1. (a) The primal optimization and its corresponding dual variables can be written as

$$\max_{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4} 6x_1 - 3x_2 - 2x_3 + 5x_4$$
subject to
$$u_1: \quad 4x_1 + 3x_2 - 8x_3 + 7x_4 = 11$$

$$u_2: \quad 3x_1 + 2x_2 + 7x_3 + 6x_4 \ge 23$$

$$u_3: \quad 7x_1 + 4x_2 + 3x_3 + 2x_4 \le 12$$

$$u_4: \quad x_1 \ge 0$$

$$u_5: \quad x_2 \ge 0$$

$$u_6: \quad x_3 \le 0$$

$$(1)$$

where $u_2, u_4, u_5 \leq 0$ and $u_3, u_6 \geq 0$. The dual optimization can be written as

$$\min_{\substack{(u_1,u_2,u_3,u_4,u_5,u_6)\in\mathbb{R}^6\\ \text{subject to}}} 11u_1 + 23u_2 + 12u_3$$

$$\text{subject to}$$

$$4u_1 + 3u_2 + 7u_3 + u_4 = 6$$

$$3u_1 + 2u_2 + 4u_3 + u_5 = -3$$

$$-8u_1 + 7u_2 + 3u_3 + u_6 = -2$$

$$7u_1 + 6u_2 + 2u_3 = 5$$

$$u_2, u_4, u_5 \le 0$$

$$u_3, u_6 \ge 0$$
(2)

As expected, u_4, u_5 and u_6 are slack variables and can be eliminated to obtain

$$\min_{(u_1, u_2, u_3) \in \mathbb{R}^3} 11u_1 + 23u_2 + 12u_3$$
subject to
$$4u_1 + 3u_2 + 7u_3 + u_4 \ge 6$$

$$3u_1 + 2u_2 + 4u_3 + u_5 \ge -3$$

$$-8u_1 + 7u_2 + 3u_3 + u_6 \le -2$$

$$7u_1 + 6u_2 + 2u_3 = 5$$

$$u_2 \le 0$$

$$u_3 \ge 0$$
(3)

(b) The Lagrangian dual function is obtained by minimizing the La-

grangian dual form:

$$\Gamma(u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}) =$$

$$\max_{(x_{1}, x_{2}, x_{3}, x_{4}) \in \mathbb{R}^{4}} \begin{cases}
6x_{1} - 3x_{2} - 2x_{3} + 5x_{4} \\
-u_{1}(4x_{1} + 3x_{2} - 8x_{3} + 7x_{4} - 11) \\
-u_{2}(3x_{1} + 2x_{2} + 7x_{3} + 6x_{4} - 23) \\
-u_{3}(7x_{1} + 4x_{2} + 3x_{3} + 2x_{4} - 12) \\
-u_{4}x_{1} - u_{5}x_{2} - u_{6}x_{3}
\end{cases}$$

$$(4)$$

where $u_2, u_4, u_5 \leq 0$ and $u_3, u_6 \geq 0$. This optimization can be written

$$\Gamma(u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}) =$$

$$\max_{(x_{1}, x_{2}, x_{3}, x_{4}) \in \mathbb{R}^{4}} \begin{cases} x_{1}(6 - 4u_{1} - 3u_{2} - 7u_{3} - u_{4}) + \\ x_{2}(-3 - 3u_{1} - 2u_{2} - 4u_{3} - u_{5}) + \\ x_{3}(-2 + 8u_{1} - 7u_{2} - 3u_{3} - u_{6}) + \\ x_{4}(5 - 7u_{1} - 6u_{2} - 2u_{3}) + \\ 11u_{1} + 23u_{2} + 12u_{3} \end{cases}$$

$$(5)$$

which can be solved to obtain

$$\Gamma(u_1, u_2, u_3, u_4, u_5, u_6) = \begin{cases}
6 - 4u_1 - 3u_2 - 7u_3 - u_4 = 0 \\
-3 - 3u_1 - 2u_2 - 4u_3 - u_5 = 0 \\
-2 + 8u_1 - 7u_2 - 3u_3 - u_6 = 0 \\
5 - 7u_1 - 6u_2 - 2u_3 = 0
\end{cases} (6)$$

