

Models of Concurrency

GERARDO SCHNEIDER

UPPSALA UNIVERSITY DEPARTMENT OF INFORMATION TECHNOLOGY UPPSALA, SWEDEN

Thanks to Frank Valencia

Models of Concurrency - p.1/57

Concurrency is Everywhere

Concurrent Systems: Multiple agents (processes) that interact among each other.

Key issues :

- Message-Passing & Shared-Memory
- Synchronous & Asynchronous
- Reactive Systems
- Mobile Systems
- Secure Systems
- Timed Systems

UPPSALA UNIVERSITET

Concurrency is Everywhere

Concurrent Systems: Multiple agents (processes) that interact among each other.

Example: *The Internet* (a complex system!). It combines many of the before-mentioned issues!

- Need for Formal Models to describe and analyze concurrent systems.
- Models for sequential computation (functions f: Inputs→Outputs) don't apply;
 Concurrent computation is usually:
 - Non-Terminating
 - Reactive (or Interactive)
 - Nondeterministic (Unpredictable).
 - ...etc.

• Formal models must be simple, expressive, formal and provide techniques (e.g., λ calculus)

In concurrency theory:

- There are several (too many?) models focused in specific phenomena.
- New models typically arise as extensions of well-established ones.
- There is no yet a "canonical (all embracing) model" for concurrency.

In concurrency theory:

- There are several (too many?) models focused in specific phenomena.
- New models typically arise as extensions of well-established ones.
- There is no yet a "canonical (all embracing) model" for concurrency.
- Why?
 - ...Probably because concurrency is a very broad (young) area.

Some Well-Established Concurrency Models:

- Process Algebras (Process Calculi):
 - Milner's CCS & Hoare's CSP (Synchronous communication)
 - Milner's π-calculus (CCS Extension to Mobility)
 - Saraswat's CCP (Shared Memory Communication)
- Petri Nets: First well-established concurrency theory—extension of automata theory

- Basic concepts from Automata Theory
- CCS
 - Basic Theory
 - Process Logics
 - Applications: Concurrency Work Bench (?)
- π -calculus
- Petri Nets

Definition: An automata A over an alphabet Act is a tuple (Q, Q_0, Q_f, T) where

- $S(A) = Q = \{q_0, q_1, ...\}$ is the set of states
- $S_0(A) = Q_0 \subseteq Q$ is the set of initial states
- $S_f(A) = Q_f \subseteq Q$ is the set of accepting (or final) states
- $T(A) = T \subseteq Q \times Act \times Q$ is the set of transitions

Usually $(q, a, q') \in T$ is written as $q \xrightarrow{a} q'$

Automaton Example

A over $\{a, b\}$ with $S(A) = \{q_0, q_A, q_B, q_f\}$, $S_0(A) = \{q_0\}, S_f(A) = \{q_f\},$ $T(A) = \{q_0 \xrightarrow{a} q_A, \ldots\}.$

Definition (Acceptance, Regularity)

- A over Act accepts $s = a_1...a_n \in Act^*$ if there are $q_0 \xrightarrow{a_1} q_1, q_1 \xrightarrow{a_2} q_2, ..., q_{n-1} \xrightarrow{a_n} q_n$ in T(A) s.t., $q_0 \in S_o(A)$ and $q_n \in S_f(A)$.
- The language of (or recognized by) A, L(A), is the set of sequences accepted by A.

Definition (Acceptance, Regularity)

- Regular sets are those recognized by *finite-state automata* (FSA): I.e., S is regular iff S = L(A) for some FSA A.
- Regular Expressions (e.g., $a.(b+c)^*$) are "equally expressive" to FSA.

Automata: Some Nice Properties

Proposition:

- 1. Deterministic and Non-Deterministic FSA are equally "expressive".
- 2. Regular sets are closed under (a) union, (b) complement, (c) intersection.

Exercises: (1) Prove 2.b and 2.c.

- (2)* Prove that emptiness problem of a given FSA is *decidable*.
- (3)* Prove that language equivalence of two given FSA is *decidable*.
- (4)* * * Let B a FSA. Construct a FSA A such that
 - $s \in L(A)$ iff for every suffix s' of $s, s' \in L(B)$

 Classic Automata Theory is solid and foundational, and it has several applications in computer science.

- Classic Automata Theory is solid and foundational, and it has several applications in computer science.
- **Example:** Two Vending-Machines

- Classic Automata Theory is solid and foundational, and it has several applications in computer science.
- **Example:** Two Vending-Machines

- Classic Automata Theory is solid and foundational, and it has several applications in computer science.
- **Example:** Two Vending-Machines
- If L(A₁) = L(A₂) then language equivalence (trace equivalence) is too weak for interactive behaviour!

