Faster Game Solving by Fixpoint Acceleration

Daniel Hausmann
Gothenburg University, Sweden

FICS, Naples, February 19, 2024

UNIVERSITY OF GOTHENBURG

CHALMERS

Two-Player Games

Games: algorithmic essence of verification, reasoning, synthesis, ...

D. Hausmann - Accelerated Game Solving

Two-Player Games

Games: algorithmic essence of verification, reasoning, synthesis, ...

- How to compute winning regions (win $\left._{\exists}, \operatorname{win}_{\forall}\right)$?
- How to extract winning strategies?
- Reduction of problems to game solving
D. Hausmann - Accelerated Game Solving

Parity Games

Parity Games

$$
\begin{aligned}
& G=(V, E \subseteq V \times V, \Omega: V \rightarrow\{1, \ldots, 2 k\}) \\
& \text { play: } \pi=v_{0} v_{1} \ldots \in V^{\omega} \text { with }\left(v_{i}, v_{i+1}\right) \in E \text { for all } i \geq 0 \\
& \text { player } \exists \text { wins play } \pi \text { iff } \max (\operatorname{lnf}(\Omega[\pi])) \text { is even }
\end{aligned}
$$

Parity Games

Parity Games

$G=(V, E \subseteq V \times V, \Omega: V \rightarrow\{1, \ldots, 2 k\})$

- play: $\pi=v_{0} v_{1} \ldots \in V^{\omega}$ with $\left(v_{i}, v_{i+1}\right) \in E$ for all $i \geq 0$
- player \exists wins play π iff $\max (\operatorname{lnf}(\Omega[\pi]))$ is even

- Parity games are positionally determined
- Solving parity games is in QP and in NP \cap co-NP
D. Hausmann - Accelerated Game Solving

Parity Games

Parity Games

$G=(V, E \subseteq V \times V, \Omega: V \rightarrow\{1, \ldots, 2 k\})$

- play: $\pi=v_{0} v_{1} \ldots \in V^{\omega}$ with $\left(v_{i}, v_{i+1}\right) \in E$ for all $i \geq 0$
- player \exists wins play π iff $\max (\operatorname{lnf}(\Omega[\pi]))$ is even

- Parity games are positionally determined
- Solving parity games is in QP and in NP \cap co-NP
D. Hausmann - Accelerated Game Solving

Games and Fixpoint Expressions

D. Hausmann - Accelerated Game Solving

Games and Fixpoint Expressions

Extremal fixpoints of monotone $f: \mathcal{P}(U) \rightarrow \mathcal{P}(U)$ for finite set U :

$$
\begin{aligned}
& \mu X . f(X)=\bigcap\{W \subseteq U \mid f(W) \subseteq W\}=f^{|U|}(\emptyset) \\
& \nu X . f(X)=\bigcup\{W \subseteq U \mid W \subseteq f(W)\}=f^{|U|}(U)
\end{aligned}
$$

D. Hausmann - Accelerated Game Solving

Fixpoint Characterization of Winning, reachability

Reachability game $G=\left(V, E \subseteq V^{2}, F\right), V=V_{\exists} \cup V_{\forall}$
Controllable predecessor function (one-step forcing):

$$
\begin{aligned}
\operatorname{CPre}(X)= & \left\{v \in V_{\exists} \mid \exists(v, w) \in E . w \in X\right\} \cup \\
& \left\{v \in V_{\forall} \mid \forall(v, w) \in E . w \in X\right\}
\end{aligned}
$$

D. Hausmann - Accelerated Game Solving

Fixpoint Characterization of Winning, reachability

Reachability game $G=\left(V, E \subseteq V^{2}, F\right), V=V_{\exists} \cup V_{\forall}$
Controllable predecessor function (one-step forcing):

$$
\begin{aligned}
\operatorname{CPre}(X)= & \left\{v \in V_{\exists} \mid \exists(v, w) \in E . w \in X\right\} \cup \\
& \left\{v \in V_{\forall} \mid \forall(v, w) \in E . w \in X\right\}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{win}_{\exists} & =F \cup \mathrm{CPre}(F) \cup \mathrm{CPre}(\operatorname{CPre}(F)) \cup \ldots \\
& =\mu X \cdot(F \cup \mathrm{CPre}(X))
\end{aligned}
$$

