
© Springer-Verlag Berlin Heidelberg 2005

Assembly-Level Pre-injection Analysis for Improving
Fault Injection Efficiency

Raul Barbosa, Jonny Vinter, Peter Folkesson, and Johan Karlsson

Department of Computer Engineering
Chalmers University of Technology

412 96 Göteborg, Sweden
{rbarbosa, vinter, peterf, johan}@ce.chalmers.se

Abstract. This paper describes a fully automated pre-injection analysis tech-
nique aimed at reducing the cost of fault injection campaigns. The technique
optimizes the fault-space by utilizing assembly-level knowledge of the target
system in order to place single bit-flips in registers and memory locations only
immediately before these are read by the executed instructions. This way, faults
(time-location pairs) that are overwritten or have identical impact on program
execution are removed. Experimental results obtained by random sampling of
the optimized fault-space and the complete (non-optimized) fault-space are
compared for two different workloads running on a MPC565 microcontroller.
The pre-injection analysis yields an increase of one order of magnitude in the
effectiveness of faults, a reduction of the fault-space of two orders of magnitude
in the case of CPU-registers and four to five orders of magnitude in the case of
memory locations, while preserving a similar estimation of the error detection
coverage.

1. Introduction

Computer systems are increasingly being used in safety-critical applications such
as aerospace or vehicular systems. To achieve the high safety integrity levels required
by these applications, systems are designed with fault tolerance mechanisms in order
to deliver correct service even in the presence of faults. Faults may, for instance, oc-
cur when processors are disturbed by high energy particles such as neutrons or heavy-
ions. Such particles may sometimes interfere with the processor and cause a single
event upset (SEU) – an error that typically changes the state of a single bit in the sys-
tem.

In order to validate the correctness and efficiency of their fault tolerance features,
safety-critical systems must be thoroughly tested. Fault injection has become an effec-
tive technique for the experimental dependability validation of computer systems. The
objective of fault injection is to test fault tolerance mechanisms and measure system
dependability by introducing artificial faults and errors.

A problem commonly observed during fault injection campaigns is that not all
faults fulfil the purpose of disturbing the system [1]. Often 80-90% of randomly in-
jected faults are not activated [1, 2]. A fault placed in a register just before the register
is written or faults that are injected into unused memory locations are examples of

 2

faults with no possibility of activation. In most tools the location and the time for fault
injection are chosen randomly from the complete fault-space, which is typically ex-
tremely large. The statistical implication of this is that the cost of obtaining appropri-
ate confidence levels of the dependability measures becomes unnecessarily high.

To deal with this and similar problems and to reduce the cost of validation through
fault injection, two main classes of analysis techniques have been proposed: pre-
injection and post-injection analysis [3]. Post-injection analysis aims at predicting de-
pendability measures using the results of fault injection experiments. Pre-injection
analysis, in its turn, uses knowledge of program flow and resource usage to choose
the location and time where faults should be injected, before any experiment is per-
formed mean.

This paper presents a pre-injection analysis technique that is applicable to injection
of transient bit-flips into CPU user registers and memory locations. The bit-flip fault
model is often used in fault injection experiments to emulate the effects of single
event upsets and other transient disturbances.

The objective of the pre-injection analysis is to optimize1 the fault-space from
which the injected faults are sampled. The analysis uses program execution informa-
tion to (i) eliminate faults that have no possibility of activation and (ii) find equiva-
lence classes among faults and insert only one of these into the optimized fault-space.
This is achieved by applying the following rule: faults should only be placed in re-
sources2 immediately before these are read by each instruction. A bit-flip in any re-
source will only manifest itself once this resource is read to perform an operation. De-
laying the injection of the fault until the moment just before the targeted resource is
read accomplishes the two objectives stated above. It should be noted that collapsing
all faults in a given class into a single fault in the optimized fault-space may cause a
bias in the estimated dependability measures (e.g. error detection coverage). One of
the objectives of this research is therefore to investigate the magnitude of this bias.

