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Abstract 

Time redundant execution of tasks and comparison of 
results is a well-known technique for detecting transient 
faults in computer systems. However, time redundancy is 
also capable of detecting permanent faults that occur 
during or between the executions of two task replicas, 
provided the faults affect the results of the two tasks in 
different ways. In this paper, we derive an expression for 
estimating the probability of detecting data errors 
generated by permanent faults with time redundant 
execution. The expression is validated experimentally by 
injecting permanent stuck-at faults into a multiplier unit 
of a microprocessor. We use the derived expression to 
show how tasks can be scheduled to improve the detection 
probability of errors generated by permanent faults. We 
also show that the detection capability of permanent 
faults is low for the Temporal Error Masking (TEM) 
technique (i.e. triplicated execution and voting to mask 
transient faults) and may not be increased by scheduling. 
Thus, we propose complementing TEM with special test 
tasks.  

1. Introduction 

The importance of dependability in embedded systems 
will increase dramatically as future computers take a more 
active role in everyday control applications such as drive-
by-wire or brake-by-wire systems in vehicles. In addition, 
the ongoing reduction of device geometries and supply 
voltages increases the risk for not only transient faults but 
also for permanent faults. Even if permanent faults will 
occur with lower probability than transient faults it is 
never satisfactory or even acceptable to leave fault/error 
possibilities unanalyzed for safety-critical systems. 

Many modern microprocessors provide extensive on-
chip error detection mechanisms (EDMs) such as error 
detection and correction on memory, caches and registers, 

illegal op-code detection, address range checking. Many 
of these mechanisms will detect errors generated by 
permanent faults in the same way as errors generated by 
transient faults. However, the effects of certain faults 
occurring, e.g. in the arithmetic units of a microprocessor 
such as adders and multipliers may pass undetected, 
which justifies the use of software implemented error 
detection techniques such as executable assertions [1] or 
time redundant execution [2, 3]. 

Time redundancy has become increasingly attractive 
for achieving fault-tolerance due to the declining prices of 
high-performance microprocessors. In this paper, time 
redundant execution and comparison of results are 
referred to as Temporal Error Detection (TED). TED can 
be applied on different levels such as the instruction level 
[4], procedure level [5] or at the task level [6]. Recent 
studies utilize modern technologies in processors to reduce 
the time overhead [7]. In [8] we introduced a real-time 
kernel, which enables transient faults to be tolerated by 
using TEM. The real-time kernel executes all critical tasks 
twice and compares the results to detect errors. A third 
execution is started if an error is detected by the 
comparison or by other EDMs in the system. This allows 
the kernel to mask a transient fault by conducting a 
majority vote on the three results. 

In this paper, we investigate how TED and TEM 
techniques are affected by permanent faults in the 
arithmetic units of a processor during system operation. 
We derive an expression for calculating the probability 
that data errors generated by permanent faults are detected 
by TED and TEM. The expression is based on the 
probability that a fault occur in a certain time interval 
during the time redundant execution of a task and the 
probability that the fault is activated (i.e. a faulty 
component is used, and an error is generated when 
executing an arithmetic operation). 

The derived expression shows that the error detection 
capability of TED can be increased through appropriate 
scheduling. For TEM, however, the detection probability 
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may not be increased through scheduling. Thus, we 
propose the use of a special test task that execute in 
parallel with TEM, which improve the detection capability 
of permanent faults. We have validated the expression by 
conducting fault injection experiments on a multiplier unit 
of a microprocessor. 

In the next section, the expression for estimating the 
probability of detecting errors generated by permanent 
faults using time redundancy is derived. In Section 3, 
results from fault injection experiments are used to 
investigate the accuracy of the expression. Section 4 
discusses the implications of the expression to improve the 
detection probability for TED and TEM. Finally, the 
conclusions of this study are given in Section 5. 

2. Detecting Data Errors with TED and TEM 

In this section, we derive an expression for estimating 
the probability of detecting data errors generated by 
permanent faults. First, the assumptions used are given. 
Then, the expression is derived for a single periodic task 
using TED. The expression is extended to include 
multiple periodic tasks and finally, an expression for 
estimating the probability of detecting errors with the 
TEM approach is also shown. 

2.1. Assumptions 

In our analysis, we make the following assumptions: 
A1: Only single permanent faults occurring in the 

arithmetic units, i.e. faults affecting arithmetic operations 
such as MUL, DIV, ADD and SUB, during actual system 
operation are considered. 

A2: Permanent faults occur randomly with uniform 
distribution in time. 