D. Hausmann - Accelerated Game Solving

Fixpoint Characterization of Winning, reachability

Reachability game $G=\left(V, E \subseteq V^{2}, F\right), V=V_{\exists} \cup V_{\forall}$
Controllable predecessor function (one-step forcing):

$$
\begin{aligned}
\operatorname{CPre}(X)= & \left\{v \in V_{\exists} \mid \exists(v, w) \in E . w \in X\right\} \cup \\
& \left\{v \in V_{\forall} \mid \forall(v, w) \in E . w \in X\right\}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{win}_{\exists} & =F \cup C \operatorname{Pre}(F) \cup C \operatorname{Pre}(\operatorname{CPre}(F)) \cup \ldots \\
& =\mu X \cdot(F \cup \operatorname{CPre}(X))
\end{aligned}
$$

D. Hausmann - Accelerated Game Solving

Fixpoint Characterization of Winning, reachability

Reachability game $G=\left(V, E \subseteq V^{2}, F\right), V=V_{\exists} \cup V_{\forall}$
Controllable predecessor function (one-step forcing):

$$
\begin{aligned}
\operatorname{CPre}(X)= & \left\{v \in V_{\exists} \mid \exists(v, w) \in E . w \in X\right\} \cup \\
& \left\{v \in V_{\forall} \mid \forall(v, w) \in E . w \in X\right\}
\end{aligned}
$$

D. Hausmann - Accelerated Game Solving

Fixpoint Characterization of Winning, reachability

Reachability game $G=\left(V, E \subseteq V^{2}, F\right), V=V_{\exists} \cup V_{\forall}$
Controllable predecessor function (one-step forcing):

$$
\begin{aligned}
\operatorname{CPre}(X)= & \left\{v \in V_{\exists} \mid \exists(v, w) \in E . w \in X\right\} \cup \\
& \left\{v \in V_{\forall} \mid \forall(v, w) \in E . w \in X\right\}
\end{aligned}
$$

D. Hausmann - Accelerated Game Solving

Fixpoint Characterization of Winning, reachability

Reachability game $G=\left(V, E \subseteq V^{2}, F\right), V=V_{\exists} \cup V_{\forall}$
Controllable predecessor function (one-step forcing):

$$
\begin{aligned}
\operatorname{CPre}(X)= & \left\{v \in V_{\exists} \mid \exists(v, w) \in E . w \in X\right\} \cup \\
& \left\{v \in V_{\forall} \mid \forall(v, w) \in E . w \in X\right\}
\end{aligned}
$$

D. Hausmann - Accelerated Game Solving

Fixpoint Characterization of Winning, Büchi

Büchi game: $G=\left(V, E \subseteq V^{2}, F\right), V=V_{\exists} \cup V_{\forall}$

$$
\operatorname{win}_{\exists}=\nu X . \mu Y .(F \cap \operatorname{CPre}(X)) \cup \operatorname{CPre}(Y)
$$

D. Hausmann - Accelerated Game Solving

Fixpoint Characterization of Winning, Büchi

Büchi game: $G=\left(V, E \subseteq V^{2}, F\right), V=V_{\exists} \cup V_{\forall}$

$$
\operatorname{win}_{\exists}=\nu X \cdot \mu Y .(F \cap \operatorname{CPre}(X)) \cup \operatorname{CPre}(Y)
$$

D. Hausmann - Accelerated Game Solving

Fixpoint Characterization of Winning, Büchi

Büchi game: $G=\left(V, E \subseteq V^{2}, F\right), V=V_{\exists} \cup V_{\forall}$

$$
\begin{aligned}
\operatorname{win}_{\exists} & =\nu X \cdot \mu Y \cdot(F \cap \operatorname{CPre}(X)) \cup \operatorname{CPre}(Y)=Y^{|V|}(V) \\
Y^{1}(V) & =\mu Y \cdot(F \cap \operatorname{CPre}(V)) \cup \operatorname{CPre}(Y)
\end{aligned}
$$

