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Abstract. This paper presents an experimental dependability evaluation of a 
small real-time kernel called Artk68-FT intended for distributed fault-tolerant 
real-time systems. A main goal of this research is to improve the dependability 
of such systems by using a two-level approach for tolerating transient faults. By 
providing mechanisms in the kernel for tolerating transient faults at the node 
level, the overall reliability is improved since the recovery time is much shorter 
at the node level than at the system level. Permanent faults and transient faults 
that cannot be handled at the node level have to be handled at the system level. 
The experimental evaluation was performed using fault injection experiments 
on the MC68340 microcontroller executing the kernel and three application 
tasks. The experimental results show that no wrong results were produced when 
faults were injected during execution of a critical task protected by Artk68-FT. 
Moreover, no application crashes were observed in the fault injection 
experiments with Artk68-FT compared to experiments with a version of the 
kernel without fault handling mechanisms. 

1 Introduction 

Dependability is a major concern in embedded real-time computers used for example 
in vehicular, aircraft or space equipment.  Such systems are often safety-critical and 
must fulfill strict requirements regarding real-time response and fault-tolerance.  
Aerospace applications are primarily low volume products with moderate sensitivity 
on component costs while emerging safety critical application areas such as control 
systems in future automobiles, e.g. steer-by-wire and brake-by-wire without any 
mechanical backup, are high volume products and therefore more cost sensitive. 

A common technique for reducing the cost of fault-tolerant distributed real-time 
systems is to use computer nodes that exhibit well-behaved failure semantics. One 
example is to use fail-silent nodes, i.e. nodes that produce either correct results or no 
results at all (or erroneous results that can be identified by other nodes as erroneous, 
e.g. through the use of checksums) [1]. FlexRay and TTP/TTA [2] are examples of 
communication protocols and architectures intended for safety-critical applications, 
which rely on fail-silent nodes.  

 Single node failures caused by permanent or transient hardware faults can be 
tolerated by using two fail-silent nodes in an active redundancy configuration. Such a 



configuration, where the same operations are executed on two nodes in parallel, is 
able to deliver a correct service as long as one of the nodes is operational. Using 
nodes with less restricted failure semantics, such as those that may produce 
undetected erroneous results (value failures) requires majority voting to mask errors, 
which leads to more costly solutions. 

 To ensure the fail-silent property of a node, it must be equipped with internal error 
detection and, optionally, error recovery mechanisms. However, most 
implementations use only error detection for ensuring the fail-silence property. This 
means that the node is shutdown (directly or after a number of repeated errors) when 
an error is detected, regardless of whether the error was caused by a transient or a 
permanent fault. Thus, the detection of an error always activates the fault-tolerance 
mechanisms provided at the system-level (such as node membership and distributed 
redundancy management protocols). Recovery of transient faults, which only has a 
temporary effect, is usually conducted by activating a backup computer node or by 
reintegrating the failed node after a successful diagnostic test showing that the error 
was transient, e.g. [3]. 

Previous research has shown that transient faults are much more common than 
permanent faults in digital systems [4]. Common causes for transient faults are power 
fluctuations, electromagnetic interference or particle radiation. Heavy-ions in space 
and high-energy neutrons at high altitudes are known to cause soft errors in integrated 
circuits. Due to the reduction of features size of integrated circuits, soft errors have 
also become one of the most important failure mechanisms in ground-based 
applications. In fact, one manufacturer claim that for the most advanced CMOS 
devices operating in a terrestrial environment, the failure rate attributed to soft errors 
is higher than that of all other hardware failure mechanisms combined [5]. In general, 
the technology scaling increases the probability of environmentally induced transient 
faults [6].   

In this paper, we consider a two-level approach for tolerating transient faults in 
distributed fault-tolerant real-time systems.  The objective is to detect and recover 
from most of the transient faults at the node-level. The node-level mechanisms are 
designed to tolerate transients transparently with respect to other nodes in the system, 
so that in most cases, the other nodes will not notice that a transient fault has 
occurred.  The advantage of handling transient faults at the node level is that the 
average recovery time is reduced substantially, which improves the overall reliability. 
Permanent faults and transient faults that cannot be handled at the node level must be 
handled at the system-level. Thus, for those faults, the node must be fail-silent. 

We present an experimental evaluation of a small real-time kernel, called Artk68-
FT, which we have developed to support node-level transient fault tolerance. In [7] 
we have evaluated the use of a time redundancy technique called Temporal Error 
Masking (TEM) to tolerate transient faults in the application tasks. The performance 
improvement rate of microprocessors and micro-controllers make time redundancy 
increasingly attractive for achieving fault-tolerance in real-time systems. In TEM, 
critical tasks are executed twice and the results compared to detect errors. A third 
execution is started if an error is detected by the comparison or by other error 
detection mechanisms. This allows transient faults to be masked by conducting a 
majority vote on the three results, thereby facilitating node-level fault tolerance. It is 
implicit that enough slack is available in the schedule to allow recovery without 
causing any other tasks to miss its deadline (see fault tolerant scheduling in e.g.  [8]). 



The Artk68-FT kernel supports preemptive fixed priority scheduling [9] and 
employs TEM to tolerate transient faults in the application tasks and several other 
mechanisms for handling faults in applications as well as the kernel. Thus, a 
contribution of this paper is an evaluation of TEM in combination with other fault 
handling mechanisms included in a real-time kernel. In particular, we evaluate the use 
of statically sized arrays [10] for basic kernel data-structures to improve fault 
tolerance. Most other real-time kernels uses dynamic data structures, i.e. linked lists, 
to maintain tasks. The advantage of using statically sized arrays is that the memory 
address of the array is fixed at compile time and can be saved in read only memory. 
This allows for some inherent fault tolerance, as the structures cannot be corrupted by 
a fault (although the contents of the structure must still be protected). 

We have implemented the Artk68-FT kernel for the Motorola 68340 
microcontroller and evaluated it using fault injection, a well-established experimental 
dependability validation technique [11]. Previous fault injection studies have shown 
that the behavior of operating systems in the presence of faults can be rather 
unpredictable even when several error detection mechanisms are included [12] [13] 
[14]. Application tasks or the operating system may crash or hang due to faults, often 
resulting in system failures. In this study, single bit-flip faults were injected into the 
registers of the Motorola 68340 microcontroller [15] using the GOOFI (Generic 
Object Oriented Fault Injection) tool [16]. A bit-flip, i.e. the inversion of a bit in a 
memory cell, may be the direct cause of a transient fault. A bit-flip in a register may 
also represent an erroneous computation due to a transient fault (pulse) in 
combinational logic [17]. We use software implemented fault injection (SWIFI) [11] 
to inject the faults during execution of both the operating system kernel and 
application tasks. No faults were injected into the main memory since we rely on the 
use of error correcting codes to mask such faults. 

