Uniform Solving for ω-regular Games

Quasipolynomial Computation of Nested Fixpoints (TACAS 2021)

Daniel Hausmann
Gothenburg University, Sweden

Lutz Schröder
University Erlangen-Nuremberg, Germany

HIGHLIGHTS 2021 – September 15 2021
Parity game winning regions are nested fixpoints over powerset lattice.

Recent breakthrough result: solving parity games is in QP.

Idea: Adapt QP parity game solving algorithms to compute general nested fixpoints, obtain same results for more general games / logics.

Main contribution:
QP algorithm for computing nested fixpoints over arbitrary finite lattices.
Finite lattice \((L, \sqsubseteq)\) with basis \(B\) of size \(n = |B|\)

Nested Fixpoints over \(L\)

For monotone function \(f : L^d \rightarrow L\) (w.l.o.g. \(d\) even), put

\[
\text{NFP } f := \text{GFP } X_d \cdot \text{LFP } X_{d-1} \ldots \text{LFP } X_1.f(X_1, \ldots, X_d)
\]

(Our results actually hold for fixpoint equation systems)
Parity game $G = (V_\exists \cup V_\forall, E, \Omega)$, n nodes, d priorities

One-step game function $f_{PG} : (2^n)^d \to 2^n$:

$$(X_1, \ldots, X_d) \mapsto (V_\exists \cap \Diamond X_\Omega) \cup (V_\forall \cap \Box X_\Omega)$$

Theorem [Walukiewicz, 1996]

Player \exists wins v if and only if $v \in \text{NFP } f_{PG}$.
Energy parity game $G = (V_\exists \cup V_\forall, E, \Omega, w), w : E \to \mathbb{Z}$

- Bound on histories $c = n \cdot d \cdot w_{\text{max}}$ [Chatterjee, Doyen, 2012]

One-step game function $f_{\text{EPG}} : (c^n)^d \to (c^n)$:

$$(X_1, \ldots, X_d) \mapsto (V_\exists \sqinter \Diamond_E X_\Omega) \sqcup (V_\forall \sqinter \Box_E X_\Omega)$$

Theorem [Amram, Maoz, Pistiner, Ringert, 2020]

Player \exists wins v with initial credit c_0 if and only if $(\text{NFP } f_{\text{EPG}})(v) \leq c_0$.
Progress measure algorithm for computing NFP f ($f : L^d \rightarrow L$)
Progress is measured using nodes in universal tree

Main Contribution: Theorem
The progress measure algorithm computes NFP f.

Corollary [Czerwinski et al. 2018]
Nested fixpoints over finite lattices can be computed with quasipolynomially many iterations.
Results:

- Quasipolynomial solving of fixpoint equations by universal trees
- Highly general quasipolynomial progress measure algorithm for
 - Parity games / model checking μ-calculus
 - Energy parity games / model checking energy μ-calculus
 - Mean pay-off parity games
 - Stochastic parity games (both qualitative and quantitative)
- Typical runtime: $O((hn)^{\log d})$ (notable exception: stochastic games)

Ongoing work:

- Implement algorithm to obtain generic game solver
- Does this work for all games with finite-history winning strategies?