Automata Theory: The Problem

• The theory allows to deduce that $a \cdot (b+c) = a \cdot b + a \cdot c$

Automata Theory: The Problem

• The theory allows to deduce that $a \cdot (b+c) = a \cdot b + a \cdot c$

Models of Concurrency - p.13/57

Automata Theory: The Problem

- The theory allows to deduce that $a \cdot (b+c) = a \cdot b + a \cdot c$
- That is, the automata in the example are equivalent and we want to differentiate them
- We need a stronger equivalence that does not validate the above.

Transition Systems are just automata in which final and initial states are irrelevant

Definition: Let *T* be transition system. A relation $R \subseteq S(T) \times S(T)$ is a *simulation* iff for every $(p,q) \in R$:

If $p \xrightarrow{a} p'$ then there exists q' such that $q \xrightarrow{a} q'$ and $(p', q') \in R$

A relation R is a *bisimulation* iff R and its *converse* R^{-1} are both simulations.

Definition: We say that p simulates q iff there exists a *simulation* R such that $(p,q) \in R$. Also, p and q are *bisimilar*, written $p \sim q$, if there exists a *bisimulation* R such that $(p,q) \in R$.

Example: In the previous example p_0 simulates q_0 but q_0 cannot simulate p_0 , so p_0 and q_0 are not bisimilar.

Question: If *p* simulates *q* and *q* simulates *p*; are *p* and *q* bisimilar?

Definition: We say that p simulates q iff there exists a *simulation* R such that $(p,q) \in R$. Also, p and q are *bisimilar*, written $p \sim q$, if there exists a *bisimulation* R such that $(p,q) \in R$.

Example: In the previous example p_0 simulates q_0 but q_0 cannot simulate p_0 , so p_0 and q_0 are not bisimilar.

Question: If *p* simulates *q* and *q* simulates *p*; are *p* and *q* bisimilar?

Answer: No! P = a.0 + a.b.0 and Q = a.b.0

Road Map

- We have seen: Basic Classic Automata theory, and Transition Systems, Bisimilarity
- Next: Process Calculi, in particular CCS.
 Processes represented as transition systems and their behavioural equivalence given by bisimilarity.

Process Calculi: Key Issues

- (Syntax) Constructs that fit the intended phenomena
 E.g. Atomic actions, parallelism, nondeterminism, locality, recursion.
- (Semantics) How to give meaning to the constructs

E.g. Operational, denotational, or algebraic semantics

(Equivalences) How to compare processes
 E.g. Observable Behaviour, process
 equivalences, congruences...

Process Calculi: Key Issues

- (Specification) How to specify and prove process properties
 E.g. Logic for expressing process
 specifications (Hennessy-Milner Logic)
- (Expressiveness) How expressive are the constructs?

CCS: Calculus for Synchron. Communic.

Underlying sets (basic atoms)

- A set $\mathcal{N} = a, b, \dots$ of names and $\overline{\mathcal{N}} = \{\overline{a} \mid a \in \mathcal{N}\}$ of co-names
- A set $\mathcal{L} = \mathcal{N} \cup \overline{\mathcal{N}}$ of labels (ranged over by l, l', \ldots)
- A set $Act = \mathcal{L} \cup \{\tau\}$ of actions (ranged over by a, b, \ldots)
- Action τ is called the *silent or unobservable* action

CCS: Process Syntax

$P,Q,\ldots := 0 \mid \mathbf{a}.P \mid P \parallel Q \mid P+Q \mid P \setminus a \mid A(a_1,\ldots,a_n)$

- Bound names of P, bn(P): Those with a bound occurrence in P.
- Free names of P, fn(P): Those with a not bound occurrence in P.
- For each (call) $A(a_1, \ldots, a_n)$ there is a unique process definition $A(b_1 \ldots b_n) = P$, with $fn(P) \subseteq \{b_1, \ldots, b_n\}$.

• The set of all processes is denoted by \mathcal{P} .