The pre-injection analysis technique was implemented in the GOOFI (Generic Ob-
ject-Oriented Fault Injection) [4] tool, for Nexus-based fault injection [2, 5, 6], and is
also suitable for implementation in other platforms. The effectiveness of the technique
was assessed by comparing fault injection results with results obtained by non-
optimized fault injection on the same target system. The system is based on the Mo-
torola MPC565 [7] – a microcontroller aimed at the automotive and other control-
intensive applications based on the PowerPC architecture. By applying assembly-
level knowledge of this architecture it is possible to identify which resources are read
by each executed instruction. This information, along with the time of the fault injec-
tions, is used to define the optimized fault-space, which is stored in a database. The
fault injection experiments are then conducted by random sampling of faults from the
optimized fault-space.

1 The word optimize should not suggest that the optimal fault-space is found but rather an im-

provement on the usual random approach. Further optimization is therefore achievable.
2 In this paper we use the word resource as a common term for CPU-register, main memory lo-

cations and other state-elements where bit-flips may occur.

 3

2. Related Research

The resources available in computers are, usually, greater than the needs of the ap-
plications executed. This fact motivates a first optimization by injecting faults only in
used resources. P. Yuste et al. [2] take, in their experiments, special care to avoid
placing faults in empty (i.e. not used) memory regions. They obtained 12% of effec-
tive faults and pointed out that a random sampling from an unrestricted fault-space
consisting of all possible fault locations (bits) and all time points is not a time-
effective approach.

Avoiding unused memory regions might be done manually by analyzing the mem-
ory map of the application and choosing the segments (stack, heap, etc.) as valid loca-
tions for fault injection. This approach is quite simple but does not consider the dy-
namical usage of resources along the time dimension.

Studies conducted in the past have shown that error manifestation (rate and effects)
is affected by workload [8, 9, 10]. In [11] the concept of failure acceleration was in-
troduced by R. Chillarege and N. Bowen. They achieve fault acceleration by injecting
faults only on pages that are currently in use and by using a workload pushing to-
wards the limits in CPU and I/O capacity.

J. Güthoff and V. Sieh presented in [12] the operational-profile-based fault injec-
tion. They state that the number of fault injections into a specific system component
should be proportional to its utilization. Register utilization is defined as the measure
of the probability that an injected fault manifests itself as an error. Additionally, the
times for fault injection are selected based on the data life-cycles. A data life-cycle
starts with the initialization of a register (write access) and ends with the last read ac-
cess before the next write access. Under the single bit-flip fault model, faults need to
be injected only within the data life-cycles, just before each read access.

A. Benso et al. presented in [13] a set of rules with the purpose of collapsing fault-
lists. The rules reduce the fault-list without affecting the accuracy of the results of
fault injection campaigns by avoiding the injection of faults for which the behavior
can be foreseen.

In [14] T. Tsai et al. introduced a technique named path-based injection. With this
technique a fault is injected into a resource that will be used by the test program,
given a particular input set. After the manual derivation of the input sets, the path of
execution is described in terms of a list of executed basic blocks. For each path, faults
are only injected in the utilized resources.

Working in fault injection for the test of fault-tolerant circuits, using VHDL mod-
els, a set of techniques for speeding up campaigns is described by L. Berrojo et al. in
[15]. One of these techniques is workload dependent fault collapsing. During the ref-
erence run (a fault-free execution in order to store the program’s normal behavior) all
read and write operations on memory elements are tracked with bit granularity. Hav-
ing this log of read and write operations on each bit of each signal, at the circuit level,
all possible bit-flips are then collapsed by (i) marking as silent all bit-flips between an
operation (either read or write) and a write operation, and (ii) marking as equivalent
all bit-flips between an operation (either read or write) and the subsequent read opera-
tion.

J. Arlat et al. [16] increased the efficiency of their fault injection experiments tar-
geting the code segment by logging the control flow activated by the workload proc-

 4

esses. If the randomly selected address for fault injection is not part of the log (in-
struction trace), then the corresponding experiment can simply be skipped (as the out-
come is already known).

3. Fault-space Optimization Method

For single bit-flip fault injection, we define a fault-space to be a set of time-
location pairs that determines where and when the bit-flip is injected. The time is se-
lected from an interval during the execution of the workload selected for the experi-
ment. The time granularity is based on the execution of machine instructions, i.e. bit-
flips can only be injected between the execution of two machine instructions. The
complete (non-optimized) fault-space consists of all possible time-location pairs.

