
On the Probability of Detecting Data Errors Generated by Permanent Faults
Using Time Redundancy

Joakim Aidemark, Peter Folkesson, and Johan Karlsson
Department of Computer Engineering

Chalmers University of Technology
S-412 96 Göteborg, Sweden

{aidemark, peterf, johan}@ce.chalmers.se

Abstract

Time redundant execution of tasks and comparison of
results is a well-known technique for detecting transient
faults in computer systems. However, time redundancy is
also capable of detecting permanent faults that occur
during or between the executions of two task replicas,
provided the faults affect the results of the two tasks in
different ways. In this paper, we derive an expression for
estimating the probability of detecting data errors
generated by permanent faults with time redundant
execution. The expression is validated experimentally by
injecting permanent stuck-at faults into a multiplier unit
of a microprocessor. We use the derived expression to
show how tasks can be scheduled to improve the detection
probability of errors generated by permanent faults. We
also show that the detection capability of permanent
faults is low for the Temporal Error Masking (TEM)
technique (i.e. triplicated execution and voting to mask
transient faults) and may not be increased by scheduling.
Thus, we propose complementing TEM with special test
tasks.

1. Introduction

The importance of dependability in embedded systems
will increase dramatically as future computers take a more
active role in everyday control applications such as drive-
by-wire or brake-by-wire systems in vehicles. In addition,
the ongoing reduction of device geometries and supply
voltages increases the risk for not only transient faults but
also for permanent faults. Even if permanent faults will
occur with lower probability than transient faults it is
never satisfactory or even acceptable to leave fault/error
possibilities unanalyzed for safety-critical systems.

Many modern microprocessors provide extensive on-
chip error detection mechanisms (EDMs) such as error
detection and correction on memory, caches and registers,

illegal op-code detection, address range checking. Many
of these mechanisms will detect errors generated by
permanent faults in the same way as errors generated by
transient faults. However, the effects of certain faults
occurring, e.g. in the arithmetic units of a microprocessor
such as adders and multipliers may pass undetected,
which justifies the use of software implemented error
detection techniques such as executable assertions [1] or
time redundant execution [2, 3].

Time redundancy has become increasingly attractive
for achieving fault-tolerance due to the declining prices of
high-performance microprocessors. In this paper, time
redundant execution and comparison of results are
referred to as Temporal Error Detection (TED). TED can
be applied on different levels such as the instruction level
[4], procedure level [5] or at the task level [6]. Recent
studies utilize modern technologies in processors to reduce
the time overhead [7]. In [8] we introduced a real-time
kernel, which enables transient faults to be tolerated by
using TEM. The real-time kernel executes all critical tasks
twice and compares the results to detect errors. A third
execution is started if an error is detected by the
comparison or by other EDMs in the system. This allows
the kernel to mask a transient fault by conducting a
majority vote on the three results.

In this paper, we investigate how TED and TEM
techniques are affected by permanent faults in the
arithmetic units of a processor during system operation.
We derive an expression for calculating the probability
that data errors generated by permanent faults are detected
by TED and TEM. The expression is based on the
probability that a fault occur in a certain time interval
during the time redundant execution of a task and the
probability that the fault is activated (i.e. a faulty
component is used, and an error is generated when
executing an arithmetic operation).

The derived expression shows that the error detection
capability of TED can be increased through appropriate
scheduling. For TEM, however, the detection probability

Proceedings of the 9th IEEE International On-Line Testing Symposium (IOLTS’03)
0-7695-1968-7/03 $17.00 © 2003 IEEE

may not be increased through scheduling. Thus, we
propose the use of a special test task that execute in
parallel with TEM, which improve the detection capability
of permanent faults. We have validated the expression by
conducting fault injection experiments on a multiplier unit
of a microprocessor.

