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Abstract. This paper describes and compares three physical fault injection
techniques—heavy-ion radiation, pin-level injection, and electromagnetic
interference—and their use in the validation of MARS, a fault-tolerant
distributed real-time system. The main features of the injection techniques are
first summarised and analysed, and then the MARS error detection
mechanisms are described. The distributed testbed set-up and the common test
scenario implemented to perform a coherent set of experiments by applying the
three fault injection techniques are also described. The results are presented
and discussed; special emphasis is put on the comparison of the specific
impact of each technique.

1 Introduction

The dependability assessment of a fault-tolerant system is a complex task that
requires the use of different levels of evaluation and related tools. Besides and in
complement to other possible approaches such as proving or analytical modelling
whose applicability and accuracy are significantly restricted in the case of complex
fault-tolerant systems, fault-injection has been recognised to be particularly attractive
and valuable. Indeed, by speeding up the occurrence of errors and failures, fault
injection is in fact a method for testing the fault tolerance algorithms/mechanisms
with respect to their own specific inputs: the faults.

Fault injection can be applied either on a simulation model of the target fault-tolerant
system (e.g., [4, 6] ) or on a hardware-and-software implementation (e.g., [1, 21] ).

Clearly simulation-based fault injection is desirable as it can provide early checks in
the design process of fault tolerance algorithms/mechanisms. Nevertheless, it is worth
noting that fault injection on a prototype featuring the actual interactions between the
hardware and software dimensions of the fault tolerance algorithms/mechanisms
supplies a more realistic and necessary complement to validate their implementation
in a fault-tolerant system. Until recently, most studies related to the application of
fault injection on a prototype of a fault-tolerant system relied on physical fault
injection, i.e., the introduction of faults through the hardware layer of the target
system [1, 5, 18] . A trend favouring the injection of errors through the software layer
for simulating physical faults (i.e., software-implemented fault injection) has recently
emerged (e.g., see [7, 19] ). Although such an approach facilitates the application of
fault injection, the correspondence between the types of errors that can be injected
this way, and the actual faults is not yet confidently established. In spite of the
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difficulties in developing support environments and realising experiments, physical
fault injection enables real faults to be injected in a very close representation of the
target system without any alteration to the software being executed.

Among the large number of experiments reported concerning physical fault injection,
all used widely different techniques and/or were applied to distinct target systems.
This significantly hampers the possibility to identify the difficulties/benefits
associated to each fault injection technique and to analyse the results obtained.

This study relies on two major objectives. The first one is to get a better
understanding of the impact and features of the three physical fault injection
techniques that are considered and in which the sites have gained expertise in
developing and applying dedicated experimental tools or in using standard support
environments, respectively: heavy-ion radiation, pin-level injection and
electromagnetic interferences (EMI). The distributed fault-tolerant system
architecture MARS (see paper III.H) developed by TU-Vienna is being used as the
target system to carry out these experiments. Thus, the other driving objective is to
evaluate the coverage of the built-in fault-tolerance features of the MARS system. A
distributed testbed architecture featuring five MARS nodes and a common test
scenario have been implemented at all three sites to perform a coherent set of
experiments.

The remaining part of this paper is decomposed into six sections. Section 2 presents
and compares the main features of the fault injection techniques considered. The error
detection mechanisms of the target system MARS, are described in Section 3. Section
4 defines the approach considered for the experimental evaluation and the predicates
characterising the behaviour of the target system in the presence of injected faults.
Section 5 depicts the common testbed set-up being used by all sites to carry out the
experiments. The results are presented and discussed in Section 6. Finally, concluding
remarks are provided in Section 7.

2 The Fault Injection Techniques

In this section, we first briefly describe the three fault injection techniques, and then
provide a comparison of the main features of these techniques. Note that the pin-level
and heavy-ion techniques have been largely reported in the literature, while the EMI
technique has not previously been used for evaluation of error detection mechanisms.

2.1 Heavy-Ion Radiation

Heavy-ion radiation from a Californium-252 source can be used to inject single event
upsets, i.e., bit flips at internal locations in integrated circuits. The heavy-ion method
has been used to evaluate several hardware- and software-implemented error
detection mechanisms for the MC6809E microprocessor [5, 14] . The irradiation of
the target circuit must be performed in a vacuum as heavy-ions are attenuated by air
molecules and other materials. Consequently, the packaging material that cover the
target chip must also be removed. In these experiments, a miniature vacuum chamber
containing the target circuit and the Cf-252 source was used. A comprehensive
description of the heavy-ion fault injection technique and of the supporting tools is
given in [8] .
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A major feature of the heavy-ion fault injection technique is that faults can be injected
into VLSI circuits at locations which are impossible to reach by other techniques such
as pin-level and software-implemented fault injection. The faults are also reasonably
well spread within a circuit, as there are many sensitive memory elements in most
VLSI circuits. Thereby, the injected faults generate a variety of error patterns which
allows a thorough testing of fault handling mechanisms.

2.2 Pin-Level Injection

Pin-level fault injection, i.e., the injection of faults directly on the pins of the ICs of a
prototype was until now the most widely applied physical fault injection technique. It
has been used for (i) the evaluation of the coverage of specific mechanisms (in
particular for error detection by means of signature analysis [18] , and (ii) the
validation of fault-tolerant distributed systems (e.g., [2, 21] ). Flexible tools
supporting some general features have been developed (e.g., the test facility used on
the FTMP [12] , MESSALINE at LAAS-CNRS [1]  or RIFLE [13]  at the University
of Coimbra). The tool MESSALINE that will be used in these experiments is a
flexible tool capable of adapting easily to various target systems and to different
measures. It supports two implementations of pin-level fault injection:
• forcing, where the fault is directly applied by means of multi-pin probes on IC(s)

pin(s) and associated equipotential line(s),
• insertion, where the IC(s) under test is(are) removed from the target system and

inserted on a specific box where transistor switches ensure the proper isolation of
the IC(s) under test from the system.

The fault models supported are stuck-at (0 or 1). Temporary faults can be injected on
the pins of the ICs to simulate the consequences of such faults on the pins of the
faulted IC(s).