The fault-space optimization method presented in this paper states that faults
should only be placed in a resource immediately before the resource is read by an in-
struction. The following sections describe the input needed for the analysis, the output
created and the optimization procedure.

3.1 Optimization Input

In order to determine the optimized fault-space it is necessary to gather information
about the code of the application and the computer system executing it:

• Assembly code of the application
• The Program Counter (PC) trace over time
• The effective address of each memory read access
• The definition of which resources are read by each assembly instruction

In our experimental setup, the assembly code is textual information obtained by

disassembling the executable binaries of the application, processed automatically by
the optimization program. The Program Counter trace and the values of the General
Purpose Registers are stored during the execution of the reference run. The effective
address of each memory read access is calculated with these values. The definitions of
which resources are read by each assembly instruction are built into the optimization
program. These were obtained from Motorola’s RISC CPU Reference Manual [17]
and are available in [18].

3.2 Optimization Output

The resulting output (the optimized fault-space) consists of a list of possible loca-
tions and times for fault injection. The optimization procedure has been adapted to
both one-shot applications and control applications executing in loops. Each element
on the optimized fault-space contains the following information:

 5

• Control loop index
• Breakpoint address
• Number of breakpoint invocations within the control loop
• The fault injection location

The control loop index is specific for control applications which execute in cycles.

It defines the cycle during which a fault should be injected. For applications that do
not execute in loops, the control loop index is always set to one. The breakpoint ad-
dress specifies the breakpoint position inside the control loop and the number of
breakpoint invocations specifies the number of times this breakpoint should be
reached before fault injection.

3.3 Performing the Optimization

Using the Program Counter trace over time, the disassembled code of the applica-
tion is parsed to obtain the sequence of assembly instructions executed. Each of the
instructions is then analyzed in order to determine which resources the instruction
reads. The pseudo-code for this procedure is presented in Figure 1.

FOREACH pc_value IN program_counter_trace DO

control_loop_index � current_control_loop ()

breakpoint_invocation � breakpoint_invocations_count (pc_value)

instruction � instruction_at_code_address (pc_value)

instruction_read_list ���� resources_read_by_instruction (instruction)
FOREACH resource IN instruction_read_list DO

useful_fault � [control_loop_index, pc_value, breakpoint_invocation, resource]

store_in_database (useful_fault)

ENDFOREACH

ENDFOREACH

Fig. 1. Pseudo-code for the optimization procedure

The most important stage (shown in bold in the pseudo-code) is the identification
of the resources read by each instruction. To accomplish this, the first step is to find
the definition on the list matching the given instruction. This is done by matching the
opcode and the operands. Then, by examining the possible assembly constructs, the
symbols available in the read list of the definition are replaced by the resources actu-
ally read by the given instruction. Figure 2 illustrates this process.

 6

Fig. 2. Example of the optimization procedure

The instruction at address 39DE8 adds R10 to R11 and stores the result in R5. The
definition for this instruction is found in the table and the read list contains rA and rB,
respectively, R10 and R11. Since these are the two resources read by this instruction,
two new lines are inserted into the fault locations for code address 39DE8 (the control
loop index and the breakpoint invocation are assumed to hold the specified values).

The second instruction, at address 39DEC, fetches the memory word addressed by
the effective address (R6) + 24 and stores it in R7. Its definition in the table specifies
rA and MEM32(d+rA), respectively, R6 and the 32-bit word at 1000+24, as being
read. The value 1000 of R6 is obtained during the reference run. The two resources
along with the timings are then inserted into the fault-space.

4. Experimental Setup

Figure 3 describes the evaluation platform used to evaluate the effectiveness of the
optimization technique for experiments performed on the jet engine control software,
which is one of two workloads investigated in this paper. The GOOFI fault injection
tool controls the experiments by using the winIDEA debugging environment [19] in
conjunction with the iC3000 debugger. Faults are injected into the MPC565 micro-

 7

controller running the control software. In the case of the jet engine controller one
computer board was used to run the jet engine control software and one board to exe-
cute the model of the jet engine. The experimental setup used for the other workload
(an implementation of the quicksort algorithm) used only one computer board.