(c) The Lagrangian dual optimization is given by:

$$\min_{\substack{(u_1, u_2, u_3, u_4, u_5, u_6) \in \mathbb{R}^6}} \Gamma(u_1, u_2, u_3, u_4, u_5, u_6)$$
subject to
$$u_2, u_4, u_5 \le 0$$

$$u_3, u_6 \ge 0 \tag{7}$$

Notice that the optimization attains its minimum at a point where $\Gamma < \infty$. Hence the dual optimization is equivalent to

$$\min_{\substack{(u_1, u_2, u_3, u_4, u_5, u_6) \in \mathbb{R}^6}} \Gamma(u_1, u_2, u_3, u_4, u_5, u_6)$$
subject to
$$u_2, u_4, u_5 \le 0$$

$$u_3, u_6 \ge 0$$

$$\left\{ \begin{array}{l}
6 - 4u_1 - 3u_2 - 7u_3 - u_4 = 0 \\
-3 - 3u_1 - 2u_2 - 4u_3 - u_5 = 0 \\
-2 + 8u_1 - 7u_2 - 3u_3 - u_6 = 0 \\
5 - 7u_1 - 6u_2 - 2u_3 = 0
\end{array} \right\}$$
(8)

This is clearly identical to the LP dual program in (2).

$$\Gamma(u_1, u_2, u_3) = \begin{cases}
\Gamma(u_1, u_2, u_3) = \\
6 - 4u_1 - 3u_2 - 7u_3 \le 0 \\
-3 - 3u_1 - 2u_2 - 4u_3 \le 0 \\
-2 + 8u_1 - 7u_2 - 3u_3 \ge 0 \\
5 - 7u_1 - 6u_2 - 2u_3 = 0
\end{cases}$$
(9)
Otherwise

Remark: It is possible to obtain another Lagrangian dual function by keeping the sign constraints:

$$\Gamma(u_1, u_2, u_3) =$$

$$\max_{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4} \begin{cases}
6x_1 - 3x_2 - 2x_3 + 5x_4 \\
-u_1(4x_1 + 3x_2 - 8x_3 + 7x_4 - 11) \\
-u_2(3x_1 + 2x_2 + 7x_3 + 6x_4 - 23) \\
-u_3(7x_1 + 4x_2 + 3x_3 + 2x_4 - 12)
\end{cases}$$
subject to
$$x_1, x_2 \ge 0$$

$$x_3 \le 0 \tag{10}$$

which leads to a Lagrangian dual optimization identical to (3).

2. (a) There are five distinct possible links in this problem. We denote their associated incidence variables by x_{ab} , x_{ad} , x_{bc} , x_{bd} , x_{cd} . According to Table 1, the total cost of construction is given by

$$x_{ab} + 3x_{ad} + x_{bc} + 3x_{bd} + 2x_{cd} \tag{11}$$

To eliminate the disconnected networks, we use the cut-set constraints (one can equivalently use the subtour elimination constraints):

$$S = \{a\} \qquad x_{ab} + x_{ad} \ge 1$$

$$S = \{b\} \qquad x_{ab} + x_{bc} + x_{bd} \ge 1$$

$$S = \{c\} \qquad x_{cb} + x_{cd} \ge 1$$

$$S = \{d\} \qquad x_{ad} + x_{bd} + x_{cd} \ge 1$$

$$S = \{a, b\} \qquad x_{ad} + x_{bc} + x_{bd} \ge 1$$

$$S = \{a, c\} \qquad x_{ab} + x_{ad} + x_{bc} + x_{cd} \ge 1$$

$$S = \{a, d\} \qquad x_{ab} + x_{bd} + x_{cd} \ge 1$$

$$(12)$$

We obtain

$$\min_{(x_{ab}, x_{ad}, x_{bc}, x_{bd}, x_{cd}) \in \{0, 1\}^5} x_{ab} + 3x_{ad} + x_{bc} + 3x_{bd} + 2x_{cd}$$
subject to
$$x_{ab} + x_{ad} \ge 1$$