A3: The same sequence of operations is executed 
regardless of the input data, which is the case for, e.g. 
various digital signal processing applications and control 
algorithms.  

A4: All arithmetic operations are considered as 
independent events, i.e. if a fault is activated, the resulting 
data error will not be masked by any further executions of 
operations. 

A5: Permanent faults occurring during the execution 
of an operation are considered to have the same activation 
probability as if the faults had occurred just before the 
execution of the operation. Consequently, this implies the 
highest activation probability since the actual probability 
presumably is lower at the end of the operation. (The time 
to execute the operation may also be considered negligible 
compared to the time to execute the task.) 

A6: We assume that the probability that an operation 
x activates a fault is constant for all executions of the 

operation. This is reasonable if the same subset of possible 
inputs is used for each execution of x (see Section 2.2). 

2.2.  Detecting Data Errors with TED 

TED is able to detect data errors generated by 
permanent faults if two time redundant executions 
produce different results. This is the case when a fault 
occurs after the first execution of a task has started and the 
fault does not affect the first execution in the same way as 
the second execution.  

An example of this is shown in Figure 1 where a 
periodic task, TA is executed twice. The time redundant 
replicas are denoted TA,1 and TA,2 respectively. When the 
task has been executed twice, the results are compared and 
the microprocessor is idle until the next invocation of the 
task. The time for executing the comparison of results is 
considered negligible compared to the time to execute the 
task and is therefore not shown in the figure. 

Figure 1. A single periodic task 

x1, x2 and x3 represent one specific arithmetic operation 
(e.g. a MUL operation with arbitrary operands) that is 
executed three times in the task. x1', x2' and x3' are the 
repeated operations in the second execution of the task. 
(Note that the times to execute the operations are 
exaggerated in the figure.) The tasks period time in  
Figure 1 is divided into seven time intervals, i.e. the time 
interval T1 start at time t0 and ends after the first operation 
x1 at time t1 etc. 

The probability that a data error is detected by time 
redundant execution depends on the point in time a fault 
occurs and the probability that a fault is activated.  

Let Pi denote the probability that a fault occurs in a 
certain time interval Ti. Using assumption A2, Pi can be 
computed as: 
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where Ti is the length of time interval i, Tperiod is the 
period time of the task and k is the total number of 
periods. 

Let Pxj denote the probability that a fault is activated 
when a certain operation xj is executed. Pxj can be 
calculated as:  
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where M is the number of possible inputs for the specific 
operation and Inputact,k is 0 for the inputs that did not 
activate the fault and 1 for the inputs that activated the 
fault. Note that different subsets of the M possible inputs 
may be used for different executions of x. The use of each 
subset should then be considered as a different operation. 

Let Px,tot be the total probability that a fault is 
activated by any of several executions of a specific 
operation x. The probability Px,tot that the fault is 
activated for two subsequent executions of operation x, x1

and x2, can be derived as: 

Px,tot = P(At least one of the operations x1 or x2 activates the fault) 
    = 1-P(x1 does not activate the fault AND x2 does not activate the fault)

According to assumption A4, the probability of 
activating a fault by operation x1 is independent of the 
probability of activating a fault by operation x2. Px,tot can 
then be expressed as: 

    = 1-P(x1 does not activate the fault) · P(x2 does not activate the fault) 
    = 1-(1-P( x1 activates the fault)) ·(1-P( x2 activates the fault))

which can be generalized to: 

Px,tot = 1-(1-Px1)(1-Px2)... (1-Pxi) (2.3) 

for an arbitrary number i of repeated executions of  
operation x.

Using equation (2.1) to (2.3), the probability of 
detecting an error in the example given in Figure 1 can be 
derived as follows. If a fault occurs during time interval T1

or T7, it can never be detected since it will always affect 
TA,1 and TA,2 in the same way. (Note that we assume (A5)
that a fault occurring at the end of an operation has the 
same activation probability as if the fault had occurred in 
the beginning of the operation.) If the fault occurs during 
time interval T2, an error will be detected if the first 
operation of TA,2 (x1' in Figure 1) activates the fault (i.e. 
since the fault will affect x2 and x3 in TA,1 and TA,2 in the 
same way). Thus the probability that an error is detected 
P(D) can be computed as P(D) = P2·Px1', where P2 is the 
probability that a fault occur in time interval T2, and Px1'
is the probability that a fault is activated when executing 
operation x1'.