Fig. 3. Evaluation platform for the jet engine application

4.1 Fault Injection Tool

GOOFI is a fault injection tool developed at the Department of Computer Engi-
neering, Chalmers University of Technology. It provides the ability to define and
conduct fault injection campaigns on a variety of microprocessors. During each cam-
paign GOOFI is responsible for controlling all the necessary software and hardware,
and storing the acquired data into a database.

A plug-in [6] has recently been developed in GOOFI which uses the Nexus [5] port
to inject faults on Motorola’s MPC565. Nexus is an attempt to create a standard on-
chip debug interface for embedded applications. This standard is suitable to be used
for fault injection [2] since it provides read/write access to the processor’s resources
and code execution trace capture.

The pre-injection analysis technique was implemented to enhance the existing
Nexus fault injection plug-in. The target platform for the current implementation is
therefore the MPC565 microcontroller. The technique may however be implemented
for any microprocessor.

4.2 MPC565 Microcontroller

The MPC565 is a microcontroller developed by Motorola that implements the
PowerPC instruction standard architecture. It is aimed at the high performance auto-
motive market as well as other control-intensive applications. The complete computer
system was based on the phyCORE-MPC565 [20] development board. It includes a
32-bit Motorola MPC565 processor, which offers a Nexus debug port enabling real-
time trace of program and data flow.

 8

To establish a connection through this port the iSYSTEM iC3000 Active Emulator
[21, 22] was used to access the Nexus working environment. The iC3000 emulator
was, in its turn, controlled by GOOFI via winIDEA – an integrated development envi-
ronment offered by iSYSTEM. GOOFI and winIDEA are executing on the same host
PC.

4.3 Workloads

Fault injection campaigns were conducted to evaluate the optimization technique
using two different workloads: a sort program using the quicksort algorithm and a jet
engine controller. Different campaigns targeting registers and data memory, using
both optimized and non-optimized fault selection, were carried out. The technique is
fully implemented in the sense that all the assembly instructions executed by the
workloads are analysed and all registers and data memory locations where optimiza-
tion is achievable with this method are considered. The outcome of each fault injec-
tion experiment was classified into one of the following categories:

• Detected Error – All effective errors that are signalled by hardware error

detection mechanisms included in the processor.

• Wrong Output – All effective errors that are not detected by the proces-
sor but lead to the production of wrong results.

• Non-Effective Error – Errors that do not affect the system execution dur-
ing the chosen experiment time frame.

4.3.1 Quicksort

The quicksort workload is a recursive implementation of the well-known sorting
algorithm. It sorts an array containing seven double-precision floats.

The reference run execution takes two minutes during which the processor is being
stepped and all the required data is obtained. The optimization procedure takes 20
seconds to complete. Each fault injection experiment takes less than half a minute to
perform. During the execution of the reference run for this application, the MPC565
processor executed 34 distinct assembly instructions (opcodes) and a total of 815 in-
structions.

4.3.2 Jet Engine Controller

This workload is a control application that executes in loops in order to control a
jet engine. At the end of each loop the controller has to produce results and exchange
information with the engine (sensor values from the engine and actuator commands
from the controller). It is significantly more complex than the quicksort program, al-
lowing the fault-space optimization technique to be evaluated using a
real-world application.

 9

The execution of the reference run takes almost 12 hours. The optimization proce-
dure takes 10 minutes to complete. Each fault injection experiment is then performed
in less than two minutes for the selected configuration (number of control loops and
memory locations to be logged).

Forty control loops of execution were logged during each experiment. From these,
ten loops (21 to 30) were chosen as possible temporal locations for fault injection
(corresponding to 50ms of real-time execution of the controller). During these ten
control loops, in the reference run, the MPC565 processor executed 231.097 instruc-
tions. A total of 88 different assembly instructions (opcodes) were executed.

4.4 Fault Model and Fault Selection

The fault model applied is the single bit-flip model of the effects of transient faults.
The technique assumes this model as the basis for optimization.

