
Generic Model Checking for

Modal Fixpoint Logics in COOL-MC

(System Description)

D. Hausmann1 M. Humml2 S. Prucker2 L. Schröder2 A. Strahlberger2

VMCAI, London, January 15, 2024

1Gothenburg University, Sweden

2Friedrich-Alexander Universität Erlangen-Nürnberg, Germany



COOL - A Generic Reasoner and Model Checker

COOL (Coalgebraic Ontology Logic Reasoner)

Toolsuite for verification and reasoning with the coalgebraic µ-calculus

▶ COOL-SAT: satisfiability checking (ExpTime-complete)

▶ COOL-MC: model checking (in NP ∩ co-NP, in QP)

Works by constructing and solving (general variants of) parity games

+ Generic algorithms and implementations, framework easily extensible

+ COOL is lazy: tries to solve games before they have been fully built

Hausmann, Humml, Prucker, Schröder, Strahlberger – Model Checking in COOL-MC 1



Model checking, supported logics

Logics currently supported by COOL-MC:

µ-calculus models examples

standard Kripke frames CTL, νX . µY . (p ∧3X ) ∨3Y

monotone neighbourhood models game logic

probabilistic Markov chains νX . µY . (p ∧ ⟨0.3⟩X ) ∨ ⟨0.3⟩Y
graded weighted Kripke frames νX . µY . (p ∧ ⟨2⟩X ) ∨ ⟨2⟩Y
alternating-time concurrent game frames ATL, νX . µY . (p ∧ ⟨C⟩X ) ∨ ⟨C⟩Y

Fact:

Parity game solving and µ-calculus model checking are equivalent.

; COOL-MC is solver for (mon., prob., graded, alt.-time) parity games!

Hausmann, Humml, Prucker, Schröder, Strahlberger – Model Checking in COOL-MC 2



COOL-MC schematics

Construct model checking game and solve it (on-the-fly / lazy):

M, ϕ initial nodepre-processing

compute

winning regions

add

nodes

logic ID

one-step

model checking

coalgebraic framework

PGSolver

or

native solver

MC result

Hausmann, Humml, Prucker, Schröder, Strahlberger – Model Checking in COOL-MC 3



Model Checking in COOL

COOL-MC implements two approaches from [H,Schröder, CONCUR 2019]:

Local model checking algorithm (l)

Build the game graph step-by-step, directly evaluate logical operators

+ enables lazy model checking

+ evades construction of complex subgames for modalities

– native solver in COOL is unoptimized (fixpoint iteration)

Game-based model checking (g)

Polynomial reduction to parity games for all supported logics

+ enables usage of parity game solvers (currently: PGSolver)

– subgames for modal steps tend to be large (graded, probabilistic)

– currently no support for lazy solving

Hausmann, Humml, Prucker, Schröder, Strahlberger – Model Checking in COOL-MC 4



Model Checking in COOL

COOL-MC implements two approaches from [H,Schröder, CONCUR 2019]:

Local model checking algorithm (l)

Build the game graph step-by-step, directly evaluate logical operators

+ enables lazy model checking

+ evades construction of complex subgames for modalities

– native solver in COOL is unoptimized (fixpoint iteration)

Game-based model checking (g)

Polynomial reduction to parity games for all supported logics

+ enables usage of parity game solvers (currently: PGSolver)

– subgames for modal steps tend to be large (graded, probabilistic)

– currently no support for lazy solving

Hausmann, Humml, Prucker, Schröder, Strahlberger – Model Checking in COOL-MC 4



Benchmarking: Generalized Parity Games

1 2 3 4 5 6 7 8 9 10 11

0.01

0.1

1

10

game size parameter

ru
n
ti
m
e
(s
)

standardl monotonel gradedl

standardg monotoneg gradedg

Language inclusion games (standard, monotone and graded µ-calculi)

Hausmann, Humml, Prucker, Schröder, Strahlberger – Model Checking in COOL-MC 5



Benchmarking: Lazy Solving

1 2 3 4 5 6 7 8 9 10

0.01

0.1

1

10

game size parameter

ru
n
ti
m
e
(s
)

standardg standardl

probg probl

gradedg gradedl

0

0.2

0.4

0.6

0.8

1

ex
p
lo
ra
ti
o
n
q
u
o
ti
en

t

eq standardl

eq probl

eq gradedl

Lazy Tower of Hanoi games (standard, probabilistic and graded µ-calculi)

Hausmann, Humml, Prucker, Schröder, Strahlberger – Model Checking in COOL-MC 6



Benchmarking: Lazy Solving, ctd.

Sizes of (full and lazy) graphs and constructed parity games:

Experiment series parameter worlds full graph lazy graph game size

Language incl., mon. 1 3 93 59 126

7 313 9, 703 937 13, 146

30 † † † 1, 099, 896

Lazy Hanoi, standard 1 5 103 57 133

5 245 5, 143 57 6, 613

9 19, 685 413, 383 53 531, 493

10 59, 051 1, 240, 069 53 †
Lazy Hanoi, graded 1 5 103 102 523

2 11 229 102 2, 345

4 83 1, 741 102 126, 222

10 59, 051 1, 240, 069 102 †

Hausmann, Humml, Prucker, Schröder, Strahlberger – Model Checking in COOL-MC 7



Benchmarking: ATL

2 3 4 5 6 7 8 9 10

0.01

0.1

1

10

number of moves

ru
n
ti
m
e
(s
)

MCMAS2 COOL-MC2g COOL-MC2l

MCMAS4 COOL-MC4g COOL-MC4l

ATL model checking: Modulo games (COOL-MC vs. MCMAS)

Hausmann, Humml, Prucker, Schröder, Strahlberger – Model Checking in COOL-MC 8



Summary and Future Work

Take-away:

– COOL-MC: a model checker for µ-calculi with complex modalities

▶ Direct fixpoint computation (lazy)
▶ Polynomial reduction to parity games

– Benchmarking shows advantages of both approaches

Future work:

▶ Add back-end (lazy) support for other parity game

solvers (e.g. Oink)

▶ Add support for symbolic (e.g. BDD-based) model

checking

Get COOL:

Artifact (functional and reusable): https://zenodo.org/records/10039210

Hausmann, Humml, Prucker, Schröder, Strahlberger – Model Checking in COOL-MC 9

https://git8.cs.fau.de/software/cool/-/blob/modcheck/