In the next section, the expression for estimating the
probability of detecting errors generated by permanent
faults using time redundancy is derived. In Section 3,
results from fault injection experiments are used to
investigate the accuracy of the expression. Section 4
discusses the implications of the expression to improve the
detection probability for TED and TEM. Finally, the
conclusions of this study are given in Section 5.

2. Detecting Data Errors with TED and TEM

In this section, we derive an expression for estimating
the probability of detecting data errors generated by
permanent faults. First, the assumptions used are given.
Then, the expression is derived for a single periodic task
using TED. The expression is extended to include
multiple periodic tasks and finally, an expression for
estimating the probability of detecting errors with the
TEM approach is also shown.

2.1. Assumptions

In our analysis, we make the following assumptions:
A1: Only single permanent faults occurring in the

arithmetic units, i.e. faults affecting arithmetic operations
such as MUL, DIV, ADD and SUB, during actual system
operation are considered.

A2: Permanent faults occur randomly with uniform
distribution in time.

A3: The same sequence of operations is executed
regardless of the input data, which is the case for, e.g.
various digital signal processing applications and control
algorithms.

A4: All arithmetic operations are considered as
independent events, i.e. if a fault is activated, the resulting
data error will not be masked by any further executions of
operations.

A5: Permanent faults occurring during the execution
of an operation are considered to have the same activation
probability as if the faults had occurred just before the
execution of the operation. Consequently, this implies the
highest activation probability since the actual probability
presumably is lower at the end of the operation. (The time
to execute the operation may also be considered negligible
compared to the time to execute the task.)

A6: We assume that the probability that an operation
x activates a fault is constant for all executions of the

operation. This is reasonable if the same subset of possible
inputs is used for each execution of x (see Section 2.2).

2.2. Detecting Data Errors with TED

TED is able to detect data errors generated by
permanent faults if two time redundant executions
produce different results. This is the case when a fault
occurs after the first execution of a task has started and the
fault does not affect the first execution in the same way as
the second execution.

An example of this is shown in Figure 1 where a
periodic task, TA is executed twice. The time redundant
replicas are denoted TA,1 and TA,2 respectively. When the
task has been executed twice, the results are compared and
the microprocessor is idle until the next invocation of the
task. The time for executing the comparison of results is
considered negligible compared to the time to execute the
task and is therefore not shown in the figure.

Figure 1. A single periodic task

x1, x2 and x3 represent one specific arithmetic operation
(e.g. a MUL operation with arbitrary operands) that is
executed three times in the task. x1', x2' and x3' are the
repeated operations in the second execution of the task.
(Note that the times to execute the operations are
exaggerated in the figure.) The tasks period time in
Figure 1 is divided into seven time intervals, i.e. the time
interval T1 start at time t0 and ends after the first operation
x1 at time t1 etc.

The probability that a data error is detected by time
redundant execution depends on the point in time a fault
occurs and the probability that a fault is activated.

Let Pi denote the probability that a fault occurs in a
certain time interval Ti. Using assumption A2, Pi can be
computed as:

Period

i

Period

i
i T

T

Tk

Tk
P =

⋅
⋅= (2.1)

where Ti is the length of time interval i, Tperiod is the
period time of the task and k is the total number of
periods.

Let Pxj denote the probability that a fault is activated
when a certain operation xj is executed. Pxj can be
calculated as:

M

Input
Px

M

k
kact

j

∑
== 1

,

 (2.2)

T5T2 T3 T4 T6T1 T7

TA,1

TA,Period

TA,2
Time

x1 x2 x3 x1' x2' x3'

TA,1

t0 t1 t2 t3 t4 t5 t6 t7

Proceedings of the 9th IEEE International On-Line Testing Symposium (IOLTS’03)
0-7695-1968-7/03 $17.00 © 2003 IEEE

where M is the number of possible inputs for the specific
operation and Inputact,k is 0 for the inputs that did not
activate the fault and 1 for the inputs that activated the
fault. Note that different subsets of the M possible inputs
may be used for different executions of x. The use of each
subset should then be considered as a different operation.