The faults in the non-optimized campaigns were chosen using a uniform distribu-
tion. In the case of the optimized campaigns the faults are selected randomly from the
optimized fault-space itself (the list of temporal and spatial locations for fault injec-
tion described in Section 3.2). This implies that the distribution of faults in resources
is proportional to the representation of each resource in the optimized fault-space.

Microprocessor registers were selected as spatial locations for fault injection both
in the quicksort and in the jet-engine controller campaigns. Memory locations were
only targeted using the jet-engine controller. The registers targeted in the non-
optimized campaigns are the ones considered by the optimization method and shown
in Table 1.

General Purpose Registers (32 registers of 32 bits) Condition Register (32 bits)

Floating Point Registers (32 registers of 64 bits) Integer Exception Register (32 bits)

Link Register (32 bits) Count Register (32 bits)

Table 1. Registers targeted for optimization

These registers constitute the User Instruction Set Architecture (UISA) Register

Set. User-level instructions are limited to this register set while supervisor-level in-
structions have access to other, special purpose registers (SPRs).

Two limitations of winIDEA (the debugging environment) are important to men-
tion. The floating point registers are only allowed to be injected with faults in the least
significant 32 bits. These are the least significant bits of the 52-bit mantissa. The
Floating Point Status And Control Register (FPSCR), targeted by the optimization, is
also not available for fault injection.

The fault injection campaigns in memory targeted the stack, heap and all other
read/write and read-only data segments of the controller. A total of 100KB of memory
were targeted as spatial locations.

 10

The analysis of faults in the code segment was still not implemented and was there-
fore not studied. The optimization is easily extendable to support faults in the code
segment by targeting, in each instruction, the 32-bit memory contents addressed by
the Program Counter. This would be equivalent to the analysis performed in [16] by
using the instruction trace.

5. Experimental Results

5.1 Fault Injection in Registers

Table 2 shows the distribution of the outcomes of faults in the fault injection cam-
paigns targeting microprocessor registers for both the quicksort and the jet engine
controller workloads. The quicksort campaigns include approximately the same num-
ber of experiments. For the non-optimized jet engine controller campaign, a much
higher number of experiments had to be performed in order to increase the confidence
in the results.

Campaign # Exp. Non-effective Detected Wrong Output
Non-optimized 2739 2603 (95.0%) 83 (3.0%) 53 (2.0%) Quicksort

Optimized 2791 1461 (52.3%) 744 (26.7%) 586 (21.0%)
Non-optimized 5708 5457 (95.6%) 200 (3.5%) 51 (0.9%) Jet Engine

Controller Optimized 1559 964 (61.8%) 466 (29.9%) 129 (8.3%)

Table 2. Distribution of outcomes of fault injection in registers

The percentage of effective faults (detected or wrong output) increases from 5.0%

using non-optimized fault selection to 47.7% choosing faults from the optimized
fault-space when targeting the quicksort workload. In the jet engine controller this in-
crease is from 4.4% to 38.2%. The improvement in the effectiveness of faults is,
therefore, one order of magnitude.

Table 3 shows the estimated error detection coverage obtained in each campaign.
We here define error detection coverage as the quotient between the number of de-
tected and the number of effective faults.

Campaign Estimated error detection coverage (95% confidence)
Non-optimized 61.0 ± 8.2% Quicksort

Optimized 55.9 ± 2.7%
Non-optimized 79.7 ± 5.0% Jet Engine

Controller Optimized 78.3 ± 3.3%

Table 3. Error detection coverage estimations (registers)

 11

The values of the error detection coverage estimations are quite similar whether
applying non-optimized or optimized fault selection. In the optimized campaigns the
faults are only injected in the location that will activate them (at the time that the reg-
ister is read). Since no weights are applied to reflect the length of the data life-cycle
on the outcomes of faults, it could be expected that the error detection coverage would
be skewed.

The detected errors were signalled by the exceptions provided in the MPC565
processor. The distribution among these exceptions is presented in Figures 4 and 5 for
the quicksort campaigns, and in Figures 6 and 7 for the jet engine controller cam-
paigns.

