Overview

- \blacktriangleright Winning regions in various ω -regular games are nested fixpoints.
- ► Emerson-Lei objectives succinctly encode standard objectives.
- ► Zielonka trees characterize winning in Emerson-Lei games.

We show how to extract a nested fixpoint from any Zielonka tree, resulting in a symbolic algorithm that solves Emerson-Lei games with n nodes, m edges and k colors in time $\mathcal{O}(k! \cdot m \cdot n^{\frac{\kappa}{2}})$.

This generalizes previous fixpoint algorithms for Büchi, parity, GR[1], Rabin and Streett games, recovering previous upper bounds on runtime.

Emerson-Lei Games

Infinite-duration zero-sum games played by two players \exists and \forall :

 $G = (V = V_{\exists} \cup V_{\forall}, E \subseteq V \times V, \mathsf{col} : V \to 2^C, \varphi) \qquad \varphi \in \mathbb{B}(\mathsf{GF}(C))$

Player \exists wins play $\pi \subseteq V^{\omega}$ in G if and only if $\operatorname{col}[\pi] \models \varphi$

Examples:

$$\begin{split} \varphi &= \mathsf{GF} f \\ \varphi &= \bigwedge_{1 \leq i \leq k} \mathsf{GF} f_i \\ \varphi &= \bigwedge_{1 \leq i \leq k} \mathsf{GF} p_i \to \bigwedge_{1 \leq j \leq k} \mathsf{GF} q_j \\ \varphi &= \bigvee_{i \text{ even}} \mathsf{GF} p_i \wedge \mathsf{FG} \bigwedge_{i < j \leq k} \neg p_j \\ \varphi &= \bigvee_{1 \leq i \leq k} \mathsf{GF} e_i \wedge \mathsf{FG} \neg f_i \\ \varphi &= \bigwedge_{1 \leq i \leq k} (\mathsf{GF} r_i \to \mathsf{GF} g_i) \\ \varphi &= \bigvee_{U \in \mathcal{U}} \bigwedge_{i \in U} \mathsf{GF} f_i \wedge \mathsf{FG} \bigwedge_{j \notin U} f_j \end{split}$$
(Mul

Emerson-Lei games are determined, but not positional (e.g. Streett).

Zielonka Trees

Tree \mathcal{Z}_{φ} with vertices X labeled by $l(X) \subseteq C$, subject to certain maximality conditions. Vertex X is green if $l(X) \models \varphi$ and red otherwise.