$$x_{ab} + x_{bc} + x_{bd} \ge 1$$

$$x_{bc} + x_{cd} \ge 1$$

$$x_{ad} + x_{bd} + x_{cd} \ge 1$$

$$x_{ad} + x_{bc} + x_{bd} \ge 1$$

$$x_{ab} + x_{ad} + x_{bc} + x_{cd} \ge 1$$

$$x_{ab} + x_{ad} + x_{bc} + x_{cd} \ge 1$$

$$x_{ab} + x_{bd} + x_{cd} \ge 1$$
(13)

- (b) Suppose that a network contains a cycle and (i,j) is a link in this cycle. This means that $x_{i,j} = 1$. Now, set $x_{i,j} = 0$ i.e., remove this edge. Since (i,j) is a part of a cycle, removing it does not affect connectivity. However since $c_{i,j} > 0$, removing this edge reduces the cost. This shows that the minimal solution does not include any cycle.
- (c) A connected graph is a tree if and only if its number of edges is one less than the number of nodes (3 in this case). Hence, we add the constraint $\sum x_{ij} = 3$.

$$\min_{(x_{ab}, x_{ad}, x_{bc}, x_{bd}, x_{cd}) \in \{0, 1\}^5} x_{ab} + 3x_{ad} + x_{bc} + 3x_{bd} + 2x_{cd}$$
subject to
$$x_{ab} + x_{ad} \ge 1$$

$$x_{ab} + x_{bc} + x_{bd} \ge 1$$

$$x_{bc} + x_{cd} \ge 1$$

$$x_{ad} + x_{bd} + x_{cd} \ge 1$$

$$x_{ad} + x_{bd} + x_{cd} \ge 1$$

$$x_{ab} + x_{ad} + x_{bc} + x_{cd} \ge 1$$

$$x_{ab} + x_{ad} + x_{bc} + x_{cd} \ge 1$$

$$x_{ab} + x_{ad} + x_{bc} + x_{cd} \ge 1$$

$$x_{ab} + x_{ad} + x_{bc} + x_{bd} + x_{cd} \ge 1$$

$$(14)$$

(d) The LP relaxation is given by

$$\min_{\substack{(x_{ab}, x_{ad}, x_{bc}, x_{bd}, x_{cd}) \in \mathbb{R}_{+}^{5} \\
\text{subject to}}} x_{ab} + 3x_{ad} + x_{bc} + 3x_{bd} + 2x_{cd} \\
\text{subject to} \\
x_{ab} + x_{ad} \ge 1 \\
x_{ab} + x_{bc} + x_{bd} \ge 1 \\
x_{bc} + x_{cd} \ge 1 \\
x_{ad} + x_{bd} + x_{cd} \ge 1 \\
x_{ad} + x_{bc} + x_{bd} \ge 1 \\
x_{ab} + x_{ad} + x_{bc} + x_{cd} \ge 1 \\
x_{ab} + x_{ad} + x_{bc} + x_{cd} \ge 1 \\
x_{ab} + x_{ad} + x_{bc} + x_{cd} \ge 1$$

$$x_{ab} + x_{ad} + x_{bd} + x_{cd} \ge 1$$

$$x_{ab} + x_{ad} + x_{bc} + x_{bd} + x_{cd} \ge 3$$
(15)

The CVX code is given by:

$$\begin{array}{c} c = [1 \ 3 \ 1 \ 3 \ 2] \ ; \\ A = [1 \ 1 \ 0 \ 0 \ 0; \\ 1 \ 0 \ 1 \ 1 \ 1 \ 0; \\ 0 \ 0 \ 1 \ 0 \ 1; \\ 0 \ 1 \ 1 \ 1 \ 0; \\ 1 \ 1 \ 1 \ 0 \ 1; \\ 1 \ 1 \ 0 \ 0 \ 1 \ 1]; \\ cvx_begin \\ variable x(5) \\ minimize (c'*x) \\ A*x>=1 \\ x>=0 \\ sum(x)==3 \\ cvx_end \\ \end{array}$$

The solution is given in Figure 1.