Fig. 4. Exceptions in the quicksort non-optimized campaign (83 faults in registers)

Fig. 5. Exceptions in the quicksort optimized campaign (744 faults in registers)

 12

Fig. 6. Exceptions in the jet engine controller non-optimized campaign (200 faults in registers)

Fig. 7. Exceptions in the jet engine controller optimized campaign (466 faults in registers)

It is possible to observe that the detection mechanisms are activated in a similar but

not identical way for the non-optimized and the optimized campaigns. Figures 4 to 7
provide an insight on the magnitude of the differences between non-optimized and
optimized fault selection. A brief description follows of the most frequently activated
exceptions.

Checkstop (CHSTP) – The processor was configured to enter the checkstop state in-
stead of taking the Machine Check Exception (MCE) itself when the MCE occurs.
CHSTP does not represent an actual exception, but rather a state of the processor. The
processor may also be configured to take the MCE handling routine or enter debug

 13

mode. The MCE, which, in this case, leads to the checkstop state, is caused, for in-
stance, when the accessed memory address does not exist.

Alignment Exception (ALE) – The alignment exception is triggered under the fol-
lowing conditions:

• The operand of a floating-point load or store instruction is not word-aligned;
• The operand of a load or store multiple instruction is not word-aligned;
• The operand of lwarx or stwcx. is not word-aligned;
• The operand of a load or store instruction is not naturally aligned;
• The processor attempts to execute a multiple or string instruction.

Floating-Point Assist Exception (FPASE) – This exception occurs in the following
cases:

• A floating-point enabled exception condition is detected, the corresponding

floating-point enable bit in the Floating Point Status And Control Register
(FPSCR) is set (exception enabled);

• A tiny result is detected and the floating point underflow exception is disabled;
• In some cases when at least one of the source operands is denormalized.

Software Emulation Exception (SEE) – An implementation-dependent software
emulation exception occurs in the following cases:

• An attempt is made to execute an instruction that is not implemented;
• An attempt is made to execute an mtspr or mfspr instruction that specifies an

unimplemented Special Puspose Register (SPR).

External Breakpoint Exception (EBRK) – This exception occurs when an external
breakpoint is asserted.

Figure 8 shows the distribution of faults per register for the optimized campaign.

The figure clearly demonstrates the non-uniform distribution caused by the optimiza-
tion. The number of faults per register is directly proportional to the number of times
the register is read.

 14

Fig. 8. Number of faults injected per register

5.2 Fault Injection in Memory

Fault injection in memory locations was performed only for the jet engine control-
ler. Table 4 shows the distribution of the outcomes of faults for both non-optimized
and optimized fault selection.

Campaign # Exp. Non-effective Detected Wrong Output
Non-optimized 6666 6532 (98.0%) 40 (0.6%) 94 (1.4%) Jet Engine

Controller Optimized 2658 2150 (80.9%) 166 (6.3%) 342 (12.8%)

Table 4. Distribution of outcomes of fault injection in memory

The effectiveness of faults increases from 2.0% using non-optimized fault selection

to 19.1% choosing faults from the optimized fault-space. The improvement in the ef-
fectiveness of faults is one order of magnitude, similar to one obtained for faults in
microprocessor registers.

Table 5 shows the error detection coverage estimations obtained with non-
optimized and optimized fault selection.

Campaign Estimated error detection coverage (95% confidence)
Non-optimized 29.9 ± 7.7% Jet Engine

Controller Optimized 32.7 ± 4.1%

Table 5. Error detection coverage estimations (memory)

We here observe a similar pattern to that observed for microprocessor registers,

where the error detection coverage estimation using non-optimized or optimized fault
selection is quite similar. In this case the estimation from the non-optimized campaign

 15

is not very accurate since the 95% confidence interval is still wide due to the small
number of effective faults (2%).

Figures 9 and 10 show the distribution of detected errors among the exception
mechanisms for the two campaigns.

Fig. 9. Exceptions in the jet engine controller non-optimized campaign (40 faults in memory)

Fig. 10. Exceptions in the jet engine controller optimized campaign (166 faults in memory)

Again, it is possible to observe that the detection mechanisms are activated in a

similar but not identical way for the non-optimized and the optimized campaigns.