2.3 EMI

An important class of computer failures are those caused by electro-magnetic
interference (EMI). Such disturbances are common, for example, in motor cars, trains
and industrial plants. Consequently, we decided to investigate the use of EMI for the
evaluation of the MARS system. The fault injector used in the experiments generates
bursts conforming to IEC 801-4 standard (CEI/IEC), i.e., the duration of the bursts is
15 ms, the period is 300 ms, the frequency is 1.25, 2.5, 5, or 10 kHz, and the voltage
may be selected from 225 V to 4400 V (see Figure 1). These bursts are similar to
those, which arise when switching inductive loads with relays or mechanical circuit-
breakers.
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Fig. 1. Electro-magnetic bursts
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The faults were injected into the target system, which consisted of a single computer
board,  in two different ways (see Figure 2). In the first way, the computer board was
placed between two conducting plates connected to the burst generator. The second
way was to use a special probe that could expose a smaller part of the board to the
disturbances. In order to direct the faults to specific parts of the computer board, such
a the CPU buses, small pieces of wire functioning as antennas were connected to the
pins of specific ICs. The antennas were used with both the probe and the plates. In
addition, experiments were also conducted using the probe without the antennas.

Burst-GeneratorComputer board

Plates

Computer board

Target Circuit

EMI-Probe

Fig. 2. Coupling of EMIs

2.4 Comparison of the Fault Injection Techniques

This section presents a comparison of the three fault injection techniques taking into
account their fundamental and practical limitations. The comparison is based on five
attributes describing the characteristics of the fault injection techniques:
controllability, with respect to space and time, flexibility, repeatability and physical
reachability and the possibility for timing measurement (e.g., error detection latency).

A characterisation of the fault injection techniques based on these attributes is shown
in Table 1 and explained below. For each attribute, the fault injection techniques are
graded on the scale none, low, medium and high. Note that this comparison does not
consider the actual impact of the injected faults, i.e., the type of errors that are
produced.

Table 1. Characterisation of fault injection methods

Attributes Heavy-ion Pin-level EMI

 Controllability, space low high low

 Controllability, time none high/medium low

 Flexibility low medium high

 Reproducibility medium high low

 Physical reachability high medium medium

 Timing measurement medium high low

Controllability. We consider controllability with respect to both the space and time
domains. (The space domain corresponds to controlling where faults are injected,
while the time domain corresponds to controlling when faults are injected.)

Heavy-ion radiation has low controllability for the space domain. Faults are confined
to the irradiated circuit. Faults can also be confined to specific blocks of a circuit, if
the rest of the circuit is shielded. However, shielding will not be used in this study.
The time of the injection of a fault cannot be controlled as the decay of the Cf-252
source is governed by a random process.
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Pin-level fault injection has high controllability in both the space and time domain.
However, timing controllability may be hampered by the problem of synchronising
the fault injection with the activity of the system, especially when the clock frequency
of the target system is high.

EMI fault injection has low controllability in the space domain because faults may be
injected in circuits surrounding the target circuit. The time of injection can be
synchronised with system activity, but it is difficult to determine exactly when a fault
is injected.

Flexibility. Flexibility here refers to the possibility and ease of changing the target
circuit in an experimental set-up.

Heavy-ion radiation has rather low flexibility as the preparation for each IC type
involves several steps including mechanical and electrical adaptation between the
target system and the miniature vacuum chamber, and opening of the circuit package.
Because of the effort involved in the preparations, heavy-ion experiments are
typically conducted only for a few highly integrated key components in a system.

Pin-level fault injection can achieve a high degree of flexibility provided a
comprehensive fault injection tool, such as MESSALINE, is used. However,
flexibility may be restricted by the difficulty to physically access the pins of modern
IC packages, and problems caused by the extra load capacitances introduced by the
connection probes.

EMI fault injection has high flexibility as there is no physical connection between the
target circuit and the EMI fault injector.

Reproducibility. Reproducibility refers to the ability to reproduce results statistically
for a given set-up and/or repeat individual fault injections exactly. Statistical
reproducibility of results is an absolute requirement to ensure the credibility of fault
injection experiments. The possibility to repeat experiments exactly, or at least with a
very high degree of accuracy, is highly desirable, particularly when the aim of the
experiments is to remove potential design/implementations faults in the fault
tolerance mechanisms.

Heavy-ion radiation experiments cannot be repeated exactly due to the lack of
controllability. The experiments conducted in this study showed that results are
statistically reproducible among different specimens of the target circuits.

For pin-level fault injection it is possible to accurately reproduce the injection of a
selected fault with MESSALINE. However, although reproducing an experiment is
not a major problem for a centralised control automaton, this is not always achievable
in the case of a distributed architecture.

The experiments carried out in this study show that statistical reproducibility is
difficult to obtain for EMI fault injection experiments (see Section 6.3).

Physical reachability. Physical reachability is the ability to reach possible fault
locations (nodes) in a system.

Heavy-ion radiation has high physical reachability as faults are injected at internal
locations of ICs.
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Pin-level fault injection has varying physical reachability depending on the level of
integration for the target system. Physical reachability is low for highly integrated
systems consisting only of a few VLSI circuits. For the MARS system, which uses a
mixture of VLSI, LSI, MSI and SSI circuits, physical reachability is rather high.

EMI fault injection has similar physical reachability as pin-level injection as most
faults probably are injected via digital input/output signals. However, faults may also
occur internally in ICs as a result of disturbances propagated through the power
supply lines.

Timing measurement. The acquisition of timing information associated to the
monitored events (e.g., measurement of error detection latency) is an important
outcome from fault injection experiments.

For heavy-ion radiation such measurements rely on the use of the golden chip
technique. This requires that the target IC is operated synchronously with a reference
IC. However, this may not be possible for ICs with non-deterministic external
behaviour (caused, for example, by a varying number of wait states cycles inserted
during memory accesses).

For pin-level injection, the time of the injection of a fault is explicitly known, thus,
latency measurements does not pose a problem.

For EMI fault injection, latency measurements are difficult. In principle, the golden
chip techniques could be used also in this case. However, a major problem is to
confine the disturbances to the target circuit.

