
Experimental Dependability Evaluation
of the Artk68-FT Real-time Kernel

Joakim Aidemark, Peter Folkesson and Johan Karlsson

Department of Computer Engineering
Chalmers University of Technology

S-412 96 Göteborg, Sweden
{aidemark, peterf, johan}@ce.chalmers.se

Abstract. This paper presents an experimental dependability evaluation of a
small real-time kernel called Artk68-FT intended for distributed fault-tolerant
real-time systems. A main goal of this research is to improve the dependability
of such systems by using a two-level approach for tolerating transient faults. By
providing mechanisms in the kernel for tolerating transient faults at the node
level, the overall reliability is improved since the recovery time is much shorter
at the node level than at the system level. Permanent faults and transient faults
that cannot be handled at the node level have to be handled at the system level.
The experimental evaluation was performed using fault injection experiments
on the MC68340 microcontroller executing the kernel and three application
tasks. The experimental results show that no wrong results were produced when
faults were injected during execution of a critical task protected by Artk68-FT.
Moreover, no application crashes were observed in the fault injection
experiments with Artk68-FT compared to experiments with a version of the
kernel without fault handling mechanisms.

1 Introduction

Dependability is a major concern in embedded real-time computers used for example
in vehicular, aircraft or space equipment. Such systems are often safety-critical and
must fulfill strict requirements regarding real-time response and fault-tolerance.
Aerospace applications are primarily low volume products with moderate sensitivity
on component costs while emerging safety critical application areas such as control
systems in future automobiles, e.g. steer-by-wire and brake-by-wire without any
mechanical backup, are high volume products and therefore more cost sensitive.

A common technique for reducing the cost of fault-tolerant distributed real-time
systems is to use computer nodes that exhibit well-behaved failure semantics. One
example is to use fail-silent nodes, i.e. nodes that produce either correct results or no
results at all (or erroneous results that can be identified by other nodes as erroneous,
e.g. through the use of checksums) [1]. FlexRay and TTP/TTA [2] are examples of
communication protocols and architectures intended for safety-critical applications,
which rely on fail-silent nodes.

 Single node failures caused by permanent or transient hardware faults can be
tolerated by using two fail-silent nodes in an active redundancy configuration. Such a

configuration, where the same operations are executed on two nodes in parallel, is
able to deliver a correct service as long as one of the nodes is operational. Using
nodes with less restricted failure semantics, such as those that may produce
undetected erroneous results (value failures) requires majority voting to mask errors,
which leads to more costly solutions.

 To ensure the fail-silent property of a node, it must be equipped with internal error
detection and, optionally, error recovery mechanisms. However, most
implementations use only error detection for ensuring the fail-silence property. This
means that the node is shutdown (directly or after a number of repeated errors) when
an error is detected, regardless of whether the error was caused by a transient or a
permanent fault. Thus, the detection of an error always activates the fault-tolerance
mechanisms provided at the system-level (such as node membership and distributed
redundancy management protocols). Recovery of transient faults, which only has a
temporary effect, is usually conducted by activating a backup computer node or by
reintegrating the failed node after a successful diagnostic test showing that the error
was transient, e.g. [3].

Previous research has shown that transient faults are much more common than
permanent faults in digital systems [4]. Common causes for transient faults are power
fluctuations, electromagnetic interference or particle radiation. Heavy-ions in space
and high-energy neutrons at high altitudes are known to cause soft errors in integrated
circuits. Due to the reduction of features size of integrated circuits, soft errors have
also become one of the most important failure mechanisms in ground-based
applications. In fact, one manufacturer claim that for the most advanced CMOS
devices operating in a terrestrial environment, the failure rate attributed to soft errors
is higher than that of all other hardware failure mechanisms combined [5]. In general,
the technology scaling increases the probability of environmentally induced transient
faults [6].

In this paper, we consider a two-level approach for tolerating transient faults in
distributed fault-tolerant real-time systems. The objective is to detect and recover
from most of the transient faults at the node-level. The node-level mechanisms are
designed to tolerate transients transparently with respect to other nodes in the system,
so that in most cases, the other nodes will not notice that a transient fault has
occurred. The advantage of handling transient faults at the node level is that the
average recovery time is reduced substantially, which improves the overall reliability.
Permanent faults and transient faults that cannot be handled at the node level must be
handled at the system-level. Thus, for those faults, the node must be fail-silent.

We present an experimental evaluation of a small real-time kernel, called Artk68-
FT, which we have developed to support node-level transient fault tolerance. In [7]
we have evaluated the use of a time redundancy technique called Temporal Error
Masking (TEM) to tolerate transient faults in the application tasks. The performance
improvement rate of microprocessors and micro-controllers make time redundancy
increasingly attractive for achieving fault-tolerance in real-time systems. In TEM,
critical tasks are executed twice and the results compared to detect errors. A third
execution is started if an error is detected by the comparison or by other error
detection mechanisms. This allows transient faults to be masked by conducting a
majority vote on the three results, thereby facilitating node-level fault tolerance. It is
implicit that enough slack is available in the schedule to allow recovery without
causing any other tasks to miss its deadline (see fault tolerant scheduling in e.g. [8]).

The Artk68-FT kernel supports preemptive fixed priority scheduling [9] and
employs TEM to tolerate transient faults in the application tasks and several other
mechanisms for handling faults in applications as well as the kernel. Thus, a
contribution of this paper is an evaluation of TEM in combination with other fault
handling mechanisms included in a real-time kernel. In particular, we evaluate the use
of statically sized arrays [10] for basic kernel data-structures to improve fault
tolerance. Most other real-time kernels uses dynamic data structures, i.e. linked lists,
to maintain tasks. The advantage of using statically sized arrays is that the memory
address of the array is fixed at compile time and can be saved in read only memory.
This allows for some inherent fault tolerance, as the structures cannot be corrupted by
a fault (although the contents of the structure must still be protected).

We have implemented the Artk68-FT kernel for the Motorola 68340
microcontroller and evaluated it using fault injection, a well-established experimental
dependability validation technique [11]. Previous fault injection studies have shown
that the behavior of operating systems in the presence of faults can be rather
unpredictable even when several error detection mechanisms are included [12] [13]
[14]. Application tasks or the operating system may crash or hang due to faults, often
resulting in system failures. In this study, single bit-flip faults were injected into the
registers of the Motorola 68340 microcontroller [15] using the GOOFI (Generic
Object Oriented Fault Injection) tool [16]. A bit-flip, i.e. the inversion of a bit in a
memory cell, may be the direct cause of a transient fault. A bit-flip in a register may
also represent an erroneous computation due to a transient fault (pulse) in
combinational logic [17]. We use software implemented fault injection (SWIFI) [11]
to inject the faults during execution of both the operating system kernel and
application tasks. No faults were injected into the main memory since we rely on the
use of error correcting codes to mask such faults.