Fault injection experiments were also conducted on a version of the kernel without 
fault tolerance mechanisms, called Artk68 [18]. Artk68 uses dynamic data structures 
for task administration and is mainly targeted for small, embedded systems, which are 
not safety critical. By comparing the results of the experiments conducted on the two 
different kernel versions, the dependability improvements provided by the fault 
handling mechanisms included in Artk68-FT are evaluated. 

Section 2 presents the related work. Section 3 gives an overview of the 
implementation of the real-time kernel describing both the Artk68 kernel and the 
modifications made to increase the fault tolerance in Artk68-FT. Section 4 presents 
the experimental setup used for validating the kernel, while the results from the fault 
injection experiments are presented in Section 5. Finally, the conclusions and future 
work are given in Section 6. 

2 Related Work 

Most commercial operating systems usually provide a number of mechanisms for 
detecting software design errors, e.g. by returning error codes from faulty function 
calls or detecting stack overflows caused by erroneous software. Although software 
design errors are not the focus of this paper, such mechanisms are also able to detect 
hardware errors [14]. Errors may also be detected by on-chip error detection 



mechanisms in microprocessors such as illegal op-code detection, division by zero or 
address range checking. Many microprocessors also provide a memory management 
unit (MMU) that can be used to restrict memory access and thereby ensure that an 
application does not overwrite the memory of other applications or the kernel. 

Although modern operating systems typically provide several error detection 
mechanisms, fault injection studies have shown that the behavior of the operating 
system in the presence of faults can be rather unpredictable. In [12], faults were 
injected into the parameters of operating system calls. The experiments showed that a 
fault in the parameters may cause a single task to crash or hang, or the complete 
operating system might crash without producing any information. In [13], faults 
where injected into the function parameters and the memory (code and data) areas of 
the Chorus microkernel. Besides crashes and hangs, the injected faults also caused the 
application tasks to produce erroneous results. One of the most vulnerable functions 
in the microkernel is the part handling the synchronization of tasks. The experiments 
showed that a majority of the faults injected into the parameters of the function calls 
to the synchronization unit resulted in an erroneous output. In [14], faults were 
injected into the registers and memory of a microprocessor executing the LynxOS. 
Almost a third of the injected faults caused the operating system to crash while 
slightly more than one percent of the injected faults resulted in faulty outputs being 
produced by the application. 

The effect of the various failures is obviously application dependent. However, for 
safety critical real-time systems it is often important to detect any errors promptly to 
allow error processing to be conducted within a specified time. A crash of an 
application or the operating system may not result in benign failures such as fail-silent 
behavior, since the output may become locked to an erroneous value. 

Several studies addressing fault tolerance mechanisms for handling faults both in 
the application and the operating system have been presented in the past. However, 
most approaches focus on error detection to achieve fail-silence in an active 
redundancy configuration and disregards node-level transient fault tolerance. In [19], 
error detection mechanisms integrated into the MARS operating system to provide 
fail-silence were evaluated. The MARS operating system supports static cyclic 
scheduling and includes error detection mechanisms such as robust data structures to 
allow integrity checking of data structures like linked lists, and reasonableness checks 
on parameters for detecting errors in system calls. For detecting errors in the 
application tasks, tasks are executed twice and the results are compared. Moreover, 
timing checks are used to detect if tasks violate any deadlines and stack checks are 
used to check if the tasks’ stack limits are exceeded. 

In [20], a middleware layer executing on top of an existing microkernel was 
evaluated. The middleware layer, called Hades, provides extensive software 
implemented error detection mechanisms to ensure fail-silence, e.g. tasks are checked 
for deadline violations or worst-case execution times and the arrival times for 
periodic or sporadic tasks are checked. Checking deadline violations in a static cyclic 
scheduler like MARS is rather straightforward. Violations are detected by checking if 
a task is currently executing when a clock interrupt is triggered. As Hades allows 
dynamic scheduling, the deadlines are checked by the operating system only when the 
task is finished, blocked or if the task is preempted. Messages are also provided with 
checksums. Data structures such as lists are provided with redundant information for 
integrity checks and checks for ensuring the validity of array indices are employed. A 



so-called flow call graph is used to check the execution flow of the operating system. 
Extra code is added to the beginning and the end of every function in the operating 
system to check that each function is called only from pre-defined functions. In 
addition, instructions are inserted into unused memory areas to allow erroneous 
memory accesses to be detected. An error detection coverage of 99.1% was obtained 
from experiments injecting single bit-flip transient faults in the memory areas (code, 
data and stack) of both the Hades middleware and the underlying Chorus microkernel. 

In [21], wrappers (software checks) are added on top of the microkernel to detect 
erroneous values that are passed to and from kernel components such as 
synchronization and scheduling components. To allow effective implementation of 
the wrappers, the behavior of different components are defined as predicates, e.g. a 
predicate may define that a task released from the semaphore queue must end up in 
the ready queue. However, the wrapper approach requires that the microkernel 
supplier implement a metainterface that allows interception of kernel calls and 
internal function calls 

As shown, several studies have addressed error detection in the application and the 
operating system to achieve fail-silence for system level fault tolerance. Our objective 
is to evaluate mechanisms for tolerating transient faults already at the node-level. As 
only about 5% [22] of the total execution time is used by the kernel, we have focused 
on tolerating faults occurring during execution of application tasks. Faults occurring 
during execution of the kernel are tolerated at the system level by relying on fail-
silence. 

3 Kernel Implementation 

A real-time operating system (RTOS) is an operating system with well-defined time 
constraints, i.e. the time to execute the functions in the RTOS is bounded. Most 
RTOS are scalable, i.e. they have a core part that implements the basic functions 
(called microkernel) for which extra functionality can be added depending on the 
application. This is done to reduce the size of the RTOS, e.g. many automotive 
applications do not need to include file handling and disk storage functionality. The 
main parts of a microkernel supporting fixed priority scheduling usually include 
functions for task scheduling, task synchronization, time management, inter task 
communication, memory management and interrupt management. 