3 Error Detection Mechanisms of the MARS System

Three levels of error detection mechanisms (EDMs) are implemented in the MARS
nodes: (i) the hardware EDMs, (ii) the system software EDMs implemented in the
operating system [9, 16, 17]  and support software (i.e., the Modula/R compiler [20] ),
and (iii) the application level EDMs at the highest level. The MARS nodes consist of
two computers: the communication unit and the application unit. Both units use the
68070 CPU from Philips [15] . The error detection mechanisms provide the fail-
silence property of the MARS nodes (see paper III.H). These mechanisms are
described in the following subsections.

3.1 Hardware EDMs

Whenever an error is detected by one of the hardware EDMs, in general, an exception
is raised and the CPU will then wait for a reset issued by a watchdog timer. This
watchdog timer is the only device, which may cause a reset of all devices including
the CPU.

Two categories of hardware EDMs can be distinguished: the mechanisms provided by
the CPU and those provided by special hardware on the processing board. In addition,
faults can also trigger unexpected exceptions (UEE) (i.e., neither the EDMs built into
the CPU nor the mechanisms provided by special hardware are mapped to these
exceptions).

The EDMs built into the CPU are: bus error, address error, illegal op-code, privilege
violation, division by zero, stack format error, uninitialized vector interrupt and
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spurious interrupt. These errors cause the processor to jump to the appropriate
exception handling routines, which save the error state to a non volatile memory and
then restart the node. Upon restart, a detailed error description is written to a serial
port.

The following errors are detected by mechanisms implemented by special hardware
on the node: silent shutdown of the CPU of the communication unit, power failure,
parity error, FIFO over/underflow, access to physically non-existing memory, write
access to the real-time network at an illegal point in time, error of an external device
and error of the other unit. We call these mechanisms NMI mechanisms, as they raise
a Non-Maskable Interrupt when an error is detected.

An NMI leads to the same exception handling as the error detection mechanisms built
into the CPU and can only be cleared by resetting the node, which is done by the
watchdog timer.

3.2 System Software EDMs

The EDMs implemented by system software include mechanisms produced by the
compiler (i.e., Compiler Generated Run-Time Assertions, CGRTA): value range
overflow of a variable and loop iteration bound overflow.

The others are built into the operating system as assertions or as integrity checks on
data: processing time overflow; various checks on data, done by the operating system;
and various assertions coded into the operating system.

When an error is detected by any of these mechanisms, a trap instruction is executed,
which leads to a node restart.

3.3 Application Level EDMs

The application level EDMs include end-to-end checksums for message data and
double execution of tasks. The end-to-end checksums are used to detect mutilation of
message data and is therefore used for implementing the extended fail-silence
property of the nodes, i.e., the node is also considered to be fail-silent even when a
corrupted message is sent, if the receiver detects the error and discards the message.
Double execution of tasks in time redundancy can detect errors caused by transient
faults that cause different output data of the two instances of the task. Combined with
the concept of message checksums, task execution in time redundancy forms the
highest level in the hierarchy of the error detection mechanisms. These mechanisms
also trigger the execution of a trap instruction, which causes a reset of the node.

4 Measurements

The fail silence property of a MARS node when subjected to faults will be assessed
by means of fault injection campaigns using each of the techniques described in
Section 2. In this section, we first provide an overview of the method supporting the
experimental assessment, then we precisely define the predicates considered to
perform the analyses. The common testbed set-up implemented for carrying out the
fault injection experiments with the three techniques will be described in Section 5.
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4.1 Experimental Assessment

Each campaign consists of several experiment runs. During each experiment a fault is
injected into one node (node under test), another node (golden node) will serve as a
reference and a third node (comparator node) is used to compare the messages sent by
the two previous nodes. Fault injection takes place until the node is declared to be
failed by the comparator node. Then this node is shut down by the comparator node to
clear all error conditions for the new experiment run. After some time, power is
reinstalled and the node under test is reloaded for the next experiment run.

The assessment of the fail-silence property of a MARS node included in the MARS
architecture is obtained by monitoring the error detection information provided by
EDMs of the injected node or by means of message checksums at a receiving node.
Several combinations of enabled/disabled EDMs will be analysed to study selectively
their impact on the fail silence property.

Although these measurements provide very valuable inputs for assessing the fail
silence coverage of a MARS node, it is worth noting that estimating the ‘real’
coverage of the EDMs is a much more difficult task. The reason is that the real fault
set usually is not known in detail, and even less is known about the probability of
occurrence of the individual faults. In principle, an estimate of the ‘real’ coverage can
be calculated as a weighted mean of the coverage factors obtained by different fault
injection methods (e.g., see paper V.C). However, the lack of knowledge about the
‘real’ faults makes it very difficult—and in many practical cases impossible—to
calculate the weight factors.

Each fault injection technique used here should therefore be considered strictly as a
‘benchmark’ method that can be used to evaluate the relative effectiveness of
different EDMs. Combining several fault injection techniques improves the
possibility to investigate coverage sensitivity with respect to changes in the error set.

4.2 Predicates

Four failure types can be distinguished for the node under test:
1) The node’s EDMs detect an error and the node stops sending messages on the

MARS bus; in this case the node stores the error condition into a non-volatile
memory and resets itself by means of the watchdog timer.

2) The node fails to deliver the expected application message(s) for one or several
application cycles, but no error is detected by the node’s EDMs.

3) The node delivers a syntactically correct message with erroneous content. This is
a fail-silence violation in the value domain, which is recognised as a mismatch
between the messages sent by the node under test and the golden node.

4) The node sends a message at an illegal point in time, and thus disturbs the traffic
on the MARS bus. This is a fail-silence violation in the time domain.

On every restart the node under test writes its previously saved error data, if available
(i.e., if an error was detected by the node’s EDMs), and data about its state to two
serial ports, where it can be read and stored for further processing. From these data,
the following predicates (events) can be derived:
Coldstart (CS): Coldstart (power on) of the node under test is made after every

experiment run, except when a system failure occurred.
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Warmstart (WS): Warmstart (reset) of the node under test caused by the detection of
(i) an error by the node’s EDMs (Internal WS) or, (ii) an incoming or outgoing
link failure by means of the top layer of the fault-tolerance mechanism, i.e., the
membership protocol [10]  (External WS).