3. Define s_i for i=1,2,...,7 as the capital on 1st of January in year i after selling the bonds. Notice that for the 7th year no bond is going to be sold and s_7 is negative showing the outstanding debt. Hence the problem is to maximize s_7 . Moreover,

$$s_1 = x_{1,1} + x_{1,2} + \ldots + x_{1,6} \tag{16}$$

and

$$s_{i+1} = (s_i - b_i)\mu + \sum_{j=i+1}^{6} x_{i+1,j} - \sum_{j=1}^{i} x_{j,i}\alpha_{i-j+1}$$
 (17)

for $i=1,2,\ldots,6$, where b_i is the construction cost in Table 2 in year i and α_k is the returning interest rate in Table 3 for validity period of k years. We have that $x_{i,j} \geq 0$ and $s_i \geq b_i$. Also, we have to make sure that we can return the money due in year $1,2,\ldots,5$. This means that

$$(s_i - b_i)\mu - \sum_{j=1}^{i} x_{j,i}\alpha_{i-j+1} \ge 0 \quad i = 1, 2, \dots, 5$$
 (18)

For simplicity, define

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_{21} \end{bmatrix} = \begin{bmatrix} x_{1,1} \\ x_{1,2} \\ \vdots \\ x_{1,6} \\ x_{2,1} \\ \vdots \\ x_{2,6} \\ \vdots \\ x_{6,6} \end{bmatrix}$$
(19)

and

$$\mathbf{s} = \begin{bmatrix} s_1 \\ s_2 \\ \vdots \\ s_7 \end{bmatrix} \tag{20}$$

Then, the optimization can be written as

$$\min_{\mathbf{x} \in \mathbb{R}^{21}, \mathbf{s} \in \mathbb{R}^{7}} s_{7}$$
subject to
$$s_{1} = x_{1} + x_{2} + x_{3} + x_{4} + x_{5} + x_{6}$$

$$s_{2} = 1.068(s_{1} - 20) + x_{7} + x_{8} + x_{9} + x_{10} + x_{11} - x_{1}\alpha_{1}$$

$$s_{3} = 1.068(s_{2} - 17) + x_{12} + x_{13} + x_{14} + x_{15} - x_{2}\alpha_{2} - x_{7}\alpha_{1}$$

$$s_{4} = 1.068(s_{3} - 23) + x_{16} + x_{17} + x_{18} - x_{3}\alpha_{3} - x_{8}\alpha_{2} - x_{12}\alpha_{1}$$

$$s_{5} = 1.068(s_{4} - 24) + x_{19} + x_{20} - x_{4}\alpha_{4} - x_{9}\alpha_{3} - x_{13}\alpha_{2} - x_{16}\alpha_{1}$$

$$s_{6} = 1.068(s_{5} - 25) + x_{21} - x_{5}\alpha_{5} - x_{10}\alpha_{4} - x_{14}\alpha_{3} - x_{17}\alpha_{2} - x_{19}\alpha_{1}$$

$$s_{7} = 1.068(s_{6} - 21) - x_{6}\alpha_{6} - x_{11}\alpha_{5} - x_{15}\alpha_{4} - x_{18}\alpha_{3} - x_{20}\alpha_{2} - x_{21}\alpha_{1}$$

$$s_{1} \geq 20, \ s_{2} \geq 17, \ s_{3} \geq 23, \ s_{4} \geq 24, \ s_{5} \geq 25, \ s_{6} \geq 21$$