Let Px,tot be the total probability that a fault is
activated by any of several executions of a specific
operation x. The probability Px,tot that the fault is
activated for two subsequent executions of operation x, x1

and x2, can be derived as:

Px,tot = P(At least one of the operations x1 or x2 activates the fault)
 = 1-P(x1 does not activate the fault AND x2 does not activate the fault)

According to assumption A4, the probability of
activating a fault by operation x1 is independent of the
probability of activating a fault by operation x2. Px,tot can
then be expressed as:

 = 1-P(x1 does not activate the fault) · P(x2 does not activate the fault)
 = 1-(1-P(x1 activates the fault)) ·(1-P(x2 activates the fault))

which can be generalized to:

Px,tot = 1-(1-Px1)(1-Px2)... (1-Pxi) (2.3)

for an arbitrary number i of repeated executions of
operation x.

Using equation (2.1) to (2.3), the probability of
detecting an error in the example given in Figure 1 can be
derived as follows. If a fault occurs during time interval T1

or T7, it can never be detected since it will always affect
TA,1 and TA,2 in the same way. (Note that we assume (A5)
that a fault occurring at the end of an operation has the
same activation probability as if the fault had occurred in
the beginning of the operation.) If the fault occurs during
time interval T2, an error will be detected if the first
operation of TA,2 (x1' in Figure 1) activates the fault (i.e.
since the fault will affect x2 and x3 in TA,1 and TA,2 in the
same way). Thus the probability that an error is detected
P(D) can be computed as P(D) = P2·Px1', where P2 is the
probability that a fault occur in time interval T2, and Px1'
is the probability that a fault is activated when executing
operation x1'.

Deriving P(D) for the remaining time interval T3 to T6

in the example in Figure 1 can be done in the same way. If
the fault occurs during time interval T3, the error will be
detected if either the first and/or the second operation of
TA,2 (x1' or x2' in Figure 1) activates the fault which gives
P(D)=P3·(1-(1-Px1')(1-Px2')). For T4 there are three
possibilities that the fault can be activated (by x1', x2' or x3'
in Figure 1), thus, P(D)=P4·(1-(1-Px1')(1-Px2')(1-Px3')). At
T5 there are again only two possibilities that the fault is
activated differently between TA,1 and TA,2 (by x2' or x3' in
Figure 1), P(D)=P5·(1-(1-Px2')(1-Px3')), and during T6

there is only one (x3' in Figure 1) , P(D)=P6· Px3'.

Using assumption A6, i.e. Px=Px1=Px2=Px3, the total
probability, P(Dx) of detecting an error generated by a
permanent fault for one task can then be computed as:

P(D)=P2·Px+P3·(1-(1-Px)2)+P4·(1-(1-Px)3)+P5·(1-(1-Px)2)+P6·Px (2.4)

The expression 2.4 can be generalized for an arbitrary
number of time intervals to:

[] [] []2/)1(
2/)1(

2/)3(

1
1)1(1)1(1)(−

+

−

=
−+ −−⋅+

−−⋅+= ∑

N
N

N

i

i
iNix PxPPxPPDP (2.5)

where N is the number of intervals. Note that the number
of intervals is always odd since the number of operations
is always even for a task that is executed twice.

If L different operations can activate a certain fault, the
probability of detecting the error P(D) is the probability of
the union of the events that can detect the error for each
operation Ll ∈ (details can be found in [9]):

=
=
U

L

l
lDPDP

1

)((2.6)

2.3. Multiple Periodic Tasks

There may be several tasks, which are double executed
in a schedule. The probability of detecting errors
generated by permanent faults can thereby be estimated
based on all double executed tasks in the interval where
all periodic tasks are invoked at least once. This interval is
called the Least Common Multiple time (LCM) [10]. This
means that the detection probability for all tasks in the
LCM interval can be computed from the equations in the
last section as:

∑
=

⋅=
Q

k
kxkPeriodxLCM DPT

LCM
DP

1
,,,)(

1
)((2.7)

where Q is the number of double executed tasks in LCM.
Some systems allow pre-emption of tasks, i.e. a higher

priority task can interrupt lower priority tasks and after
the higher priority task has finished, the lower priority
task can resume its execution. This means that the time
between the operations in the lower priority task can
increase (a time interval Ti can increase), and thus, the
probability of detecting errors will be higher according to
equation (2.1) and (2.5). Thus, the lowest error detection
probability is reached when no tasks are pre-empted.

