1.

(a) The primal optimization and its corresponding dual variables can be
written as

max 6x1 — 3x9 — 223 + 514
(z1,72,23,24)ER%

subject to
uy 2 4xy +3x0 — 8x3 4+ Txy =11
Uo i 3x1 + 220 + Tx3 + 624 > 23
ug: Tx1+4x0 + 3x3 + 214 < 12

Uyg - 1‘120 (1)
Uus : xo >0
Ug : x3 <0

where uo, ug,us < 0 and ugz,ug > 0. The dual optimization can be
written as

(u17u2’u371£1417111t5’u6)€R6 11ug 4 23us + 12us
subject to
duy + 3ug + Tuz +ug =6
3ur + 2us + 4usz + us = —3
—8uy + Tug + 3us + ug = —2
Tui + 6us + 2uz =5
U2, Ug, U5 <0
us, ug > 0 (2)

As expected, uy4, us and ug are slack variables and can be eliminated
to obtain

min 11uq + 23us + 12ug
(u1,uz2,u3)ER3
subject to
duq + 3ug + Tug +ug > 6
3ui + 2uo + 4us + us > —3
—8uy + Tug + 3us + ug < —2
Tui + 6us + 2uz =5

uy <0
uz >0 (3)

(b) The Lagrangian dual function is obtained by minimizing the La-



grangian dual form:

F(ula U2, U3, Ug, Us, uG) =
6x1 — 3x9 — 223 + 514
—U1(4$1 + 3xo — 83 + Txy — 11)
—U9 (3$1 + 2xo + T3 + 614 — 23) (4)
—ug(7x1 + 4x2 + 3x3 + 224 — 12)
—U4QT1 — UL — UT3

ax
(z1,22,23,14)ER?

where us, ugq, us < 0 and ugz, ug > 0. This optimization can be written
as

F(U/17 U2, U3, Ug, Us, U’G) =
x1(6 — duy — 3ug — Tuz — ug)+
xo(—3 — 3uy — 2uy — dug — us)+
max s x3(—2 + 8uy — Tug — 3ug — ug)+ (5)
(z1,x2,23,24)ER :E4(5 — Tug — Bug — QU3)+
11uq 4+ 23us + 12ug

which can be solved to obtain

F(ul,UQ,U3,U4,U5,U6) =

6—4U1—3’UQ—7U3—U4=0

—3—3’[1,1 _2U2_4U3_U5 =0

—2 4+ 8uy — Tug — 3uz —ug =0 (6)
5*7&1*6112721@10

00 Otherwise

(¢) The Lagrangian dual optimization is given by:
(ulyu%usﬁrgjg‘muﬁ)ew T (u1, ug, us, ug, us, ug)
subject to
U, Ug, Uz < 0
us, Ug Z 0 (7)

Notice that the optimization attains its minimum at a point where
I" < co. Hence the dual optimization is equivalent to
min (1, uz, usz, ug, us, up)
(u1,u2,us,u4,us5,u6) ERS
subject to
Uz, Ug, us < 0
us, Ue Z 0
6_4U1_3U2_7U3_U4:0
—3—3’&1—2U2—4’U,3—U5:0 (8)
—248u; — Tus — 3ug —ug =0
5*7&1*6112721@10



This is clearly identical to the LP dual program in (2).

F(u17u27u3) =

6—4“1—3“2—7U3SO
—3—3’&1—2’&2—4“3 SO

—2 4+ 8uy — Tug — 3uz >0 (9)
5*7&1*6112721@10

o0 Otherwise

11ug 4+ 23ug + 12ug  if

Remark: It is possible to obtain another Lagrangian dual function
by keeping the sign constraints:

F(u17u27u3) =
6x1 — 3x2 — 223 + D1y
—U1(4I1 + 3xo — 8xz + Txg — 11)

(ml,mfgii)ew —ug (321 + 2xo + Taz + 624 — 23)
—ug(Tx1 + 4xe + 33 + 224 — 12)
subject to
r1,22 >0
z3 <0 (10)

which leads to a Lagrangian dual optimization identical to (3).

