Faster Game Solving by Fixpoint Acceleration

Daniel Hausmann Gothenburg University, Sweden

FICS, Naples, February 19, 2024

European Research Council Established by the European Commission

Two-Player Games

Games: algorithmic essence of verification, reasoning, synthesis, ...

Two-Player Games

Games: algorithmic essence of verification, reasoning, synthesis, ...

- ► How to compute winning regions (win_∃, win_∀)?
- ► How to extract *winning strategies*?
- Reduction of problems to game solving

Parity Games

Parity Games

$$G = (V, E \subseteq V \times V, \Omega : V \rightarrow \{1, \ldots, 2k\})$$

▶ play:
$$\pi = v_0 v_1 \ldots \in V^{\omega}$$
 with $(v_i, v_{i+1}) \in E$ for all $i \ge 0$

▶ player \exists wins play π iff max(lnf($\Omega[\pi]$)) is even

Parity Games

Parity Games $G = (V, E \subseteq V \times V, \Omega : V \rightarrow \{1, ..., 2k\})$ \blacktriangleright play: $\pi = v_0 v_1 \dots \in V^{\omega}$ with $(v_i, v_{i+1}) \in E$ for all $i \ge 0$ \blacktriangleright player \exists wins play π iff max(lnf($\Omega[\pi]$)) is even

Parity games are positionally determined

 \blacktriangleright Solving parity games is in QP and in NP \cap co-NP

D. Hausmann - Accelerated Game Solving

Parity Games

Parity Games $G = (V, E \subseteq V \times V, \Omega : V \rightarrow \{1, ..., 2k\})$ \blacktriangleright play: $\pi = v_0 v_1 \ldots \in V^{\omega}$ with $(v_i, v_{i+1}) \in E$ for all $i \ge 0$ \blacktriangleright player \exists wins play π iff max(lnf($\Omega[\pi]$)) is even

Parity games are positionally determined

 \blacktriangleright Solving parity games is in QP and in NP \cap co-NP

D. Hausmann - Accelerated Game Solving

Extremal fixpoints of monotone $f : \mathcal{P}(U) \to \mathcal{P}(U)$ for finite set U:

$$\mu X. f(X) = \bigcap \{ W \subseteq U \mid f(W) \subseteq W \} = f^{|U|}(\emptyset)$$
$$\nu X. f(X) = \bigcup \{ W \subseteq U \mid W \subseteq f(W) \} = f^{|U|}(U)$$

Reachability game $G = (V, E \subseteq V^2, F)$, $V = V_{\exists} \cup V_{\forall}$

Controllable predecessor function (one-step forcing):

$$\mathsf{CPre}(X) = \{ v \in V_\exists \mid \exists (v, w) \in E. \ w \in X \} \cup \\ \{ v \in V_\forall \mid \forall (v, w) \in E. \ w \in X \}$$

Reachability game $G = (V, E \subseteq V^2, F)$, $V = V_{\exists} \cup V_{\forall}$

Controllable predecessor function (one-step forcing):

$$\begin{aligned} \mathsf{CPre}(X) = & \{ v \in V_{\exists} \mid \exists (v, w) \in E. \ w \in X \} \cup \\ & \{ v \in V_{\forall} \mid \forall (v, w) \in E. \ w \in X \} \end{aligned}$$

win_{$$\exists$$} = $F \cup CPre(F) \cup CPre(CPre(F)) \cup \dots$
= $\mu X. (F \cup CPre(X))$

Reachability game $G = (V, E \subseteq V^2, F), V = V_{\exists} \cup V_{\forall}$

Controllable predecessor function (one-step forcing):

$$\begin{aligned} \mathsf{CPre}(X) = & \{ v \in V_\exists \mid \exists (v, w) \in E. \ w \in X \} \cup \\ & \{ v \in V_\forall \mid \forall (v, w) \in E. \ w \in X \} \end{aligned}$$

win_{$$\exists$$} = $F \cup CPre(F) \cup CPre(CPre(F)) \cup \dots$
= $\mu X. (F \cup CPre(X))$

Reachability game $G = (V, E \subseteq V^2, F), V = V_{\exists} \cup V_{\forall}$

Controllable predecessor function (one-step forcing):

$$\begin{aligned} \mathsf{CPre}(X) = & \{ v \in V_\exists \mid \exists (v, w) \in E. \ w \in X \} \cup \\ & \{ v \in V_\forall \mid \forall (v, w) \in E. \ w \in X \} \end{aligned}$$

win_∃ = $F \cup CPre(F) \cup CPre(CPre(F)) \cup \dots$ = $\mu X. (F \cup CPre(X))$