$$1.068(s_{1} - 20) - x_{1}\alpha_{1} \geq 0$$

$$1.068(s_{2} - 17) - x_{2}\alpha_{2} - x_{7}\alpha_{1} \geq 0$$

$$1.068(s_{3} - 23) - x_{3}\alpha_{3} - x_{8}\alpha_{2} - x_{12}\alpha_{1} \geq 0$$

$$1.068(s_{4} - 24) - x_{4}\alpha_{4} - x_{9}\alpha_{3} - x_{13}\alpha_{2} - x_{16}\alpha_{1} \geq 0$$

$$1.068(s_{4} - 24) - x_{4}\alpha_{4} - x_{9}\alpha_{3} - x_{13}\alpha_{2} - x_{16}\alpha_{1} \geq 0$$

$$1.068(s_{5} - 25) - x_{5}\alpha_{5} - x_{10}\alpha_{4} - x_{14}\alpha_{3} - x_{17}\alpha_{2} - x_{19}\alpha_{1} \geq 0$$

$$x_{i} \geq 0 \quad i = 1, 2, \dots, 21 \quad (21)$$

The CVX code is given by:

```
mu = 1.068;
```

cvx_end

```
alpha = [1.07 1.15 1.23 1.32 1.41 1.5];
 cvx_begin
 variables x(21) s(7)
 maximize (s(7))
 s(1) = sum(x(1:6));
 s(2) = = (s(1) - 20) *mu + sum(x(7:11)) - x(1) *alpha(1);
 s(3) = = (s(2) - 17) *mu + sum(x(12:15)) - x(2) * alpha(2) - x(7) * alpha(1);
 s(4) = = (s(3) - 23) *mu + sum(x(16:18)) - x(3) *alpha(3) - x(8) *alpha(2) - x(12) *alpha(3) - x(12)
 s(5) = = (s(4) - 24) *mu + sum(x(19:20)) - x(4) *alpha(4) - x(9) *alpha(3) - x(13) *alpha(6) - x(13)
 s(6) = = (s(5) - 25) *mu + x(21) - x(5) *alpha(5) - x(10) *alpha(4) - x(14) *alpha(3) - x(17) + x(17
 s(7) = = (s(6) - 21) *mu - x(6) *alpha(6) - x(11) *alpha(5) - x(15) *alpha(4) - x(18) *alpha(5) - x(16) *alpha(6) - x(
 s(1:6) > = [20 \ 17 \ 23 \ 24 \ 25 \ 21];
 (s(1)-20)*mu-x(1)*alpha(1)>=0;
 (s(2)-17)*mu-x(2)*alpha(2)-x(7)*alpha(1)>=0;
 (s(3)-23)*mu-x(3)*alpha(3)-x(8)*alpha(2)-x(12)*alpha(1)>=0;
 (s(4)-24)*mu-x(4)*alpha(4)-x(9)*alpha(3)-x(13)*alpha(2)-x(16)*alpha(1)>=0
 (s(5)-25)*mu-x(5)*alpha(5)-x(10)*alpha(4)-x(14)*alpha(3)-x(17)*alpha(2)-x(17)*alpha(2)-x(17)*alpha(2)-x(17)*alpha(3)-x(17)*alpha(2)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*alpha(3)-x(17)*a
x > = 0;
```

The optimal value is $s_7 = -164.863$ MSek and the solution is given by

```
x = [0.0000]
    0.0000
    0.0000
    0.0000
    0.0000
   56.0820
    0.0000
    0.0000
    0.0000
    0.0000
    0.0000
    0.0000
    0.0000
    0.0000
    0.0000
    0.0000
    0.0000
   24.0000
    0.0000
   25.0000
   21.0000]
```

remark: If you miss the constraints in (18), you will be in debt during the project for maximally one day (Dec 31-Jan 1). Without these constraints, the optimization becomes

$$\min_{\mathbf{x} \in \mathbb{R}^{21}, \mathbf{s} \in \mathbb{R}^{7}} s_{7}$$
 subject to
$$s_{1} = x_{1} + x_{2} + x_{3} + x_{4} + x_{5} + x_{6}$$