Fault injection experiments were also conducted on a version of the kernel without
fault tolerance mechanisms, called Artk68 [18]. Artk68 uses dynamic data structures
for task administration and is mainly targeted for small, embedded systems, which are
not safety critical. By comparing the results of the experiments conducted on the two
different kernel versions, the dependability improvements provided by the fault
handling mechanisms included in Artk68-FT are evaluated.

Section 2 presents the related work. Section 3 gives an overview of the
implementation of the real-time kernel describing both the Artk68 kernel and the
modifications made to increase the fault tolerance in Artk68-FT. Section 4 presents
the experimental setup used for validating the kernel, while the results from the fault
injection experiments are presented in Section 5. Finally, the conclusions and future
work are given in Section 6.

2 Related Work

Most commercial operating systems usually provide a number of mechanisms for
detecting software design errors, e.g. by returning error codes from faulty function
calls or detecting stack overflows caused by erroneous software. Although software
design errors are not the focus of this paper, such mechanisms are also able to detect
hardware errors [14]. Errors may also be detected by on-chip error detection

mechanisms in microprocessors such as illegal op-code detection, division by zero or
address range checking. Many microprocessors also provide a memory management
unit (MMU) that can be used to restrict memory access and thereby ensure that an
application does not overwrite the memory of other applications or the kernel.

Although modern operating systems typically provide several error detection
mechanisms, fault injection studies have shown that the behavior of the operating
system in the presence of faults can be rather unpredictable. In [12], faults were
injected into the parameters of operating system calls. The experiments showed that a
fault in the parameters may cause a single task to crash or hang, or the complete
operating system might crash without producing any information. In [13], faults
where injected into the function parameters and the memory (code and data) areas of
the Chorus microkernel. Besides crashes and hangs, the injected faults also caused the
application tasks to produce erroneous results. One of the most vulnerable functions
in the microkernel is the part handling the synchronization of tasks. The experiments
showed that a majority of the faults injected into the parameters of the function calls
to the synchronization unit resulted in an erroneous output. In [14], faults were
injected into the registers and memory of a microprocessor executing the LynxOS.
Almost a third of the injected faults caused the operating system to crash while
slightly more than one percent of the injected faults resulted in faulty outputs being
produced by the application.

The effect of the various failures is obviously application dependent. However, for
safety critical real-time systems it is often important to detect any errors promptly to
allow error processing to be conducted within a specified time. A crash of an
application or the operating system may not result in benign failures such as fail-silent
behavior, since the output may become locked to an erroneous value.

Several studies addressing fault tolerance mechanisms for handling faults both in
the application and the operating system have been presented in the past. However,
most approaches focus on error detection to achieve fail-silence in an active
redundancy configuration and disregards node-level transient fault tolerance. In [19],
error detection mechanisms integrated into the MARS operating system to provide
fail-silence were evaluated. The MARS operating system supports static cyclic
scheduling and includes error detection mechanisms such as robust data structures to
allow integrity checking of data structures like linked lists, and reasonableness checks
on parameters for detecting errors in system calls. For detecting errors in the
application tasks, tasks are executed twice and the results are compared. Moreover,
timing checks are used to detect if tasks violate any deadlines and stack checks are
used to check if the tasks’ stack limits are exceeded.

In [20], a middleware layer executing on top of an existing microkernel was
evaluated. The middleware layer, called Hades, provides extensive software
implemented error detection mechanisms to ensure fail-silence, e.g. tasks are checked
for deadline violations or worst-case execution times and the arrival times for
periodic or sporadic tasks are checked. Checking deadline violations in a static cyclic
scheduler like MARS is rather straightforward. Violations are detected by checking if
a task is currently executing when a clock interrupt is triggered. As Hades allows
dynamic scheduling, the deadlines are checked by the operating system only when the
task is finished, blocked or if the task is preempted. Messages are also provided with
checksums. Data structures such as lists are provided with redundant information for
integrity checks and checks for ensuring the validity of array indices are employed. A

so-called flow call graph is used to check the execution flow of the operating system.
Extra code is added to the beginning and the end of every function in the operating
system to check that each function is called only from pre-defined functions. In
addition, instructions are inserted into unused memory areas to allow erroneous
memory accesses to be detected. An error detection coverage of 99.1% was obtained
from experiments injecting single bit-flip transient faults in the memory areas (code,
data and stack) of both the Hades middleware and the underlying Chorus microkernel.

In [21], wrappers (software checks) are added on top of the microkernel to detect
erroneous values that are passed to and from kernel components such as
synchronization and scheduling components. To allow effective implementation of
the wrappers, the behavior of different components are defined as predicates, e.g. a
predicate may define that a task released from the semaphore queue must end up in
the ready queue. However, the wrapper approach requires that the microkernel
supplier implement a metainterface that allows interception of kernel calls and
internal function calls

As shown, several studies have addressed error detection in the application and the
operating system to achieve fail-silence for system level fault tolerance. Our objective
is to evaluate mechanisms for tolerating transient faults already at the node-level. As
only about 5% [22] of the total execution time is used by the kernel, we have focused
on tolerating faults occurring during execution of application tasks. Faults occurring
during execution of the kernel are tolerated at the system level by relying on fail-
silence.

3 Kernel Implementation

A real-time operating system (RTOS) is an operating system with well-defined time
constraints, i.e. the time to execute the functions in the RTOS is bounded. Most
RTOS are scalable, i.e. they have a core part that implements the basic functions
(called microkernel) for which extra functionality can be added depending on the
application. This is done to reduce the size of the RTOS, e.g. many automotive
applications do not need to include file handling and disk storage functionality. The
main parts of a microkernel supporting fixed priority scheduling usually include
functions for task scheduling, task synchronization, time management, inter task
communication, memory management and interrupt management.

The task scheduler is responsible for the creation, activation, suspension and
termination of tasks. It is also responsible for determining the order in which tasks are
executed. The task scheduler for the Artk68 kernel supports dynamic fixed priority
scheduling (FP). In FP each task is assigned a fixed priority before run-time. At run-
time, the task with the highest priority is allowed to execute first. The kernel supports
preemptive scheduling. This means that a lower priority task can be interrupted and
suspended at any point during the execution, thus enabling execution of a higher
priority task. The advantage of fixed priority preemptive scheduling over static cyclic
scheduling is higher flexibility and faster response time as a higher priority task does
not need to wait for a lower priority task to complete its execution. However, the
kernel becomes more complex since preemptive scheduling requires that a separate
stack must be maintained for each task and that access to common resources must be

synchronized to avoid concurrent access of shared data. Moreover, a fixed priority
scheduling system may also experience higher output jitter, i.e. time variations in the
delivery of result due to interference from other tasks, than a static cyclic scheduling
system.

Task synchronization is used to allow tasks to wait for an event or for tasks to
synchronize with each other. The Artk68 implementation uses task synchronization
through semaphores, which is the most common method. A semaphore can be
initialized as a binary semaphore taking only two values, or a counting semaphore
that can take a range of values. The current implementation does not support a priority
inheritance protocol. Therefore there is a risk for priority inversion, i.e. if three or
more tasks use a specific semaphore, a lower priority task may be allowed to execute
before higher priority tasks. To avoid priority inversion in this study, only two tasks
may share a semaphore.

