, while error coverage for the data cache is predicted more favourably using
data usage based prediction. Since it is not always possible to identify the basic block
which activates a non-covered error using FIMBUL, this block is assumed to be the
same as the one executing when the fault is injected. This approximation requires the
data usage based prediction technique to be used on the data cache since faults
injected into the data cache have longer activation latencies than faults injected into
the register part.

The results also show that although data usage based prediction fails to predict the
actual error coverage, it can be useful for finding the input sequences with the most
extreme error coverages, particularly when the error coverage differences are
prominent. These input sequences could then be used in fault injection campaigns to
estimate the real coverage values.

More research is needed to refine the methodology. In this paper, the input
sequence used as the base input sequence was selected arbitrarily. It may be more
favourable to select it according to certain criteria, e.g. an input sequence that causes
all of the basic blocks of the workload code to be executed and as many critical data
items to be used as possible. Perhaps several input sequences should be used as base
input sequences for certain workload programs.

A method for identifying the critical data items for the data usage based prediction
technique needs to be developed. The data belonging to various data classes were
easily identifiable for the workloads used in this study since the same values were
always used (albeit in a different sort order) for each input sequence, often enabling
identification by simply studying the values. For other workloads the corresponding
sensitive variables would sometimes have to be identified, e.g. by tracing the values
and locations of the variables during execution of the workload.

Simulation based fault injection would probably allow the error coverage of the
whole CPU to be predicted using execution profile based prediction only, since the
higher observability available in the simulations should enable identification of the
basic blocks activating the non-covered errors. This would completely eliminate the
need for the data usage based prediction technique as well as the approximations
made about which block that activates a non-covered error. The accuracy of the
predicted values should thereby improve.

Although the methodology managed to identify input sequences with high, medium
or low non-coverage for the workloads used in this study, more research is needed to
determine whether the methodology is applicable to other workloads and other
systems. The workloads used in this study had low complexity and performed similar
floating point array manipulations but nevertheless provided a good starting point for
our research. Larger programs can easily be investigated with FIMBUL since the
SCIFI technique is very fast. Such programs typically consist of a number of
subprograms, e.g. subroutines for sorting etc., and error coverage for each of these
subroutines could probably be used to estimate the total error coverage.



In addition to these issues, the possibility to expand the methodology for estimating
not only overall error coverage, but the coverage of specific error detection
mechanisms as well, should also be investigated.
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