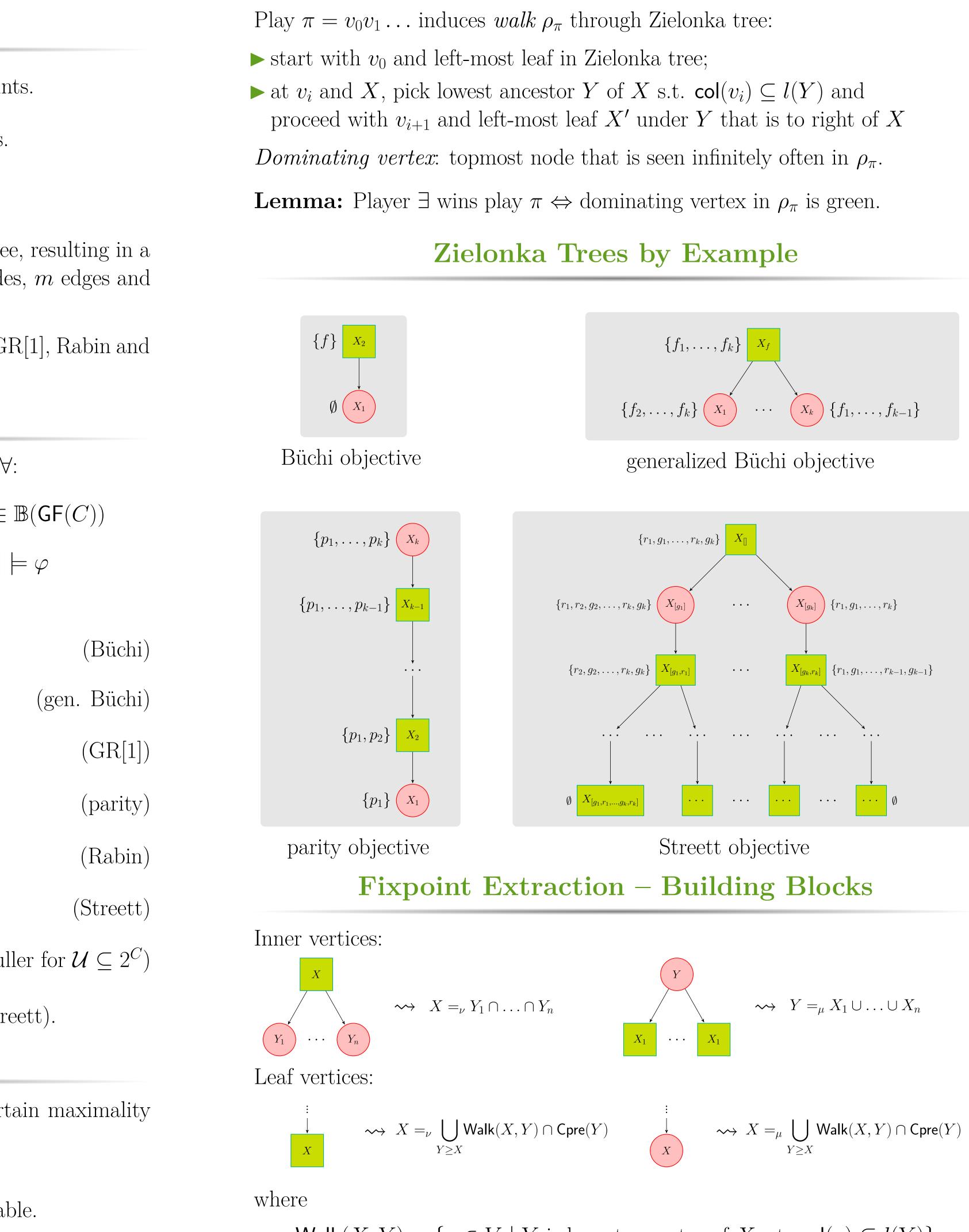
Require for all children Y, Y' of X: X green \Leftrightarrow Y red, $l(Y) \subseteq l(X)$, l(Y) and l(Y') are incomparable.

Lemma: The Zielonka tree \mathcal{Z}_{φ} has at most $e \cdot |C|!$ vertices.

