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Abstract
We present an analytical technique that uses fault

injection data for estimating the coverage of concurrent
error detection mechanisms in microprocessors. A major
problem in such estimations is that the coverage depends
on the program executed by the microprocessor as well
as the input sequence to the program. We propose a
method that predicts the error coverage for a specified
input sequence based on fault injection data obtained for
another input sequence. Our results show that post-
injection analysis is a promising approach for reducing
the cost of coverage estimation.

Key words: Error detection coverage, fault injection,
analytical coverage estimation.

1. Introduction

Computer systems are increasingly being used in
applications that require high dependability. To be
confident that these systems deliver a correct service,
they need to be validated. Both analytical and
experimental techniques are required to fully validate a
dependable system. Fault injection [10] is an important
technique for experimental validation of dependable
systems. It is used to study systems in the presence of
faults to identify dependability weaknesses. It is also used
for estimating the coverage of concurrent (on-line) error
detection mechanisms. Error detection coverage is an
important parameter for calculating reliability,
availability or safety of a system [2].

In this paper we focus on the estimation of coverage
for hardware implemented error detection mechanisms in
microprocessors. For most software and hardware
implemented error detection mechanisms, the coverage
does not depend only on the implementation of the
detection mechanism, but also on the program executed
by the system [5], as well as the input sequence to the
program [1], [4], [6], [7]. Therefore, it is important to
use a representativeworkload when estimating error
detection coverage by fault injection.

Achieving representativeness poses a problem since a
system may have a variety of usage profiles depending on

its mode of operation. Thus, fault injection experiments
need to be conducted with different programs and/or
input sequences.

In this paper we propose a technique aimed at
reducing the cost of estimating coverage for different
input sequences. The main idea is to analyse fault
injection data obtained for a given input sequence, in
order to estimate the coverage for another input
sequence.

The analysis is based on an estimation of the coverage
for each basic block, i.e., branch free intervals, in the
program. The total coverage is then calculated as a
weighted sum of these coverages, where the weight
factors are determined by the basic block usage for the
input sequence for which the estimation is made. This is
an example ofpost-injection analysis.

Post-injection analysis andpre-injection analysisare
two main classes of analysis techniques that have been
proposed for reducing the cost of validating dependable
systems by fault injection. Pre-injection analysis is made
before any fault injection is performed to focus the
injections to specific parts of the fault space [3], [8], [15].
In post-injection analysis, the results from fault injection
experiments are used to predict the outcome of other
experiments in order to speed up the validation
process [5].

We have previously investigated two post-injection
techniques for predicting error coverage, called
Execution Profile Based Prediction and Data Usage
Based Prediction [6]. These techniques predict error
detection coverage from results obtained by scan-chain
implemented fault injection. The new post-injection
prediction technique presented in this paper, called Path-
Based Error Coverage Prediction, is intended for
simulation-based fault injection and utilizes the high
observability available in simulations.

Path-Based Error Coverage Prediction can be used in
the following way. Assume that we want to identify those
input sequences that give extremely high, or low, error
detection coverage among a given set of input sequences.
(The set of input sequences of interest is typically
determined by studying the usage of the evaluated
system.) Instead of conducting a fault injection campaign



for each input sequence, we conduct a single fault
injection campaign for an arbitrary input sequence and
then apply Path-Based Error Coverage Prediction to rank
the input sequences according to error detection
coverage. Once the ranking is done, we can conduct fault
injection campaigns with the “interesting” input
sequences in order to accurately determine the coverage
figures of interest.

This procedure significantly reduces the time it takes
to identify input sequences with extremely high or low
coverage, as prediction is much faster than conducting
fault injection campaigns. The prediction uses
information about the usage of the program’s basic
blocks for the input sequence for which the prediction is
made. This information is collected during a single fault-
free simulation of the program execution. The time
needed for the prediction is essentially determined by the
time it takes to run this simulation. This time is
approximately equal to the time it takes to make one fault
injection experiment, i.e. to observe the effect of a single
fault.

We have used this technique for estimating the
coverage of several hardware implemented runtime
checks included in the Thor microprocessor [14], which
has been designed for use in highly dependable space
applications. We injected single bit-flips inside the
microprocessor to emulate the effects of Single Event
Upsets.

The next section describes necessary definitions. In
Section 3, the prediction technique is presented. The
experimental set-up used for the evaluation of the
prediction technique is described in Section 4. The
results of the evaluation are presented in Section 5.
Finally, the conclusions are given in Section 6.

2. Definitions

Errors can be classified intonon-effective and
effective errors. The non-effective errors are errors that
are either latent or overwritten (they have no effect on the
system behaviour). Effective errors correspond to errors,
which are either detected by the error detection
mechanisms of the system or lead to incorrect results
being produced.

