Game Reductions in Formal Methods

Recent work on improved game analysis

Daniel Hausmann Gothenburg University, Sweden

FM Retreat – January 12, 2023

- Model checking: $\mathcal{M} \models \varphi$?
- Validity checking: $\forall \mathcal{M}. \mathcal{M} \models \varphi$?
- \blacktriangleright Reactive synthesis: construct controller from specification φ

- Model checking: $\mathcal{M} \models \varphi$?
- Validity checking: $\forall \mathcal{M}. \mathcal{M} \models \varphi$?
- \blacktriangleright Reactive synthesis: construct controller from specification φ

Model \mathcal{M} : (Weighted) Transition system, Markov chain, game frame, ...

Formula φ : LTL / CTL, graded, probabilistic, ATL, ...

- Model checking: $\mathcal{M} \models \varphi$?
- Validity checking: $\forall \mathcal{M}. \mathcal{M} \models \varphi$?
- \blacktriangleright Reactive synthesis: construct controller from specification φ

Model \mathcal{M} : (Weighted) Transition system, Markov chain, game frame, ...

Formula φ : LTL / CTL, graded, probabilistic, ATL, ...

Why Games?

All these problems reduce to solving infinite duration 2-player games!

$$G = (V_{\circ}, V_{\Box}, E, \alpha)$$

nodes $V = V_{\circ} \cup V_{\Box}$ moves $E \subseteq V \times V$ objective $\alpha \subseteq V^{\alpha}$
start $\rightarrow \square$

- ▶ (positional) \circ -strategy: function $s: V_{\circ} \rightarrow V$
- s is winning for player \circ iff plays(s) $\subseteq \alpha$
- determinacy: every node is won by exactly one player

nodes

$$G = (V_{\circ}, V_{\Box}, E, \alpha)$$

$$V = V_{\circ} \cup V_{\Box} \qquad \text{moves } E \subseteq V \times V \qquad \text{objective } \alpha \subseteq V^{\alpha}$$

$$\text{start} \rightarrow \blacksquare$$

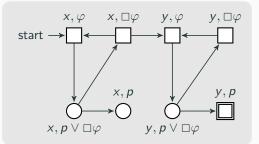
- ▶ (positional) \circ -strategy: function $s: V_{\circ} \rightarrow V$
- s is winning for player \circ iff plays(s) $\subseteq \alpha$
- determinacy: every node is won by exactly one player

Model Checking Games, CTL

Transition system
$$\mathcal{M}$$
:

CTL formula $\varphi = AF p$

 $\mathcal{M}, x \models \varphi$?



Theorem

Player \circ wins game if and only if $\mathcal{M} \models \varphi$.

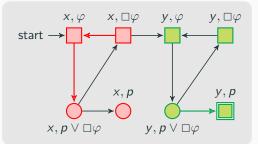
D. Hausmann - Game Reductions

Model Checking Games, CTL

Transition system
$$\mathcal{M}$$
: $\xrightarrow{(x)}{(x)} \xrightarrow{(y)}{(y)} p$ CTL

CTL formula $\varphi = AF p$

 $\mathcal{M}, x \models \varphi$?



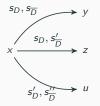
Theorem

Player \circ wins game if and only if $\mathcal{M}, x \models \varphi$.

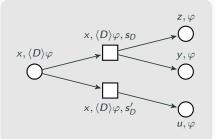
D. Hausmann - Game Reductions

Model Checking Games, ATL

ATL: modalities $\langle D \rangle \varphi$ for coalitions *D*, interpreted over game frames:



$$\begin{aligned} x &\models \langle D \rangle \varphi \text{ if and only if} \\ \exists s_D. \forall s_{\overline{D}}. \, \delta(x, s_D, s_{\overline{D}}) \models \varphi \end{aligned}$$



Model checking game for $x \models \langle D \rangle \varphi$:

Transform game frame ${\mathcal M}$ to effectivity function ${\mathcal M}'$

Theorem

 $\mathcal{M} \models \varphi$ if and only if $\mathcal{M}' \models \varphi$.

Solve game for $\mathcal{M}' \models \varphi$

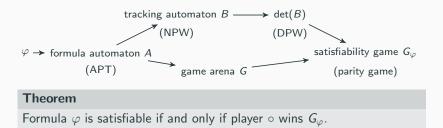
Cost: Transformation can be expensive Benefit: Model checking game for \mathcal{M}' can be much smaller than for \mathcal{M}

Ongoing work: Implement and benchmark this; leads to significant speed-up on (some) practical examples

Satisfiability Games

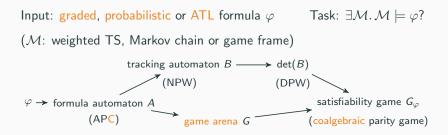
Input: CTL or μ -calculus formula φ Task: Is φ a tautology?

 $\forall \mathcal{M}. \ \mathcal{M} \models \varphi \ \text{if and only if} \ \neg \exists \mathcal{M}. \ \mathcal{M} \models \neg \varphi$



 $|G_{\varphi}| \in \mathcal{O}(2^{|\varphi| \log |\varphi|})$, satisfiability problem is EXPTIME complete!

 A Survey on Satisfiability Checking for the μ-Calculus through Tree Automata [H, Piterman, 2022]



Only modal steps in game arena G and resulting game G_{φ} change

```
Theorem [H, Schröder, 2019]
Formula \varphi is satisfiable if and only if player \circ wins G_{\varphi}.
```

Ongoing work: Implementation and benchmarking of this in generic satisfiability solver "COOL 2", first reasoner for graded μ -calculus.

Given φ , construct controller $c: (2^{I})^* \to 2^{O}$ s.t. $\forall i_0 i_1 \ldots \in (2^{I})^{\omega}$,

 $(i_0 \cup c(i_0))(i_1 \cup c(i_0i_1)) \ldots \models \varphi.$

Workflow:

 $\varphi \xrightarrow{\text{enum}} A(\varphi) \xrightarrow{\text{enum}} \det(A(\varphi)) \xrightarrow{\text{enum}} \text{synthesis game } G_{\varphi}$ (NBW) (DPW) (parity game)

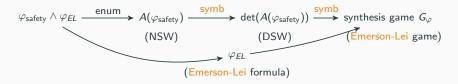
▶ $|G_{\varphi}| \in O(2^{2^{|\varphi|}})$, synthesis problem is 2EXTPIME-complete

Approach is not open to symbolic methods

Ongoing work: Synthesis for safety Emerson-Lei fragment of LTL

 $\varphi_{\mathsf{safety}} \land \varphi_{\mathsf{EL}}$

 $\varphi_{EL} \in \mathbb{B}(\mathsf{GF}(I \cup O))$, e.g. $\varphi_{EL} = \mathsf{GF}(a) \land \neg \mathsf{GF}(b) = \mathsf{GF}(a) \land \mathsf{FG}(\neg b)$



Results so far: approach enables some amount of symbolic reasoning; novel solving algorithm for Emerson-Lei games

Take-away:

- Games capture central algorithmic content of many problems in CS
- Better game solving algorithms / smarter game reductions lead to improved problem solving

Ongoing work:

- ATL model checking in practice
- Generic satisfiability checking in practice (e.g. graded μ-calculus)
- Symbolic LTL synthesis via Emerson-Lei games