Deriving P(D) for the remaining time interval T3 to T6

in the example in Figure 1 can be done in the same way. If 
the fault occurs during time interval T3, the error will be 
detected if either the first and/or the second operation of 
TA,2 (x1' or x2' in Figure 1) activates the fault which gives 
P(D)=P3·(1-(1-Px1')(1-Px2')). For T4 there are three 
possibilities that the fault can be activated (by x1', x2' or x3'
in Figure 1), thus, P(D)=P4·(1-(1-Px1')(1-Px2')(1-Px3')). At 
T5 there are again only two possibilities that the fault is 
activated differently between TA,1 and TA,2 (by x2' or x3' in 
Figure 1), P(D)=P5·(1-(1-Px2')(1-Px3')), and during T6

there is only one (x3' in Figure 1) , P(D)=P6· Px3'.

Using assumption A6, i.e. Px=Px1=Px2=Px3, the total 
probability, P(Dx) of detecting an error generated by a 
permanent fault for one task can then be computed as: 

P(D)=P2·Px+P3·(1-(1-Px)2)+P4·(1-(1-Px)3)+P5·(1-(1-Px)2)+P6·Px (2.4) 

The expression 2.4 can be generalized for an arbitrary 
number of time intervals to: 
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where N is the number of intervals. Note that the number 
of intervals is always odd since the number of operations 
is always even for a task that is executed twice.

If L different operations can activate a certain fault, the 
probability of detecting the error P(D) is the probability of 
the union of the events that can detect the error for each 
operation Ll ∈  (details can be found in [9]):  








=
=
U

L

l
lDPDP

1

)(  (2.6) 

2.3. Multiple Periodic Tasks 

There may be several tasks, which are double executed 
in a schedule. The probability of detecting errors 
generated by permanent faults can thereby be estimated 
based on all double executed tasks in the interval where 
all periodic tasks are invoked at least once. This interval is 
called the Least Common Multiple time (LCM) [10]. This 
means that the detection probability for all tasks in the 
LCM interval can be computed from the equations in the 
last section as: 
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where Q is the number of double executed tasks in LCM.  
Some systems allow pre-emption of tasks, i.e. a higher 

priority task can interrupt lower priority tasks and after 
the higher priority task has finished, the lower priority 
task can resume its execution. This means that the time 
between the operations in the lower priority task can 
increase (a time interval Ti can increase), and thus, the 
probability of detecting errors will be higher according to 
equation (2.1) and (2.5). Thus, the lowest error detection 
probability is reached when no tasks are pre-empted. 

2.4. Detecting Data Errors with TEM  

The TEM approach is targeted for tolerating data 
errors generated by transient faults. Errors are masked by 
a majority vote on the results from three executions of the 
task. The disadvantage of TEM is that a permanent fault 
may cause the second and third execution to produce 
identical erroneous results, which thus are selected as the 
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output by the majority vote. 
Figure 2 shows an example of a periodic task that is 

executed two times to detect errors and a third execution is 
only started if an error is detected. x1, x2 and x3 represent a 
specific arithmetic operation that is executed three times 
in each task replica. 

Figure 2. Time interval in a TEM execution 

Using equation (2.1) to (2.3), the probability of 
detecting an error in the example given in Figure 2 can be 
derived in the same way as for TED (see [9] for details).  

A fault occurring during time interval T1 to T4 will 
never be detected since it will affect two executions in the 
same way. A fault occurring during time interval T7 is not 
detected since the third execution is only started if a fault 
is detected by the comparison. Thus, the probability, 
P(DTEM,x) that the majority voter detects an error generated 
by a permanent fault can be computed as: 

P(DTEM,x) = P5·Px1''+ P6 ·(1-(1-Px1'')(1-Px2''))

where P5 and P6 is the probability that a fault occurs in the 
time interval T5 and T6, and Pxi is the probability that the 
fault is activated when executing operation xi. The 
expression can be generalized to: 
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where N is the number of time intervals.

3. Evaluation 

In this section, we experimentally investigate the 
validity of two properties that the derivation of  
equation (2.5) is based on:  

P1: The detection probability is different for different 
time intervals. 

P2: The detection probability increases with the 
number of operations executed. 

3.1. Experimental setup 

Target system: As mentioned in the previous sections, 
we focus on the arithmetic units of a microprocessor. 
Specifically, this evaluation is performed on the multiplier 
unit of a CPU, i.e. faults are only injected into the 
multiplier. Thus, only multiplication operations can 
activate these faults. The target processor is a RTL level 
VHDL model of the Thor microprocessor [11] where the 

multiplier unit is replaced with a structural gate-level 
VHDL description.  