We define the total error coverage as the (un-
conditional) probability that an error is either detected or
non-effective. Some fault injection techniques, such as
radiation based fault injection [12], do not allow
estimation of the total error coverage because they do not
provide adequate observability of non-effective errors.

However, such techniques can be used to estimate the
effective error coverage, which is defined as the
conditional probability that an error is detected given that
the error is effective.

Non-covered errorsare effective errors that 1) escape
the error detection mechanisms and 2) produce wrong
results.

The following distinction betweenfaults anderrors is
made. A fault is an event, in our case the occurrence of a
bit-flip inside the microprocessor, which immediately
leads to an error; an error is a perturbation of the internal
state of the microprocessor. An error may become
overwritten in either the location where the fault was
injected or, after propagation, in another location.

An injected fault isactivatedwhen the corresponding
error first propagates. For example, if a fault is injected
in a data cache, the fault is activated when the incorrect
data is first used by the CPU.

3. Path-Based Error Coverage Prediction

The Path-Based Error Coverage Prediction technique
is an enhanced version of the Execution Profile Based
Prediction technique presented in [6]. It predicts the
error coverage for an arbitrary input sequence based on
the results from fault injection experiments with another
input sequence, called thebase sequence. The technique
is based on the fact that the execution path of a program
varies for different input sequences. Depending on the
input sequence, different parts of the program are
executed different number of times. This is illustrated in
Fig. 1, where a program is divided into basic blocks
denoted A to E. Each basic block is executed a different
number of times depending on the input sequence.
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Fig. 1. Workload execution path differs for
different input data

The Execution Profile Based Prediction technique
relies on the approximation that the basic block
executing when a fault is activated is the same as the
block executing when the fault is injected. The Path-
Based Error Coverage Prediction technique, however,
uses precise information about which block is executing
during activation of the injected fault.

Let
incP ,

denote the probability that a fault results in a

non-covered error, given that the fault is activated during
execution of blocki. The prediction is based on the
assumption that

incP ,
is constant for all input sequences.

This is motivated by the fact that the activity of the
system during execution of a basic block is the same
regardless of the input sequence used, i.e. the same
instructions are always executed in each basic block.
However, this probability is likely to vary for different
basic blocks in a program.



The error coverage for an input sequencep, cp, can be

calculated using the following equation for a workload
program containingn basic blocks:
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Where wp,i is a weight factor for block i,

corresponding to the proportion of faults activated during
execution of blocki for input sequencep out of the total
number of faults activated for input sequencep. Pnc,i is

estimated from fault injection experiments conducted
with the base input sequence as:
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Wherennc,i is the observed number of faults activated

when blocki is executing resulting in non-covered errors,
and ni is the total number of faults activated during

execution of blocki. The weight factorwp,i is estimated

using the following equation:
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Where np,i is the number of faults activated during

execution of blocki for input sequencep and np is the

total number of faults activated for input sequencep.
Now, np,i is unknown, but can be estimated based on the

number of activated faults for the base sequence as:
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Where ni is the number of faults activated during

execution of blocki for the base input sequence, andxi is

the number of times blocki is executed for the base input
sequence. Thus,ni divided by xi gives the number of

activations per execution in blocki for the base input
sequence. This is multiplied withxp,i, which is the

number of times blocki is executed for input sequencep,
thereby giving an estimation ofnp,i, the number of faults

activated during execution of blocki for input
sequencep. This definition requires that all basic blocks
are executed at least once for the chosen input sequence,
otherwise additional input sequences must be chosen for
the measurements. Identifying the input sequence(s) that
uses all basic blocks can be performed through test
coverage measures such as block coverage [9].

np can be estimated as the sum of the estimated

number of activated faults for all then basic blocks as:
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Where nj is the number of faults activated during

execution of blockj for the base input sequence,xp, j is

the number of times blockj is executed for input
sequencep, and xj is the number of times blockj is

executed for the base input sequence.
By combining Equations 3.1-3.5, the predicted error

coverage for input sequencep, cp, can be estimated from

fault injection experiments conducted using a chosen
base input sequence as:
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When the total error coverage is predicted using
Eq. 3.6, the activation of faults leading to unpropagated
latent or overwritten errors have to be defined. For faults
leading to unpropagated latent errors, we define the fault
to be activated when it is injected. For faults leading to
unpropagated overwritten errors, the fault is activated
when the corresponding error is overwritten.

4. Experimental set-up

In this section we describe the experimental set-up
used to evaluate the prediction techniques, the fault
model and the fault locations, as well as the error
classification used for the presentation of the results.

Target system:The experiments have been conducted
on the Thor processor, a microprocessor developed by
SAAB Ericsson Space AB. Thor is a 32-bit Reduced
Instruction Set Computer (RISC) with a four-stage
pipeline and 128 byte data cache. Thor features a stack-
oriented instruction set architecture.