The task scheduler is responsible for the creation, activation, suspension and 
termination of tasks. It is also responsible for determining the order in which tasks are 
executed. The task scheduler for the Artk68 kernel supports dynamic fixed priority 
scheduling (FP). In FP each task is assigned a fixed priority before run-time. At run-
time, the task with the highest priority is allowed to execute first. The kernel supports 
preemptive scheduling. This means that a lower priority task can be interrupted and 
suspended at any point during the execution, thus enabling execution of a higher 
priority task. The advantage of fixed priority preemptive scheduling over static cyclic 
scheduling is higher flexibility and faster response time as a higher priority task does 
not need to wait for a lower priority task to complete its execution. However, the 
kernel becomes more complex since preemptive scheduling requires that a separate 
stack must be maintained for each task and that access to common resources must be 



synchronized to avoid concurrent access of shared data. Moreover, a fixed priority 
scheduling system may also experience higher output jitter, i.e. time variations in the 
delivery of result due to interference from other tasks, than a static cyclic scheduling 
system. 

Task synchronization is used to allow tasks to wait for an event or for tasks to 
synchronize with each other. The Artk68 implementation uses task synchronization 
through semaphores, which is the most common method.  A semaphore can be 
initialized as a binary semaphore taking only two values, or a counting semaphore 
that can take a range of values. The current implementation does not support a priority 
inheritance protocol. Therefore there is a risk for priority inversion, i.e. if three or 
more tasks use a specific semaphore, a lower priority task may be allowed to execute 
before higher priority tasks. To avoid priority inversion in this study, only two tasks 
may share a semaphore. 

Inter task communication involves exchanging data between tasks. In our kernel, 
this is conducted over shared resources, i.e. the designer is required to implement 
mailboxes (predefined data structures) using semaphores to avoid concurrent access.  

Timer management is used to schedule periodic tasks, which are executed and then 
suspended for a specified time interval. Timer interrupts may be implemented either 
tick driven or event driven. In tick driven management, periodic interrupts are 
triggered at regular time intervals (e.g. every 10 ms) checking if any suspended tasks 
should be activated. In an event driven management, a timer is set to interrupt for the 
task with the closest timeout.  A problem with a tick driven system is deciding the 
interval for the periodic interrupt. Too frequent interrupts increase the overhead and 
too infrequent interrupts leads to jitter, i.e. the activation time of a task may be 
delayed up to one tick. Artk68 uses event driven management.  

Memory management provided by the microprocessor influences how the 
application tasks interact with the kernel. Artk68 is implemented for the Motorola 
68340 microcontroller, which does not support a memory management unit (MMU). 
Hence, the kernel and the tasks operate in the same address area and kernel calls are 
implemented as simple subroutine calls. For systems providing a MMU, it is possible 
to put the kernel and each task in a separate memory area. Thereby, the tasks and the 
kernel are protected and a faulty task is not able to corrupt other tasks or the kernel. A 
drawback using separate addresses is increased task switch time, as the memory areas 
must be altered. 

Interrupt management allows efficient interaction with the environment. In Artk68, 
a task may be associated with a specific event through semaphores. For example, a 
task is suspended on a semaphore and is released by an interrupt service routine that is 
triggered by an external event.  

The Artk68 kernel is mainly implemented in sequential Ada (no concurrency 
features of the Ada programming language, such as Ada tasks or protected objects, 
are used). In addition, a few low-level routines such as timer handling and task switch 
handling are written in assembly language. The basic kernel calls used to handle task 
scheduling and task synchronization in Artk68 are shown in Table 1. 

Each task can be in the running, ready or waiting state. The running state 
corresponds to a task that is currently using the CPU. A task is ready when it is able to 
execute but has lower priority than the task in the running state. A task in the waiting 
state may be blocked for a specific time period or waiting for an event. Each task is 
associated with a data structure called a task control block (TCB). The TCB holds 



information about the task such as the identity of the task, the pointer to the task stack 
where local variables are saved together with the context of the microcontroller 
(basically its register values) during task switch. A transition from one state to another 
requires a context switch, i.e. switching of the running task. The environment such as 
registers, program counters and stack pointer must then be altered. Although the 
scheduler in Artk68 only saves the stack pointer in the TCB and the remaining 
environment on the tasks stack, another approach would be to save the complete 
environment in the TCB. 

Table 1. The basic kernel calls in the Artk68 kernel 

Function Description 
New_process (id, priority, address..) Create a new TCB and allocate a stack for the new task 
Exit_process Remove the task from the task set 
Sleep_until (time) Suspend a task for a given period of time 
New_sem (sem_id, value) Create a new semaphore and set an initial value of the 

semaphore 
Wait (sem_id) This function is called to check if a resource if free or to 

suspend a task until a event occurs 
Signal (sem_id) This function is called to free a locked resource or 

activate a suspended task 

3.1 Non Fault-tolerant Kernel Implementation 

Artk68 uses a traditional linked list implementation of basic data structures such as 
dynamic queues for maintaining the TCBs (kernels usually have at least one queue for 
each state a task can be in). This allows tasks to be dynamically created during run-
time. The allowed number of tasks may then only be limited by the available memory 
space. Linked lists also simplify moving TCBs between queues by just modifying the 
TCB pointers. Artk68 maintains a priority-based FIFO queue for the tasks in the 
ready state, called ready queue and also for each semaphore used by tasks waiting for 
events. In addition, the kernel maintains a timer queue used for tasks that are 
suspended for a specific period of time. The tasks in the timer queue are ordered by 
their wake-up times so that the task with the closest wake-up time is placed first. Two 
timers are used in the kernel, one for maintaining a real-time clock and one used as 
event timer. When inserting a task in the timer queue, the event timer is set to expire 
at the point in time when the first task in the timer queue shall be released. A task in 
the timer queue is released by moving it to the ready queue. A dispatch is then 
activated to ensure that the task with the highest priority is executing. 

3.2 Fault-tolerant Kernel Implementation 

Artk68-FT is a redesigned version of Artk68 using statically sized arrays (lookup-
tables) for the main kernel data structures instead of linked lists among other 
techniques in order to improve fault tolerance. Previously, statically sized arrays have 
been used with the objective to design a kernel with low jitter and predictable kernel 
overhead, e.g. in the Asterix real-time kernel [10]. Like Asterix, the Artk68-FT kernel 
uses an array for storing the static data of each task, e.g. the task’s period time, and 



one array for storing the data of each task that is changed during execution, such as 
the wake-up times of tasks and the pointer to the kernel’s stack. In addition, one array 
for each semaphore queue is used. The size of an array is specified when it is 
initialized. Thus, the size of the TCB array corresponds to the maximum number of 
tasks in the system and the size of each semaphore array corresponds to the maximum 
number of users of the semaphore. 

The main work of a scheduler essentially involves inserting and removing TCBs in 
and out of queues. For linked lists, this means proper maintenance of pointers. Thus, a 
transient fault in the registers of the CPU may affect a pointer when inserting or 
removing a TCB, which can corrupt the whole queue. To allow fast detection of such 
errors, a linked list approach may be complemented with robust data structures [19]. 
However, adding redundant information to the queues and performing consistency 
checks on each queue access may cause substantial overhead.  