Inter task communication involves exchanging data between tasks. In our kernel,
this is conducted over shared resources, i.e. the designer is required to implement
mailboxes (predefined data structures) using semaphores to avoid concurrent access.

Timer management is used to schedule periodic tasks, which are executed and then
suspended for a specified time interval. Timer interrupts may be implemented either
tick driven or event driven. In tick driven management, periodic interrupts are
triggered at regular time intervals (e.g. every 10 ms) checking if any suspended tasks
should be activated. In an event driven management, a timer is set to interrupt for the
task with the closest timeout. A problem with a tick driven system is deciding the
interval for the periodic interrupt. Too frequent interrupts increase the overhead and
too infrequent interrupts leads to jitter, i.e. the activation time of a task may be
delayed up to one tick. Artk68 uses event driven management.

Memory management provided by the microprocessor influences how the
application tasks interact with the kernel. Artk68 is implemented for the Motorola
68340 microcontroller, which does not support a memory management unit (MMU).
Hence, the kernel and the tasks operate in the same address area and kernel calls are
implemented as simple subroutine calls. For systems providing a MMU, it is possible
to put the kernel and each task in a separate memory area. Thereby, the tasks and the
kernel are protected and a faulty task is not able to corrupt other tasks or the kernel. A
drawback using separate addresses is increased task switch time, as the memory areas
must be altered.

Interrupt management allows efficient interaction with the environment. In Artk68,
a task may be associated with a specific event through semaphores. For example, a
task is suspended on a semaphore and is released by an interrupt service routine that is
triggered by an external event.

The Artk68 kernel is mainly implemented in sequential Ada (no concurrency
features of the Ada programming language, such as Ada tasks or protected objects,
are used). In addition, a few low-level routines such as timer handling and task switch
handling are written in assembly language. The basic kernel calls used to handle task
scheduling and task synchronization in Artk68 are shown in Table 1.

Each task can be in the running, ready or waiting state. The running state
corresponds to a task that is currently using the CPU. A task is ready when it is able to
execute but has lower priority than the task in the running state. A task in the waiting
state may be blocked for a specific time period or waiting for an event. Each task is
associated with a data structure called a task control block (TCB). The TCB holds

information about the task such as the identity of the task, the pointer to the task stack
where local variables are saved together with the context of the microcontroller
(basically its register values) during task switch. A transition from one state to another
requires a context switch, i.e. switching of the running task. The environment such as
registers, program counters and stack pointer must then be altered. Although the
scheduler in Artk68 only saves the stack pointer in the TCB and the remaining
environment on the tasks stack, another approach would be to save the complete
environment in the TCB.

Table 1. The basic kernel calls in the Artk68 kernel

Function Description
New_process (id, priority, address..) Create a new TCB and allocate a stack for the new task
Exit_process Remove the task from the task set
Sleep_until (time) Suspend a task for a given period of time
New_sem (sem_id, value) Create a new semaphore and set an initial value of the

semaphore
Wait (sem_id) This function is called to check if a resource if free or to

suspend a task until a event occurs
Signal (sem_id) This function is called to free a locked resource or

activate a suspended task

3.1 Non Fault-tolerant Kernel Implementation

Artk68 uses a traditional linked list implementation of basic data structures such as
dynamic queues for maintaining the TCBs (kernels usually have at least one queue for
each state a task can be in). This allows tasks to be dynamically created during run-
time. The allowed number of tasks may then only be limited by the available memory
space. Linked lists also simplify moving TCBs between queues by just modifying the
TCB pointers. Artk68 maintains a priority-based FIFO queue for the tasks in the
ready state, called ready queue and also for each semaphore used by tasks waiting for
events. In addition, the kernel maintains a timer queue used for tasks that are
suspended for a specific period of time. The tasks in the timer queue are ordered by
their wake-up times so that the task with the closest wake-up time is placed first. Two
timers are used in the kernel, one for maintaining a real-time clock and one used as
event timer. When inserting a task in the timer queue, the event timer is set to expire
at the point in time when the first task in the timer queue shall be released. A task in
the timer queue is released by moving it to the ready queue. A dispatch is then
activated to ensure that the task with the highest priority is executing.

3.2 Fault-tolerant Kernel Implementation

Artk68-FT is a redesigned version of Artk68 using statically sized arrays (lookup-
tables) for the main kernel data structures instead of linked lists among other
techniques in order to improve fault tolerance. Previously, statically sized arrays have
been used with the objective to design a kernel with low jitter and predictable kernel
overhead, e.g. in the Asterix real-time kernel [10]. Like Asterix, the Artk68-FT kernel
uses an array for storing the static data of each task, e.g. the task’s period time, and

one array for storing the data of each task that is changed during execution, such as
the wake-up times of tasks and the pointer to the kernel’s stack. In addition, one array
for each semaphore queue is used. The size of an array is specified when it is
initialized. Thus, the size of the TCB array corresponds to the maximum number of
tasks in the system and the size of each semaphore array corresponds to the maximum
number of users of the semaphore.

The main work of a scheduler essentially involves inserting and removing TCBs in
and out of queues. For linked lists, this means proper maintenance of pointers. Thus, a
transient fault in the registers of the CPU may affect a pointer when inserting or
removing a TCB, which can corrupt the whole queue. To allow fast detection of such
errors, a linked list approach may be complemented with robust data structures [19].
However, adding redundant information to the queues and performing consistency
checks on each queue access may cause substantial overhead.

Instead, using arrays for storing static TCB data may provide some inherent fault
tolerance as the arrays can be stored in a ROM and therefore not be erroneously
overwritten by an error in the CPU. For arrays with dynamic contents, the location of
the array and the index is fixed and thereby defined before run-time. Thus, each TCB
is accessed through an index instead of pointers. Since the memory address of the
array is fixed at compile time, it is included into the code area and may therefore also
be stored in a ROM. This provides the possibility to recover from errors corrupting
the index while accessing the array by simply re-executing the array access.
Moreover, the Ada programming language used for our kernel implementation
provides a range check that detects indices outside the bounds of the TCB array.

 A requirement for Artk68-FT is that all tasks have unique priorities since the array
index represents both the identity and priority of the task. Artk68-FT does not use
separate data structures for ready and waiting tasks, instead the task is just marked as
ready or waiting in the TCB status field. To dispatch the task with the highest priority,
the scheduler has to scan the array starting from the first index for the first ready task.
Thus, a drawback with the static array approach is the overhead when there are many
tasks in the array since the worst search time is proportional to the number of tasks. In
addition, the static array approach limits the flexibility of the kernel, e.g. it is not
possible to dynamically create tasks and use round robin scheduling for tasks with
equal priorities. However, if these drawbacks can be overseen, as they often can for
embedded systems with small task sets, the approach provides means for cost-
effective implementation of error detection. Thus, from a fault tolerance perspective,
using statically sized arrays to maintain the TCBs instead of linked lists may be
preferred.