There are several error detection mechanisms
implemented in the Thor processor such asrun-time
checks, control flow checkingand main memory error
checking. The run-time checks, described in Table 1,
include those, which are commonly found in other
microprocessors, e.g., division by zero or overflow
checks, as well as Thor specific checks such as constraint
checks of, for example, array indices.

Table 1. Hardware exceptions in Thor
Exception Description
Bus error Bus time out of external memory
Address error Operand effective address larger than 2 Gbyte
Data error Chip input signal DE (Data Exception) is asserted by the

EDAC
Instruction error Illegal instruction or trying to execute a privileged instruction in

user mode
Jump error Attempt to jump, call or return to a target address outside

memory address space
Constraint error A constraint of run-time assertion instructions is not satisfied
Access error Attempt to follow a null pointer
Storage error Attempt to access memory outside the task's stack in user mode
Overflow check Overflow of signed integer and float arithmetic operations
Underflow check Underflow or denormalized result of float arithmetic operations
Division check Division by zero
Illegal operation Illegal operation for float and double arithmetic instruction

involving 0 and∞



Control flow checking is used to check that the
execution of machine instructions follows the control
flow of the program. The main memory checking
mechanisms were not included in our experiments since
no faults were injected into the main memory.

Fault injection tool: The experiments were performed
using MEFISTO-C, which is an elaboration of the
MEFISTO tool [10]. MEFISTO-C injects faults in VHDL
models by utilizing simulator commands that affect
signals. In this study, the Vantage OptiumTM simulator
was used.

Workload: The workload program is based on an
Ada package implementing a recursive quick-sort
algorithm, which sorts seven data elements of the
predefined Ada typefloat. Fault injection was performed
during the actual sorting of the seven data elements.
After the sorting was finished, the result was written to
memory.

Fault model: The fault model used was the single bit-
flip fault model. The faults were injected by changing the
logical value of single state elements from zero to one or
from one to zero. This fault model is reasonably accurate
for SEUs (Single Effect Upsets), caused by e.g. heavy ion
radiation in the space environment or by neutrons at high
altitude [13].

Fault locations: Faults were injected in 4410 internal
state elements (flip-flops and latches) of the Thor
microprocessor. These state elements are divided in three
parts; Registers, Cacheand Other registers(811, 1824
and 1775 locations respectively).

Error classification: The MEFISTO-C tool is able to
observe both non-effective and effective errors. The
effective errors are divided into three categories:
• Detected errors:Errors that were detected by the Thor

error detection mechanisms (See Table 1).
• Other errors: Errors that caused the CPU to hang, i.e.,

the processor stopped executing instructions. These
errors were not detected by the CPU’s internal
detection mechanisms. (They would have been detected
by an external watchdog timer, but such a mechanism
was not implemented in the VHDL model.)

• Non-covered errors:Errors that were not detected by
the error detection mechanisms causing a failure to
occur, i.e., the sort-algorithm produced an incorrect
result.

5. Applying and evaluating Path Based Error
Coverage Prediction

The Path Based Error Coverage Prediction Technique
was evaluated by investigating 24 input sequences,
denoted a–x, corresponding to 24 randomly chosen
permutations of seven elements to be sorted by the quick-
sort program. A fault-free simulation of the program
execution was performed for each of the input sequences.
The execution paths for the input sequences were
obtained by analyses of the simulation traces. This

allowed the usage of the basic blocks of the program to
be derived for each input sequence.

Fault injection campaigns were performed for the
three input sequences denotedx, i andh. Table 2 shows a
summary of the results obtained for the three fault
injection campaigns. These results show that the input
sequence has a significant impact on the estimated error
coverage as the coverage varies between 92% and 96%.
Around 70 % of the errors are non-effective errors. One
reason for the high percentage of non-effective errors is
that faults were injected into many unused locations of
the CPU resulting in latent errors.

Table 2. Results of fault injection experiments
Name Input sequenceh Input sequencei Input sequencex

Number of injected faults 13928 12831 13682

Non-effective errors 71,17± 0,75 % 67,69± 0,81% 69,16± 0,77%

Effective errors
Detected errors 24,15± 0,71% 24,09± 0,74% 23,64± 0,71 %

Other errors 0,41± 0,11% 0,35± 0,10% 0,33± 0,10 %

Non-covered errors 4,27±±±± 0,34% 7,87±±±± 0,47% 6,87±±±± 0,42 %

Results from the fault injection campaign for input
sequencex were analysed in detail to obtain the number
of faults activated for each basic block and information
about whether the faults led to non-covered errors or not.
This information together with the basic block usage for
input sequencea-x allowed the total error coverage for
each of the input sequences to be calculated according to
Eq. 3.6. The results of these predictions are shown in
Fig. 2. The figure shows that input sequencesi and p
have the highest predicted total error non-coverage while
input sequenceo have the lowest.