2.4. Detecting Data Errors with TEM

The TEM approach is targeted for tolerating data
errors generated by transient faults. Errors are masked by
a majority vote on the results from three executions of the
task. The disadvantage of TEM is that a permanent fault
may cause the second and third execution to produce
identical erroneous results, which thus are selected as the

Proceedings of the 9th IEEE International On-Line Testing Symposium (IOLTS’03)
0-7695-1968-7/03 $17.00 © 2003 IEEE

output by the majority vote.
Figure 2 shows an example of a periodic task that is

executed two times to detect errors and a third execution is
only started if an error is detected. x1, x2 and x3 represent a
specific arithmetic operation that is executed three times
in each task replica.

Figure 2. Time interval in a TEM execution

Using equation (2.1) to (2.3), the probability of
detecting an error in the example given in Figure 2 can be
derived in the same way as for TED (see [9] for details).

A fault occurring during time interval T1 to T4 will
never be detected since it will affect two executions in the
same way. A fault occurring during time interval T7 is not
detected since the third execution is only started if a fault
is detected by the comparison. Thus, the probability,
P(DTEM,x) that the majority voter detects an error generated
by a permanent fault can be computed as:

P(DTEM,x) = P5·Px1''+ P6 ·(1-(1-Px1'')(1-Px2''))

where P5 and P6 is the probability that a fault occurs in the
time interval T5 and T6, and Pxi is the probability that the
fault is activated when executing operation xi. The
expression can be generalized to:

[]∑
−

=
++ −−⋅=

2/)3(

1
2/)1(,)1(1)(

N

i

i
NixTEM PxPDP (2.8)

where N is the number of time intervals.

3. Evaluation

In this section, we experimentally investigate the
validity of two properties that the derivation of
equation (2.5) is based on:

P1: The detection probability is different for different
time intervals.

P2: The detection probability increases with the
number of operations executed.

3.1. Experimental setup

Target system: As mentioned in the previous sections,
we focus on the arithmetic units of a microprocessor.
Specifically, this evaluation is performed on the multiplier
unit of a CPU, i.e. faults are only injected into the
multiplier. Thus, only multiplication operations can
activate these faults. The target processor is a RTL level
VHDL model of the Thor microprocessor [11] where the

multiplier unit is replaced with a structural gate-level
VHDL description.

The multiplier performs 32-bit by 32-bit integer and
floating-point multiplications. In order to reduce chip size
and increase clock speed, the multiplier is designed 34x14
bits and performs multiplication in several cycles.

The multiplier consists of three parts, a Booth
algorithm, a Wallace tree, and an Adder. The Booth
algorithm and the Wallace tree are both used to speed up
the multiplication. The Booth algorithm reduces the
number of partial products to be summed, and the Wallace
tree accelerates the addition of partial products.

The Thor microprocessor includes several internal
EDMs. However, the only internal EDM that can be
triggered by faults injected into the multiplier performing
integer multiplications is the Overflow check, i.e. an
overflow of a signed integer or floating point operation.

Fault injection environment: The VHDL model of the
Thor processor was executed using the ModelSim EE
Simulator on five Unix workstations. Faults are injected
by using simulator commands, which force signal values
to zero or one. In addition, special command files were
defined that start simulations of the processor and save the
signals of interests into log files. The saved signals were
then examined off-line in order to derive the results.