Besides using static data structures, other software implemented error detection
mechanisms have been added to Artk68-FT:
• Task switch checks: The size of the TCB tables storing static and dynamic task

data is statically set to the corresponding maximal number of tasks. Ada provides
constraint checks that checks that the indices to the two TCB tables are within
this range. Moreover, when a task switch occurs, the state of the currently
running task is updated in the dynamic TCB table and an update TCB check is
made which checks the update by reading back the task’s state. Then the highest
priority ready task is selected to be running by checking the state of each task in
the TCB table twice to ensure that the correct task is selected. Furthermore, the
states, which can be either running, ready, suspended or blocked, in the TCB are

encoded using m-of-n codes [23] to facilitate detection of single bit errors when
checking the states.

• Stack range check: Checks that the location of a task’s stack is within the
allowable range. This check is made each time a task switch occurs.

• Timer check: The event timer is set to expire after a defined number of ticks,
which is calculated as ticks = wake-up time – current time * factor. Hence a
check is made for each task that the number of ticks calculated should be less
than a pre-computed tick_check, where tick_check = (period – task execution
time) * factor.

• Timer interrupt check: Checks that at least one task is released for each event
timer interrupt. Hence it may detect tasks for which the adjusted event timer
value is too short compared to the task’s wake-up time. A check that the event
timer is restarted if there are any suspended tasks remaining is also conducted.

• Next time check: Checks that the computation of the next release time for
periodic tasks (next time = next time + period) is made correctly by conducting
the computation twice and comparing the results.

• Semaphore checks: The semaphore queue size is restricted to the maximum
number of tasks that can be blocked on the semaphore and is checked by Ada
constraint checks. Moreover, only binary semaphores which are encoded to
detect single bit errors (free=01 and taken=10) have been implemented in
Artk68-FT, which gives a more restricted behavior (although counting
semaphores may be provided with range checks). In semaphore wait calls, checks
are made that the semaphore’s value is either free or take, otherwise an exception
is raised. Similarly, when calling semaphore signal, the semaphore value must be
taken otherwise an error is raised.

In addition to the above mentioned error detection mechanisms, Artk68-FT also
provides support for temporal error masking (TEM), i.e., checking, and if possible
also tolerating, errors in the task computations using time redundant execution of
tasks and comparison of results. An example with three scenarios of error detection
and error recovery in TEM is given in Figure 1.

Fig. 1. Temporal Error Masking

In fault-free operation, see (i) in Figure 1, a critical task, T, is executed two times
(denoted T1 and T2) and a comparison is made to detect errors. As the results match, a
third copy does not have to be executed and the time may be used by other tasks. In

T3

T3

Voting

(ii): An error is detected
 by the comparison

Comparison

T1 T2

(i): Fault free execution T1 T2

Comparison

T1(iii): An error is detected
 by an EDM

Error detected

T2

Comparison

Fault

Fault

Time

(ii) an error is detected by the comparison and a third copy of the task, T3, is then
executed. The results of the three copies are checked by a majority vote. If the
majority voter detects two matching results, they are accepted as a valid result of the
task, otherwise no result is delivered, which leads to an omission failure. In the final
scenario (iii), an error is detected by an error detection mechanism (EDM). The
affected copy, T2, is then terminated and a new copy, T3, is started immediately. The
new copy will use time reclaimed from the terminated copy as well as time from any
available slack. A comparison is made to confirm that the results match before a result
is delivered.

Our implementation of TEM requires that a task is executed in a periodic read
input - compute - write output loop. The input data is received in the beginning from
input devices or other tasks. The input data is then processed and the results are sent
to actuators or to other tasks in the system at the end of the loop, see Figure 2.

Fig. 2. Example task

To conceal the details of the error handling from the application designer in this
implementation, an Ada generic package is used. The generic package contains a
general algorithm for execution according to TEM. Hence, before using the
algorithm, the package must be instantiated with the actual data types and functions
used. An example of this is shown in Figure 3 where an instance, T3_FT, of the
generic package generic_TEM is declared. The parameters to the generic package are
the types for the task input and output data. Input data may typically include both
sensor values and any state data, i.e. data accumulated from previous executions,
while the output data include the result from the application and updated state data
(see Figure 2). Parameters appended to the generic package also include the name of
the functions implemented by the user, i.e. read_input_data, calculate,
write_output_data. This is made to allow the TEM algorithm to control when new
input data should be fetched, when to conduct repeated computations, and decide if a
result should be delivered or not.

Tasks in Artk68 and Artk68-FT are defined as procedures. Figure 3 shows a
periodic task (T3) employing TEM in the Artk68-FT kernel. Instead of calling the
user-implemented functions directly, functions in the generic package are called. The
function T3_FT.read(data), fetches new input data and updates the global variable
data. The function T3_FT.compute(data, result) computes the result for the first copy
and updates the global variable result. The reason for saving the data in global
variables (i.e. saving data in the data area instead of in the stack) is that the tasks stack
is restored to an initial state (cleared) when restoring the task context after a hardware
exception or an Ada exception is triggered.

Input data &
state data

Output data &
new state data

 loop
 read input
 compute
 write output
 end loop

State
data

The function T3_FT.check_and_write(data, result) conducts additional
computations and compares the results to detect errors. An output is delivered if the
results match. If the results do not match, a third execution of the computation is
executed. The results of the three copies are then checked by a majority vote. If the
majority voter detects two matching results, they are accepted as a valid result of the
task, otherwise no result is delivered, which leads to an omission failure. As the new
state data is part of the result, the state data is also updated when two matching results
have been produced.

Fig. 3. Example of an initialization of a generic package and a task employing TEM

Errors can also be detected by hardware and software EDMs. In this case, the
procedure recover is called. The procedure recover restores the task's context, such as
the program counter and stack pointer etc., to an initial state. Additional computations
are conducted and their results are compared before delivering an output.

Before starting a third execution if an error is detected, the kernel checks whether it
is feasible to re-execute the task and meet the deadline. Hence in addition to storing
the tasks period time in the TCB, this also requires that the tasks worst-case execution
time (WCET) and deadline to be saved.

4 Experimental Setup

This section presents the experimental setup used for evaluating Artk68 and Artk68-
FT. The objective of this study is mainly to investigate the effect of transient faults
occurring in the CPU during execution of basic kernel functions, i.e. the task
scheduler and the task synchronization. To derive actual dependability measures for
the complete kernel, such as error detection coverage [23], the injected faults should
be representative of the complete set of faults which can occur in the system,
requiring all different tasks execution scenarios to be considered. Nevertheless, the
experiments give an indication of the coverage and the results may also be used to
identify weaknesses so that appropriate error handling can be suggested.

package T3_FT is new generic_TEM(input_type, output_type,
 read_input_data, calculate, write_output_data);
indata : input_type;
outdata : output_type;
procedure T3 is
begin
 init_next_time;
 loop
 T3_FT.read(data);
 T3_FT.compute(data, result);
 T3_FT.check_and_write(data, result);
 sleep_until_next_time;
 update_next_time;
 end loop;
 exception
 when others => recover;
end T3;

4.1 Target System and Fault Injection Tool

Target system: The target system for our experiments is a microcontroller board
featuring a 32-bit Motorola 68340 microcontroller, which contains a core processor
based on the Motorola 68k architecture. The MC68340 does not provide memory
protection or a floating-point unit. The MC68340 has 8 data registers (D0-D7) and 8
address registers (A0-A7) which are 32-bit wide, as well as a program counter (PC)
and a status register (SR), which are all reachable by the fault injection tool. The D0
register is used both for data computations and return values when returning from
function calls. Register A6 is used as a frame pointer (FP), and register A7 is used as
the processor's stack pointer (SP). Parameters to functions are passed trough the stack
rather than via registers. Local variables and parameters in the stack are accessed
using an offset relative to the FP.