$$s_{2} = 1.068(s_{1} - 20) + x_{7} + x_{8} + x_{9} + x_{10} + x_{11} - x_{1}\alpha_{1}$$

$$s_{3} = 1.068(s_{2} - 17) + x_{12} + x_{13} + x_{14} + x_{15} - x_{2}\alpha_{2} - x_{7}\alpha_{1}$$

$$s_{4} = 1.068(s_{3} - 23) + x_{16} + x_{17} + x_{18} - x_{3}\alpha_{3} - x_{8}\alpha_{2} - x_{12}\alpha_{1}$$

$$s_{5} = 1.068(s_{4} - 24) + x_{19} + x_{20} - x_{4}\alpha_{4} - x_{9}\alpha_{3} - x_{13}\alpha_{2} - x_{16}\alpha_{1}$$

$$s_{6} = 1.068(s_{5} - 25) + x_{21} - x_{5}\alpha_{5} - x_{10}\alpha_{4} - x_{14}\alpha_{3} - x_{17}\alpha_{2} - x_{19}\alpha_{1}$$

$$s_{7} = 1.068(s_{6} - 21) - x_{6}\alpha_{6} - x_{11}\alpha_{5} - x_{15}\alpha_{4} - x_{18}\alpha_{3} - x_{20}\alpha_{2} - x_{21}\alpha_{1}$$

$$s_{1} \geq 20, \ s_{2} \geq 17, \ s_{3} \geq 23, \ s_{4} \geq 24, \ s_{5} \geq 25, \ s_{6} \geq 21$$

$$x_{i} \geq 0 \quad i = 1, 2, \dots, 21 \qquad (22)$$

$$\text{mu} = 1.068;$$

$$\text{alpha} = \begin{bmatrix} 1.07 & 1.15 & 1.23 & 1.32 & 1.41 & 1.5 \end{bmatrix};$$

$$\text{cvx_begin}$$

```
maximize (s(7))
                              s(1) = sum(x(1:6));
                              s(2) = = (s(1) - 20)*mu+sum(x(7:11)) - x(1)*alpha(1);
                              s(3) == (s(2)-17)*mu+sum(x(12:15))-x(2)*alpha(2)-x(7)*alpha(1);
                              s\left(4\right) = = (\,s\left(3\right) - 23) * mu + sum\left(\,x\left(16 : 18\right)\right) - x\left(3\right) * alpha\left(3\right) - x\left(8\right) * alpha\left(2\right) - x\left(12\right) * alpha\left(2\right) + x\left(12\right) * al
                              s(5) = = (s(4) - 24) *mu + sum(x(19:20)) - x(4) *alpha(4) - x(9) *alpha(3) - x(13) *alpha(6) - x(13)
                              s(6) = = (s(5) - 25) *mu + x(21) - x(5) *alpha(5) - x(10) *alpha(4) - x(14) *alpha(3) - x(17) + x(17
                              s(7) = = (s(6) - 21) *mu - x(6) *alpha(6) - x(11) *alpha(5) - x(15) *alpha(4) - x(18) *alpha(5) - x(16) *alpha(6) - x(
                              s(1:6) > = [20 \ 17 \ 23 \ 24 \ 25 \ 21];
                             x > = 0;
                              cvx_end
                              The optimal value is s_7 = -164.485MSek solution is given by
                              [0.0000;
                              0.0000;
                              0.0000;
                              0.0000;
                              0.0000;
                              20.000;
                              17.000;
                              0.0000;
                              0.0000;
                              0.0000;
                              0.0000;
                              41.190;
                              0.0000;
                              0.0000;
                              0.0000:
                              68.0733;
                              0.0000;
                              0.0000;
                              97.8384;
                              0.0000;
                              125.6871
4. (a) There is one dual variable \mu \geq 0 for \sum a_i x_i \leq b and u_i \geq 0 for x_i \leq 1
                                                                              (the others lead to slack variables). The dual optimization is given
                                                                              by
                                                                                                                                                                                                    \min_{\mu \in \mathbb{R}, (u_1, u_2, \dots, u_n) \in \mathbb{R}^n} \mu b + u_1 + u_2 + \dots + u_n
```

variables x(21) s(7)

(b) first, notice that if $\sum_{j=1}^{n} a_j \leq b$, then $x_j = 1$ for all j is feasible, hence it is optimal (notice that all parameters are positive). This shows the first alternative.