Message loss (ML): One message (or more) from the node under test was lost (i.e.,
not received by the comparator node).

Message mismatch (MM): Reception by the comparator node of differing messages
from golden node and tested node.

System Failure (SF): Failure of either the golden, data generation, or comparator
nodes.

A CS predicate characterises the end of each data set. The next four predicates
characterise four failure types. The assertion (occurrence) of the WS  predicate in the
data corresponds to the normal case when the node under test detects the error (failure
type 1). The assertion of ML corresponds to a message loss failure (failure type 2);
this behaviour is not a fail-silence violation, because no erroneous data is sent, but it
cannot be regarded as normal operation. Irrespective of the other events, the assertion
of MM  (failure type 3) corresponds to a fail silence violation (in the data domain).
There are two ways in which an SF failure may occur: (i) a fail silence violation in
the time domain (failure type 4) affect the operation of the other nodes, or (ii) another
node than the node under test experience a real hardware failure during the
experiments. (Although, no SF failures were observed in the experiments, this failure
type is described for the sake of completeness.)

Given the above failure types, the number of fail-silence violations can be counted as:

# FS Viol. = # Exp. ⊇ MM + # Exp. ⊇ SF

where # Exp. ⊇ X  counts the number of experiments where a X-type failure was
diagnosed (i.e., predicate X was asserted).

5 Common Experimental Set-up

The experimental set-up used by all sites consists of five MARS nodes and is similar
to the one used in [3] . The workload is a realistic control application.

5.1 Test Application

As error detection coverage is highly dependent on the system activity, it is important
to use a realistic workload in fault injection experiments. We selected a typical real-
time application—a control problem—as workload in the MARS experiments. The
control problem was taken from the rolling ball experiment [11]  in which a ball is
kept rolling along a circular path on a tiltable plane by controlling the two horizontal
axes of the plane by servo motors and observing the position of the ball with a video
camera. The tiltable plane and the camera are not present in our set-up; instead, the
data from the camera is simulated by a data generation task. An additional task was
provided, which compares the results of the two actively redundant computing nodes,
both of which execute the control task.

The application executed during the fault injection experiments basically consists of
three tasks (see also Figure 3):
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1) The data generation task generates the input data for the control task. The input
data include the nominal and actual values of the position, speed and acceleration
of the ball.

2) The control task, which does not preserve any data or state information between
its periodic executions, receives the emulated data from the data generation task
and performs calculations on these data, i.e., calculates the desired acceleration
for the ball.

3) The comparator task receives the results delivered by the two nodes that run the
control-task in active redundancy, and compares them. This task also gives status
information about the experiment, and assists in controlling a fault injection
device (i.e., it indicates when fault injection may take place) and the power
supply of the node under test.

emulation of
actual position
of the ball and

path data

golden node experiment

comparison
of results

control task of
the rolling ball

data generation task

control task

comparator task

Fig. 3. Tasks and message flow

The entire application has a period of 40 ms, i.e., all application tasks are started
every 40 ms and hence produce a result in the same time interval. The application
software is written in Modula/R [20]  a Modula-2 like programming language with
real time support for MARS.

5.2 Hardware Configuration

For the experiments five MARS nodes are needed (see Figure 4). One serves as a
gateway between the department’s local area network and the MARS-bus and is
required for loading the entire application and for reloading the node under test.
Another node is used for emulating input data (i.e., running the data generation task)
for the control task. This task is performed on two actively working redundant nodes,
one of which serves as a golden node, the other one is subjected to fault injection. The
fifth node is used for checking the output of the two nodes performing the test task
(i.e., running the comparator task). Further a host computer is used, which is
controlling the experiments, i.e., reloading failed nodes and collecting data from the
experiment for further analysis.
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This experimental set-up is based on the assumption that the nodes are replica
determinate, i.e., two replicated nodes produce always the same results if provided
with the same input data. The MARS architecture supports this property.

5.3 Detailed Operation of the Experimental Set-up

Figure 4 describes the detailed set-up architecture and identifies the interactions with
the fault injector devices. In the case of heavy-ion (HI), the target circuit is inserted in
a miniature vacuum chamber containing a Cf-252 source; radiation can be controlled
by an electrically manoeuvred shutter [8] . For pin-level injection, the pin-forcing
(PF) technique is used; thus, the injection probe is directly connected to the pins of
the target IC [1] . For EMI, both the technique using the two plates and the probe was
used for the injections.

The experiments are controlled by the comparator MARS node and a UNIX
workstation. The workstation is also responsible for data collection. When the
comparator node detects an error (error type ML or MM, see Section 4.2), it reports
the error type to the workstation and turns off the power to the node under test with
the signal AL 6. Signal AL 7 is used to discontinue fault injection (e.g., by closing the
shutter mechanism of the vacuum chamber in the case of HI). Then the node under
test is powered-up again and restarted. Upon restart, the application unit and the
communication unit in the node under test send error data to the workstation via two
serial lines. (If the error is not detected by the node under test itself, then the node has
no error information available and sends only a status message). Once the node under
test has been restarted, the workstation immediately starts to download the
application. When the application has been restarted, the comparator node enables
fault injection (signal AL 7) and a new experiment begins.

AL  7

AL  6

application 
downloading

APPL
ERROR
data

COMM
ERROR
data

STATUS
data

A
RS232

C
RS232

Target
circuit

Power
supply

A
RS232

Output
latch

Workstation

observe

Gateway

Data gener. Golden Tested node Comparator

Fault Injector
(HI, PF, EMI)

Injection Control

Fig. 4. Detailed set-up architecture

6 Results

The goal for the comparison of the fault injection techniques is to identify similarities
and differences in the error sets generated by the three techniques. If the error sets are
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found to be disjoint, the fault injection techniques can be judged as fully
complementary. In this case, applying all three techniques in the validation of a fault-
tolerant system would improve the confidence of the validation results. In our case,
the error sets were observed indirectly via the distribution of error detections among
the various EDMs. To achieve as much similarity as possible among the error sets,
faults were only injected inside, on the pins, or in the vicinity of either the application
CPU or the communication CPU of the node under test.