Error detection mechanisms: Table 2 gives an overview of the error detection
mechanisms provided by the Motorola MC68340 microcontroller and Ada95 [24].

Table 2. Description of error detection mechanisms provided by the hardware and Ada

Selection of Ada run-time constraint checks
Ada access check Attempt to follow a null pointer
Ada range check Attempt to violate a range constraint of a scalar value
Ada index check Attempt to access an index that is not in the range of the array
Microcontroller hardware checks
Bus error Attempt to access non-existent memory
Address error Attempting to access a word or a long-word on an odd memory address.
Illegal instruction Attempting to execute a non-existing instruction
Line 1010 Attempting to execute an unimplemented instruction
Line 1111 Attempting to execute an unimplemented instruction (used for M68000

extensions)
Division by zero Raised if a division instruction is given a divisor value of 0
Privilege violation Attempt to execute a privileged instruction in user mode
Format error Erroneous stack frame format when executing an RTE instruction

Fault injection tool: For the experimental evaluation, software implemented fault

injection (SWIFI) with the GOOFI tool [16] is used. The SWIFI fault injection
algorithm requires that a routine for receiving fault injection data from the GOOFI
tool, a trap handler and a trace handler routine for performing the fault injection are
located in the target system memory.

The user first selects the fault injection locations, the points in time the faults
should be injected, the target system workload and the number of fault injection
experiments to perform. Then, each fault injection experiment begins by reinitializing
the target system and downloading the workload and fault injection data. This
includes a break-point address and the number of accesses that should be made to that
address until a fault is injected. In addition, the register and bit in the register in which
a fault should be injected are downloaded. Then the op-code at the chosen break-point
address is replaced with a software trap. After this the program is started and the
system will continue as normal until the software trap is reached. Then, a jump is
made to the trap routine that checks if the number of accesses to the chosen address
equals the number of accesses that should be made until fault injection. If it matches,
a fault is injected, otherwise the system continues (after restoring and executing the

original op-code followed by re-inserting the software trap) until the next time the
trap is reached. When the application has completed, the result from each task
execution, the time when each task has completed and the type of exceptions that may
have been triggered is sent to the GOOFI tool for later analysis.

Intrusiveness: The time overhead (OH) for injecting faults using SWIFI includes
the time for observing (Obst) the number of accesses (k) to a specific program
address, as well as the time to inject a fault (FIt), i.e. OH = k · Obst + FIt. Thus, the
timing measurements in the experiments are adjusted to compensate for this overhead.
The timers on the microcontroller board used have a clock resolution of
approximately ±30.5 µs, which also limits the accuracy of the timing measurements.
In addition, the time to inject a fault also varies ±50 µs depending on which register
the fault is injected in.

Workload: The effect of a fault depends on system workload activity. In these
experiments, the workload consists of the kernel and three periodic tasks (called T1,
T2 and T3). Task T3 executes a brake-by-wire algorithm [7] and has the highest
priority. Since T3 is a typical safety critical real-time application, it is protected using
TEM in the Artk68-FT kernel. Task T1 and T2 are non-safety critical and therefore
unprotected and mainly used for exercising the semaphore routines. Both T1 and T2
execute the same matrix multiplication algorithm, where the output from task T1 is
used as input to task T2. This handled by two semaphores called S1 and S2, see
Figure 4. Semaphore S1 is initialized to 0 and semaphore S2 is initialized to 1.

procedure T1 is
...
begin
 next_time:= my_clock + period;
 loop

 wait(S2);
 data := read_input_T1;
 result := mult(data);
 save_result_T1(result);
 signal(S1);
 sleep_until(next_time);
 next_time:=next_time + period;

 end loop;
end;

procedure T2 is
...
begin
 next_time:= my_clock + period;
 loop

 wait(S1);
 data := read_input_T2;
 result := mult(data);
 save_result_T2(result);
 signal(S2);
 sleep_until(next_time);
 next_time:=next_time + period;

 end loop;
end;

Fig. 4. Task T1 and T2

In Figure 5, the first execution of each task is shown. Task T3 executes firsts since
it has the highest priority. Then task T3 completes and is suspended until its next
period. After this, task T2 is started, but is blocked on semaphore S1. Task T1 is
therefore started and allowed to perform its computation. When task T1 calls S1, it
releases task T2, which preempts T1 and completes its execution. After T2 completes
its execution, T1 resumes and completes. Four task iterations are executed for each
task before the kernel terminates.

Fault model and fault injection locations: Transient faults are modelled as single
bit-flips. The single bit-flip model has become a de-facto standard in fault injection
experiments, although it is not a perfect representation of all transient faults. Single
bit-flip faults selected randomly using uniform sampling were injected into the data
registers, address registers, program counter register and status register of the
MC68340 processor.

Fig. 5. Execution of tasks where faults are injected during time intervals marked in grey

Time interval for fault injection: Faults were injected during execution of the
following functions: Task switch, Wait semaphore, Signal semaphore and Timer
interrupt indicated by number 1-5 in Figure 5 and described further below. Faults
were also injected during execution of task T3 to evaluate the effectiveness of TEM.
In the experiments on Artk68, faults were also injected during execution of task T1 to
investigate the effects of the faults depending on workload activity. Faults were
injected during the first task iteration in each experiment and the behavior of the
system was observed in the following three iterations. A break-point address
corresponding to a point in time for fault injection was selected randomly using
uniform sampling among the addresses obtained for each function through an
execution trace from a fault free run. A detailed description of the functions executed
for the fault injection experiments follows:

1. Task switch - A task switch occurs when task T3 calls the sleep_until call
which involves saving the context of the executing task, inserting the task in
the timer queue and starting the timer which expires when the task should be
woken the next time. After this, a dispatch is made by fetching the first task
(task T2) in the ready queue and restoring its context.

2. Wait semaphore - Involves examining the value of the semaphores. The
semaphore is taken if it is available, otherwise the task is suspended and
inserted into the queue of the semaphore followed by a dispatch. Here, the
semaphore is unavailable in the first call and available in the next.

3. Signal semaphore - Involves releasing the first task in the semaphores queue,
i.e. moving the task from the semaphores queue to the ready queue. If the
removed task has higher priority than the running task, a dispatch is made.
Here, the first call to signal semaphore results in a task switch and the second
only increases the value of the semaphore.