The multiplier performs 32-bit by 32-bit integer and 
floating-point multiplications. In order to reduce chip size 
and increase clock speed, the multiplier is designed 34x14 
bits and performs multiplication in several cycles. 

The multiplier consists of three parts, a Booth 
algorithm, a Wallace tree, and an Adder. The Booth 
algorithm and the Wallace tree are both used to speed up 
the multiplication. The Booth algorithm reduces the 
number of partial products to be summed, and the Wallace 
tree accelerates the addition of partial products. 

The Thor microprocessor includes several internal 
EDMs. However, the only internal EDM that can be 
triggered by faults injected into the multiplier performing 
integer multiplications is the Overflow check, i.e. an 
overflow of a signed integer or floating point operation. 

Fault injection environment: The VHDL model of the 
Thor processor was executed using the ModelSim EE 
Simulator on five Unix workstations. Faults are injected 
by using simulator commands, which force signal values 
to zero or one. In addition, special command files were 
defined that start simulations of the processor and save the 
signals of interests into log files. The saved signals were 
then examined off-line in order to derive the results. 

Workload: Both the workload program and the input 
data to the program must be considered when evaluating 
the impact of permanent faults in microprocessors. We 
chose a matrix multiplication program, and varied the 
input to the program to obtain representative results for 
the multiplier. To constrain the evaluation time, the 
matrix program is limited to multiplication of two 1 x 2 
integer matrices [a1a2]·[b1b2]

T=[a1·b1+a2·b2]. The matrix 
program was executed twice and the results from the two 
executions were compared to detect errors. The TEM 
technique was not experimentally evaluated. Note 
however, the number of faults that would have been 
detected by the TEM technique can be estimated using 
equation (2.8). The input data to the matrix operation are 
signed integers, which can have values of ± 231-1. Thus, to 
avoid triggering of an overflow exception during fault free 
operation, the input values were randomly chosen as: 






















=
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randomIndata

Figure 3 shows the time redundant execution of the 
matrix multiplication task that is used in the experiments.  

Figure 3. Execution of the matrix operation 
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Two MUL operations (called x1 and x2) are executed 
for each execution of the task (called TA,1 and TA,2). The 
intervals between the operations are denoted T1 to T5.

Fault model and fault locations: The fault models 
used in the experiments are the common logic-level stuck-
at-(0/1). This fault model represents physical defects in 
the circuit caused by, e.g. electrical stress, hot electronic 
trapping, thin-oxide breakdown, electromigration, 
radiation etc. The physical defects may cause transistor 
stuck-on/off or shorts/open connection lines, which can 
manifest themselves as stuck-at-0 or stuck-at-1 in logical 
gates. Faults were injected in 24635 signals in the 
multiplier combinatorial logic, i.e. 10632, 4997 and 9006 
locations respectively in the Booth algorithm, Wallace tree 
and Adder. 

3.2. Verification of Property P1 

A set of experiments was conducted to verify that the 
probability of detecting errors using TED depends on the 
point in time a fault occurs. Since faults are only injected 
into the multiplier, only multiply operations can activate 
them. Therefore, the detection probability of a fault should 
be the same at all times during a time interval. In 
addition, only faults occurring after the execution of the 
first operation (x1 in Figure 3), but before the execution of 
the last operation (x2' in Figure 3) can be detected.   

Experiment definition: A fault F is defined as:  
F = {L, I} x T, where the location (L) and the input data 
(I) are chosen as a set combined with the injection time 
(T) for the fault injection. 250 set of locations and four 
input data values, and 50 time points were selected 
randomly from each domain using uniform sampling 
distribution for each of the three parts of the multiplier 
(Booth, Wallace and Adder). In addition, both stuck-at-0 
and stuck-at-1were injected for each fault F, which results 
in a total of 250·50·3·2=75000 injected faults. 

Results: The results from the experiments are shown in 
Table 1. As expected, most errors were detected by TED 
in interval T3 and no errors were detected by TED in 
interval T1 or T5. Faults injected after the last MUL 
(interval T5) will not be activated until the next iteration, 
where they will have the same effect as for faults injected 
in interval T1 (here, only one iteration is executed). 