Fig. 2. Predicted total error non-coverage using
input sequence x as the base sequence.

In order to evaluate the accuracy of the predictions,
we used each of the input sequencesx, i andh as the base
sequences to predict the coverage of the other two
sequences. That is, we usedx to predict the coverage for
i and h, and i to predict the coverage forx and h, etc.
This allowed us to make in total six predictions that can
be compared with the coverage obtained by fault
injection.
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5.1. Predicting effective error coverage

The results of using Path Based Error Coverage
Prediction to predict the effective error coverage are
shown in Figs. 3 to 5. The figures show a comparison of
the predicted effective error non-coverage and the
observed effective error non-coverage for the various parts
of the CPU (Registers, Cache, Other) as well as the entire
CPU (All).

The results show that the predictions are biased
towards the non-coverage for the base sequence. Fig. 3
shows that the predicted non-coverage is higher than the
observed non-coverage for bothx andh, wheni is used as
the base sequence. The reason is thati has a higher
observed non-coverage than bothx and h. Fig. 5 shows
that usingh as the base sequence under-estimates the non-
coverage for bothx and i, since h has a lower non-
coverage than the other two.

Fig. 3. Predicted vs observed effective error non-
coverage using input sequence i as base sequence.

Fig. 4. Predicted vs observed effective error non-
coverage using input sequence x as base sequence

Fig. 5. Predicted vs observed effective error non-
coverage using input sequence h as base sequence.

However, the primary goal is not to provide accurate
estimations, but rather to conduct a ranking of the non-
coverage for different input sequences.

Fig. 3 shows that the predictions correctly rank the
coverage for input sequencex to be higher than the
coverage for input sequenceh, when i is used as the base
sequence. Fig. 4 shows that the predictions also manage
to correctly rank the coverages for input sequencesh and
i, when x is used as the base sequence. However, Fig. 5
shows that the ranking is not correct when input sequence
h is used as the base sequence. This is not surprising since
the observed effective error coverage for input sequencei
and x are very similar; the difference is only ~2
percentage points for faults injected into the whole CPU
and ~0.6 percentage points for faults injected into the
cache. Whereas using base sequencesi or x, the difference
between the non-coverage to be predicted is more than 8
percentage points.

5.2. Predicting total error coverage

The results of predicting total error coverage are
shown in Figs. 6 to 8. Our prediction technique is able to
identify the input sequence with the highest total error
non-coverage using base sequencei or x. However,
similar to what was observed in Section 5.1, the
prediction is incorrect when base sequenceh is used
since the difference in total error coverage for sequencei
andx is not significant enough.

Fig. 6. Predicted vs observed total error non-
coverage using input sequence i as base sequence.

Fig. 7. Predicted vs observed total error non-
coverage using input sequence x as base sequence.
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Fig. 8. Predicted vs observed total error non-
coverage using input sequence h as base sequence.

6. Conclusions

A post-injection prediction technique aimed at
reducing the cost of estimating error coverage was
proposed. The technique, called Path-Based Error
Coverage Prediction, uses fault injection data obtained
for a given input sequence to estimate the error coverage
for other input sequences. The need to consider input
sequence variations when estimating the error coverage
using fault injection has been shown in previous studies
and was also verified in this study. Our results show that
the estimated total error coverage for various input
sequences to a quick-sort program executing on the Thor
microprocessor may vary between 92% and 96%.

A comparison of predicted and observed results using
three fault injection campaigns conducted with different
input sequences to the quick-sort program showed that
the technique is able to identify the input sequence with
the highest or lowest error coverage provided that the
difference in actual coverage is significant.

Our experiments also gives an indication of the time
savings to be expected using Path-Based Error Coverage
Prediction. The time needed to estimate the error
coverage for a workload with a particular input sequence
using fault injection (3000 experiments) on a 300 Mhz
Sun workstation is in the order of one hundred hours,
while the time needed to predict the error coverage using
an automated tool is in the order of minutes.

Although the study shows promising results, we
would like to stress that this research still is in an early
stage. More fault injection experiments are needed to
show if the technique can be generally applied on other
workloads and target systems. The prediction technique
should also be further refined, e.g., the error coverage for
each basic block can probably be estimated more
accurately using a mean value calculated from several
fault injection experiments. The statistical analysis of the
predictions, i.e. calculation of confidence intervals etc.,
needs further investigation. We also need to find the
reason for the bias in the predictions and try to find a
way of eliminating it. To further reduce the cost of
coverage estimations, our technique should be combined
with pre-injection analysis in order to better control the
fault injections so that the coverage estimations for the
individual basic blocks could be made more accurate and
less time consuming.
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