4. Timer interrupt - When a time out for a task has expired, the task is moved
from the timer queue to the ready queue. If a task remains on the timer queue,
the timer is restarted. A task switch occurs if the released task has higher
priority than the running task.

5. Next time - Updates the next activation time of periodic tasks.
6. Task T3 - Faults are injected during execution of the brake-by-wire

application.
7. Task T1 - Faults are injected during execution of the matrix multiplication.

6

1

7

2 3

wait sleep signal sleep

2

wait sleep

4

Task T1

Task T2
Task T3

time
3

signal timer int.

Kernel 5

next time

4.2 Error Classification and Definitions

Errors can be classified into non-effective and effective errors. The non-effective
errors have no effect on the system behavior, i.e. a correct result is delivered. This
occurs when a fault is not activated, e.g. the location where the fault was injected is
not used, or the fault is overwritten by uncorrupted data. Effective errors correspond
to errors, which are detected by the error detection mechanisms or escape the
mechanisms resulting in crashes or erroneous results being produced by the
application tasks. A description of the effective errors is given in Table 3.

Table 3. Classification of effective errors

Effective errors Description
Wrong result Errors that escape the error detection mechanisms causing erroneous results to

be produced by the application tasks.
Timing error A timing error occurs when the delivery time of a correct result deviate more

than ±250 µs, compared to the fault free run.
Detected errors Errors that were detected by the error detection mechanisms
Application crash The injected fault caused one or several tasks to stop producing any output
Kernel crash The injected fault caused the kernel to stop working, i.e. no task is able to

produce any output
CPU crash The injected fault caused the CPU to crash

5 Results for Artk68

As shown in the Table 4, a majority of the injected faults resulted in non-effective
errors. The number of non-effective errors is around 80% of the injected faults for
each different kernel function. The reason for this may be that the registers in the
MC68340 are sparsely used and the liveness of the data in registers is usually short,
i.e. data is fetched into a register in one instruction and then used immediately in the
next instruction. In addition, the register usage is reduced by passing parameters to
functions through the stack rather than via registers. Below, an investigation of the
causes for the effective errors is made for each error category.

Table 4. Results of fault injection experiments on Artk68

 Task T1 Task T3 Kernel functions

 Matrix BBW Timer int. Task switch Sem. Wait Sem. Signal Next time

No. injected faults 2207 2285 2178 1967 1936 2055 1494

Correct result 1695 76.8% 1860 81.4% 1789 82.1% 1570 79.8% 1650 85.2% 1736 84.5% 1219 81.6%

Wrong results 166 7.5% 54 2.4% 1 0.0% 0 0.0% 1 0.1% 0 0.0% 0 0.0%

Timing errors 0 0.0% 30 1.3% 23 1.1% 28 1.4% 1 0.1% 2 0.1% 56 3.7%

Application crashes 0 0.0% 0 0.0% 1 0.0% 2 0.1% 4 0.2% 6 0.3% 0 0.0%

Kernel crashes 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0%

CPU crashes 52 2.4% 61 2.7% 54 2.5% 43 2.2% 42 2.2% 43 2.1% 45 3.0%

HW EDM 289 13.1% 277 12.1% 267 12.3% 292 14.8% 194 10.0% 228 11.1% 169 11.3%

Ada EDM 5 0.2% 3 0.1% 43 2.0% 32 1.6% 44 2.3 40 1.9% 5 0.3%

Wrong results occur mainly when injecting faults during execution of the tasks.
However, wrong results are also produced when injecting faults during execution of
the kernel Timer interrupt and Semaphore wait functions. For example, when the
synchronization between task T1 and T2 is affected and T2 continues to execute
without waiting for task T1 to update its input data. Synchronization may be affected
due to corruption of a semaphore value, or due to an error in the program counter, e.g.
when calling the wait function causing incorrect control flow and thus returning to the
task without performing any synchronization.

Application crashes have been observed when injecting faults during execution of
the kernel queue handling routines, e.g. when a TCB is not inserted properly in the
queue, or the queue is corrupt after removing a TCB. Figure 6 shows an example of
an application crash due to corruption of the queue after removing a TCB. Here the
first task in the ready queue will be removed. Before executing the function, the
queue contains task T1 and T2 (queue_head→T2→T1→null) and afterwards the
queue should only contain task T1 (queue_head→T1→null). However, a fault
injected into register a0 at address 61bc results in omitting the operation "queue.head
:= queue.head.next". Thus when the operation "element.next := null" is made,
queue.head.next is also set to null which disconnects task T1 (queue_head→null).

Fig. 6. Example of an error in the queue routine causing an application crash

Kernel crashes occur when the kernel stops working. No such crashes were
observed during these experiments.

CPU crashes occur if the processor halts without producing any information about
the encountered error. Such crashes were observed for faults affecting the stack
pointer (SP). An indirect cause for faults in the SP is for example, when the CPU
restores the task context (including the SP) from an invalid TCB as the pointer to the
TCB was corrupted. We conjecture that these crashes are due to double bus faults
[15], triggered when an erroneous stack pointer is used. A double bus fault occurs
when a bus error or an address error is triggered during the exception processing for a
previous bus or address error, i.e. when data access through an erroneous stack
pointer causes an exception and the call to the corresponding exception handler
causes the return address to be stored through the erroneous stack pointer which

Ada checks that
queue.head.next /= null

procedure remove(element : in out pcb_p; queue : in out
 queue_type)is
...
element := queue.head;
...
queue.head := queue.head.next;
6190: 2d6e 000c fffc movel %fp@(12),%fp@(-4)
6196: 206e 000c moveal %fp@(12),%a0
619a: 2d68 0004 fff8 movel %a0@(4),%fp@(-8)
61a0: 206e 000c moveal %fp@(12),%a0
61a4: 4aa8 0004 tstl %a0@(4)
61a8: 660e bnes 61b8 <kernel__remove+0x40>
61aa: 4878 00ad pea ad <.stab+0x59>
61ae: 487a fe4c pea %pc@(5ffc <.ef+0x4>)
61b2: 61ff 0000 4198 bsrl a34c <__gnat_rcheck_00>
61b8: 206e fffc moveal %fp@(-4),%a0
61bc: 226e fff8 moveal %fp@(-8),%a1
61c0: 2151 0004 movel %a1@,%a0@(4)
element.next := null;

Get queue.head
Get queue.head.next

An error in register a0
results in omitting
queue.head := queue.head.next

results in a new exception. Then, the processor halts and a reset is required to resume
operation.