 16

5.3 Fault-space Considerations

Applying the optimization method to the fault-space of registers for the jet engine
controller resulted in the determination of 7.7×106 distinct time-location pairs for bit-
flips. All the targeted registers are 32 bit registers3. The complete non-optimized fault-
space of these registers is obtained by flipping each bit of each register, for each in-
struction executed. This results in a set containing over 500 million bit-flips. Table 6
summarizes these results.

Campaign Size of the fault-space
(time-location pairs for bit-flips)

Non-optimized 5.0 × 108 Jet Engine
Controller Optimized 7.7 × 106

Ratio 1.5%

Table 6. Comparison between fault-space sizes (registers)

In the case of the memory fault-space 3.3×106 possible time-location pairs for bit-

flips were determined using optimized fault selection. The complete fault-space of
memory is obtained by flipping each bit of each memory location used by the pro-
gram, for each instruction executed. Considering a memory usage of 100KB for data
by the jet engine controller, the size of the complete fault-space is near 200 billion bit-
flips.

Campaign Size of the fault-space
(time-location pairs for bit-flips)

Non-optimized 1.9 × 1011 Jet Engine
Controller Optimized 3.3 × 106

Ratio 0.0017%

Table 7. Comparison between fault-space sizes (memory)

6. Conclusions and Future Work

The study presented in this paper shows the efficiency of eliminating faults with no
possibility of activation and determining equivalence classes among faults. A com-
parison with traditional non-optimized fault selection in the complete fault-space
shows an order of magnitude increase in the effectiveness of faults. The fault-space it-
self is reduced two orders of magnitude for the registers and four to five orders of
magnitude for the memory. Even though these fault-spaces are still quite large when
targeting the complete execution of programs, the exhaustive evaluation of small
enough sub-routines against all possible bit-flips becomes possible.

3 Floating Point Registers are 64-bits long limited by winIDEA to the least significant 32-bits.

 17

All faults targeting the same bit of a given resource, before this resource is read,
are considered equivalent. This way, only one representative of these faults is in-
jected. To obtain an accurate estimation of the error detection coverage (or any other
dependability measure) it would be necessary to apply a weight corresponding to the
number of faults in each equivalence class. However, the error detection coverage es-
timated by the optimized fault selection is found to be quite similar to the coverage
estimated by non-optimized fault selection.

The analysis of assembly constructors limits the technique to the UISA Register
Set. Using a debugger/debugging environment that supports tracing of all read opera-
tions on all registers during the reference run would allow the fault-space of all regis-
ters to be optimized.

Even though activation of faults is ensured by the optimization technique (activa-
tion in the sense that the faulty resources are always utilized) not all faults result in ef-
fective errors. This occurs when the data is used in a non-sensitive way by the code
(regarding the single bit-flip model). An interesting topic for further studies would be
to investigate which activated faults are non-effective and why.

The outcome of a fault is highly dependent on the targeted resource. Faults in some
registers were observed to have a greater tendency to cause wrong output while faults
in other registers cause detected errors more frequently. This motivates a possible
evolution in fault selection by using the results of previous fault injection experiments
to select the faults that should be injected next (a combination of pre-injection and
post-injection analysis). It would be possible to achieve a faster evaluation of specific
error detection mechanisms by injecting faults in the resources that are more likely to
activate them.

In the future of fault injection the multiple bit-flip fault model may become more
important. Microprocessor technology is employing smaller transistors, with lower
power voltages, where a single charged particle is likely to change the state of several
bits. It would be appealing to extend the method presented in this paper to improve
the selection of multiple bit-flip faults.

A research line orthogonal to the optimization of fault-spaces is the improvement
of the path coverage obtained during fault injection campaigns (i.e. consider different
control flow decisions and the associated fault-spaces). The presented pre-injection
analysis and such a path coverage analysis are complementary and could eventually
be combined.

There is still room for further optimization by analyzing the error propagation.
When a bit-flip is copied from one resource onto another and the first resource is
overwritten, the fault in the new location is equivalent to the fault in the first location.
The implementation of an analysis taking advantage of this has been started and pre-
liminary results show additional improvement.