Three different combinations of the application level EDMs have been evaluated for
the three fault injection techniques considered. We use the following acronyms for
these combinations: NOAM (no application level mechanisms, i.e., single execution
and no checksums), SEMC (single execution, message checksums), DEMC (double
execution, message checksums), see also Table 2. In addition a fourth combination,
TEMC (triple execution, message checksums), was used in the heavy-ion experiments
(see Section 6.1).

Table 2. Experimental combinations

Comb. no. Execution Message Checksum Acronym

1 Single No NOAM

2 Single Yes SEMC

3 Double Yes DEMC

4 Triple Yes TEMC

In the following paragraphs, we present in sequence the results obtained by the
application of each technique. Then, these results are analysed and compared in a
subsequent paragraph.

6.1 Heavy-Ion Radiation

Two circuits in the node under test were irradiated in separate experiments: the CPU
of the application unit and the CPU of the communication unit. The irradiation was
performed using a miniature vacuum chamber containing the irradiated circuit and a
Cf-252 source (nominal activity 37 kBq); the distance between the source and the IC
was approximately 35 mm. The IC’s pin connections extended through the bottom
plate of the miniature vacuum chamber, so that the chamber could be plugged directly
into the socket of the irradiated IC in the MARS system.

Because the irradiated ICs were CMOS circuits, they had to be protected from heavy-
ion induced latch-up. A latch-up is the triggering of a parasitic four layer switch
(npnp or pnpn) acting as a silicon controlled rectifier (SCR), which may destroy the
circuit due to excessive heat dissipation. The triggering of a latch-up is indicated by a
drastic increase in the current drawn by the circuit. To prevent latch-ups from causing
permanent damage to the ICs, a special device was used to turn off the power to the
ICs when the current exceeded a threshold value.

Table 3 shows the distribution of error detections among the various EDMs for each
of the irradiated CPUs, and the four combinations given in Table 2. The “Other”
category in Table 3-a shows those errors for which no error information was given by
the unit which contained the fault injected circuit. Error information was instead
given by the other (fault free) unit of the tested node for some of these errors (“Other
unit” category). This error information is detailed in Table 3-b. The “No error info.”
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category gives the number of errors for which none of the two units produced error
information.

The hardware EDMs, in particular the CPU mechanisms, detected most of the errors.
This is not surprising since the faults were injected into the CPU. The proportion of
errors detected by the hardware EDMs is larger for faults injected into the
communication CPU than for faults injected into the application CPU. In particular,
the coverage of the NMI EDMs is higher in the former case. Unexpected exceptions
occur with a frequency of about 15% in all combinations.

Errors detected by the OS EDMs dominate for the software EDMs, and for Level 3
EDMs, the message checksum EDMs dominate.

The percentage of fail silence violations was between 2.4% and 0.5% for the NOAM,
SEMC and DEMC combinations when faults were injected into the application CPU.
As expected, the number of fail silence violations is lower for SEMC than for
NOAM, and even lower for DEMC. When faults were injected into the
communication CPU, only one fail silence violation was observed (for NOAM).

Table 3. Results for heavy-ion radiation

Error application unit CPU irradiated communication unit CPU irradiated

Detection NOAM SEMC DEMC TEMC NOAM SEMC DEMC

Mechanisms Errors % Errors % Errors % Errors % Errors % Errors % Errors %

Level 1 CPU 3735 47.7% 1410 49.0% 4280 47.4% 2573 51.3% 1113 44.9% 1270 43.2% 1056 43.3%

Hardware UEE 1173 15.0% 459 16.0% 1373 15.2% 736 14.7% 361 14.6% 416 14.1% 326 13.4%

NMI 549 7.0% 173 6.0% 570 6.3% 286 5.7% 500 20.2% 578 19.6% 484 19.9%

Subtotal 5457 69.7% 2042 71.0% 6223 68.9% 3595 71.7% 1974 79.6% 2264 76.9% 1866 76.6%

Level 2 OS 610 7.8% 222 7.7% 687 7.6% 273 5.4% 90 3.6% 144 4.9% 128 5.3%

Software CGRTA 75 1.0% 3 0.1% 30 0.3% 37 0.7% 10 0.4% 7 0.2% 13 0.5%

Subtotal 685 8.8% 225 7.8% 717 7.9% 310 6.2% 100 4.0% 151 5.1% 141 5.8%

Level 3 Double exec. — — — — 75 0.8% 56 1.1% — — — — 11 0.5%

Appl. Checksum — — 70 2.4% 247 2.7% 231 4.6% — — 48 1.6% 75 3.1%

level Subtotal — — 70 2.4% 322 3.6% 287 5.7% — — 48 1.6% 86 3.5%

Other Other unit 1095 14.0% 381 13.2% 1295 14.3% 566 11.3% 342 13.8% 407 13.8% 293 12.0%

No error info. 402 5.1% 122 4.2% 431 4.8% 216 4.3% 62 2.5% 73 2.5% 51 2.1%

Subtotal 1497 19.1% 503 17.5% 1726 19.1% 782 15.6% 404 16.3% 480 16.3% 344 14.1%

Triple execution — — — — — — 42 0.8% — — — — — —

Fail silence violations 186 2.4% 37 1.3% 48 0.5% 0 0% 1 <0.1% 0 0% 0 0%

Total no. of errors 7825 100% 2877 100% 9036 100% 5016 100% 2479 100% 2943 100% 2437 100%

(a)  Detection by the EDMs of the unit to which the faulted ICs belong
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Error application unit CPU irradiated communication unit CPU irradiated