Detected errors correspond to errors detected by the various error detection
mechanisms, see Table 2. Most detected errors are due to faults injected into the PC,
FP or SP register. Faults injected into the PC register are detected if, (i) the CPU tries
to execute an illegal or unimplemented instruction, (ii) if the instruction is legal but
nonexistent memory is accessed or, (iii) a jump to an erroneous code area is made,
where the error is detected by other mechanisms related to that part of the code, e.g. a
jump to the task executing the matrix operation might be detected by Ada checks such
as index and range checks on the matrix arrays. Faults in the SP or the FP often leads
to erroneous memory accesses, i.e. the CPU tries to access data relative to an offset
from the SP and FP, which can be detected by the address and bus check. Faults in the
SP and FP may also result in errors similar to faults in the PC. This is because the PC
is restored from the stack when returning from a subroutine and if the SP is erroneous,
the PC is assigned an erroneous value. Faults injected into the data (D0-D7) and
address registers (A0-A5) may be detected by the Ada access check that detects null-
pointers or by the address/bus check that detects pointers accessing nonexistent
memory.

The most effective error detection mechanisms were the bus error (~40% of the
detected errors), line 1111 (~22% of the detected errors), illegal instruction (~10% of
the detected errors) and the Ada access check mechanisms (~10% of the detected
errors) for the different functions.

Timing errors relate to errors affecting the timer handling in the kernel, e.g.
affecting the computation of the time-out value of a periodic task, or errors directly
affecting the task's execution time. For task T1 no timing errors are produced and for
task T3, 35 timing errors are produced. These timing errors originate from faults
injected into, e.g. registers with loop variables or the program counter causing an
control flow error. Producing a correct result after a control flow error ultimately
depends on the workload. For example, task T3 includes code such as "if x>y then a
else b", which will mask errors in x and y as long as the expression x>y is not
affected.

Timing errors also occur when injecting faults during the execution of the task
switch or the timer interrupt functions. These timing errors mainly occur due to faults
affecting the computation of the time-out value for which periodic tasks are
suspended.

Error propagation between tasks is observed when injecting faults in task T1 (6
occasions). These error propagations originate from faults injected into the program
counter causing an erroneous jump to task T3 where the state data of task T3 is
updated. When the return statement is executed, the program jumps back to task T1.
This results in task T1, T2 and task T3 producing a wrong output. (T2 produces a
wrong result since it uses the result of T1 as input).

6 Results for Artk68-FT

The results of the fault injection experiments conducted on the Artk68-FT kernel are
shown in Table 5.

Table 5. Results of fault injection experiments on Artk68-FT

 Task T1 Task T3 Kernel functions

 Matrix BBW Timer int. Task switch Sem. Wait Sem. Signal Next time

No. injected faults 1665 2076 1805 1866 1784 1825 1159

Correct result 1243 74.7% 1703 82.9% 1473 81.6% 1534 82.2% 1470 82.4% 1502 82.3% 951 82.1%

Tolerated 0 0.0% 262 12.6% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0%

Omission 0 0.0% 18 0.9% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0%

Wrong results 127 7.6% 0 0.0% 0 0.0% 0 0.0% 1 0.1% 0 0.0% 0 0.0%

Timing errors 0 0.0% 19 0.9% 18 1.0% 6 0.3% 0 0.0% 5 0.3% 2 0.2%

Application crashes 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0%

Kernel crashes 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0%

CPU crashes 58 3.5% 64 3.1% 46 2.5% 42 2.3% 50 2.8% 50 2.7% 35 3.0%

HW EDM 230 13.8% 10 0.5% 217 12.0% 214 11.5% 210 11.8% 201 11.0% 125 10.8%

Ada EDM 2 0.3% 0 0.0% 14 0.8% 13 0.7% 15 0.8% 26 1.4% 8 0.7%

SW EDM 5 0.1% 0 0.0% 37 2.0% 57 3.1% 38 2.1% 41 2.2% 38 3.3%

The distribution of errors for the Matrix task is similar as for the Artk68 kernel

since no additional error detection is provided for this task. No wrong results are
observed when injecting faults during execution of task T3 employing TEM. In
addition, TEM allowed 74% of the effective errors to be tolerated. 26% of the
tolerated errors are detected by the double execution and 74% are detected by the
CPU hardware mechanisms. About 1% of the effective errors caused an omission
failure to be produced due to lack of time to execute three times and vote (16
occasions), and when three different results are produced (2 occasions). The timing
errors relate to non detected errors that affecting the task's execution time. The
detected errors relate to faults causing two consecutive errors being generated, which
result in a fail-silent node. It should be noted that most time is spent computing the
result of the task, and therefore subjected to faults the most. More faults should be
injected to reveal any weaknesses also in the TEM comparison. Moreover, the result
is written to memory after two matching results. To reduce the probability that the
result is affected by a fault while writing it to memory, duplication or coding may be
used.

One wrong result was observed when injecting faults during execution of the
Semaphore wait function. This was caused by a fault in the program counter causing
an erroneous jump, which affected the synchronization between task T1 and T2.

As for Artk68, no Kernel crashes are observed and the number of CPU crashes is
similar. However, the Artk68-FT kernel significantly improved the handling of tasks
as no Application crashes are observed.

The implemented error detection mechanisms detect between 2% to 3% of the
injected faults. The Timer check and the Timer interrupt check detect most timing
errors when injecting faults during execution of the task switch. However, some

errors escape these mechanisms. These errors are caused by faults affecting the
execution flow (4 errors), or when the number of ticks checked by the Timer check is
correctly below the pre-computed value (tick_check) but nevertheless erroneous (1
error) or errors occurring just after the Timer check (1 error). The Timer check is less
effective when the event timer is restarted from the timer interrupt, as the pre-
computed value is not compensated for the time reset and becomes too large. Timing
errors in the remaining function relates to faults affecting the execution flow. The
effect of encoding the variables holding the task state and the semaphore values was
not possible to evaluate in this study since the Ada compiler used mainly handles
encoded variables as immediate operands, which are compared directly to an address
location, e.g. "cmpib #3, %a0@(4)". Since the fault injection tool only support
injection of faults in registers, errors in immediate operands were not created.

6.1 Overhead

Inserting a task in the timer or ready queue in the Artk68-FT kernel requires only a
table look-up which is made in constant time (O(1)). Whereas inserting a task in the
ready queue or timer queue in the Artk68 kernel involves placing the task at the
correct queue location, which has a linear time complexity (O(n)). For example,
inserting a task in the ready queue in Artk68-FT only takes a few microseconds
whereas inserting a task in Artk68 ranges from 120 µs to 240 µs in our example with
three tasks. On the other hand, removing a task from the ready or timer queue in
Artk68 only involves removing the task first in the queue, which is made in constant
time (O(1)) which is measured to ~120 µs. Selecting a tasks in Artk68-FT is made in
linear time (O(n)), which in our experiment ranged from 60 µs to 120 µs for three
tasks.

The time overhead for the implemented error detection mechanisms in Artk68-FT
is approximately 30 % for a task switch. The time overhead for TEM is more than
100% under fault-free conditions since each task is executed twice and extra
processing time is needed for handling the time redundancy. In addition, there must
be a slack in the schedule to allow for a third execution of tasks that are affected by
errors. The code size of the Artk68 kernel is 28.7 kB (262 kB with Ada run-time
checks and elaboration code). The size of Artk68-FT with the error detection
mechanisms is 35.7 kB (269 kB) and without the error detection mechanism the size
is 29.8 kB (263 kB).