There are five distinct possible links in this problem. We denote their
associated incidence variables by zup, Zad, The, Tod, Teq- According to
Table 1, the total cost of construction is given by

Tab + 3Tad + Toe + 3Thd + 2Tcq (11)

To eliminate the disconnected networks, we use the cut-set con-
straints (one can equivalently use the subtour elimination constraints):

S ={a} Tab + Taa > 1

S ={b} Tab + Tpe + Tpg > 1

S ={c} Tep + Tea > 1

S = {d} Tad + Tbd + Tea > 1 (12)

S ={a,b} Tad + Tpe + Tpg > 1
S:{a,c} Tap + Tad + The + Teqg = 1
S ={a,d} Tab + Tpd + Tea 2> 1



We obtain
min Tab + 3Tad + Toe + 3Tpd + 2Teq
(TabsTadsThe,TodsTed) E{0,1}1°
subject to
ZTab + Tad 2 1
Tab + Toe + Toa > 1
Tpe + Teq 2> 1
ZTad + Tod + Ted 2 1
Zad + Toe + Tbd = 1
Tab + Tad + Toe + Tea > 1
Zab + Tbd + Ted = 1
(13)

(b) Suppose that a network contains a cycle and (i,7) is a link in this
cycle. This means that z; ; = 1. Now, set x; ; = 0 i.e., remove this
edge. Since (7,7) is a part of a cycle, removing it does not affect
connectivity. However since ¢; ; > 0, removing this edge reduces the
cost. This shows that the minimal solution does not include any
cycle.

(¢) A connected graph is a tree if and only if its number of edges is one
less than the number of nodes (3 in this case). Hence, we add the
constraint »_ x;; = 3.

min Tab + 3%ad + Tphe + 3%pg + 2% cq
(Tab TadsToerTod,Tea)€{0,1}5
subject to
Zab + Tad 2 1
Tab + Toe + Tba = 1
Tpe + Teq > 1
Tad + Tod + Teq > 1
Zad + Toe + Tbd = 1
Tab + Tad + Toe + Tea > 1
Zab + Tbd + Tea > 1
Tab + Tad + Toe + Tod + Ted = 3 (14)



(d) The LP relaxation is given by
min Tab + 3Tad + Toe + 3%pd + 2% cq
(Tab,Tad,The,Tbd,Ted) ERY.
subject to
ZTab + Taqd > 1
Tab + Toe + Tba = 1
Tpe + Ted 2 1
Tad + Tod + Teq > 1
Zad + Toe + Tpa > 1
Tab + Tad + Toe + Ted = 1
Zab + Tbd + Ted = 1
Tab + Tad + Toe + Tod + Ted = 3

The CVX code is given by:
[
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—_ O = OO

100
cvx_begin
variable x(5)
minimize (c¢’xx)
Axx>=1
x>=(
sum (x)==
cvx_end

The solution is given in Figure 1.



3. Define s; for i = 1,2,...,7 as the capital on 1st of January in year ¢ after
selling the bonds . Notice that for the 7th year no bond is going to be
sold and s7 is negative showing the outstanding debt. Hence the problem
is to maximize s7. Moreover,

S1=x11+T12+ ...+ 2X16 (16)
and
6 i
siv1 = (si = b+ Y Tivrg— ) TQioji (17)
j=it1 j=1
for i = 1,2,...,6, where b; is the construction cost in Table 2 in year 4

and «j is the returning interest rate in Table 3 for validity period of k
years. We have that z; ; > 0 and s; > b;. Also, we have to make sure that

we can return the money due in year 1,2,...,5. This means that
(sifbi)ufojyiai,jH Z 0 2= 1,2,...,5 (18)
j=1

For simplicity, define

x1,1
x1,2
&1
Lo x1,6
X = . = x2,1 (19)
T21
x2.6
L Z6,6 ]
and
S1
52
s = (20)
St



Then, the optimization can be written as

min Sy
xER21 scR7

subject to
§S1=x1+2T2+ T3+ x4+ 25+ Ts
82 = 1.068(s1 — 20) + x7 + 253 + T9 + 10 + 11 — T1011
s3 = 1.068(s2 — 17) + x12 + x13 + T14 + T15 — Taa — T71
s4 = 1.068(s3 — 23) + 216 + 17 + T18 — T3z — T — T1209
s5 = 1.068(s4 — 24) 4+ 219 + Z2p — T4y — Tgiz — L1302 — L1600
S¢ = 1.068(55 —25) + x91 — T5q5 — L1004 — T1403 — T17Q3 — T19(V]
s7 = 1.068(sg — 21) — xgas — T1105 — T1504 — T18Q3 — T2 — Ta1 (v
s1 > 20, s9 > 17, s3> 23, s4 > 24, s5 > 25, sg > 21
1.068(s1 — 20) — z11 > 0
1.068(s2 — 17) — a9 — w7y > 0
1.068(s3 — 23) — xgag — xgva — w1201 > 0
1.068(s4 — 24) — x40q — Tg¥g — w1302 — T1607 > 0
1.068(s5 — 25) — T505 — T1p00y — T1403 — X702 — L9y > 0
;>0 i=1,2,...,21 (21)
The CVX code is given by:
mu=1.068;

alpha=[1.07 1.15 1.23 1.32 1.41 1.5];
cvx_begin

variables x(21) s(7)

maximize (s (7))

s(l)==sum(x(1:6));