CCS: Operational Semantics

$$ACT \xrightarrow{\mathbf{a}.P \xrightarrow{\mathbf{a}} P}$$

$$SUM_1 \xrightarrow{P \xrightarrow{\mathbf{a}} P'}_{P+Q \xrightarrow{\mathbf{a}} P'}$$

$$SUM_2 \xrightarrow{Q \xrightarrow{\mathbf{a}} Q'}_{P+Q \xrightarrow{\mathbf{a}} Q'}$$

$$COM_1 \xrightarrow{P \xrightarrow{\mathbf{a}} P'}_{P \parallel Q \xrightarrow{\mathbf{a}} P' \parallel Q}$$

$$COM_2 \xrightarrow{Q \xrightarrow{\mathbf{a}} Q'}_{P \parallel Q \xrightarrow{\mathbf{a}} P \parallel Q'}$$

$$COM_3 \xrightarrow{P \xrightarrow{l} P' Q \xrightarrow{\overline{l}} Q'}_{P \parallel Q \xrightarrow{\overline{l}} P' \parallel Q'}$$

CCS: Operational Semantics

$$\operatorname{RES} \frac{P \xrightarrow{\mathbf{a}} P'}{P \setminus a \xrightarrow{\mathbf{a}} P' \setminus a} \text{ if } \mathbf{a} \neq a \text{ and } \mathbf{a} \neq \overline{a}$$
$$\operatorname{REC} \frac{P_A[b_1, \dots, b_n/a_1, \dots, a_n] \xrightarrow{\mathbf{a}} P'}{A(b_1, \dots, b_n) \xrightarrow{\mathbf{a}} P'} \text{ if } A(a_1, \dots, a_n) \xrightarrow{\operatorname{def}} P_A$$

CCS: Operational Semantics

$$\operatorname{RES} \frac{P \xrightarrow{\mathbf{a}} P'}{P \setminus a \xrightarrow{\mathbf{a}} P' \setminus a} \quad \text{if } \mathbf{a} \neq a \text{ and } \mathbf{a} \neq \overline{a}$$
$$\operatorname{REC} \frac{P_A[b_1, \dots, b_n/a_1, \dots, a_n] \xrightarrow{\mathbf{a}} P'}{A(b_1, \dots, b_n) \xrightarrow{\mathbf{a}} P'} \quad \text{if } A(a_1, \dots, a_n) \stackrel{\text{def}}{=} P_A$$

Notation: Instead of $P \setminus a$ we will use the infix notation: $(\nu a)P$ ("new" operator).

The *labelled transition system* of CCS has \mathcal{P} as its states and its transitions are those given by the operational (labelled) semantics. Hence, define $P \sim Q$ iff the states corresponding to P and Q are bisimilar.

Exercise Write a CCS expression for the vending machine (in parallel with some thirsty user:-).

CCS: Bisimilarity

Questions Do we have?

- $-P \parallel Q \sim Q \parallel P$
- $-P \parallel 0 \sim P$
- $-(P \parallel Q) \parallel R \sim P \parallel (Q \parallel R)$
- $-(\nu a)0 \sim 0$
- $P \parallel (\nu a)Q \sim (\nu a)(P \parallel Q)$
- $-(\nu a)P \sim (\nu b)P[b/a]$

CCS: The expansion law

- Notice that $a.0 \parallel b.0$ is bisimilar to the summation form a.b.0 + b.a.0
- More generally, we have the expansion law which allows to express systems in summation form.

CCS: The expansion law

- Notice that $a.0 \parallel b.0$ is bisimilar to the summation form a.b.0 + b.a.0
- More generally, we have the expansion law

l.e.

$$(\nu \vec{a})(P_1 \parallel \dots \parallel P_n) \sim$$

$$\Sigma\{\mathbf{a}_i . (\nu \vec{a})(P_1 \parallel \dots \parallel P'_i \parallel \dots \parallel P_n) \mid P_i \xrightarrow{\mathbf{a}_i} P'_i, \ \overline{\mathbf{a}}, \mathbf{a}_i \notin \vec{a}\}$$

$$+$$

$$\Sigma\{\tau . (\nu \vec{a})(P_1 \parallel \dots \parallel P'_i \parallel \dots \parallel P'_j \dots \parallel P_n) \mid P_i \xrightarrow{l} P'_i, \ P_j \xrightarrow{\overline{l}} P'_j$$

CCS: The expansion law

- Notice that $a.0 \parallel b.0$ is bisimilar to the summation form a.b.0 + b.a.0
- So, every move in $(\nu \vec{a})(P_1 \parallel \ldots \parallel P_n)$ is either one of the P_i or a communication between some P_i and P_j

Congruence Issues

• Suppose that $P \sim Q$. We would like

 $P \parallel R \sim Q \parallel R$

More generally, we would like

 $C[P] \sim C[Q]$

where C[.] is a process context

Congruence Issues

• Suppose that $P \sim Q$. We would like

 $P \parallel R \sim Q \parallel R$

More generally, we would like

 $C[P] \sim C[Q]$

where C[.] is a process context

I.e., we want ~ to be a congruence.
 The notion of congruence allows us to replace "equals with equals"

Congruence Issues

• Suppose that $P \sim Q$. We would like

 $P \parallel R \sim Q \parallel R$

More generally, we would like

 $C[P] \sim C[Q]$

where C[.] is a process context

Question. How can we prove that \sim is a congruence?