Detection NOAM SEMC DEMC TEMC NOAM SEMC DEMC

Mechanisms Errors % Errors % Errors % Errors % Errors % Errors % Errors %

Level 1 CPU 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0%

Hardware UEE 3 <0.1% 2 0.1% 0 0% 3 0.1% 0 0% 0 0% 1 <0.1%

NMI 199 2.5% 58 2.0% 243 2.7% 103 2.1% 118 4.7% 147 5.0% 103 4.2%

Subtotal 202 2.6% 60 2.1% 243 2.7% 106 2.1% 118 4.7% 147 5.0% 104 4.3%

Level 2 OS 893 11.4% 321 11.2% 1052 11.6% 460 9.2% 224 8.9% 260 8.8% 189 7.8%

Software CGRTA 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0%

Subtotal 893 11.4% 321 11.2% 1052 11.6% 460 0.2% 224 8.9% 260 8.8% 189 7.8%

Level 3 Double exec. — — — — 0 0% 0 0% — — — — 0 0%

Appl. Checksum — — 0 0% 0 0% 0 0% — — 0 0% 0 0%

level Subtotal — — 0 0% 0 0% 0 0% — — 0 0% 0 0%

(b) Detection by the EDMs of the other unit (detail of “Other unit” entry in Table (a) above)

The observation of fail-silence violations for the DEMC combination was
unexpected. In principle, all effects of transient faults should be masked by the double
execution of tasks. One hypothesis for explaining these violations is that an
undetected latch-up caused the same incorrect result to be produced by both
executions of the control task.

To further investigate this hypothesis, experiments were carried out with the TEMC
combination that used a third time redundant execution of the control task which was
provided with fixed input data for which the results were known. This made it
possible to detect errors by comparing the produced results with the correct results.
This mechanism, which can be viewed as an on-line test program, would detect any
semi-permanent fault such as the one suggested by the latch-up hypothesis.

The results show that no fail-silence violations occurred for the TEMC combination.
As Table 3-a shows, 0.8% of the errors were detected by the third execution of the
control task. This result supports the latch-up hypothesis. However, our experimental
set-up does not provide sufficient observability to fully prove the latch-up hypothesis.
In principle, the absence of fail-silence violations may merely be an effect of the
change of the software configuration caused by the switch from DEMC to TEMC,
and the errors detected by the third execution may have been caused by regular
transients. Verification of the latch-up hypothesis, would require the use of a logic
analyser so that the program flow and behaviour of the microprocessor could be
studied in detail.

The OS and NMI EDMs dominate the detections made by the other unit of the tested
node. The communication between the two units are done via two FIFO buffers, and
nearly all of these detections are made by EDMs signalling empty FIFO. (An empty
FIFO can be detected both by the operating system and the special NMI mechanism.)

6.2 Pin-Level Injection

The forcing technique was used for the fault injection experiments carried out on the
MARS system. The main characteristics of the injected faults are listed hereafter:
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• one single IC was fault injected at a time (the maximum number of pins faulted
simultaneously — i.e., the multiplicity of the fault — being limited to mx = 3),

• uniform distribution over all combination of mx pins was used to select the mx
faulted pins,

• stuck-at-0 and -1 fault models (all 0-1 combinations of mx pins considered
equally probable),

• to facilitate the comparison with the other techniques, both transient and
intermittent (series of transients) faults were injected.

As the pin-forcing technique is being used, it can be confidently considered that all
pins of the ICs connected to an injected pin are tested as well. Accordingly, in the set
of experiments conducted to date, to simplify the accessibility to the pins of the
microprocessors of the application and communication units, the target ICs were
mainly buffer ICs connected to them. Seven ICs (5 on the application unit and 2 on
the communication unit) were tested. These tests resulted in a total of 3,266 error
reports.

Table 4 shows the distribution of the errors detected by the various EDMs for the
tested ICs of the tested node for three combinations of the application-level EDMs,
together with their percentage of the total number of errors observed in each
combination.

Table 4. Results for pin-level injection

Error ICs belonging to the application unit ICs belonging to the communication unit

Detection NOAM SEMC DEMC NOAM SEMC DEMC

Mechanisms Errors % Errors % Errors % Errors % Errors % Errors %

Level 1 CPU 71 11.2% 53 9.0% 38 7.0% 37 6.9% 37 8.2% 20 3.9%

Hardware UEE 48 7.6% 59 10.0% 41 7.6% 113 21.2% 73 16.2% 103 19.8%

NMI 474 75.0% 430 73.0% 423 78.2% 265 49.7% 260 57.5% 263 50.7%

Subtotal 593 93.8% 542 92.0% 502 92.8% 415 77.9% 370 81.9% 386 74.4%

Level 2 OS 6 0.9% 6 1.0% 7 1.3% 35 6.6% 21 4.6% 30 5.8%

Software CGRTA 0 0% 1 0.2% 0 0% 0 0% 0 0% 0 0%

Subtotal 6 0.9% 7 1.2% 7 1.3% 35 6.6% 21 4.6% 30 5.8%

Level 3 Double exec. — — — — 0 0% — — — — 0 0%

Appl. Checksum — — 0 0% 0 0% — — 1 0.2% 5 1.0%

level Subtotal — — 0 0% 0 0% — — 1 0.2% 5 1.0%

Other Other unit 1 0.2% 8 1.4% 2 0.4% 23 4.3% 17 3.8% 26 5.0%

No error info. 32 5.1% 30 5.1% 30 5.5% 59 11.1% 43 9.5% 72 13.9%

Subtotal 33 5.2% 38 6.5% 32 5.9% 82 15.4% 60 13.3% 98 18.9%

Fail silence violations 0 0% 2 0.3% 0 0% 1 0.2% 0 0% 0 0%

Total no. of errors 632 100% 589 100% 541 100% 533 100% 452 100% 519 100%

(a) Detection by the EDMs of the unit to which the faulted ICs belong
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Error ICs belonging to the application unit ICs belonging to the communication unit