Workload: Both the workload program and the input
data to the program must be considered when evaluating
the impact of permanent faults in microprocessors. We
chose a matrix multiplication program, and varied the
input to the program to obtain representative results for
the multiplier. To constrain the evaluation time, the
matrix program is limited to multiplication of two 1 x 2
integer matrices [a1a2]·[b1b2]

T=[a1·b1+a2·b2]. The matrix
program was executed twice and the results from the two
executions were compared to detect errors. The TEM
technique was not experimentally evaluated. Note
however, the number of faults that would have been
detected by the TEM technique can be estimated using
equation (2.8). The input data to the matrix operation are
signed integers, which can have values of ± 231-1. Thus, to
avoid triggering of an overflow exception during fault free
operation, the input values were randomly chosen as:

=

2

max Int
randomIndata

Figure 3 shows the time redundant execution of the
matrix multiplication task that is used in the experiments.

Figure 3. Execution of the matrix operation

Comparison Voting

TA,Period

Time

x1' x2' x3'x1 x2 x3 x1'' x3''

T1 T3T2 T4 T5 T6 T7

x2''

T5T2 T3 T4T1

TA,1

TA,Period

TA,2 Time

x1 x2 x1' x2'

Proceedings of the 9th IEEE International On-Line Testing Symposium (IOLTS’03)
0-7695-1968-7/03 $17.00 © 2003 IEEE

Two MUL operations (called x1 and x2) are executed
for each execution of the task (called TA,1 and TA,2). The
intervals between the operations are denoted T1 to T5.

Fault model and fault locations: The fault models
used in the experiments are the common logic-level stuck-
at-(0/1). This fault model represents physical defects in
the circuit caused by, e.g. electrical stress, hot electronic
trapping, thin-oxide breakdown, electromigration,
radiation etc. The physical defects may cause transistor
stuck-on/off or shorts/open connection lines, which can
manifest themselves as stuck-at-0 or stuck-at-1 in logical
gates. Faults were injected in 24635 signals in the
multiplier combinatorial logic, i.e. 10632, 4997 and 9006
locations respectively in the Booth algorithm, Wallace tree
and Adder.

3.2. Verification of Property P1

A set of experiments was conducted to verify that the
probability of detecting errors using TED depends on the
point in time a fault occurs. Since faults are only injected
into the multiplier, only multiply operations can activate
them. Therefore, the detection probability of a fault should
be the same at all times during a time interval. In
addition, only faults occurring after the execution of the
first operation (x1 in Figure 3), but before the execution of
the last operation (x2' in Figure 3) can be detected.

Experiment definition: A fault F is defined as:
F = {L, I} x T, where the location (L) and the input data
(I) are chosen as a set combined with the injection time
(T) for the fault injection. 250 set of locations and four
input data values, and 50 time points were selected
randomly from each domain using uniform sampling
distribution for each of the three parts of the multiplier
(Booth, Wallace and Adder). In addition, both stuck-at-0
and stuck-at-1were injected for each fault F, which results
in a total of 250·50·3·2=75000 injected faults.

Results: The results from the experiments are shown in
Table 1. As expected, most errors were detected by TED
in interval T3 and no errors were detected by TED in
interval T1 or T5. Faults injected after the last MUL
(interval T5) will not be activated until the next iteration,
where they will have the same effect as for faults injected
in interval T1 (here, only one iteration is executed).

Table 1. Results of fault injection experiments
T1 T2 T3 T4 T5 All

% # % # % # % # % # %

Correct
result

5076 37,6 5067 37,5 9024 37,6 9335 47,9 4500 100,0 33002 44,0

Detected by
overflow
EDM

6687 49,5 6696 49,6 11888 49,5 8334 42,7 0 0,0 33605 44,8

Detected by
TED

0 0,0 1170 8,7 3088 12,9 1831 9,4 0 0,0 6089 8,1

Wrong
result

1737 12,9 567 4,2 0 0,0 0 0,0 0 0,0 2374 3,1

A detailed investigation shows that faults injected into
a signal in the multiplier result in the same detection
probability irrespective of when in a time interval between
multiply operations the fault was injected. Faults
occurring during the execution of the operation also have
lower detection probability than faults occurring between
the operations.