Observable Behaviour

- In principle, P and Q should be equivalent iff another process (the environment, an observer) cannot observe any difference in their behaviour
- Notice *τ*.*P* ≁ *P*, although *τ* is an unobservable action. So ~ could be too strong
 So, we look for other notion of equivalence focused in terms of observable actions (i.e., actions —^l, *l* ∈ *L*)

Observations

- Think of any $\stackrel{l}{\longrightarrow}$ as an observation; or that an action $\stackrel{a}{\longrightarrow}$ by P can be *observed* by an action $\stackrel{\overline{a}}{\longrightarrow}$ by P's environment
- An experiment e as a sequence $l_1.l_2...l_n$ of observable actions
- Notation: If $s = \mathbf{a}_1 \dots \mathbf{a}_n \in Act^*$ then define

$$\stackrel{s}{\Longrightarrow} = \left(\stackrel{\tau}{\longrightarrow} \right)^* \stackrel{\mathbf{a}_1}{\longrightarrow} \left(\stackrel{\tau}{\longrightarrow} \right)^* \dots \left(\stackrel{\tau}{\longrightarrow} \right)^* \stackrel{\mathbf{a}_n}{\longrightarrow} \left(\stackrel{\tau}{\longrightarrow} \right)^*$$

Observations

- Think of any $\stackrel{l}{\longrightarrow}$ as an observation; or that an action $\stackrel{a}{\longrightarrow}$ by P can be *observed* by an action $\stackrel{\overline{a}}{\longrightarrow}$ by P's environment
- An experiment e as a sequence $l_1.l_2...l_n$ of observable actions
- Notice that $\stackrel{e}{\Longrightarrow}$ for $e = l_1.l_2...l_n \in \mathcal{L}$ denotes a sequence of observable actions inter-spread with τ actions: *The notion of experiment*.

Definition: (Trace Equivalence) P and Q are *trace equivalent*, written $P \sim_t Q$, iff for every experiment (here called trace) $e = l_1 \dots l_n \in \mathcal{L}^*$

 $P \stackrel{e}{\Longrightarrow} \quad \text{iff} \ Q \stackrel{e}{\Longrightarrow}$

Trace Equivalence

Examples.

- $\tau . P \sim_t P$ (nice!)
- $a.b.0 + a.c.0 ~ \sim_t ~ a.(b.0 + c.0)$ (not that nice!)
- $a.b.0 + a.0 \sim_t a.b.0$ (not sensitive to deadlocks)
- $a.0 + b.0 \sim_t (\nu c)(c.0 \parallel \overline{c}.a.0 \parallel \overline{c}.b.0)$

Definition: (Failures Equivalence) A pair (e, L), where $e \in \mathcal{L}^*$ (i.e. a *trace*) and $L \subset \mathcal{L}$, is a failure for *P* iff

 $(1)P \stackrel{e}{\Longrightarrow} P' \quad (2)P' \stackrel{l}{\not \longrightarrow} \text{ for all } l \in L, \quad (3)P' \stackrel{\tau}{\not \longrightarrow}$

P and *Q* are *failures equivalent*, written $P \sim_f Q$, iff they have the same failures.

Fact $\sim_f \subset \sim_t$.

Failures Equivalence

Examples

•
$$\tau.P \sim_f P$$

■ $a.b.0 + a.c.0 \quad \not\sim_f \quad a.(b.0 + c.0)$ (Exercise)

•
$$a.b.0 + a.0 \not\sim_f a.b.0$$
.

•
$$a.0 + b.0 \not\sim_f (\nu c)(c.0 \parallel \overline{c}.a.0 \parallel \overline{c}.b.0)$$

(Exercise)

- $a.(b.c.0 + b.d.0) \sim_f a.b.c.0 + a.b.d.0.$
- Let $D = \tau . D$. We have $\tau . 0 \not\sim_f D$.