D. Hausmann - Accelerated Game Solving

Fixpoint Characterization of Winning, Büchi

Büchi game: $G=\left(V, E \subseteq V^{2}, F\right), V=V_{\exists} \cup V_{\forall}$

$$
\begin{aligned}
\operatorname{win}_{\exists} & =\nu X \cdot \mu Y \cdot(F \cap \operatorname{CPre}(X)) \cup \operatorname{CPre}(Y)=Y^{|V|}(V) \\
Y^{1}(V) & =\mu Y \cdot(F \cap \operatorname{CPre}(V)) \cup \operatorname{CPre}(Y) \\
Y^{2}(V) & =\mu Y \cdot\left(F \cap \operatorname{CPre}\left(Y^{2}(V)\right)\right) \cup \operatorname{CPre}(Y)
\end{aligned}
$$

Fixpoint Characterization of Winning, Büchi

Büchi game: $G=\left(V, E \subseteq V^{2}, F\right), V=V_{\exists} \cup V_{\forall}$

$$
\begin{aligned}
\operatorname{win}_{\exists} & =\nu X \cdot \mu Y \cdot(F \cap \operatorname{CPre}(X)) \cup \operatorname{CPre}(Y)=Y^{|V|}(V) \\
Y^{1}(V) & =\mu Y \cdot(F \cap \operatorname{CPre}(V)) \cup \operatorname{CPre}(Y) \\
Y^{2}(V) & =\mu Y \cdot\left(F \cap \operatorname{CPre}\left(Y^{2}(V)\right)\right) \cup \operatorname{CPre}(Y) \\
Y^{3}(V) & =Y^{2}(V)
\end{aligned}
$$

D. Hausmann - Accelerated Game Solving

Fixpoint Characterization of Winning, Büchi

Büchi game: $G=\left(V, E \subseteq V^{2}, F\right), V=V_{\exists} \cup V_{\forall}$

$$
\begin{aligned}
\operatorname{win}_{\exists} & =\nu X \cdot \mu Y \cdot(F \cap \operatorname{CPre}(X)) \cup \operatorname{CPre}(Y)=Y^{|V|}(V) \\
Y^{1}(V) & =\mu Y \cdot(F \cap \operatorname{CPre}(V)) \cup \operatorname{CPre}(Y) \\
Y^{2}(V) & =\mu Y \cdot\left(F \cap \operatorname{CPre}\left(Y^{2}(V)\right)\right) \cup \operatorname{CPre}(Y) \\
Y^{3}(V) & =Y^{2}(V)
\end{aligned}
$$

D. Hausmann - Accelerated Game Solving

Fixpoint Characterization of Winning, parity

Parity game: $G=\left(V, E \subseteq V^{2}, \Omega: V \rightarrow\{1, \ldots, 2 k\}\right), V=V_{\exists} \cup V_{\forall}$

Walukiewicz-formula (writing $\Omega_{i}=\{v \in V \mid \Omega(v)=i\}$):

$$
\operatorname{win}_{\exists}=\nu X_{2 k} \cdot \mu X_{2 k-1} \ldots \ldots \nu X_{2} \cdot \mu X_{1} . \bigcup_{1 \leq i \leq 2 k} \Omega_{i} \cap \operatorname{CPre}\left(X_{i}\right)
$$

D. Hausmann - Accelerated Game Solving

Accelerated Game Solution

- Adapt Walukiewicz-formulas to use multi-step attraction (DAttr) in place of one-step attraction (Cpre)
- Shrinks domain of fixpoint computations \leadsto faster game solving

Accelerated Solution of DAG Parts in Games

n nodes, m non-DAG nodes

${ }_{\nu} X . \operatorname{CPre}(X)$
n iterations of CPre

$\nu Y . \operatorname{DAttr}(Y)$
m iterations of DAttr

Main Result

Fix parity game $G=(V, E, \Omega: V \rightarrow\{1, \ldots, d\})$ with DAG nodes W
DAG attractor (to $Z \subseteq V \backslash W$)
Region from where player \exists can force exiting W to Z :

$$
\operatorname{DAttr}_{w}(Z)=\mu X \cdot Z \cup(W \cap \operatorname{CPre}(X))
$$

$m:=|V|-|W|$

Theorem

G can be solved with $\mathcal{O}\left(m^{\log d}\right)$ computations of a DAG attractor.
Advantageous if $m<\log n$ and DAG attraction can be checked efficiently