Instead, using arrays for storing static TCB data may provide some inherent fault 
tolerance as the arrays can be stored in a ROM and therefore not be erroneously 
overwritten by an error in the CPU. For arrays with dynamic contents, the location of 
the array and the index is fixed and thereby defined before run-time. Thus, each TCB 
is accessed through an index instead of pointers. Since the memory address of the 
array is fixed at compile time, it is included into the code area and may therefore also 
be stored in a ROM. This provides the possibility to recover from errors corrupting 
the index while accessing the array by simply re-executing the array access. 
Moreover, the Ada programming language used for our kernel implementation 
provides a range check that detects indices outside the bounds of the TCB array. 

 A requirement for Artk68-FT is that all tasks have unique priorities since the array 
index represents both the identity and priority of the task. Artk68-FT does not use 
separate data structures for ready and waiting tasks, instead the task is just marked as 
ready or waiting in the TCB status field. To dispatch the task with the highest priority, 
the scheduler has to scan the array starting from the first index for the first ready task. 
Thus, a drawback with the static array approach is the overhead when there are many 
tasks in the array since the worst search time is proportional to the number of tasks. In 
addition, the static array approach limits the flexibility of the kernel, e.g. it is not 
possible to dynamically create tasks and use round robin scheduling for tasks with 
equal priorities. However, if these drawbacks can be overseen, as they often can for 
embedded systems with small task sets, the approach provides means for cost-
effective implementation of error detection. Thus, from a fault tolerance perspective, 
using statically sized arrays to maintain the TCBs instead of linked lists may be 
preferred.  

Besides using static data structures, other software implemented error detection 
mechanisms have been added to Artk68-FT: 
• Task switch checks: The size of the TCB tables storing static and dynamic task 

data is statically set to the corresponding maximal number of tasks. Ada provides 
constraint checks that checks that the indices to the two TCB tables are within 
this range. Moreover, when a task switch occurs, the state of the currently 
running task is updated in the dynamic TCB table and an update TCB check is 
made which checks the update by reading back the task’s state. Then the highest 
priority ready task is selected to be running by checking the state of each task in 
the TCB table twice to ensure that the correct task is selected. Furthermore, the 
states, which can be either running, ready, suspended or blocked, in the TCB are 



encoded using m-of-n codes [23] to facilitate detection of single bit errors when 
checking the states. 

• Stack range check: Checks that the location of a task’s stack is within the 
allowable range. This check is made each time a task switch occurs. 

• Timer check: The event timer is set to expire after a defined number of ticks, 
which is calculated as ticks = wake-up time – current time * factor. Hence a 
check is made for each task that the number of ticks calculated should be less 
than a pre-computed tick_check, where tick_check = (period – task execution 
time) * factor. 

• Timer interrupt check: Checks that at least one task is released for each event 
timer interrupt. Hence it may detect tasks for which the adjusted event timer 
value is too short compared to the task’s wake-up time. A check that the event 
timer is restarted if there are any suspended tasks remaining is also conducted. 

• Next time check: Checks that the computation of the next release time for 
periodic tasks (next time = next time + period) is made correctly by conducting 
the computation twice and comparing the results. 

• Semaphore checks: The semaphore queue size is restricted to the maximum 
number of tasks that can be blocked on the semaphore and is checked by Ada 
constraint checks. Moreover, only binary semaphores which are encoded to 
detect single bit errors (free=01 and taken=10) have been implemented in 
Artk68-FT, which gives a more restricted behavior (although counting 
semaphores may be provided with range checks). In semaphore wait calls, checks 
are made that the semaphore’s value is either free or take, otherwise an exception 
is raised. Similarly, when calling semaphore signal, the semaphore value must be 
taken otherwise an error is raised. 

In addition to the above mentioned error detection mechanisms, Artk68-FT also 
provides support for temporal error masking (TEM), i.e., checking, and if possible 
also tolerating, errors in the task computations using time redundant execution of 
tasks and comparison of results. An example with three scenarios of error detection 
and error recovery in TEM is given in Figure 1.  

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Temporal Error Masking 

In fault-free operation, see (i) in Figure 1, a critical task, T, is executed two times 
(denoted T1 and T2) and a comparison is made to detect errors. As the results match, a 
third copy does not have to be executed and the time may be used by other tasks. In 
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(ii) an error is detected by the comparison and a third copy of the task, T3, is then 
executed. The results of the three copies are checked by a majority vote. If the 
majority voter detects two matching results, they are accepted as a valid result of the 
task, otherwise no result is delivered, which leads to an omission failure. In the final 
scenario (iii), an error is detected by an error detection mechanism (EDM). The 
affected copy, T2, is then terminated and a new copy, T3, is started immediately. The 
new copy will use time reclaimed from the terminated copy as well as time from any 
available slack. A comparison is made to confirm that the results match before a result 
is delivered. 

Our implementation of TEM requires that a task is executed in a periodic read 
input - compute - write output loop. The input data is received in the beginning from 
input devices or other tasks. The input data is then processed and the results are sent 
to actuators or to other tasks in the system at the end of the loop, see Figure 2. 

 
 
 
 
 
 

 
 
 

Fig. 2. Example task 

To conceal the details of the error handling from the application designer in this 
implementation, an Ada generic package is used. The generic package contains a 
general algorithm for execution according to TEM. Hence, before using the 
algorithm, the package must be instantiated with the actual data types and functions 
used. An example of this is shown in Figure 3 where an instance, T3_FT, of the 
generic package generic_TEM is declared. The parameters to the generic package are 
the types for the task input and output data. Input data may typically include both 
sensor values and any state data, i.e. data accumulated from previous executions, 
while the output data include the result from the application and updated state data 
(see Figure 2). Parameters appended to the generic package also include the name of 
the functions implemented by the user, i.e. read_input_data, calculate, 
write_output_data. This is made to allow the TEM algorithm to control when new 
input data should be fetched, when to conduct repeated computations, and decide if a 
result should be delivered or not. 

