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COOL - A Generic Reasoner and Model Checker

COOL (Coalgebraic Ontology Logic Reasoner)

Toolsuite for verification and reasoning with the coalgebraic µ-calculus

▶ COOL-SAT: satisfiability checking (ExpTime-complete)

▶ COOL-MC: model checking (in NP ∩ co-NP, in QP)

Works by constructing and solving (general variants of) parity games

+ Generic algorithms and implementations, framework easily extensible

+ COOL is lazy: tries to solve games before they have been fully built
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Model checking, supported logics

Logics currently supported by COOL-MC:

µ-calculus models examples

standard Kripke frames CTL, νX . µY . (p ∧3X ) ∨3Y

monotone neighbourhood models game logic

probabilistic Markov chains νX . µY . (p ∧ ⟨0.3⟩X ) ∨ ⟨0.3⟩Y
graded weighted Kripke frames νX . µY . (p ∧ ⟨2⟩X ) ∨ ⟨2⟩Y
alternating-time concurrent game frames ATL, νX . µY . (p ∧ ⟨C⟩X ) ∨ ⟨C⟩Y

Fact:

Parity game solving and µ-calculus model checking are equivalent.

; COOL-MC is solver for (mon., prob., graded, alt.-time) parity games!
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COOL-MC schematics

Construct model checking game and solve it (on-the-fly / lazy):
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Model Checking in COOL

COOL-MC implements two approaches from [H,Schröder, CONCUR 2019]:

Local model checking algorithm (l)

Build the game graph step-by-step, directly evaluate logical operators

+ enables lazy model checking

+ evades construction of complex subgames for modalities

– native solver in COOL is unoptimized (fixpoint iteration)

Game-based model checking (g)

Polynomial reduction to parity games for all supported logics

+ enables usage of parity game solvers (currently: PGSolver)

– subgames for modal steps tend to be large (graded, probabilistic)

– currently no support for lazy solving
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Benchmarking: Generalized Parity Games
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Language inclusion games (standard, monotone and graded µ-calculi)
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Benchmarking: Lazy Solving

1 2 3 4 5 6 7 8 9 10

0.01

0.1

1

10

game size parameter

ru
n
ti
m
e
(s
)

standardg standardl

probg probl

gradedg gradedl

0

0.2

0.4

0.6

0.8

1

ex
p
lo
ra
ti
o
n
q
u
o
ti
en

t

eq standardl

eq probl

eq gradedl

Lazy Tower of Hanoi games (standard, probabilistic and graded µ-calculi)
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Benchmarking: Lazy Solving, ctd.

Sizes of (full and lazy) graphs and constructed parity games:

Experiment series parameter worlds full graph lazy graph game size

Language incl., mon. 1 3 93 59 126

7 313 9, 703 937 13, 146

30 † † † 1, 099, 896

Lazy Hanoi, standard 1 5 103 57 133

5 245 5, 143 57 6, 613

9 19, 685 413, 383 53 531, 493

10 59, 051 1, 240, 069 53 †
Lazy Hanoi, graded 1 5 103 102 523

2 11 229 102 2, 345

4 83 1, 741 102 126, 222

10 59, 051 1, 240, 069 102 †
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Benchmarking: ATL
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ATL model checking: Modulo games (COOL-MC vs. MCMAS)
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Summary and Future Work

Take-away:

– COOL-MC: a model checker for µ-calculi with complex modalities

▶ Direct fixpoint computation (lazy)
▶ Polynomial reduction to parity games

– Benchmarking shows advantages of both approaches

Future work:

▶ Add back-end (lazy) support for other parity game

solvers (e.g. Oink)

▶ Add support for symbolic (e.g. BDD-based) model

checking

Get COOL:

Artifact (functional and reusable): https://zenodo.org/records/10039210
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https://git8.cs.fau.de/software/cool/-/blob/modcheck/