s(2)==(s(1)—20)*mutsum(x(7:11)) —x(1)*alpha (1);

s(3)==(s(2) —17)*mutsum (x(12:15)) —x(2)*alpha(2) —x(7)*alpha (1 )
s(4)==(s(3)—23)+*mutsum (x(16:18)) —x(3)* alpha(3)—x(8)*alpha(2)—x(12)*alpha (
s(b)==(s(4)—24)*musum (x(19:20)) —x(4)*alpha(4)— x(9)*a1pha( x(1 )*alpha(‘
s(6)==(s(5)—25)*mut+x(21)—x(5)*alpha(5)—x(10)*alpha(4)—x(14) *alpha() x(17
s(7)==(s(6)—21)*mu—x(6)*alpha(6)—x(11)xalpha(5)— x(15)*a1pha( )—x(18)*xalph
s(1:6)>=[20 17 23 24 25 21]’;

(s(1)=20)*mu—x(1)*alpha(1)>=0;
(s(2)—17)*mu—x(2)*alpha(2)—x(7)*alpha(l)>=0;
(s(3)—23)smu—=x(3)*xalpha(3)—x(8)+alpha(2)—x(12)xalpha(l)>=
(s(4)—24)smu—=x(4)*alpha(4)—x(9)*alpha(3)—x(13)«alpha(2 )fx(l )xalpha (1) >=(
(s(5)—25)*mu—=x(5)*alpha(5)—x(10)*xalpha(4)—x(14)*alpha(3)—x(17)*alpha(2)—
x>=0;

cvx_end

The optimal value is s; = —164.863MSek and the solution is given by



x= [0.0000
L0000
L0000
L0000
L0000
.0820
L0000
L0000
L0000
L0000
L0000
L0000
L0000
L0000
L0000
L0000
L0000
L0000
L0000
L0000
.0000]

(@31
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[N ]
A

remark: If you miss the constraints in (18), you will be in debt during the
project for maximally one day (Dec 31-Jan 1). Without these constraints,
the optimization becomes

xe]Rr%i,IsleR7 57
subject to
§1 =21+ T2+ 23+ 2a+T5 +Tp
s = 1.068(s1 — 20) + x7 + x5 + T9 + 10 + 11 — T1011
s3 = 1.068(s2 — 17) + 212 + 213 + T14 + T15 — Taa — Ty
s4 = 1.068(s3 — 23) + 216 + 17 + T18 — T3z — T — T1209
s5 = 1.068(s4 — 24) + 19 + Tog — T4q — Tgg — T1302 — T160
Sg = 1.068(55 — 25) + x91 — T5q5 — L1004 — T14Q3 — T17Q2 — T19(V]

s7 = 1.068(s¢ — 21) — xeig — X115 — L1504 — T18(3 — Loy — To10

s1 > 20, s9 > 17, s3> 23, sq4 > 24, s5 > 25, sg > 21

;>0 i=1,2,...,21 (22)

mu=1.068;

alpha=[1.07 1.15 1.23 1.32 1.41 1.5];
cvx_begin



4.

variables x(21) s(7)

maximize (s (7))

s(l)==sum(x (1:6));

$(2)==(s(1)—20)*mutsum(x(7:11)) —x(1)*alpha (1);
s(3)==(s(2)—17)*mutsum (x(12:15)) —x(2)*alpha(2) —x(7)*alpha (1 )
s(4)==(s(3)—23)+*mutsum (x(16:18)) —x(3)* alpha(3)—x(8)*alpha(2)—x(12)*alpha (
s(5)==(s(4)—24)*mutsum (x(19:20)) —x(4)* alpha(4)—x(9)*alpha(3)—x(13)*alpha(
s(6)==(s(5)—25)*xmutx(21)—x(5)*alpha(5)—x(10)*alpha(4)— (14)*a1pha(3)7x(17
s(7)==(s(6)—21)*xmu—x(6)*alpha(6)—x(11)*alpha(5)—x(15)*alpha(4)—x(18)*alph
s(1:6)>=[20 17 23 24 25 21];

x>=0;

cvx_end

The optimal value is s; = —164.485MSek solution is given by

X=
[0.0000;
0.0000;
0.0000;
0.0000;
0.0000;
20.000;
17.000;
0.0000;
0.0000;
0.0000;
0.0000;
41.190;
0.0000;
0.0000;
0.0000;
68.0733;
0.0000;
0.0000;
97.8384;
0.0000;
125.6871]

(a) There is one dual variable g > 0 for > a;z; < band u; > 0 for z; <1
(the others lead to slack variables). The dual optimization is given
by

min b+ up +us+ ..+ uy
HER, (u1,uz,...,un) ER™
subject to
pa; +u; >c 1=12....n

>0, u; >0 (23)



(b)

first, notice that if Xn: aj < b, then z; =1 for all j is feasible, hence
it is optimal (noticjez‘ihat all parameters are positive). This shows
the first alternative.