Tasks in Artk68 and Artk68-FT are defined as procedures. Figure 3 shows a 
periodic task (T3) employing TEM in the Artk68-FT kernel. Instead of calling the 
user-implemented functions directly, functions in the generic package are called. The 
function T3_FT.read(data), fetches new input data and updates the global variable 
data. The function T3_FT.compute(data, result) computes the result for the first copy 
and updates the global variable result. The reason for saving the data in global 
variables (i.e. saving data in the data area instead of in the stack) is that the tasks stack 
is restored to an initial state (cleared) when restoring the task context after a hardware 
exception or an Ada exception is triggered.  
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The function T3_FT.check_and_write(data, result) conducts additional 
computations and compares the results to detect errors. An output is delivered if the 
results match. If the results do not match, a third execution of the computation is 
executed. The results of the three copies are then checked by a majority vote. If the 
majority voter detects two matching results, they are accepted as a valid result of the 
task, otherwise no result is delivered, which leads to an omission failure. As the new 
state data is part of the result, the state data is also updated when two matching results 
have been produced. 

 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 3. Example of an initialization of a generic package and a task employing TEM 

Errors can also be detected by hardware and software EDMs. In this case, the 
procedure recover is called. The procedure recover restores the task's context, such as 
the program counter and stack pointer etc., to an initial state. Additional computations 
are conducted and their results are compared before delivering an output. 

Before starting a third execution if an error is detected, the kernel checks whether it 
is feasible to re-execute the task and meet the deadline. Hence in addition to storing 
the tasks period time in the TCB, this also requires that the tasks worst-case execution 
time (WCET) and deadline to be saved. 

4 Experimental Setup 

This section presents the experimental setup used for evaluating Artk68 and Artk68-
FT. The objective of this study is mainly to investigate the effect of transient faults 
occurring in the CPU during execution of basic kernel functions, i.e. the task 
scheduler and the task synchronization. To derive actual dependability measures for 
the complete kernel, such as error detection coverage [23], the injected faults should 
be representative of the complete set of faults which can occur in the system, 
requiring all different tasks execution scenarios to be considered. Nevertheless, the 
experiments give an indication of the coverage and the results may also be used to 
identify weaknesses so that appropriate error handling can be suggested. 

package T3_FT is new generic_TEM(input_type, output_type,  
        read_input_data, calculate, write_output_data); 
indata  : input_type; 
outdata : output_type; 
procedure T3 is 
begin 
  init_next_time; 
  loop 
     T3_FT.read(data); 
     T3_FT.compute(data, result); 
     T3_FT.check_and_write(data, result); 
     sleep_until_next_time;   
     update_next_time; 
  end loop; 
  exception 
     when others => recover; 
end T3; 



4.1 Target System and Fault Injection Tool  

Target system: The target system for our experiments is a microcontroller board 
featuring a 32-bit Motorola 68340 microcontroller, which contains a core processor 
based on the Motorola 68k architecture. The MC68340 does not provide memory 
protection or a floating-point unit. The MC68340 has 8 data registers (D0-D7) and 8 
address registers (A0-A7) which are 32-bit wide, as well as a program counter (PC) 
and a status register (SR), which are all reachable by the fault injection tool. The D0 
register is used both for data computations and return values when returning from 
function calls. Register A6 is used as a frame pointer (FP), and register A7 is used as 
the processor's stack pointer (SP). Parameters to functions are passed trough the stack 
rather than via registers. Local variables and parameters in the stack are accessed 
using an offset relative to the FP.  

Error detection mechanisms: Table 2 gives an overview of the error detection 
mechanisms provided by the Motorola MC68340 microcontroller and Ada95 [24]. 

Table 2. Description of error detection mechanisms provided by the hardware and Ada 

Selection of Ada run-time constraint checks 
Ada access check Attempt to follow a null pointer 
Ada range check Attempt to violate a range constraint of a scalar value 
Ada index check Attempt to access an index that is not in the range of the array 
Microcontroller hardware checks 
Bus error Attempt to access non-existent memory  
Address error Attempting to access a word or a long-word on an odd memory address. 
Illegal instruction Attempting to execute a non-existing instruction 
Line 1010 Attempting to execute an unimplemented instruction 
Line 1111 Attempting to execute an unimplemented instruction (used for M68000 

extensions) 
Division by zero Raised if a division instruction is given a divisor value of 0 
Privilege violation Attempt to execute a privileged instruction in user mode 
Format error Erroneous stack frame format when executing an RTE instruction 

 
Fault injection tool: For the experimental evaluation, software implemented fault 

injection (SWIFI) with the GOOFI tool [16] is used. The SWIFI fault injection 
algorithm requires that a routine for receiving fault injection data from the GOOFI 
tool, a trap handler and a trace handler routine for performing the fault injection are 
located in the target system memory. 

The user first selects the fault injection locations, the points in time the faults 
should be injected, the target system workload and the number of fault injection 
experiments to perform. Then, each fault injection experiment begins by reinitializing 
the target system and downloading the workload and fault injection data. This 
includes a break-point address and the number of accesses that should be made to that 
address until a fault is injected. In addition, the register and bit in the register in which 
a fault should be injected are downloaded. Then the op-code at the chosen break-point 
address is replaced with a software trap. After this the program is started and the 
system will continue as normal until the software trap is reached. Then, a jump is 
made to the trap routine that checks if the number of accesses to the chosen address 
equals the number of accesses that should be made until fault injection. If it matches, 
a fault is injected, otherwise the system continues (after restoring and executing the 



original op-code followed by re-inserting the software trap) until the next time the 
trap is reached. When the application has completed, the result from each task 
execution, the time when each task has completed and the type of exceptions that may 
have been triggered is sent to the GOOFI tool for later analysis. 

Intrusiveness: The time overhead (OH) for injecting faults using SWIFI includes 
the time for observing (Obst) the number of accesses (k) to a specific program 
address, as well as the time to inject a fault (FIt), i.e. OH = k · Obst + FIt. Thus, the 
timing measurements in the experiments are adjusted to compensate for this overhead. 
The timers on the microcontroller board used have a clock resolution of 
approximately ±30.5 µs, which also limits the accuracy of the timing measurements. 
In addition, the time to inject a fault also varies ±50 µs depending on which register 
the fault is injected in. 