Now, suppose that $\sum_{j=1}^{n} a_j > b$. Let us write the complementary slackness conditions:

- i. For each i, if $u_i > 0$ then $x_i = 1$.
- ii. If $\mu > 0$, then $\sum_{i=1}^{n} a_i x_i = b$.
- iii. For each i, if $u_i > c_i \mu a_i$ then $x_i = 0$.

Take

$$\mu = \frac{c_r}{a_r} \tag{24}$$

and

$$u_{i} = \begin{cases} c_{i} - \mu a_{i} & c_{i} - \mu a_{i} \ge 0\\ 0 & c_{i} - \mu a_{i} < 0 \end{cases}$$
 (25)

Clearly this is a dual feasible solution. Notice that $\mu > 0$ and

$$\sum_{i=1}^{n} a_i x_i = a_r \frac{b - \sum_{i=1}^{r-1} a_i}{a_r} + \sum_{i=1}^{r-1} a_i = b$$
 (26)

Hence, the second condition holds. Now, if $u_i > 0$, we have that $u_i = c_i - \mu a_i > 0$, which leads to $c_i/\mu_i > \mu = c_r/\mu_r$. Hence i < r, which gives that $x_i = 1$. This proves the first condition. Now suppose that $u_i > c_i - \mu a_i$. This means that $c_i - \mu a_i < 0$, which leads to $c_i/a_i < \mu = c_r/a_r$. Then, i > r and $x_i = 0$. This proves the third condition.

Finally notice that the given point is primal feasible. Since,

$$0 \le \frac{b - \sum_{i=1}^{r-1} a_i}{a_r} \le 1 \tag{27}$$

because $\sum_{i=1}^{r-1} a_i \leq b$ and $a_r + \sum_{i=1}^{r-1} a_i = \sum_{i=1}^r a_i > b$. We conclude that the complementary slackness conditions hold and both x_i and (μ, u_i) are optimal.

5. (a) With the given choice of variables the cost is given by $c_1x_1 + c_2x_2 + \ldots + c_nx_n$. We want to ensure that the i^{th} factory is supplied by at least by one storage facility. This can be written as

$$\sum_{j|F_i \in S_j} x_j \ge 1 \quad i = 1, 2, \dots, m$$
 (28)

So the overall ILP can be written as

$$\min_{\substack{(x_1, x_2, \dots, x_n) \in \{0, 1\}^n \\ \text{subject to}}} \sum_{j=1}^n c_j x_j$$

$$\sum_{j \mid F_i \in S_j} x_j \ge 1 \quad i = 1, 2, \dots, m$$
(29)

(b) The LP relaxation is given by

$$\min_{\substack{(x_1, x_2, \dots, x_n) \in \mathbb{R}^n \\ \text{subject to}}} \sum_{j=1}^n c_j x_j \\
\sup_{j \mid F_i \in S_j} x_j \ge 1 \quad i = 1, 2, \dots, m \\
x_i \ge 0 \quad i = 1, 2, \dots, n$$
(30)

The dual is given by

$$\min_{\substack{(y_1, y_2, \dots, y_m) \in \mathbb{R}^m \\ \text{subject to}}} \sum_{i=1}^m y_i$$

$$\sum_{\substack{j \mid F_j \in S_i}} y_j \le c_i \quad i = 1, 2, \dots, n$$

$$y_i \ge 0 \quad i = 1, 2, \dots, m$$
(31)

Remark: One may include $x_i \leq 1$ as well, but it is not necessary, since the solution will not have any entry larger than 1. If one considers these additional constraints, the dual will be different.