References

1. H. Madeira and J. Silva, “Experimental Evaluation of the Fail-Silent Behavior in Com-
puters Without Error Masking”, Proc. FTCS-24, June 1994, pp. 350-359.

2. P. Yuste, J. Ruiz, L. Lemus, P. Gil, “Non-Intrusive Software-Implemented Fault Injection
in Embedded Systems”, LADC 2003, LNCS 2847, 2003, pp. 23-38.

 18

3. J. Aidemark, P. Folkesson, and J. Karlsson, “Path-Based Error Coverage Prediction”,
JETTA, Vol. 16, June 2002.

4. J. Aidemark, J. Vinter, P. Folkesson, J. Karlsson, “GOOFI: Generic Object-Oriented Fault
Injection Tool”, Proc. DSN 2001, July 2001, pp. 83-88.

5. IEEE-ISTO, "The Nexus 5001 Forum™ Standard for a Global Embedded Processor De-
bug Interface", 1999.

6. D. Skarin, J. Vinter, P. Folkesson and J. Karlsson, "Implementation and Usage of the
GOOFI MPC565 Nexus Fault Injection Plug-in", Tech. Report No. 04-08, Dept. of Comp.
Eng., Chalmers University of Technology, Göteborg, Sweden, 2004.

7. Motorola Inc., “MPC565/MPC566 User’s Manual”, 2nd edition, 2003.
8. X. Castillo and D. Siewiorek, “Workload, Performance and Reliability of Digital Com-

puter Systems”, Proc. FTCS-11, June 1981, pp. 84-89.
9. E. Czeck and D. Siewiorek, “Observations on the Effects of Fault Manifestation as a Func-

tion of Workload”, IEEE Transactions on Computers, Vol. 41, No. 5, May 1992, pp.559-
566.

10. R. Chillarege and R. Iyer, “The Effect of System Workload on Error Latency: An Experi-
mental Study”, Proc. ACM SIGMETRICS 1985, August 1985, pp. 69-77.

11. R. Chillarege and N. Bowen, “Understanding Large System Failures – A Fault Injection
Experiment”, Proc. FTCS-19, June 1989, pp. 356-363.

12. J. Güthoff and V. Sieh, “Combining Software-Implemented and Simulation-Based Fault
Injection Into a Single Fault Injection Method”, Proc. FTCS-25, June 1995, pp. 196-206.

13. A. Benso, M. Rebaudengo, L. Impagliazzo, P. Marmo, ”Fault-List Collapsing for Fault In-
jection Experiments”, RAMS 98, January 1998, pp. 383-388.

14. T. Tsai, M.-C. Hsueh, H. Zhao, Z. Kalbarczyk, R. Iyer, ”Stress-Based and Path-Based
Fault Injection”, IEEE Transactions on Computers, Vol. 48, No. 11, November 1999, pp.
1183-1201.

15. L. Berrojo, I. González, F. Corno, M. Reorda, G. Squillero, L. Entrena, C. Lopez, “New
Techniques for Speeding-up Fault-injection Campaigns”, Proc. DATE 2002, March 2002,
pp. 847-852.

16. J. Arlat, J.-C. Fabre, M. Rodríguez, F. Salles, “Dependability of COTS Microkernel-Based
Systems”, IEEE Transactions on Computers, Vol. 51, No. 2, February 2002, pp. 138-163.

17. Motorola Inc., “RISC Central Processing Unit Reference Manual”, revision 1, 1999.
18. R. Barbosa, J. Vinter, P. Folkesson and J. Karlsson, "Fault Injection Optimization through

Assembly-Level Pre-Injection Analysis", Tech. Report No. 04-07, Dept. of Comp. Eng.,
Chalmers University of Technology, Göteborg, Sweden, 2004.

19. winIDEA – iSystem’s Integrated Development Environment,
http://www.isystem.se/products/ide.htm,
January 24th, 2005.

20. PHYTEC Technology Holding Company, http://www.phytec.com/sbc/32bit/pc565.htm,
January 24th, 2005.

21. iSYSTEM AB, http://www.isystem.se, January 24th, 2005.
22. iC3000 Active Emulator, http://www.isystem.se/products/emulators.htm#three, January

24th, 2005.