Workload: The effect of a fault depends on system workload activity. In these 
experiments, the workload consists of the kernel and three periodic tasks (called T1, 
T2 and T3). Task T3 executes a brake-by-wire algorithm [7] and has the highest 
priority. Since T3 is a typical safety critical real-time application, it is protected using 
TEM in the Artk68-FT kernel. Task T1 and T2 are non-safety critical and therefore 
unprotected and mainly used for exercising the semaphore routines. Both T1 and T2 
execute the same matrix multiplication algorithm, where the output from task T1 is 
used as input to task T2. This handled by two semaphores called S1 and S2, see  
Figure 4. Semaphore S1 is initialized to 0 and semaphore S2 is initialized to 1. 

 
procedure T1 is 
... 
begin 
  next_time:= my_clock + period;   
  loop 

  wait(S2); 
  data := read_input_T1; 
  result := mult(data); 
  save_result_T1(result); 
  signal(S1); 
  sleep_until(next_time); 
  next_time:=next_time + period; 

  end loop; 
end; 

procedure T2 is 
... 
begin 
  next_time:= my_clock + period; 
  loop 

  wait(S1); 
  data := read_input_T2; 
  result := mult(data); 
  save_result_T2(result); 
  signal(S2); 
  sleep_until(next_time); 
  next_time:=next_time + period; 

  end loop; 
end; 

Fig. 4. Task T1 and T2 

In Figure 5, the first execution of each task is shown. Task T3 executes firsts since 
it has the highest priority. Then task T3 completes and is suspended until its next 
period. After this, task T2 is started, but is blocked on semaphore S1. Task T1 is 
therefore started and allowed to perform its computation. When task T1 calls S1, it 
releases task T2, which preempts T1 and completes its execution. After T2 completes 
its execution, T1 resumes and completes. Four task iterations are executed for each 
task before the kernel terminates. 

Fault model and fault injection locations: Transient faults are modelled as single 
bit-flips. The single bit-flip model has become a de-facto standard in fault injection 
experiments, although it is not a perfect representation of all transient faults. Single 
bit-flip faults selected randomly using uniform sampling were injected into the data 
registers, address registers, program counter register and status register of the 
MC68340 processor. 



 
 

 

 

 

 

Fig. 5. Execution of tasks where faults are injected during time intervals marked in grey 

Time interval for fault injection: Faults were injected during execution of the 
following functions: Task switch, Wait semaphore, Signal semaphore and Timer 
interrupt indicated by number 1-5 in Figure 5 and described further below. Faults 
were also injected during execution of task T3 to evaluate the effectiveness of TEM. 
In the experiments on Artk68, faults were also injected during execution of task T1 to 
investigate the effects of the faults depending on workload activity. Faults were 
injected during the first task iteration in each experiment and the behavior of the 
system was observed in the following three iterations. A break-point address 
corresponding to a point in time for fault injection was selected randomly using 
uniform sampling among the addresses obtained for each function through an 
execution trace from a fault free run. A detailed description of the functions executed 
for the fault injection experiments follows: 

1. Task switch - A task switch occurs when task T3 calls the sleep_until call 
which involves saving the context of the executing task, inserting the task in 
the timer queue and starting the timer which expires when the task should be 
woken the next time. After this, a dispatch is made by fetching the first task 
(task T2) in the ready queue and restoring its context. 

2. Wait semaphore - Involves examining the value of the semaphores. The 
semaphore is taken if it is available, otherwise the task is suspended and 
inserted into the queue of the semaphore followed by a dispatch. Here, the 
semaphore is unavailable in the first call and available in the next. 

3. Signal semaphore - Involves releasing the first task in the semaphores queue, 
i.e. moving the task from the semaphores queue to the ready queue. If the 
removed task has higher priority than the running task, a dispatch is made. 
Here, the first call to signal semaphore results in a task switch and the second 
only increases the value of the semaphore. 

4. Timer interrupt - When a time out for a task has expired, the task is moved 
from the timer queue to the ready queue. If a task remains on the timer queue, 
the timer is restarted. A task switch occurs if the released task has higher 
priority than the running task. 

5. Next time - Updates the next activation time of periodic tasks. 
6. Task T3 - Faults are injected during execution of the brake-by-wire 

application. 
7. Task T1  - Faults are injected during execution of the matrix multiplication. 
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4.2 Error Classification and Definitions 

Errors can be classified into non-effective and effective errors. The non-effective 
errors have no effect on the system behavior, i.e. a correct result is delivered. This 
occurs when a fault is not activated, e.g. the location where the fault was injected is 
not used, or the fault is overwritten by uncorrupted data. Effective errors correspond 
to errors, which are detected by the error detection mechanisms or escape the 
mechanisms resulting in crashes or erroneous results being produced by the 
application tasks. A description of the effective errors is given in Table 3. 

Table 3. Classification of effective errors 

Effective errors Description 
Wrong result Errors that escape the error detection mechanisms causing erroneous results to 

be produced by the application tasks. 
Timing error A timing error occurs when the delivery time of a correct result deviate more 

than ±250 µs, compared to the fault free run. 
Detected errors Errors that were detected by the error detection mechanisms  
Application crash The injected fault caused one or several tasks to stop producing any output 
Kernel crash The injected fault caused the kernel to stop working, i.e. no task is able to 

produce any output 
CPU crash The injected fault caused the CPU to crash 

5 Results for Artk68 

As shown in the Table 4, a majority of the injected faults resulted in non-effective 
errors. The number of non-effective errors is around 80% of the injected faults for 
each different kernel function. The reason for this may be that the registers in the 
MC68340 are sparsely used and the liveness of the data in registers is usually short, 
i.e. data is fetched into a register in one instruction and then used immediately in the 
next instruction. In addition, the register usage is reduced by passing parameters to 
functions through the stack rather than via registers. Below, an investigation of the 
causes for the effective errors is made for each error category. 

Table 4. Results of fault injection experiments on Artk68 

 Task T1 Task T3 Kernel functions 

 Matrix BBW Timer int. Task switch Sem. Wait Sem. Signal Next time 

No. injected faults 2207  2285  2178  1967  1936  2055  1494  

Correct result 1695 76.8% 1860 81.4% 1789 82.1% 1570 79.8% 1650 85.2% 1736 84.5% 1219 81.6% 

Wrong results 166 7.5% 54 2.4% 1 0.0% 0 0.0% 1 0.1% 0 0.0% 0 0.0% 

Timing errors  0 0.0% 30 1.3% 23 1.1% 28 1.4% 1 0.1% 2 0.1% 56 3.7% 

Application crashes 0 0.0% 0 0.0% 1 0.0% 2 0.1% 4 0.2% 6 0.3% 0 0.0% 

Kernel crashes 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 

CPU crashes 52 2.4% 61 2.7% 54 2.5% 43 2.2% 42 2.2% 43 2.1% 45 3.0% 

HW EDM 289 13.1% 277 12.1% 267 12.3% 292 14.8% 194 10.0% 228 11.1% 169 11.3% 

Ada EDM 5 0.2% 3 0.1% 43 2.0% 32 1.6% 44 2.3 40 1.9% 5 0.3% 

 



Wrong results occur mainly when injecting faults during execution of the tasks. 
However, wrong results are also produced when injecting faults during execution of 
the kernel Timer interrupt and Semaphore wait functions. For example, when the 
synchronization between task T1 and T2 is affected and T2 continues to execute 
without waiting for task T1 to update its input data. Synchronization may be affected 
due to corruption of a semaphore value, or due to an error in the program counter, e.g. 
when calling the wait function causing incorrect control flow and thus returning to the 
task without performing any synchronization. 