Definition: A symmetric binary relation R on processes is a weak bisimulation iff for every $(P,Q) \in R$: If $P \stackrel{e}{\Longrightarrow} P'$ and $e \in \mathcal{L}^*$ then there exists Q'

such that $Q \stackrel{e}{\Longrightarrow} Q'$ and $(P', Q') \in R$. *P* and *Q* are *weakly bisimilar*, written $P \approx Q$ iff there exists a *weak bisimulation* containing the pair (P, Q).

Weak Bisimilarity

Examples.

- $\tau.P \approx P$, $a.\tau.P \approx a.P$
- However, $a.0 + b.0 \not\approx a.0 + \tau.b.0$
- $a.(b.c.0+b.d.0) \not\approx a.b.c.0+a.b.d.0$ (Exercise)
- Let $D = \tau . D$. We have $\tau . 0 \approx D$.
- $a.0 + b.0 \not\approx (\nu c)(c.0 \parallel \overline{c}.a.0 \parallel \overline{c}.b.0)$ (Exercise)

An alternative definition of weak bisimulation

- Verifying bisimulation using the previous definition could be hard (there are infinitely many experiments e!).
- Fortunately, we have an alternative formulation easier to work with:
 Proposition: *R* is a weak bisimulation iff If *P* ⇒ *P'* and a ∈ *Act* then there exists *Q'* such that *Q* ⇒ *Q'* and (*P'*, *Q'*) ∈ *R*.
 - Where $\hat{a} = a$ if $a \in \mathcal{L}$ (i.e. observable), otherwise $\hat{a} = \epsilon$.

Road Map

- We have seen: Basic Classic Automata theory, and Transition Systems, Bisimilarity
- Also: Process Calculi, in particular CCS.
 Processes represented as transition systems and their behavioural equivalence given by bisimilarity.
- Next: Process Logics

Process Logic: Verifi cation and Specifi cation

Process can be used to specify and verify the behaviour system (E.g. Vending Machines).

E.g., $2p.\overline{tea}.0 + 2p.\overline{coffe}.0$ specify a machine which does not satisfy the behaviour specified by a $2p.(\overline{tea}.0 + \overline{coffe}.0)$

- In Computer Science we use logics for specification and verification of properties. A logic whose formulae can express, e.g.,
 - "P will never not execute a bad action", or
 - "P eventually executes a good action"

Hennessy&Milner Logic

The syntax of the logic:

 $F := \texttt{true} \mid \texttt{false} \mid F_1 \land F_2 \mid F_1 \lor F_2 \mid \langle K \rangle F \mid [K]F$

where K is a set of actions

The boolean operators are interpreted as in propositional logic

Hennessy&Milner Logic

The syntax of the logic:

 $F := \texttt{true} \mid \texttt{false} \mid F_1 \wedge F_2 \mid F_1 \vee F_2 \mid \langle K \rangle F \mid [K]F$

where K is a set of actions

- $\langle K \rangle F$ (possibility) asserts (of a given P): It is possible for P to do a $a \in K$ and then evolve into a Q that satisfy F
- [K]F (necessity) asserts (of a given P): If P can do a $a \in K$ then it *must* evolve into a Q which satisfies F

Hennesy&Milner Logic: Semantics

The compliance of *P* with the specification *F*, written $P \models F$, is given by:

 $P \not\models \texttt{false}$ $P \models \texttt{true}$ $P \models F_1 \wedge F_2$ iff $P \models F_1$ and $P \models F_2$ $P \models F_1 \lor F_2$ iff $P \models F_1$ or $P \models F_2$ $P \models \langle K \rangle F$ iff for some Q $P \xrightarrow{\mathbf{a}} Q, \mathbf{a} \in K \text{ and } Q \models F$ iff if $P \xrightarrow{\mathbf{a}} Q$ and $\mathbf{a} \in K$ then $Q \models F$ $P \models [K]F$

Hennesy&Milner Logic: Semantics

Example. Let

$$P_1 = a.(b.0 + c.0), P_2 = a.b.0 + a.c.0$$

Also let

 $F = \langle \{a\} \rangle (\langle \{b\} \rangle \operatorname{true} \land \langle \{c\} \rangle \operatorname{true})$ Notice that $P_1 \models F$ but $P_2 \not\models F$.

Theorem $P \sim Q$ if and only, for every F, $P \models F$ iff $Q \models F$.

A Linear Temporal Logic

The syntax of the formulae is given by

 $F := \texttt{true} \mid \texttt{false} \mid L \mid F_1 \lor F_2 \mid F_1 \land F_2 \mid \diamondsuit F \mid \Box F$

where L is a set of non-silent actions.