Table 1. Results of fault injection experiments  
T1 T2 T3 T4 T5 All

# % # % # % # % # % # %

Correct 
result 

5076 37,6 5067 37,5 9024 37,6 9335 47,9 4500 100,0 33002 44,0 

Detected by 
overflow 
EDM 

6687 49,5 6696 49,6 11888 49,5 8334 42,7 0 0,0 33605 44,8 

Detected by 
TED 

0 0,0 1170 8,7 3088 12,9 1831 9,4 0 0,0 6089 8,1 

Wrong
result 

1737 12,9 567 4,2 0 0,0 0 0,0 0 0,0 2374 3,1 

A detailed investigation shows that faults injected into 
a signal in the multiplier result in the same detection 
probability irrespective of when in a time interval between 
multiply operations the fault was injected. Faults 
occurring during the execution of the operation also have 
lower detection probability than faults occurring between 
the operations. 

The number of faults that would have been detected if 
the TEM technique were used for the fault injection 
experiments can be estimated using expression (2.8), i.e. 
P(DTEM) = P4·Px. Thus, the detection probability of TEM 
corresponds to the percentage of faults detected when 
injecting faults in the time interval T4, i.e. 
1831/75000=2.3% of all injected faults while TED detects 
8.1% of all injected faults. 

3.3. Verification of Property P2 

Another set of experiments was conducted to verify that 
the probability of detecting errors also depends on the 
probability Px that a fault is activated when a certain 
operation x is executed (see equation (2.2)), and the 
number of operations i, executed that can activate a fault 
(see equation (2.3)).

Experiment definition: In these experiments, a fault F
is defined as: F = L x I x T where the location (L) and the 
input data (I) are selected randomly from the respective 
domain using uniform sampling distribution. Using the 
results from Section 3.2 enable us to decrease the number 
of time-points (T) to inject faults to one time-point for 
each time interval since the effect of an injected fault is 
equal for all points in a time interval between multiply 
operations. 246 locations were chosen, of which 106 
signals were in Booth, 50 signals in the Wallace tree and 
90 signals in the Adder part. 50 sets of four input data 
values and 1 time point in each of the intervals T2, T3 and 
T4 were chosen. Both stuck-at-0 and stuck-at-1 faults were 
injected for each fault F, which results in a total of 
(106+90+50)·3·2 = 73800 injected faults. 

Results: The activation probability for one 
multiplication Px is estimated by using the results 
obtained when injecting faults during the time interval T4,
i.e. these faults can only affect the last multiplication, x2'.
Thus, the activation probability, Px, corresponds to the 
number of errors detected either by the TED or the 
overflow EDM. (The experimental results show that Px is 
70% for the Wallace part, 58% for the Booth part and 
31% for the Adder part). 

To investigate the accuracy of equation (2.3), the 
activation probability Px obtained when injecting faults 
into time interval T4 is used to estimate the activation 
probability for two multiplications as Px,tot = 1-(1-Px)2.
The activation probability for two multiplications can also 
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be estimated (called Px,totFI) by using the results obtained 
when injecting faults during the time interval T3, i.e. these 
faults can affect both the x1' and the x2' multiplication. 
Table 2 shows the difference between Px,tot and Px,totFI

for the various parts of the multiplier, where the average 
difference ranges from 0,001 to 0,014. 

Table 2. Confidence of the proposed expression 
Average difference  

(Px,tot -Px,totFI)
90% confidence 

interval 
Booth algorithm -0,001 ± 0,07 
Wallace tree 0,014 ± 0,1 
Adder -0,006 ± 0,06 

There are two possible reasons for the differences 
between the obtained and estimated Px values. First, only 
50 multiplications were performed for each fault to 
investigate the activation frequency. Thus, some variance 
can be expected as shown in Table 2. Second, if 
assumption A4 is not valid, i.e. if some errors are masked, 
Px obtained from interval T3 is expected to be higher than 
Px obtained from interval T4. From the analysis we can 
see that we have a certain variance, but it is low. This 
makes us conclude that even if it is possible for errors to 
compensate each other, this probability is low. Thus, 
equation (2.3) appears to be correct. 

The results are shown in detail in Table 3. As shown in 
the table, 4.4% of the faults injected during interval T2

caused wrong results. The reason for this is that the 
injected faults are activated by the second MUL operation 
in both executions, which caused two equal but faulty 
results to be produced. 

Table 3. Results of fault injection experiments 
T2 T3 T4

# % # % # %

Correct result 10015 40,7 10035 40,8 12126 49,3 

Detected by 
overflow EDM 

11226 45,7 11225 45,6 9793 39,8 

Detected by TED 2269 9,2 3340 13,6 2681 10,9 

Wrong result 1090 4,4 0 0,0 0 0,0 

4. Implications of the expression 

We have validated the expression derived in Section 2 
for a multiplier unit. However, this is just an indication 
that the derived expression is valid in general. The 
expression needs to be validated in more detail and for 
other parts of a processor. However, assuming that the 
expression is valid, some suggestions for increasing the 
probability of detecting errors can be made. 