The number of faults that would have been detected if
the TEM technique were used for the fault injection
experiments can be estimated using expression (2.8), i.e.
P(DTEM) = P4·Px. Thus, the detection probability of TEM
corresponds to the percentage of faults detected when
injecting faults in the time interval T4, i.e.
1831/75000=2.3% of all injected faults while TED detects
8.1% of all injected faults.

3.3. Verification of Property P2

Another set of experiments was conducted to verify that
the probability of detecting errors also depends on the
probability Px that a fault is activated when a certain
operation x is executed (see equation (2.2)), and the
number of operations i, executed that can activate a fault
(see equation (2.3)).

Experiment definition: In these experiments, a fault F
is defined as: F = L x I x T where the location (L) and the
input data (I) are selected randomly from the respective
domain using uniform sampling distribution. Using the
results from Section 3.2 enable us to decrease the number
of time-points (T) to inject faults to one time-point for
each time interval since the effect of an injected fault is
equal for all points in a time interval between multiply
operations. 246 locations were chosen, of which 106
signals were in Booth, 50 signals in the Wallace tree and
90 signals in the Adder part. 50 sets of four input data
values and 1 time point in each of the intervals T2, T3 and
T4 were chosen. Both stuck-at-0 and stuck-at-1 faults were
injected for each fault F, which results in a total of
(106+90+50)·3·2 = 73800 injected faults.

Results: The activation probability for one
multiplication Px is estimated by using the results
obtained when injecting faults during the time interval T4,
i.e. these faults can only affect the last multiplication, x2'.
Thus, the activation probability, Px, corresponds to the
number of errors detected either by the TED or the
overflow EDM. (The experimental results show that Px is
70% for the Wallace part, 58% for the Booth part and
31% for the Adder part).

To investigate the accuracy of equation (2.3), the
activation probability Px obtained when injecting faults
into time interval T4 is used to estimate the activation
probability for two multiplications as Px,tot = 1-(1-Px)2.
The activation probability for two multiplications can also

Proceedings of the 9th IEEE International On-Line Testing Symposium (IOLTS’03)
0-7695-1968-7/03 $17.00 © 2003 IEEE

be estimated (called Px,totFI) by using the results obtained
when injecting faults during the time interval T3, i.e. these
faults can affect both the x1' and the x2' multiplication.
Table 2 shows the difference between Px,tot and Px,totFI

for the various parts of the multiplier, where the average
difference ranges from 0,001 to 0,014.

Table 2. Confidence of the proposed expression
Average difference

(Px,tot -Px,totFI)
90% confidence

interval
Booth algorithm -0,001 ± 0,07
Wallace tree 0,014 ± 0,1
Adder -0,006 ± 0,06

There are two possible reasons for the differences
between the obtained and estimated Px values. First, only
50 multiplications were performed for each fault to
investigate the activation frequency. Thus, some variance
can be expected as shown in Table 2. Second, if
assumption A4 is not valid, i.e. if some errors are masked,
Px obtained from interval T3 is expected to be higher than
Px obtained from interval T4. From the analysis we can
see that we have a certain variance, but it is low. This
makes us conclude that even if it is possible for errors to
compensate each other, this probability is low. Thus,
equation (2.3) appears to be correct.

The results are shown in detail in Table 3. As shown in
the table, 4.4% of the faults injected during interval T2

caused wrong results. The reason for this is that the
injected faults are activated by the second MUL operation
in both executions, which caused two equal but faulty
results to be produced.