Fixpoint of DAG attraction

Replace

$$
\nu X_{2 k} \cdot \mu X_{2 k-1} \cdots \cdots \cdot \nu X_{2} \cdot \mu X_{1} . \bigcup_{1 \leq i \leq 2 k} \Omega_{i} \cap \operatorname{CPre}\left(X_{i}\right)
$$

with

$$
\nu Y_{2 k} \cdot \mu Y_{2 k-1} \ldots . \nu Y_{2} \cdot \mu Y_{1} \cdot \operatorname{DAttr}_{w}\left(Y_{1}, \ldots, Y_{k}\right)
$$

The former lives over V, the latter over $V \backslash W$

Examples

Particularly helpful for games that encode predicate $f: 2^{V} \rightarrow 2^{V}$:
assume $V_{\forall}=\mathcal{P}\left(V_{\exists}\right)$ and

- \exists can move from v to $U \subseteq V$ s.t. $v \in f(U)$
- \forall can move from $U \subseteq V$ to $u \in U$
\leadsto DAGs of size $2^{|V|}$; faster game solving if f can be evaluated efficiently

Examples of games of this shape

- Model checking generic μ-calculi [CONCUR 2019, VMCAI 2024]
- Satisfiability checking generic μ-calculi [FoSSaCS 2019, CADE 2023]
- Baldan, König, Padoan: Solution of fixpoint games [POPL 2018]

Accelerated Game Solution

- Later-appearance record (LAR) reduction preserves DAG sub-games
D. Hausmann - Accelerated Game Solving

Emerson-Lei Games

Emerson-Lei Games

$$
\begin{gathered}
G=\left(V, E \subseteq V \times V, \operatorname{col}: V \rightarrow 2^{C}, \varphi\right) \quad \varphi \in \mathbb{B}(\mathrm{GF}(\mathrm{C})) \\
\text { Player } \exists \text { wins play } \pi \text { iff } \operatorname{col}[\pi] \models \varphi
\end{gathered}
$$

Emerson-Lei Games

Emerson-Lei Games

$$
\begin{gathered}
G=\left(V, E \subseteq V \times V, \operatorname{col}: V \rightarrow 2^{C}, \varphi\right) \quad \varphi \in \mathbb{B}(\mathrm{GF}(\mathrm{C})) \\
\text { Player } \exists \text { wins play } \pi \text { iff } \operatorname{col}[\pi] \models \varphi
\end{gathered}
$$

Examples:

$$
\begin{array}{lll}
C=\{f\} & \varphi=\mathrm{GF} f & \text { (Büchi) } \\
C=\left\{p_{1}, \ldots, p_{2 k}\right\} & \varphi=\bigvee_{i \text { even }} \mathrm{GF} p_{i} \wedge \bigwedge_{j>i} \mathrm{FG} \neg p_{j} & \text { (parity) } \\
C=\left\{e_{1}, f_{1}, \ldots, e_{k}, f_{k}\right\} & \varphi=\bigvee_{1 \leq i \leq k} \mathrm{GF} e_{i} \wedge \mathrm{FG} \neg f_{i} & \text { (Rabin) } \\
C=\left\{r_{1}, g_{1}, \ldots, r_{k}, g_{k}\right\} & \varphi=\bigwedge_{1 \leq i \leq k} \mathrm{GF} r_{i} \rightarrow \mathrm{GF} g_{i} & \text { (Streett) }
\end{array}
$$

Determined, not positional (in general: memory $|C|$!)
D. Hausmann - Accelerated Game Solving

LAR Reduction

Later-appearence-record (LAR) reduction: transforms Emerson-Lei game with d colors to parity game with $2 d$ priorities; blow-up on state space: d !

Theorem

LAR reduction preserves DAG structure.
Fix Emerson-Lei game with d colors, DAG nodes $W, m:=|V| \backslash|W|$

Corollary

G can be solved with $\mathcal{O}\left((m \cdot d!)^{\log d}\right)$ computations of DAG attractor.

Summary

Take-away:

- Winning regions in games are fixpoints of one-step forcing function
- Replace one-step forcing function with multi-step DAG attraction
- Method works for parity games, extends to Emerson-Lei games
- Assumes given partition into DAG and non-DAG parts
- $\mathcal{O}\left(n^{\log d}\right)$ iterations of one-step attraction vs. $\mathcal{O}\left(m^{\log d}\right)$ iterations of DAG attraction
- Helps if $m<\log n$ and DAG attraction can be computed efficiently