Application crashes have been observed when injecting faults during execution of 
the kernel queue handling routines, e.g. when a TCB is not inserted properly in the 
queue, or the queue is corrupt after removing a TCB. Figure 6 shows an example of 
an application crash due to corruption of the queue after removing a TCB. Here the 
first task in the ready queue will be removed. Before executing the function, the 
queue contains task T1 and T2 (queue_head→T2→T1→null) and afterwards the 
queue should only contain task T1 (queue_head→T1→null). However, a fault 
injected into register a0 at address 61bc results in omitting the operation  "queue.head 
:= queue.head.next". Thus when the operation "element.next := null" is made, 
queue.head.next is also set to null which disconnects task T1 (queue_head→null). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Example of an error in the queue routine causing an application crash 

Kernel crashes occur when the kernel stops working. No such crashes were 
observed during these experiments.   

CPU crashes occur if the processor halts without producing any information about 
the encountered error. Such crashes were observed for faults affecting the stack 
pointer (SP). An indirect cause for faults in the SP is for example, when the CPU 
restores the task context (including the SP) from an invalid TCB as the pointer to the 
TCB was corrupted. We conjecture that these crashes are due to double bus faults 
[15], triggered when an erroneous stack pointer is used. A double bus fault occurs 
when a bus error or an address error is triggered during the exception processing for a 
previous bus or address error, i.e. when data access through an erroneous stack 
pointer causes an exception and the call to the corresponding exception handler 
causes the return address to be stored through the erroneous stack pointer which 

Ada checks that  
queue.head.next /= null 

procedure remove(element : in out pcb_p; queue : in out 
                 queue_type)is 
... 
element := queue.head; 
... 
queue.head := queue.head.next; 
6190: 2d6e 000c fffc  movel %fp@(12),%fp@(-4) 
6196: 206e 000c       moveal %fp@(12),%a0 
619a: 2d68 0004 fff8  movel %a0@(4),%fp@(-8) 
61a0: 206e 000c       moveal %fp@(12),%a0 
61a4: 4aa8 0004       tstl %a0@(4) 
61a8: 660e            bnes 61b8 <kernel__remove+0x40>
61aa: 4878 00ad       pea ad <.stab+0x59> 
61ae: 487a fe4c       pea %pc@(5ffc <.ef+0x4>) 
61b2: 61ff 0000 4198  bsrl a34c <__gnat_rcheck_00> 
61b8: 206e fffc       moveal %fp@(-4),%a0 
61bc: 226e fff8       moveal %fp@(-8),%a1 
61c0: 2151 0004       movel %a1@,%a0@(4) 
element.next := null; 

Get queue.head 
Get queue.head.next 

An error in register a0  
results in omitting 
queue.head := queue.head.next  



results in a new exception. Then, the processor halts and a reset is required to resume 
operation. 

Detected errors correspond to errors detected by the various error detection 
mechanisms, see Table 2. Most detected errors are due to faults injected into the PC, 
FP or SP register. Faults injected into the PC register are detected if, (i) the CPU tries 
to execute an illegal or unimplemented instruction, (ii) if the instruction is legal but 
nonexistent memory is accessed or, (iii) a jump to an erroneous code area is made, 
where the error is detected by other mechanisms related to that part of the code, e.g. a 
jump to the task executing the matrix operation might be detected by Ada checks such 
as index and range checks on the matrix arrays. Faults in the SP or the FP often leads 
to erroneous memory accesses, i.e. the CPU tries to access data relative to an offset 
from the SP and FP, which can be detected by the address and bus check. Faults in the 
SP and FP may also result in errors similar to faults in the PC. This is because the PC 
is restored from the stack when returning from a subroutine and if the SP is erroneous, 
the PC is assigned an erroneous value. Faults injected into the data (D0-D7) and 
address registers (A0-A5) may be detected by the Ada access check that detects null-
pointers or by the address/bus check that detects pointers accessing nonexistent 
memory. 

The most effective error detection mechanisms were the bus error (~40% of the 
detected errors), line 1111 (~22% of the detected errors), illegal instruction (~10% of 
the detected errors) and the Ada access check mechanisms (~10% of the detected 
errors) for the different functions.  

Timing errors relate to errors affecting the timer handling in the kernel, e.g. 
affecting the computation of the time-out value of a periodic task, or errors directly 
affecting the task's execution time. For task T1 no timing errors are produced and for 
task T3, 35 timing errors are produced. These timing errors originate from faults 
injected into, e.g. registers with loop variables or the program counter causing an 
control flow error. Producing a correct result after a control flow error ultimately 
depends on the workload. For example, task T3 includes code such as "if x>y then a 
else b", which will mask errors in x and y as long as the expression x>y is not 
affected. 

Timing errors also occur when injecting faults during the execution of the task 
switch or the timer interrupt functions. These timing errors mainly occur due to faults 
affecting the computation of the time-out value for which periodic tasks are 
suspended.  

Error propagation between tasks is observed when injecting faults in task T1 (6 
occasions). These error propagations originate from faults injected into the program 
counter causing an erroneous jump to task T3 where the state data of task T3 is 
updated. When the return statement is executed, the program jumps back to task T1. 
This results in task T1, T2 and task T3 producing a wrong output. (T2 produces a 
wrong result since it uses the result of T1 as input). 

 



6 Results for Artk68-FT 

The results of the fault injection experiments conducted on the Artk68-FT kernel are 
shown in Table 5.  