7 Conclusion and Future Work

The paper has presented an experimental evaluation of a small real-time kernel
intended for distributed fault-tolerant real-time systems implemented on the Motorola
68340 microcontroller. The purpose is to improve the dependability by using a two-
level approach for tolerating transient faults. The kernel provides mechanisms for
tolerating transient faults at the node level allowing the overall reliability to be
improved since the recovery time is much shorter at the node level than at the system
level. Permanent faults and transient faults that cannot be handled at the node level

have to be handled at the system level. To evaluate the fault tolerance capabilities of
the kernel, fault injection experiments were conducted with two versions of the
kernel, one version without any error handling mechanisms, called Artk68, and one
version provided with additional error handling called Artk68-FT. The Artk68 kernel
employs traditional dynamic data structures, linked lists, to maintain the tasks while
the use of static data structures was investigated for Artk68-FT. The experimental
results show that tasks control blocks (TCB) can be permanently disconnected from
the kernel data structures by faults when single linked list are used, resulting in
application crashes. No such failures were observed when static data structures were
used. However, additional checks are still needed in the kernel to ensure that the
correct TCB is accessed. Besides these checks, additional error handling mechanisms
provided by Artk68-FT, such as, checks on stack limits and timing limits allowed
many other errors to be detected. To support node-level transient fault tolerance, the
Artk68-FT kernel also provides protection of tasks using temporal error masking
(TEM), which is able to mask transient faults by triple time-redundant execution and
voting. In the experiments, no wrong results were observed when injecting faults
during execution of a task employing TEM, which clearly demonstrates the
effectiveness of TEM. However, a drawback with the MC68340 microcontroller is
that the processor is sometimes forced to halt, particularly when faults affect the stack
pointer, then excluding the possibility of tolerating faults at on the node-level.

Future work should focus on improving the error detection capabilities in the
kernel. For example, the experimental results show that the implemented mechanisms
for detecting timing errors in the kernel could be improved. Checks are needed to
ensure that the worst-case execution time of tasks is not exceeded. In addition,
mechanisms for detecting control flow errors and a memory management unit to
reduce the risk that an error in one task affects other tasks or the kernel should be
investigated. Such mechanisms would lead to fewer wrong results and timing errors,
and thus improve the overall error detection in the system.

8 Acknowledgements

This work was supported by ARTES and the Swedish Foundation for Strategic
Research (SSF). We would like to thank Arne Dahlberg and Roger Johansson at
Chalmers University of Technology for providing the source code for the Artk68
kernel, and for their technical assistance.

9 References

1. Kopetz, H.: Real-Time Systems: Design Principles for Distributed Embedded Applications,
Kluwer Academic Publishers, Boston (1997)

2. Rushby, J.: A Comparison of Bus Architectures for Safety-Critical Embedded Systems,
Technical Report, NASA Langley Research Center, Hampton (2003)

3. Kopetz, H. Bauer, G.: The Time-Triggered Architecture, Proc. IEEE, vol. 91, no. 1 (2003)
4. Iyer, R.K., Rossetti, D.J., and Hsueh, M.C.: Measurement and Modeling of Computer

Reliability as Affected by System Activity, ACM Trans. on Comp. Systems, 4(3) (1986)

5. Baumann, R.: Technology Scaling Trends and Accelerated Testing for Soft Errors in
Commercial Silicon Devices, 9th IEEE On-Line Testing Symposium, Greece (2003)

6. Constantinescu, C.: Impact of Deep Submicron Technology on Dependability of VLSI
Circuits, Proceedings of the International Conference on Dependable Systems and
Networks, Washington D.C. (2002)

7. Aidemark, J. Vinter, J. Folkesson, P., Karlsson, J.: Experimental evaluation of time-
redundant execution for a brake-by-wire application, Proceedings of the International
Conference on Dependable Systems and Networks, Washington D.C. (2002)

8. Burns, A., Wellings, A., Real-Time Systems and Programming Languages, third edition,
Addison-Wesley (2001)

9. Audsley, N.C., Burns, A., Davis, R.I., Tindell, K.W., and Wellings, A.J.: Fixed Priority
Pre-Emptive Scheduling: An Historical Perspective, Real Time Systems, 8(2-3) (1995)

10. Engberg, A., Pettersson, P.: Asterix: A prototype of a Small-sized Real-time Kernel,
Technical Report, Mälardalen Real-Time Research Center (1998)

11. Mei-Chen, H, Tsai, T.K., Iyer, R.K.: Fault Injection Techniques and Tools
Computer, Volume: 30, Issue: 4 (1997)

12. Kropp, N. P., Koopman, P. J., and Siewiorek, D. P.: Automated Robustness Testing of Off-
The-Shelf Software Components, Proceedings of the International Symposium on Fault
Tolerant Computing, Munich, Allemagne (1998)

13. Fabre, J-C., Salles, F., Moreno, M.R., Arlat, J.: Assessment of COTS Microkernels by
Fault Injection, Dependable Computing for Critical Applications 7 (1999)

14. Madeira, H., Some, R.R., Moreira, F., Costa, D., Rennels, D.: Experimental Evaluation of a
COTS System for Space Applications, Proceedings of the International Conference on
Dependable Systems and Networks, Washington D.C. (2002)

15. Motorola MC68340 Integrated Processor with DMA User’s Manual (1992)
16. Aidemark, J. Vinter, J. Folkesson, P., Karlsson, J.: GOOFI: Generic Object-Oriented Fault

Injection tool, Proceedings of the International Conference on Dependable Systems and
Networks, Göteborg (2001)

17. Fault Representativeness: Dependability benchmarking technical report IST-2000-25425
(2002)

18. Course page, real-time systems, Chalmers University,
http://www.ce.chalmers.se/undergraduate/D/EDA221/ (2004)

19. Damm, A.: The effectiveness of software error-detection mechanisms in real-time
operating systems, International Symposium on Fault-Tolerant Computing Systems,
Washington, DC, USA (1986)

20. Chevochot, P., Puaut, I.: Experimental Evaluation of the Fail-Silent Behavior of a
Distributed Real-Time Run-Time Support Built from COTS Components, Proceedings of
the International Conference on Dependable Systems and Networks, Göteborg (2001)

21. Arlat, J., Fabre, J-C., and Rodriguez, M.: Dependability of COTS microkernel-based
systems, IEEE Transactions on Computers, vol. 51 (2002)

22. Labrosse, J. J.: MicroC/OS-II: The Real-time Kernel, second ed. Lawrence: R&D (1999)
23. Johnson B.W.: Design and Analysis of Fault-Tolerant Digital Systems, Addison-Wessley,

(1989)
24. Taft et. al.: Consolidated Ada Reference Manual: Language and Standard Libraries,

Springer-Verlag Berlin (2001)
25. Rabejac, C., Blanquart, J-P., Queille, J-P.: Executable Assertions and Timed Traces for On-

Line Software Error Detection, Proceedings of Annual Symposium on Fault Tolerant
Computing, Japan (1996)