Reachability game $G = (V, E \subseteq V^2, F), V = V_{\exists} \cup V_{\forall}$

Controllable predecessor function (one-step forcing):

$$\begin{aligned} \mathsf{CPre}(X) = & \{ v \in V_\exists \mid \exists (v, w) \in E. \ w \in X \} \cup \\ & \{ v \in V_\forall \mid \forall (v, w) \in E. \ w \in X \} \end{aligned}$$

win_∃ = $F \cup \text{CPre}(F) \cup \text{CPre}(\text{CPre}(F)) \cup \dots$ = $\mu X. (F \cup \text{CPre}(X))$

Reachability game $G = (V, E \subseteq V^2, F), V = V_{\exists} \cup V_{\forall}$

Controllable predecessor function (one-step forcing):

$$\begin{aligned} \mathsf{CPre}(X) = & \{ v \in V_\exists \mid \exists (v, w) \in E. \ w \in X \} \cup \\ & \{ v \in V_\forall \mid \forall (v, w) \in E. \ w \in X \} \end{aligned}$$

win_∃ = $F \cup \text{CPre}(F) \cup \text{CPre}(\text{CPre}(F)) \cup \dots$ = $\mu X. (F \cup \text{CPre}(X))$

Büchi game: $G = (V, E \subseteq V^2, F), V = V_{\exists} \cup V_{\forall}$

 $win_{\exists} = \nu X. \, \mu Y. \, (F \cap \mathsf{CPre}(X)) \cup \mathsf{CPre}(Y)$

Büchi game: $G = (V, E \subseteq V^2, F), V = V_{\exists} \cup V_{\forall}$

 $win_{\exists} = \nu X. \, \mu Y. \, (F \cap \operatorname{CPre}(X)) \cup \operatorname{CPre}(Y)$

Büchi game: $G = (V, E \subseteq V^2, F), V = V_{\exists} \cup V_{\forall}$

win_∃ = νX . μY . $(F \cap CPre(X)) \cup CPre(Y) = Y^{|V|}(V)$ $Y^{1}(V) = \mu Y$. $(F \cap CPre(V)) \cup CPre(Y)$

D. Hausmann - Accelerated Game Solving

Büchi game: $G = (V, E \subseteq V^2, F), V = V_\exists \cup V_\forall$

win_∃ = $\nu X. \mu Y. (F \cap CPre(X)) \cup CPre(Y) = Y^{|V|}(V)$ $Y^{1}(V) = \mu Y. (F \cap CPre(V)) \cup CPre(Y)$ $Y^{2}(V) = \mu Y. (F \cap CPre(Y^{2}(V))) \cup CPre(Y)$

D. Hausmann - Accelerated Game Solving

. . .

Büchi game: $G = (V, E \subseteq V^2, F), V = V_{\exists} \cup V_{\forall}$

$$win_{\exists} = \nu X. \mu Y. (F \cap CPre(X)) \cup CPre(Y) = Y^{|V|}(V)$$

$$Y^{1}(V) = \mu Y. (F \cap CPre(V)) \cup CPre(Y)$$

$$Y^{2}(V) = \mu Y. (F \cap CPre(Y^{2}(V))) \cup CPre(Y)$$

$$Y^{3}(V) = Y^{2}(V)$$

. . .

Büchi game: $G = (V, E \subseteq V^2, F), V = V_{\exists} \cup V_{\forall}$

$$win_{\exists} = \nu X. \mu Y. (F \cap CPre(X)) \cup CPre(Y) = Y^{|V|}(V)$$

$$Y^{1}(V) = \mu Y. (F \cap CPre(V)) \cup CPre(Y)$$

$$Y^{2}(V) = \mu Y. (F \cap CPre(Y^{2}(V))) \cup CPre(Y)$$

$$Y^{3}(V) = Y^{2}(V)$$

D. Hausmann - Accelerated Game Solving

. . .

Fixpoint Characterization of Winning, parity

Parity game: $G = (V, E \subseteq V^2, \Omega : V \rightarrow \{1, \dots, 2k\}), V = V_\exists \cup V_\forall$

Walukiewicz-formula (writing $\Omega_i = \{v \in V \mid \Omega(v) = i\}$):

$$\mathsf{win}_{\exists} = \nu X_{2k} \cdot \mu X_{2k-1} \cdot \ldots \cdot \nu X_2 \cdot \mu X_1 \cdot \bigcup_{1 \le i \le 2k} \Omega_i \cap \mathsf{CPre}(X_i)$$