4.1. Increasing the Error Detection Probability  

Reflecting on the derived expression, it can be seen that 
the time between operations relates to the probability of 
detecting errors. Thus, the probability of detecting errors 

can be increased by enlarging the interval between the 
first and second execution. 

Consider a simple example with one periodic tasks 
which have the period time T = 10 ms and the execution 
time C = 2 ms, and the deadline d equal to the period 
time. The task performs one multiplication 0.5 ms after 
the start and another multiplication 0.75 ms after the first 
multiplication. Figure 4 suggests two different time 
redundant execution schedules for TED.  

Figure 4. Time redundant execution of tasks 

Using equation (2.5), the probability of detecting errors 
with the TED scheduling examples can be estimated as: 

 P(Dx) = (P2 + P4) · Px + P3 · (1-(1-Px)2) (4.1) 

In TED-1 the tasks are executed one after the other, 
while in TED-2 the tasks are separated, thereby increasing 
the time interval T3. Enlarging the interval T3 without 
changing the period time of the task will increase P3 (see 
equation (2.1)). Thus, the probability of detecting errors 
will be higher for TED-2 according to equation (4.1).  

In TEM, the probability that the majority voter detects 
an error generated by a permanent fault can be estimated 
using equation (2.8) as: 

 P(DTEM,x) = P4 · Px (4.2)

Since P4 is computed from time interval T4, which is 
located during execution of a single task replica, it is not 
possible to increase the probability of detecting errors by 
changing the schedule of the tasks in TEM. 

Figure 5 shows the probability of detecting an error for 
TED-1, TED-2 and TEM using equation (4.1) and (4.2), 
where different values of Px are used.  
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Figure 5. Detection probability for TED and TEM

The figure shows that the probability of detecting errors 
increases as the time interval between the first and second 
execution of the task is extended for TED while the 
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probability of detecting errors generated by permanent 
faults in the TEM approach is always lower. 

A solution, which might improve the error detection 
capability of TEM, is to use a specially designed test tasks 
that check the arithmetic units for permanent faults. One 
approach could be to execute a number of operations in a 
test task that utilize all the arithmetic units, i.e. various 
logic and arithmetic operations. An approximation of the 
detection probability of such a test would be (1-(1-Px)i), 
where Px is the probability that the fault should be 
activated with the operation x and i is the number of such 
operations in the test. Scheduling a test task in 
combination with TEM can be performed by setting a low 
priority of the test tasks, which then execute only when 
extra time is available. The task can also be scheduled 
with a certain periodicity (based on the intensity of 
permanent faults) or be activated when suspecting a 
permanent fault, e.g. when three different results are 
obtained in TEM.  

5. Conclusion 

In this paper, the possibility of detecting errors 
generated by permanent faults with time redundancy was 
investigated. The probability of detecting an error depends 
on the intensity of permanent faults, the duration of the 
faults, the points in time the faults occur, the probability 
that the faults are activated and the task schedule.  

Based on the investigation, an expression was derived 
for estimating the probability of detecting errors generated 
by permanent faults in the arithmetic parts of a 
microprocessor using time redundancy. To verify that the 
expression is valid, faults were injected into a structural 
gate-level VHDL model of a multiplier in the Thor 
microprocessor. The results correspond to the derived 
expression. However more experiments with different 
workloads are needed to verify that the expression is valid 
for all arithmetic parts of a processor. 

The derived expression can be used to determine the 
detection probability of time redundancy based techniques. 
Furthermore, it can be used to optimize the task schedule 
of double executed tasks to maximize the probability of 
detecting errors generated by permanent faults. 

The paper also considers the Temporal Error Masking 
approach (TEM), which is able to mask transient faults by 
triple time-redundant execution and voting. However, by 
using the derived expression, we identified that the 
probability of detecting errors generated by permanent 
faults in TEM is low. Therefore, a special test task that 
checks the arithmetic units for permanent faults in 
combination with TEM was proposed. 

Further work will focus on investigating the inclusion 
of test tasks in combination with TEM. We believe that 

this complementary error detection technique in 
combination with TEM will significantly reduce the 
probability of value failures caused by both transient and 
permanent faults. 
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