Detection NOAM SEMC DEMC NOAM SEMC DEMC

Mechanisms Errors % Errors % Errors % Errors % Errors % Errors %

Level 1 CPU 0 0% 0 0% 0 0% 0 0% 0 0% 0 0%

Hardware UEE 0 0% 0 0% 0 0% 0 0% 0 0% 2 0.4%

NMI 1 0.2% 7 1.2% 2 0.4% 23 4.3% 17 3.8% 24 4.6%

Subtotal 1 0.2% 7 1.2% 2 0.4% 23 4.3% 17 3.8% 26 5.0%

Level 2 OS 0 0% 1 0.2% 0 0% 0 0% 0 0% 0 0%

Software CGRTA 0 0% 0 0% 0 0% 0 0% 0 0% 0 0%

Subtotal 0 0% 1 0.2% 0 0% 0 0% 0 0% 0 0%

Level 3 Double exec. — — — — 0 0% — — — — 0 0%

Appl. Checksum — — 0 0% 0 0% — — 0 0% 0 0%

level Subtotal — — 0 0% 0 0% — — 0 0% 0 0%

(b) Detection by the EDMs of the other unit (detail of “Other unit” entry in Table (a) above)

The results in Table 4-a indicate a dominant proportion of detections by the hardware
EDMs (more than 90% on application unit side and 75% on communication unit
side). NMI clearly dominates; however, in addition to CPU exceptions a significant
number of UEEs were also triggered. The difference between UEE and NMI for the
application and communication units can be explained by the fact that not all ICs
tested on the application unit are directly connected to the processor. For software
EDMs, detections by the OS significantly dominate. Concerning the application level
EDMs, the “Checksum” EDMs are dominating; no detections were triggered by the
“Double execution” EDM when this option was enabled. Only a limited number of
fail silence violations were observed: two occurrences for the SEMC combination
when faults were injected on the application unit side.

Table 4-b shows that NMI error detection types are also dominating the
supplementary detections observed on the other unit. Here also, a significant
difference is observed between the results concerning the fault injections affecting the
application unit side and the communication unit side; this may indicate that a larger
proportion of errors is propagated to the application unit.

6.3 EMI

Various fault-injection campaigns were carried out with a variety of voltage levels,
with negative or positive polarity of the bursts, and with a burst-frequency of 2.5 kHz
and 10 kHz. A total number of more than 17,000 errors were observed during all
campaigns conducted with the first method, i.e., when the computer board of the node
under test was mounted between two plates, and more than 30,000 errors were
observed using the special probe (see Section 2.3). Most of the campaigns were
conducted with all application level EDMs enabled.

In the first campaign shown in Table 5 (NOAM(1)) faults were injected into the
communication unit using the two plates. Antenna wires were attached to the so-
called LO-EPROM, in order to disturb the address bus and the eight low order bits of
the data bus. Bursts characterised by a frequency of 2.5 kHz, negative polarity, and a
voltage of 230 V were injected. The second campaign (SEMC(2)) was conducted
using the special probe with the wires connected to the corresponding LO-EPROM in
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the application unit. In this case the burst were characterised by a frequency of
10 kHz, negative polarity, and a voltage of 300 V. Campaign number three
(DEMC(3)) used the two plates, the bursts had a frequency of 2.5 kHz, negative
polarity, and voltage of 230 V. The wires were attached to the LO-EPROM of the
application unit.

Campaigns 4 to 6 were only using the special probe for coupling faults into the CPU
of the application unit, i.e., the probe was mounted on top of the CPU, and no wires
were attached to any chip. The chosen frequency for the bursts was 10 kHz and
negative polarity was used for all these experiments. We used a voltage of 290 V for
campaign 4 and 6, while a slightly higher voltage, 300  V, was used for campaign 5.

Due to the large number of campaigns made, only selected campaigns are presented
in Table 5, which shows the distribution of the errors detected by the various EDMs
as total numbers and as percentage. Table 5-a shows the errors detected by the unit,
where fault-injection was focused to; errors detected by the other unit of the node are
detailed in Table 5-b.

Campaign one and two show similar results, although focus of fault-injection was on
different units of the processing node, the communication unit for campaign one and
the application unit for campaign two. Most of the errors were detected by the
hardware EDMs, where the CPU EDMs clearly dominate. For the software EDMs,
which only detected a small fraction of the errors, the OS EDMs dominate. The
relatively high amount of no error information for campaign one partly results from
the fact that for this campaign no information about the errors detected by the
application unit is available, because this is a result from early experiments, where
only the outputs of the unit under test was recorded, and therefore all errors which
were detected by the application unit are also counted as ‘no-error-info’.
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Table 5. Results for EMI

Error fault-injection with antennas fault-injection with probe only

Detection NOAM(1) SEMC(2) DEMC(3) NOAM(4) SEMC(5) DEMC(6)

Mechanisms Errors % Errors % Errors % Errors % Errors % Errors %

Level 1 CPU 1195 72.0% 193 76.6% 137 2.2% 4933 99.4% 1692 98.1% 1911 99.2%

Hardware UEE 11 0.7% 8 3.2% 9 0.2% 31 0.6% 17 1.0% 15 0.8%

NMI 48 2.9% 18 7.1% 695 11.4% 0 0% 3 0.2% 0 0%

Subtotal 1254 75.6% 219 86.9% 841 13.8% 4964 100% 1712 99.3% 1926 100%

Level 2 OS 110 6.6% 5 2.0% 5215 85.6% 0 0% 3 0.2% 0 0%

Software CGRTA 5 0.3% 0 0% 1 <0.1% 0 0% 0 0% 0 0%

Subtotal 115 6.9% 5 2.0% 5216 85.6% 0 0% 3 0.2% 0 0%

Level 3 Double exec. – – – – 9 0.2% – – – – 0 0%

Appl. Checksum – – 1 0.4% 8 0.1% – – 1 <0.1% 0 0%

level Subtotal - - 1 0.4% 17 0.3% - - 1 <0.1% 0 0%

Other Other unit – – 24 9.5% 6 0.1% 0 0% 6 0.3% 0 0%

No error info. 271 16.3% 0 0% 13 0.2% 0 0% 2 0.1% 0 0%

Subtotal 271 16.3% 24 9.5% 19 0.3% 0 0% 8 0.4% 0 0%

Fail silence violations 20 1.2% 3 1.2% 0 0% 0 0% 0 0% 0 0%

Total number of errors 1660 100% 252 100% 6093 100% 4964 100% 1724 100% 1926 100%

(a) Detection by the EDMs of the unit to which the faulted ICs belong

Error fault-injection with antennas fault-injection with probe only

Detection NOAM(1) SEMC(2) DEMC(3) NOAM(4) SEMC(5) DEMC(6)