- Formulae assert properties of traces
- Boolean operators are interpreted as usual
- L asserts (of a given trace s) that the first action of s must be in $L \cup \{\tau\}$

A Linear Temporal Logic

The syntax of the formulae is given by

 $F := \texttt{true} \mid \texttt{false} \mid L \mid F_1 \lor F_2 \mid F_1 \land F_2 \mid \diamondsuit F \mid \Box F$

where L is a set of non-silent actions.

- $\Diamond F$ asserts (of a given trace *s*) that at some point in *s*, *F* holds.
- $\Box F$ asserts (of a given trace *s*) that at every point in *s*, *F* holds.

Temporal Logic: Semantics

An infinite sequence of actions $s = a_1.a_2...$ satisfies (or is a model of) F, written $s \models F$, iff $\langle s, 1 \rangle \models F$, where

$$\begin{array}{l} \langle s,i\rangle \models \texttt{true} \\ \langle s,i\rangle \not\models \texttt{false} \\ \langle s,i\rangle \models L & \texttt{iff} \\ \langle s,i\rangle \models F_1 \lor F_2 & \texttt{iff} \\ \langle s,i\rangle \models F_1 \land F_2 & \texttt{iff} \\ \langle s,i\rangle \models \Box F & \texttt{iff} \\ \langle s,i\rangle \models \Box F & \texttt{iff} \\ \hline \\ \hline \\ \end{array}$$

 $\mathbf{a}_{i} \in L \cup \tau$ $\langle s, i \rangle \models F_{1} \text{ or } \langle s, i \rangle \models F_{2}$ $\langle s, i \rangle \models F_{1} \text{ and } \langle s, i \rangle \models F_{2}$ for all $j \ge i \ \langle s, j \rangle \models F$ there is a $j \ge i \ s.t. \ \langle s, j \rangle \models F$

UPPSALA UNIVERSITET

Temporal Logic: Semantics

$$P \models F$$

iff whenever $P \stackrel{s}{\Longrightarrow}$ then $\hat{s} \models F$, where $\hat{s} = s.\tau.\tau..$

Temporal Logic: Example

Example. Consider

 $A(a, b, c) \stackrel{\text{def}}{=} a.(b.A(a, b, c) + c.A(a, b, c)) \text{ and}$ $B(a, b, c) \stackrel{\text{def}}{=} a.b.B(a, b, c) + a.c.B(a, b, c).$

- Notice that the trace equivalent processes A(a, b, c) and B(a, b, c) satisfy $\Box \diamondsuit (b \lor c)$
- I.e. they always eventually do b or c

Temporal Logic: Example

Theorem If $P \sim_t Q$ then for every linear temporal formula F,

 $P \models F \text{ iff } Q \models F$

Question. Does the other direction of the theorem hold?

Temporal Logic: Exercises

Exercises: Which one of the following equivalences are true?

- $\Box(F \lor G) \equiv \Box F \lor \Box G$? - $\Diamond(F \lor G) \equiv \Diamond F \lor \Diamond G$? - $\Box \Diamond F \equiv \Diamond \Box F$? - $\Box \Diamond F \equiv \Diamond F$?

Temporal Logic: Exercises

Exercises: Which one of the following equivalences are true?

- $\Box(F \lor G) \not\equiv \Box F \lor \Box G$ - $\Diamond(F \lor G) \equiv \Diamond F \lor \Diamond G$
- $-\Box \diamondsuit F \neq \diamondsuit \Box F$
- $-\Box \diamondsuit F \not\equiv \diamondsuit F$

Road Map

- Basic classic automata theory and the limitation of language equivalence.
- Bisimilarity Equivalence for automata (transition systems).
- CCS
 - $\bullet \ Behaviour \longrightarrow transitions \ systems$
 - Behaviour using: bisimilarity, trace equivalence, failures equivalence, weak bisimilarity
 - Specification of properties using HM and Temporal Logics.

Road Map

- Basic classic automata theory and the limitation of language equivalence.
- Bisimilarity Equivalence for automata (transition systems).
- CCS
- Mobility and the π calculus

Mobility

What kind of *process mobility* are we talking about?

- Processes move in the *physical space* of computing sites
- Processes move in the virtual space of linked processes
- Links move, in the virtual space of linked processes

Mobility

What kind of *process mobility* are we talking about?

Links move, in the virtual space (of linked processes)

The last one is the π -calculus' choice; for economy, flexibility, and simplicity.

• The π calculus extends CCS with the ability of sending private and public *links* (*names*).