- (c) The primal-dual algorithm is given by
 - i. Start from $\mathbf{y}_0 = \mathbf{0}$ and $I_0 = \{\}$. Set t = 0.
 - ii. Find a factory F_i which is not covered by the supply locations in I_t . If it does not exist, stop and return I_t as the solution.
 - iii. For every S_j that $F_i \in S_j$, calculate the slack values $\epsilon_j = c_j \sum_{i' \mid F_{i'} \in S_j} y_{i'}$. Select the smallest ϵ_j over S_j s with $F_i \in S_j$. Call its corresponding supply location and its corresponding slack value S and ϵ , respectively.
 - iv. Update $I_{t+1} = I_t \cup \{S\}$ and also y_j , corresponding to $S_j = S$, to $y_j + \epsilon$.
 - v. Update t = t + 1 and go to step 2.
- 6. Notice that the optimization is separable i.e., its optimal solution is obtained by individually optimizing each term:

$$\min_{x_i \in \mathbb{R}} \frac{1}{2\mu_i} (x_i - \bar{x}_i)^2 + \lambda_i |x_i| + x_i g_i \tag{32}$$

To solve the above optimization for each $i=1,2,\ldots,n$, we make a linear branch to obtain two optimization with additional constraints $x_i \geq 0$ and $x_i \leq 0$. For $x_i \geq 0$ and $x_i \leq 0$, we may write that $|x_i| = x_i$ and $|x_i| = -x_i$, respectively. The two optimizations can be written as

$$\min_{x_i \ge 0} \frac{1}{2\mu_i} (x_i - \bar{x}_i)^2 + \lambda_i x_i + x_i g_i
\min_{x_i \le 0} \frac{1}{2\mu_i} (x_i - \bar{x}_i)^2 - \lambda_i x_i + x_i g_i$$
(33)

The two optimizations are quadratic. The optimal solution to the upper optimization is given by

$$x_{i1} = \begin{cases} \bar{x}_i - \mu_i \lambda_i - \mu_i g_i & \bar{x}_i - \mu_i \lambda_i - \mu_i g_i \ge 0\\ 0 & \bar{x}_i - \mu_i \lambda_i - \mu_i g_i \le 0 \end{cases}$$
(34)

and the solution to the lower one is:

$$x_{i2} = \begin{cases} \bar{x}_i + \mu_i \lambda_i - \mu_i g_i & \bar{x}_i + \mu_i \lambda_i - \mu_i g_i \le 0\\ 0 & \bar{x}_i + \mu_i \lambda_i - \mu_i g_i \ge 0 \end{cases}$$
(35)

Now, three different situations may happen:

- (a) If $\bar{x}_i \mu_i g_i \leq -\mu_i \lambda_i$, then $x_{i1} = 0$ and $x_{i2} = \bar{x}_i \mu_i g_i + \mu_i \lambda_i$. Since, the cost at $x_i = 0$ is the same for both optimizations, we conclude that the optimal solution for the overall optimization is $x_{i2} = \bar{x}_i - \mu_i g_i + \mu_i \lambda_i$.
- (b) If $-\mu_i \lambda_i \leq \bar{x}_i \mu_i g_i \leq \mu_i \lambda_i$, then $x_{i1} = x_{i2} = 0$. Hence, $x_i = 0$.
- (c) If $\bar{x}_i \mu_i g_i \ge \mu_i \lambda_i$, then $x_{i1} = \bar{x}_i \mu_i g_i \mu_i \lambda_i$ and $x_{i2} = 0$. Hence, $x_i = \bar{x}_i \mu_i g_i \mu_i \lambda_i$.

According to the definition of the shrinkage function, we can summarize the above results as $x_i = \mathcal{T}_{\lambda_i \mu_i}(\bar{x}_i - \mu_i g_i)$.