Mechanisms Errors % Errors % Errors % Errors % Errors % Errors %

Level 1 CPU – – 0 0% 0 0% 0 0% 0 0% 0 0%

Hardware UEE – – 0 0% 0 0% 0 0% 0 0% 0 0%

NMI – – 0 0% 6 0.1% 0 0% 0 0% 0 0%

Subtotal – – 0 0% 6 0.1% 0 0% 0 0% 0 0%

Level 2 OS – – 24 9.5% 0 0% 0 0% 6 0.3% 0 0%

Software CGRTA – – 0 0% 0 0% 0 0% 0 0% 0 0%

Subtotal – – 24 9.5% 0 0% 0 0% 6 0.3% 0 0%

Level 3 Double exec. – – – – 0 0% – – – – 0 0%

Appl. Checksum – – 0 0% 0 0% – – 0 0% 0 0%

level Subtotal – – 0 0% 0 0% – – 0 0% 0 0%

(b) Detection by the EDMs of the other unit (detail of “Other unit” entry in Table (a) above)

A different distribution of errors was observed for campaign three. There the software
EDMs detected most of the errors, where error detection by OS EDMs dominates.
Most of the errors detected by the OS EDMs were indicating that a message, that was
required by the application, was lost. Note that campaign one and three both used the
two plates, but the observed results are quite different. Campaign one and two had
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different EMI conditions but here the results are very similar to each other. In general
very different results were observed for similar conditions, e.g., slight changes in
voltage levels. Thus, reproducibility appears to be problematic for EMI fault-
injection.

In Campaign 4 to 6 almost all of the errors were detected by the CPU EDMs. Only
Campaign 5 shows a small amount of errors detected by other EDMs than hardware
EDMs. When looking at the results of experiments 4 to 6 in more detail, which is not
shown in Table 5 for brevity, we discovered that almost all of the detected errors were
spurious interrupts detected by the processor. Spurious interrupts are interrupts
signalled to the processor, but the processor cannot find the source of the interrupt,
i.e., the device having raised the interrupt. This shows that the interrupt lines of a
processor are highly sensitive to EMI.

Errors detected by the other unit were only detected by the NMI EDMs and by the OS
EDMs for all campaigns.

6.4 Discussion

Almost all of the fault injection campaigns show that the hardware EDMs detect most
of the errors. However, one campaign, EMI DEMC(3), shows results which are
drastically different from the other campaigns. In order to simplify the discussion, we
neglect the results from this campaign, when we compare the different results.

The main difference between the fault injection techniques, when looking at the
hardware EDMs, is the number of errors detected by the CPU and the NMI
mechanisms, respectively; the CPU EDMs dominate for heavy-ion radiation and
EMI, while the NMI EDMs dominate for pin-forcing. A closer examination of the
results showed that heavy-ion radiation exercised seven of the eight CPU EDMs,
while EMI exercised five and pin-level exercised four of the CPU EDMs.

For EMI, when using the probe without antennas, the detection of spurious interrupts
strongly dominated. Consequently, this method generates a very restricted error set,
which clearly demonstrate that the method is not suitable for evaluation of error
detection mechanisms. However, the variation in the error set was much larger when
the antennas were used.

The proportion of unexpected exceptions is fairly large for pin-forcing and heavy-ion
radiation, but quite low for the EMI technique.

Pin-forcing exercised 34 different combinations of NMI detections; the corresponding
numbers for the heavy-ion and EMI techniques were 26 and 16, respectively. This
indicates that pin-forcing may be more effective than the other techniques in
exercising hardware EDMs located outside of the CPU chip.

One NMI mechanism of particular interest is the time-slice controller, which prevents
access to the MARS bus at an illegal point in time. The results show that 5.0%, 11.6%
and 1.9% of the errors were detected by the time-slice controller for heavy-ion, pin-
forcing and EMI, respectively. Without this mechanism, the fail-silence property
would have been violated in the time domain, which could lead to system failure (see
Section 4.2). No fail-silence violations in the time domain were observed during the
experiments.
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The software EDMs detected the second largest amount of errors for all techniques.
The unbalance observed in the case of heavy-ion radiation between the OS and
CGRTA EDMs, is amplified when using pin-forcing and EMI: almost no detections
by the CGRTAs were observed for the two latter techniques.

The application level EDMs detected the smallest amount of errors for all techniques,
but when these were disabled, the fail-silence coverage was reduced (particularly for
heavy-ion radiation) which shows the necessity of using these mechanisms as well.

The heavy-ion radiation stresses the system the most (i.e., the largest amount of fail-
silence violations was observed for this technique). This technique also generates the
largest error set, as indicated by the spread of the error detections among the EDMs.
The spread of the detections is approximately the same for pin-forcing and EMI
injections using antennas.

7 Conclusion

This paper reported on a unique study devoted to the comparison of physical fault
injection techniques. The paper described three techniques—heavy-ion radiation, pin-
level fault injection, and EMI—and how they were used to validate the MARS
system.

The comparison of the fundamental and practical features of the three fault injection
techniques showed that (i) pin-level and EMI injection are more flexible than the
heavy-ion radiation technique, and that (ii) pin-forcing provides higher controllability
than both the EMI and heavy-ion radiation techniques. On the other hand, the unique
feature of the heavy-ion technique, that faults can be injected internally in integrated
circuits, was shown to have a significant impact on the spread of the detections
among the EDMs and thus, in the context of this common experimental set-up, of the
error sets generated.

The results show that the fault injection techniques are rather complementary. The
pin-forcing technique exercised the hardware EDMs located outside the CPU more
effectively than the other techniques, while the heavy-ion and EMI techniques appear
to be more suitable for exercising software and application level EDMs. The largest
error set was generated by the heavy-ion radiation technique, this technique also
generated the largest number of fail-silence violations.

Concerning the adequacy of the EDMs it is shown that although the application level
EDMs detect the smallest amount of errors for all techniques, they are nevertheless
necessary for improving fail-silence coverage. It was also shown that the time-slice
controller of the MARS system effectively prevents fail-silence violations in the time
domain.
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