Table 3. Results of fault injection experiments
T2 T3 T4

% # % # %

Correct result 10015 40,7 10035 40,8 12126 49,3

Detected by
overflow EDM

11226 45,7 11225 45,6 9793 39,8

Detected by TED 2269 9,2 3340 13,6 2681 10,9

Wrong result 1090 4,4 0 0,0 0 0,0

4. Implications of the expression

We have validated the expression derived in Section 2
for a multiplier unit. However, this is just an indication
that the derived expression is valid in general. The
expression needs to be validated in more detail and for
other parts of a processor. However, assuming that the
expression is valid, some suggestions for increasing the
probability of detecting errors can be made.

4.1. Increasing the Error Detection Probability

Reflecting on the derived expression, it can be seen that
the time between operations relates to the probability of
detecting errors. Thus, the probability of detecting errors

can be increased by enlarging the interval between the
first and second execution.

Consider a simple example with one periodic tasks
which have the period time T = 10 ms and the execution
time C = 2 ms, and the deadline d equal to the period
time. The task performs one multiplication 0.5 ms after
the start and another multiplication 0.75 ms after the first
multiplication. Figure 4 suggests two different time
redundant execution schedules for TED.

Figure 4. Time redundant execution of tasks

Using equation (2.5), the probability of detecting errors
with the TED scheduling examples can be estimated as:

 P(Dx) = (P2 + P4) · Px + P3 · (1-(1-Px)2) (4.1)

In TED-1 the tasks are executed one after the other,
while in TED-2 the tasks are separated, thereby increasing
the time interval T3. Enlarging the interval T3 without
changing the period time of the task will increase P3 (see
equation (2.1)). Thus, the probability of detecting errors
will be higher for TED-2 according to equation (4.1).

In TEM, the probability that the majority voter detects
an error generated by a permanent fault can be estimated
using equation (2.8) as:

 P(DTEM,x) = P4 · Px (4.2)

Since P4 is computed from time interval T4, which is
located during execution of a single task replica, it is not
possible to increase the probability of detecting errors by
changing the schedule of the tasks in TEM.

Figure 5 shows the probability of detecting an error for
TED-1, TED-2 and TEM using equation (4.1) and (4.2),
where different values of Px are used.

0

0,2

0,4

0,6

0,8

1

0 0,2 0,4 0,6 0,8 1
Px

Pd
et

,x TED-1

TED-2

TEM

Figure 5. Detection probability for TED and TEM

The figure shows that the probability of detecting errors
increases as the time interval between the first and second
execution of the task is extended for TED while the

T5T2 T3 T4T1

Time

x1 x2 x1' x2'

Time

x1 x2 x1' x2'

TED-1

TED-2

A fault occur during the TA,Period

T5T2 T3 T4T1

Proceedings of the 9th IEEE International On-Line Testing Symposium (IOLTS’03)
0-7695-1968-7/03 $17.00 © 2003 IEEE

probability of detecting errors generated by permanent
faults in the TEM approach is always lower.

A solution, which might improve the error detection
capability of TEM, is to use a specially designed test tasks
that check the arithmetic units for permanent faults. One
approach could be to execute a number of operations in a
test task that utilize all the arithmetic units, i.e. various
logic and arithmetic operations. An approximation of the
detection probability of such a test would be (1-(1-Px)i),
where Px is the probability that the fault should be
activated with the operation x and i is the number of such
operations in the test. Scheduling a test task in
combination with TEM can be performed by setting a low
priority of the test tasks, which then execute only when
extra time is available. The task can also be scheduled
with a certain periodicity (based on the intensity of
permanent faults) or be activated when suspecting a
permanent fault, e.g. when three different results are
obtained in TEM.

5. Conclusion

In this paper, the possibility of detecting errors
generated by permanent faults with time redundancy was
investigated. The probability of detecting an error depends
on the intensity of permanent faults, the duration of the
faults, the points in time the faults occur, the probability
that the faults are activated and the task schedule.