Solving Emerson-Lei Games via Zielonka Trees

Daniel Hausmann, Mathieu Lehaut and Nir Piterman

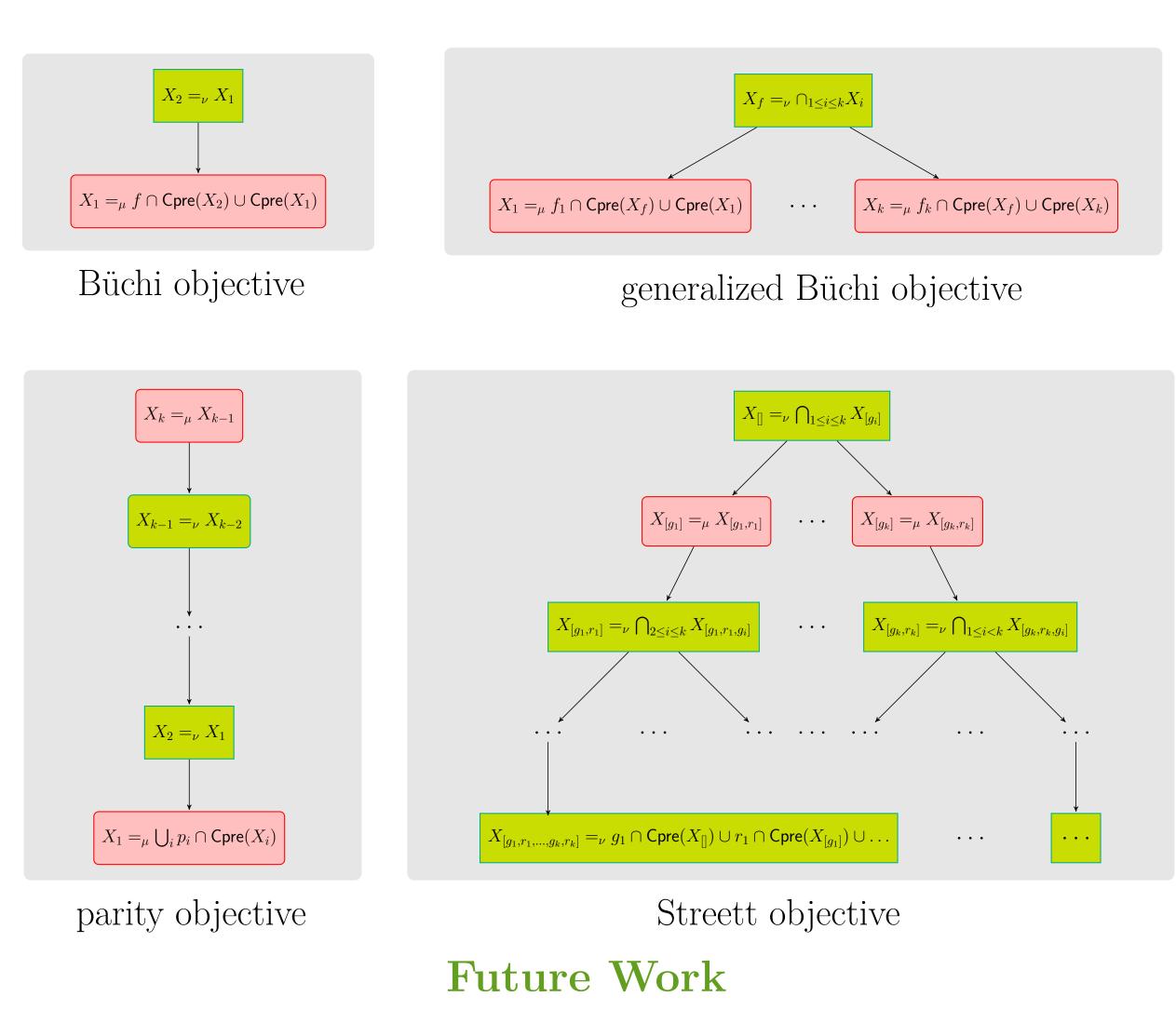
University of Gothenburg, Sweden



 $\mathsf{Walk}(X,Y) = \{ v \in V \mid Y \text{ is lowest ancestor of } X \text{ s.t. } \mathsf{col}(v) \subseteq l(Y) \}$ for vertices X, Y, and Cpre encodes one-step attraction for player \exists .

Theorem: The solution of the extracted fixpoint equation system is the winning region in the corresponding Emerson-Lei game. \Rightarrow Solve equation systems by fixpoint iteration to solve Emerson-Lei games with n nodes and k colors symbolically in time $\mathcal{O}(k! \cdot n^{\frac{k}{2}+2})$. For simpler conditions, this recovers previous fixpoint iteration algorithms.

Extracted Fixpoint Systems by Example



- ▶ Use universal trees to solve equation systems in time $\mathcal{O}(k! \cdot n^{\log k})$, generalizing quasipolynomial method to Emerson-Lei games.
- the *Emerson-Lei and safety fragment* of LTL.
- ► Similar reduction from alternating Emerson-Lei automata to alternating weak automata

Main Result

▶ Implement solving algorithm, finds direct application in reactive synthesis for

More details and results: https://arxiv.org/pdf/2305.02793.pdf