Table 5. Results of fault injection experiments on Artk68-FT 

 Task T1 Task T3 Kernel functions 

 Matrix BBW Timer int. Task switch Sem. Wait Sem. Signal Next time 

No. injected faults 1665  2076  1805  1866  1784  1825  1159  

Correct result 1243 74.7% 1703 82.9% 1473 81.6% 1534 82.2% 1470 82.4% 1502 82.3% 951 82.1% 

Tolerated 0 0.0% 262 12.6% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 

Omission 0 0.0% 18 0.9% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 

Wrong results 127 7.6% 0 0.0% 0 0.0% 0 0.0% 1 0.1% 0 0.0% 0 0.0% 

Timing errors  0 0.0% 19 0.9% 18 1.0% 6 0.3% 0 0.0% 5 0.3% 2 0.2% 

Application crashes 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 

Kernel crashes 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 

CPU crashes 58 3.5% 64 3.1% 46 2.5% 42 2.3% 50 2.8% 50 2.7% 35 3.0% 

HW EDM 230 13.8% 10 0.5% 217 12.0% 214 11.5% 210 11.8% 201 11.0% 125 10.8% 

Ada EDM 2 0.3% 0 0.0% 14 0.8% 13 0.7% 15 0.8% 26 1.4% 8 0.7% 

SW EDM 5 0.1% 0 0.0% 37 2.0% 57 3.1% 38 2.1% 41 2.2% 38 3.3% 

 
The distribution of errors for the Matrix task is similar as for the Artk68 kernel 

since no additional error detection is provided for this task. No wrong results are 
observed when injecting faults during execution of task T3 employing TEM. In 
addition, TEM allowed 74% of the effective errors to be tolerated. 26% of the 
tolerated errors are detected by the double execution and 74% are detected by the 
CPU hardware mechanisms. About 1% of the effective errors caused an omission 
failure to be produced due to lack of time to execute three times and vote (16 
occasions), and when three different results are produced (2 occasions). The timing 
errors relate to non detected errors that affecting the task's execution time. The 
detected errors relate to faults causing two consecutive errors being generated, which 
result in a fail-silent node. It should be noted that most time is spent computing the 
result of the task, and therefore subjected to faults the most. More faults should be 
injected to reveal any weaknesses also in the TEM comparison. Moreover, the result 
is written to memory after two matching results. To reduce the probability that the 
result is affected by a fault while writing it to memory, duplication or coding may be 
used. 

One wrong result was observed when injecting faults during execution of the 
Semaphore wait function. This was caused by a fault in the program counter causing 
an erroneous jump, which affected the synchronization between task T1 and T2. 

As for Artk68, no Kernel crashes are observed and the number of CPU crashes is 
similar. However, the Artk68-FT kernel significantly improved the handling of tasks 
as no Application crashes are observed. 

The implemented error detection mechanisms detect between 2% to 3% of the 
injected faults. The Timer check and the Timer interrupt check detect most timing 
errors when injecting faults during execution of the task switch. However, some 



errors escape these mechanisms. These errors are caused by faults affecting the 
execution flow (4 errors), or when the number of ticks checked by the Timer check is 
correctly below the pre-computed value (tick_check) but nevertheless erroneous (1 
error) or errors occurring just after the Timer check (1 error). The Timer check is less 
effective when the event timer is restarted from the timer interrupt, as the pre-
computed value is not compensated for the time reset and becomes too large.  Timing 
errors in the remaining function relates to faults affecting the execution flow. The 
effect of encoding the variables holding the task state and the semaphore values was 
not possible to evaluate in this study since the Ada compiler used mainly handles 
encoded variables as immediate operands, which are compared directly to an address 
location, e.g. "cmpib #3, %a0@(4)". Since the fault injection tool only support 
injection of faults in registers, errors in immediate operands were not created. 

6.1 Overhead  

Inserting a task in the timer or ready queue in the Artk68-FT kernel requires only a 
table look-up which is made in constant time (O(1)). Whereas inserting a task in the 
ready queue or timer queue in the Artk68 kernel involves placing the task at the 
correct queue location, which has a linear time complexity (O(n)). For example, 
inserting a task in the ready queue in Artk68-FT only takes a few microseconds 
whereas inserting a task in Artk68 ranges from 120 µs to 240 µs in our example with 
three tasks. On the other hand, removing a task from the ready or timer queue in 
Artk68 only involves removing the task first in the queue, which is made in constant 
time (O(1))  which is measured to ~120 µs. Selecting a tasks in Artk68-FT is made in 
linear time (O(n)), which in our experiment ranged from 60 µs to 120 µs for three 
tasks. 

The time overhead for the implemented error detection mechanisms in Artk68-FT 
is approximately 30 % for a task switch. The time overhead for TEM is more than 
100% under fault-free conditions since each task is executed twice and extra 
processing time is needed for handling the time redundancy. In addition, there must 
be a slack in the schedule to allow for a third execution of tasks that are affected by 
errors. The code size of the Artk68 kernel is 28.7 kB (262 kB with Ada run-time 
checks and elaboration code). The size of Artk68-FT with the error detection 
mechanisms is 35.7 kB (269 kB) and without the error detection mechanism the size 
is 29.8 kB (263 kB). 

7 Conclusion and Future Work 

The paper has presented an experimental evaluation of a small real-time kernel 
intended for distributed fault-tolerant real-time systems implemented on the Motorola 
68340 microcontroller. The purpose is to improve the dependability by using a two-
level approach for tolerating transient faults. The kernel provides mechanisms for 
tolerating transient faults at the node level allowing the overall reliability to be 
improved since the recovery time is much shorter at the node level than at the system 
level. Permanent faults and transient faults that cannot be handled at the node level 



have to be handled at the system level.  To evaluate the fault tolerance capabilities of 
the kernel, fault injection experiments were conducted with two versions of the 
kernel, one version without any error handling mechanisms, called Artk68, and one 
version provided with additional error handling called Artk68-FT. The Artk68 kernel 
employs traditional dynamic data structures, linked lists, to maintain the tasks while 
the use of static data structures was investigated for Artk68-FT. The experimental 
results show that tasks control blocks (TCB) can be permanently disconnected from 
the kernel data structures by faults when single linked list are used, resulting in 
application crashes. No such failures were observed when static data structures were 
used. However, additional checks are still needed in the kernel to ensure that the 
correct TCB is accessed. Besides these checks, additional error handling mechanisms 
provided by Artk68-FT, such as, checks on stack limits and timing limits allowed 
many other errors to be detected. To support node-level transient fault tolerance, the 
Artk68-FT kernel also provides protection of tasks using temporal error masking 
(TEM), which is able to mask transient faults by triple time-redundant execution and 
voting. In the experiments, no wrong results were observed when injecting faults 
during execution of a task employing TEM, which clearly demonstrates the 
effectiveness of TEM. However, a drawback with the MC68340 microcontroller is 
that the processor is sometimes forced to halt, particularly when faults affect the stack 
pointer, then excluding the possibility of tolerating faults at on the node-level. 

Future work should focus on improving the error detection capabilities in the 
kernel. For example, the experimental results show that the implemented mechanisms 
for detecting timing errors in the kernel could be improved. Checks are needed to 
ensure that the worst-case execution time of tasks is not exceeded. In addition, 
mechanisms for detecting control flow errors and a memory management unit to 
reduce the risk that an error in one task affects other tasks or the kernel should be 
investigated. Such mechanisms would lead to fewer wrong results and timing errors, 
and thus improve the overall error detection in the system. 
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