 π -Calculus: Syntax

 $P := P \parallel P \mid \Sigma_{i \in I} \alpha_i P \mid (\nu a) P \mid !P \mid \text{if } a = b \text{ then } P$ where $\alpha := \tau \mid \overline{a}(b) \mid a(x)$

- Names=Channels=Ports=Links.
- $\overline{a}(b).P$: "send *b* on channel *a* and then activate *P*"
- a(x).P: "receive a name on channel a (if any), and replace x with it in P"

 π -Calculus: Syntax

 $P := P \parallel P \mid \Sigma_{i \in I} \alpha_i P \mid (\nu a) P \mid !P \mid \text{if } a = b \text{ then } P$ where $\alpha := \tau \mid \overline{a}(b) \mid a(x)$

- $(\nu a).P$: "create a fresh name *a* private to *P*"
- $(\nu a)P$ and a(x).Q are the only binders
- *!P*: "replicate *P*" i.e., *!P* represents $P \parallel P \parallel P \parallel \dots$

Mobility: Example

Client & Printer-Server:

- The printer-server $Serv = (\nu p) (s(r).\overline{r}(p) \parallel p(j).Print)$
- The Client $Client = \overline{s}(c).c(plink).\overline{plink}(job)$
- The System $Client \parallel Serv$.

Mobility: Exercises

Write an agent that

- Reads sthg from port a and sends it twice along port b
- Reads two ports and sends the first along the second
- Sends *b* and *c* on channel *a* so that **only one** (sequential) process receive both *b* and *c*
- Contains three agents *P*, *Q*, *R* such that *P* can communicate with both *Q* and *R*; but *Q* and *R* cannot communicate
- Generates *infinitely many* different names—and send them along channel *a*.

Reaction Semantics of π

The reactive semantics of π consists of a *structural congruence* \equiv and the *reactive rules*.

- The structural congruence describe irrelevant syntactic aspects of processes
- The reactive rules describe the evolutions due to synchronous communication between processes.

Definition: (Structural Congruence) The relation \equiv is the smallest process equivalence satisfying:

• $P \equiv Q$ if P can be alpha-converted into Q.

- $P \parallel 0 \equiv P$, $P \parallel Q \equiv Q \parallel P$, $(P \parallel Q) \parallel R \equiv P \parallel (Q \parallel R)$
- $(\nu a)0 \equiv 0$, $(\nu a)(\nu b)P \equiv (\nu b)(\nu a)P$
- $(\nu a)(P \parallel Q) \equiv P \parallel (\nu a)Q$ if $a \notin fn(P)$
- $P \equiv P \parallel !P$

Examples. Notice that $(\nu c)(\overline{a}(b) \parallel 0) \equiv \overline{a}(b)$.

- **1.** $(\nu a)P \equiv P$ if $a \notin fn(P)$
- **2.** $x(y).y(z) \equiv x(z).y(y)$
- **3.** $x \parallel y \equiv x.y + y.x$
- **4.** $x(y).x(z) \parallel y(z).z(y) \equiv y(y).y(z) \parallel x(z).x(y)$

Examples. Notice that $(\nu c)(\overline{a}(b) \parallel 0) \equiv \overline{a}(b)$.

- **1.** $(\nu a)P \equiv P$ if $a \notin fn(P)$ True!
- **2.** $x(y).y(z) \equiv x(z).y(y)$
- **3.** $x \parallel y \equiv x.y + y.x$
- **4.** $x(y).x(z) \parallel y(z).z(y) \equiv y(y).y(z) \parallel x(z).x(y)$

Examples. Notice that $(\nu c)(\overline{a}(b) \parallel 0) \equiv \overline{a}(b)$.

- **1.** $(\nu a)P \equiv P$ if $a \notin fn(P)$ True!
- **2.** $x(y).y(z) \equiv x(z).y(y)$ Not true! (... $\parallel \overline{x}(d)$)
- **3.** $x \parallel y \equiv x.y + y.x$
- **4.** $x(y).x(z) \parallel y(z).z(y) \equiv y(y).y(z) \parallel x(z).x(y)$

Examples. Notice that $(\nu c)(\overline{a}(b) \parallel 0) \equiv \overline{a}(b)$.

- **1.** $(\nu a)P \equiv P$ if $a \notin fn(P)$ True!
- **2.** $x(y).y(z) \equiv x(z).y(y)$ Not true! (... $|| \overline{x}(d)$)
- **3.** $x \parallel y \equiv x.y + y.x$ Not true! (If $y = \overline{x}$ then: $a(x, x).(x \parallel \overline{y}) \not\equiv a(x, x).(x\overline{y} + \overline{y}.x)$)
- **4.** $x(y).x(z) \parallel y(z).z(y) \equiv y(y).y(z) \parallel x(z).x(y)$

Examples. Notice that $(\nu c)(\overline{a}(b) \parallel 0) \equiv \overline{a}(b)$.

