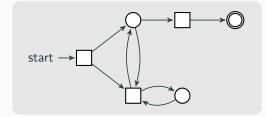
Games for Fun and Profit

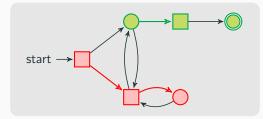
Some recent results on improved game analysis

Daniel Hausmann Gothenburg University, Sweden

FM Retreat, December 12, 2023



European Research Council Established by the European Commission


Two-Player Games

Games: algorithmic essence of verification, reasoning, synthesis, ...

Two-Player Games

Games: algorithmic essence of verification, reasoning, synthesis, ...

- ► How to compute *winning regions*?
- ► How to extract *winning strategies*?
- Reduction of problems to game solving

Some Recent Results

- COOL 2 A Generic Reasoner for Modal Fixpoint Logics [CADE 2023] (O. Görlitz, M. Humml, D. Pattinson, S. Prucker, L. Schröder)
- Generic Model Checking for Modal Fixpoint Logics in COOL-MC [VMCAI 2024] (M. Humml, S. Prucker, L. Schröder, A. Strahlberger)

Some Recent Results

- COOL 2 A Generic Reasoner for Modal Fixpoint Logics [CADE 2023] (O. Görlitz, M. Humml, D. Pattinson, S. Prucker, L. Schröder)
- Generic Model Checking for Modal Fixpoint Logics in COOL-MC [VMCAI 2024] (M. Humml, S. Prucker, L. Schröder, A. Strahlberger)
- Symbolic algorithm for solving Emerson-Lei games (Mathieu, Nir)
- Reducing fair games to standard games (I. Saglam, A. Schmuck, Nir)
- Accelerated solution for tree-parts of parity games
- Faster and smaller solution for obliging games (Nir)

Emerson-Lei Games

Emerson-Lei Games

$$G = (V, E \subseteq V \times V, \mathsf{col} : V \to 2^{\mathsf{C}}, \varphi) \qquad \varphi \in \mathbb{B}(\mathsf{GF}(\mathsf{C}))$$

Player \exists wins play π iff $\operatorname{col}[\pi] \models \varphi$

Emerson-Lei Games

Emerson-Lei Games

$$G = (V, E \subseteq V \times V, \mathsf{col} : V \to 2^{\mathsf{C}}, \varphi) \qquad \varphi \in \mathbb{B}(\mathsf{GF}(\mathsf{C}))$$

Player \exists wins play π iff $\operatorname{col}[\pi] \models \varphi$

Examples:

$$C = \{f\} \qquad \varphi = \mathsf{GF} f \qquad (\mathsf{B\"{uchi}})$$

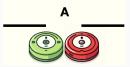
$$C = \{f_1, \dots, f_k\} \qquad \varphi = \bigwedge_{1 \le i \le k} \mathsf{GF} f_i \qquad (\mathsf{gen. B\"{uchi}})$$

$$C = \{p_1, \dots, p_{2k}\} \qquad \varphi = \bigvee_{i \text{ even }} \mathsf{GF} p_i \land \bigwedge_{j > i} \mathsf{FG} \neg p_j \qquad (\mathsf{parity})$$

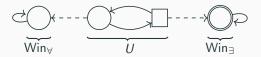
$$C = \{e_1, f_1, \dots, e_k, f_k\} \qquad \varphi = \bigvee_{1 \le i \le k} \mathsf{GF} e_i \land \mathsf{FG} \neg f_i \qquad (\mathsf{Rabin})$$

$$C = \{r_1, g_1, \dots, r_k, g_k\} \qquad \varphi = \bigwedge_{1 \le i \le k} \mathsf{GF} r_i \to \mathsf{GF} g_i \qquad (\mathsf{Streett})$$

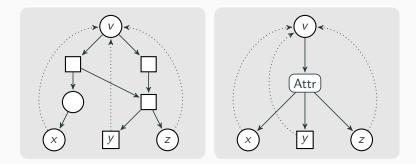
Determined, not positional (in general: memory |C|!)


D. Hausmann - Game Solving

Main results:


- Direct fixpoint characterization of Zielonka trees
- Adaptive symbolic fixpoint algorithm for Emerson-Lei games
- Solves Emerson-Lei games with *n* nodes, *k* colors in time $\mathcal{O}(k!n^{\frac{k}{2}})$

Application: Symbolic reactive synthesis for EL+safety fragment of LTL


- Both green robot and red robot want to reach A first
- Deadlock if neither gives way by moving aside
- ► The one moving aside first loses

 \rightarrow Introduce the notion of fair α/β games, show their determinacy

- Reduction of fair parity(k)/⊥ games to standard parity games of size k · n
- Reduction of fair parity(k)/parity(k') games to standard parity games of size k · k' · n
- Symbolic algorithm to solve both cases directly

n nodes, m cycle-free nodes

 $\nu X. \operatorname{Cpre}(X)$

n iterations of Cpre

 νY . Attr(Y)

n-m iterations of Attr

- Adapt Walukiewicz formulas to use multi-step attraction (Attr) in place of one-step attraction (Cpre)
- \blacktriangleright Reduces domain of fixpoint computations \rightsquigarrow faster game solving
- Show that LAR reduction preserves tree-like sub-games

Take-away:

- Games capture central algorithmic content of many problems in FM
- Better game solving algorithms / smarter game reductions lead to improved problem solving

Ongoing work:

Faster and Smaller Solution of Obliging Games