Based on the investigation, an expression was derived
for estimating the probability of detecting errors generated
by permanent faults in the arithmetic parts of a
microprocessor using time redundancy. To verify that the
expression is valid, faults were injected into a structural
gate-level VHDL model of a multiplier in the Thor
microprocessor. The results correspond to the derived
expression. However more experiments with different
workloads are needed to verify that the expression is valid
for all arithmetic parts of a processor.

The derived expression can be used to determine the
detection probability of time redundancy based techniques.
Furthermore, it can be used to optimize the task schedule
of double executed tasks to maximize the probability of
detecting errors generated by permanent faults.

The paper also considers the Temporal Error Masking
approach (TEM), which is able to mask transient faults by
triple time-redundant execution and voting. However, by
using the derived expression, we identified that the
probability of detecting errors generated by permanent
faults in TEM is low. Therefore, a special test task that
checks the arithmetic units for permanent faults in
combination with TEM was proposed.

Further work will focus on investigating the inclusion
of test tasks in combination with TEM. We believe that

this complementary error detection technique in
combination with TEM will significantly reduce the
probability of value failures caused by both transient and
permanent faults.

6. Acknowledgements

We would especially like to thank Örjan Askerdal at
Chalmers University for his valuable suggestions and
comprehensive comments on the paper. We thank Stefan
Asserhäll and Torbjörn Hult at Saab Ericsson Space AB
for providing the VHDL model of the Thor processor and
for their technical assistance. This work was supported by
ARTES and the Swedish Foundation for Strategic
Research (SSF).

7. References

[1] D.M. Andrews. "Using Executable Assertions for Testing
and Fault Tolerance", 9th Annual Int’l.. Symp. on Fault-
Tolerant Computing, 1979. New-York, USA.

[2] Johnson B.W., Design and Analysis of Fault-Tolerant
Digital Systems, Addison-Wessley, 1989.

[3] T. Lovric, "Dynamic Double Virtual Duplex System: A
Cost-Efficient Approach to Fault-Tolerance", Dependable
Computing for Critical Applications 5, IEEE Computer
Society, 1998, pp. 57-74.

[4] N. Oh, P.P. Shirvani and E.J. McCluskey, "Error Detection
by Duplicated Instructions In Super-scalar Processors,"
IEEE Transaction on Reliability, Sep. 2001.

[5] Oh, N., and E.J. McCluskey, “Procedure Call Duplication:
Minimization of Energy Consumption with Constrained
Error Detection Latency” Proc. IEEE Int’l Symp. on Defect
and Fault Tolerance in VLSI Systems, 2001, pp. 182 –187.

[6] A. Damm, “The Effectiveness of Software Error-Detection
Mechanisms in Real-Time Operating Systems”, Digest of
Papers, 16th Int’l Symp. on Fault-Tolerant Computing
Systems, Washington, DC, USA, 1986, pp. 171-176.

[7] E. Rotenberg, "AR-SMT: A Microarchitectural Approach
to Fault Tolerance in Microprocessors", Int’l Conf. on
Dependable Systems and Networks, Madison, WI, USA,
1999, pp. 84-91.

[8] J. Aidemark, J. Vinter, P. Folkesson, and J. Karlsson,
“Experimental Evaluation of Time-redundant Execution
for a Brake-by-wire Application”, Int’l. Conf. on Depend-
able Systems and Networks, Washington DC, USA, 2002.

[9] J. Aidemark, Ö. Askerdal, ”Use of Time Redundancy for
Detection of Data Errors caused by Non-Transient Faults",
Report No. 03-09, Department of Computer Engineering,
Chalmers University of Technology, Sweden, 2003.

[10] J. Leung, and J. Whitehead, “On the Complexity of Fixed-
Priority Scheduling of Periodic, Real-Time Tasks,
Performance Evaluation, December 1988.

[11] Saab Ericsson Space AB, Microprocessor Thor, Product
Information, September 1993.

Proceedings of the 9th IEEE International On-Line Testing Symposium (IOLTS’03)
0-7695-1968-7/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