- **1.** $(\nu a)P \equiv P$ if $a \notin fn(P)$ True!
- **2.** $x(y).y(z) \equiv x(z).y(y)$ Not true! (... $|| \overline{x}(d)$)
- **3.** $x \parallel y \equiv x.y + y.x$ Not true! (If $y = \overline{x}$ then: $a(x, x).(x \parallel \overline{y}) \not\equiv a(x, x).(x\overline{y} + \overline{y}.x)$)
- **4.** $x(y).x(z) \parallel y(z).z(y) \equiv y(y).y(z) \parallel x(z).x(y)$ True!

Reactive Rules

TAU
$$\overline{\tau.P + M \longrightarrow P}$$

REACT $\overline{(a(x).P + M) \parallel (\overline{a}(b).Q + N) \longrightarrow P[b/x] \parallel Q}$
STRUCT $\frac{P \longrightarrow P'}{Q \longrightarrow Q'}$ if $P \equiv Q$ and $P' \equiv Q'$
PAR $\frac{P \longrightarrow P'}{P \parallel Q \longrightarrow P' \parallel Q}$ RES $\frac{P \longrightarrow P'}{(\nu a)P \longrightarrow (\nu a)P'}$

Card States

How to express that a private channel can / cannot be "exported"?

How to express that a private channel can / cannot be "exported"?
 Example:

$((\nu a)\overline{x}(a).0) \parallel x(y).P$

How can we reflect that \overline{x} communicate with x?

How to express that a private channel can / cannot be "exported"?
 Example:

$((\nu a)\overline{x}(a).0) \parallel x(y).P$

How can we reflect that \overline{x} communicate with x?

- It seems that the rules do not allow to do so
- This is hidden somewhere; where?

How to express that a private channel can / cannot be "exported"?
 Example:

$((\nu a)\overline{x}(a).0) \parallel x(y).P$

How can we reflect that \overline{x} communicate with x?

- It seems that the rules do not allow to do so
- This is hidden somewhere; where? Answer: In the STRUCT rule!

Reactive Rules

Example. Give reductions for

$x(z).\overline{y}(z) \parallel !(\nu y)\overline{x}(y).Q$

Models of Concurrency - p.48/57

We have **not** considered in this course:

- How to introduce recursion: recursive operator vs. replication
- Notions of process equivalence: weak, early, open, late bisimulations; barbed congruence
- Variants of semantics: symbolic, late, early semantics, etc

Road Map

- Basic classic automata theory and the limitation of language equivalence.
- Bisimilarity Equivalence for automata (transition systems).
- CCS
- Mobility and the π calculus
- Petri Nets

Petri Nets

A Petri net is a bipartite graph whose

- Classes of nodes (*places*) represent system conditions and resources
- Each place can contain tokens
- Transitions represent system activities
- First model for (true) concurrency (Petri, 1962)
- Widely used for analysis and verification of concurrent systems

Petri Nets (more formally)

• A Petri net is a tuple $N = (P, A, T, M_0)$:

- P is a finite set of places
- *A* is a finite set of *actions* (or *labels*)
- $T \subseteq \mathcal{M}(P) \times A \times \mathcal{M}(P)$ is a finite set of *transitions*
- M_0 is the *initial marking*

where $\mathcal{M}(P)$ is a collection of multisets (bags) over P

Graphical representation

Marking

$M: \ensuremath{\mathsf{is}}\xspace$ a mapping from places to the set of natural numbers

$$M(P_1) = 3$$
 $M(P_2) = 1$
 $M(P_3) = 1$ $M(P_4) = 2$

Transition relation (fi ring)

Models of Concurrency -p.54/57

Transition relation (fi ring)

Models of Concurrency -p.54/57

Petri Nets: Some remarks

Petri nets are infinite-state systems Example:

Starting with $M(P_1) = 1$ and $M(P_2) = 0$ (10) Firing the transition successively gives: $11, 12, 13, 14, \ldots$

Exercise: How to generate the Natural numbers, using Petri nets?

Models of Concurrency - p.56/57

Road Map

- Basic classic automata theory and the limitation of language equivalence.
- Bisimilarity Equivalence for automata (transition systems).
- CCS
- Mobility and the π calculus
- Petri Nets