Now, suppose that i aj > b. Let us write the complementary slack-
ness conditions: =

i. For each i, if u; > 0 then z; = 1.
n
ii. If p >0, then Y a;z; = 0.

i=1
iii. For each i, if u; > ¢; — pa; then x; = 0.
Take c
== 24
n= (24)
and
_ ) ei—pa; ci—pa; >0
vi= { 0 c;i — pa; <0 (25)

Clearly this is a dual feasible solution. Notice that p > 0 and

r—1
n b— Z @ r—1
z;aiaci = a,.;ijl + Z;ai =b (26)
1= 1=

Hence, the second condition holds. Now, if u; > 0, we have that
u; = ¢; — pa; > 0, which leads to ¢;/u; > p = ¢ /pr. Hence i < r,
which gives that x; = 1. This proves the first condition. Now suppose
that u; > ¢; — pa;. This means that ¢; — pa; < 0, which leads to
ci/a; < p = c¢./a,. Then, ¢ > r and x; = 0. This proves the third
condition.

Finally notice that the given point is primal feasible. Since,

r—1
b— Z a;
i=1

0< <1 27
<—= < @7
r—1 r—1 T
because Y a; < band ar + > a; = > a; > b. We conclude that
i=1 i=1 i=1

the complzzmentary slackness conditions hold and both x; and (p, u;)
are optimal.

With the given choice of variables the cost is given by ¢y + coxo +
...+ cpx,. We want to ensure that the it factory is supplied by at
least by one storage facility. This can be written as

doowp=1 i=12...,m (28)
JIFi€S;

10



So the overall ILP can be written as
. n
(317327~~I,I;156{011}" ng €%
subject to
>ooxi>1 i=1,2,....m (29)
JIFi€S;

(b) The LP relaxation is given by
. n
min Cixj
(3;173;27...,;Cn)ER”' _];1 7
subject to

>oz;>1 i=1,2,...,m
leiGSj

>0 i=1,2,...,n (30)

The dual is given by

m

Zyi

min
(1,92, ym)ER™ ;27

subject to
Z ijCi i=1,2,...,n
j|Fj€»97,
y; >0 1=1,2,....m (31)

Remark: One may include x; < 1 as well, but it is not necessary,
since the solution will not have any entry larger than 1. If one con-
siders these additional constraints, the dual will be different.

(¢) The primal-dual algorithm is given by
i. Start from yo =0 and Iy = {}. Set ¢t = 0.
ii. Find a factory F; which is not covered by the supply locations
in I;. If it does not exist, stop and return I; as the solution.

iii. For every S; that F; € S;, calculate the slack values ¢; = ¢; —
>~ yi . Select the smallest €; over S;s with F; € S;. Call its

i'|Fyes;
C(l)r}espJonding supply location and its corresponding slack value
S and e, respectively.

iv. Update I;+1 = I; U{S} and also y;, corresponding to S; = S, to
Y; + €.

v. Update t =t + 1 and go to step 2.

6. Notice that the optimization is separable i.e., its optimal solution is ob-
tained by individually optimizing each term:

1
min
z; ER 2‘LL,L

(zi — 2:) + Nilzi| + 239 (32)

11



To solve the above optimization for each i = 1,2,...,n, we make a linear
branch to obtain two optimization with additional constraints x; > 0 and
z; <0. For z; > 0 and z; < 0, we may write that |z;| = z; and |2;| = —;,
respectively. The two optimizations can be written as

1 )2
min = (x; — T; AiTi + T
min 5 (T — Ti)* + Xiwi + @igs

ing(l) g,lh (z; — &;)% — Ny + w39 (33)

The two optimizations are quadratic. The optimal solution to the upper
optimization is given by

T N = aGi T — N — pigi > 0
i = { 0 T — pidi — pigi <0 (34)

and the solution to the lower one is:

Tt N = agi T+ i — g <0
iz = { 0 Zi + idi — pigi > 0 (35)

Now, three different situations may happen:

(a) If Z; — pigi < —pidi, then x5 = 0 and xip = & — pigi + i
Since, the cost at x; = 0 is the same for both optimizations, we
conclude that the optimal solution for the overall optimization is
Tip = Ty — [igi + HiXi.

(b) If —pi\i < & — pigi < i, then a1 = 242 = 0. Hence, a; = 0.

(c) If Z; — pigi > piXi, then w1 = Ty — pigi — piXi and @2 = 0. Hence,
T = Ty — Pigi — HiNi-

According to the definition of the shrinkage function, we can summarize
the above results as z; = Tx,p, (Ti — 14:9:)-
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