- Adapt Walukiewicz-formulas to use multi-step attraction (DAttr) in place of one-step attraction (Cpre)
- ▶ Shrinks domain of fixpoint computations ~> faster game solving

n nodes, *m* non-DAG nodes

 $\nu X. \operatorname{CPre}(X)$

n iterations of CPre

 $\nu Y. \mathsf{DAttr}(Y)$

Fix parity game $G = (V, E, \Omega : V \rightarrow \{1, \dots, d\})$ with DAG nodes W

DAG attractor (to $Z \subseteq V \setminus W$)

Region from where player \exists can force exiting W to Z:

 $\mathsf{DAttr}_W(Z) = \mu X. Z \cup (W \cap \mathsf{CPre}(X))$

m := |V| - |W|

Theorem

G can be solved with $\mathcal{O}(m^{\log d})$ computations of a DAG attractor.

Advantageous if $m < \log n$ and DAG attraction can be checked efficiently

Replace

$$\nu X_{2k}$$
. μX_{2k-1} νX_2 . μX_1 . $\bigcup_{1 \le i \le 2k} \Omega_i \cap \mathsf{CPre}(X_i)$

with

$$\nu Y_{2k}$$
, μY_{2k-1} , \dots , νY_2 , μY_1 , $\mathsf{DAttr}_W(Y_1, \dots, Y_k)$

The former lives over V, the latter over $V \setminus W$

Particularly helpful for games that encode predicate $f: 2^V \to 2^V$: assume $V_{\forall} = \mathcal{P}(V_{\exists})$ and

- ▶ \exists can move from v to $U \subseteq V$ s.t. $v \in f(U)$
- \forall can move from $U \subseteq V$ to $u \in U$

 \sim DAGs of size $2^{|V|}$; faster game solving if f can be evaluated efficiently

Examples of games of this shape

- Model checking generic μ-calculi [CONCUR 2019, VMCAI 2024]
- Satisfiability checking generic μ-calculi [FoSSaCS 2019, CADE 2023]
- ▶ Baldan, König, Padoan: Solution of fixpoint games [POPL 2018]

► Later-appearance record (LAR) reduction preserves DAG sub-games

Emerson-Lei Games

$$G = (V, E \subseteq V \times V, \mathsf{col} : V \to 2^{\mathsf{C}}, \varphi) \qquad \varphi \in \mathbb{B}(\mathsf{GF}(\mathsf{C}))$$

Player \exists wins play π iff $\operatorname{col}[\pi] \models \varphi$

Emerson-Lei Games

$$G = (V, E \subseteq V \times V, \operatorname{col} : V \to 2^{\mathsf{C}}, \varphi) \qquad \varphi \in \mathbb{B}(\mathsf{GF}(\mathsf{C}))$$

Player
$$\exists$$
 wins play π iff $\operatorname{col}[\pi] \models \varphi$

Examples:

$$C = \{f\} \qquad \varphi = \mathsf{GF} f \qquad (\mathsf{Büchi})$$

$$C = \{p_1, \dots, p_{2k}\} \qquad \varphi = \bigvee_{i \text{ even }} \mathsf{GF} p_i \land \bigwedge_{j>i} \mathsf{FG} \neg p_j \qquad (\mathsf{parity})$$

$$C = \{e_1, f_1, \dots, e_k, f_k\} \qquad \varphi = \bigvee_{1 \le i \le k} \mathsf{GF} e_i \land \mathsf{FG} \neg f_i \qquad (\mathsf{Rabin})$$

$$C = \{r_1, g_1, \dots, r_k, g_k\} \qquad \varphi = \bigwedge_{1 \le i \le k} \mathsf{GF} r_i \to \mathsf{GF} g_i \qquad (\mathsf{Streett})$$

Determined, not positional (in general: memory |C|!)

D. Hausmann - Accelerated Game Solving

Later-appearence-record (LAR) reduction: transforms Emerson-Lei game with d colors to parity game with 2d priorities; blow-up on state space: d!

Theorem

LAR reduction preserves DAG structure.

Fix Emerson-Lei game with d colors, DAG nodes W, $m := |V| \setminus |W|$

Corollary

G can be solved with $\mathcal{O}((m \cdot d!)^{\log d})$ computations of DAG attractor.

Take-away:

- Winning regions in games are fixpoints of one-step forcing function
- Replace one-step forcing function with multi-step DAG attraction
- Method works for parity games, extends to Emerson-Lei games
- Assumes given partition into DAG and non-DAG parts
- ▶ O(n^{log d}) iterations of one-step attraction vs. O(m^{log d}) iterations of DAG attraction
- Helps if $m < \log n$ and DAG attraction can be computed efficiently