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Concurrency is Everywhere

Concurrent Systems: Multiple agents
(processes) that interact among each other.

Key issues :

Message-Passing & Shared-Memory

Synchronous & Asynchronous

Reactive Systems

Mobile Systems

Secure Systems

Timed Systems
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Concurrency is Everywhere

Concurrent Systems: Multiple agents
(processes) that interact among each other.

Example: The Internet (a complex system!). It
combines many of the before-mentioned issues!

Models of Concurrency – p.2/57



Concurrency: A Serious Challenge

Need for Formal Models to describe and
analyze concurrent systems.

Models for sequential computation (functions
f : Inputs→Outputs ) don’t apply;
Concurrent computation is usually:

Non-Terminating
Reactive (or Interactive)
Nondeterministic (Unpredictable).
...etc.
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Concurrency: A Serious Challenge

Formal models must be simple, expressive,
formal and provide techniques (e.g., λ
calculus)
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Concurrency: A Serious Challenge

In concurrency theory:
There are several (too many?) models
focused in specific phenomena.
New models typically arise as extensions
of well-established ones.
There is no yet a “canonical (all
embracing) model” for concurrency.
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Concurrency: A Serious Challenge

In concurrency theory:
There are several (too many?) models
focused in specific phenomena.
New models typically arise as extensions
of well-established ones.
There is no yet a “canonical (all
embracing) model” for concurrency.

Why?
...Probably because concurrency is a very
broad (young) area.
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Concurrency: a Serious Challenge

Some Well-Established Concurrency Models:

Process Algebras (Process Calculi):
Milner’s CCS & Hoare’s CSP
(Synchronous communication)
Milner’s π-calculus (CCS Extension to
Mobility)
Saraswat’s CCP (Shared Memory
Communication)

Petri Nets: First well-established concurrency
theory—extension of automata theory
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Agenda

Basic concepts from Automata Theory

CCS
Basic Theory
Process Logics
Applications: Concurrency Work Bench
(?)

π-calculus

Petri Nets
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Automata

Definition: An automata A over an alphabet Act
is a tuple (Q,Q0, Qf , T ) where

S(A) = Q = {q0, q1, . . .} is the set of states

S0(A) = Q0 ⊆ Q is the set of initial states

Sf(A) = Qf ⊆ Q is the set of accepting (or
final) states

T (A) = T ⊆ Q × Act × Q is the set of
transitions

Usually (q, a, q′) ∈ T is written as q
a

−→ q′
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Automaton Example

qA

q0
qf

qB

ε

b

a

a

b

b

a

A over {a, b} with S(A) = {q0, qA, qB, qf},
S0(A) = {q0}, Sf(A) = {qf},
T (A) = {q0

a
−→ qA, . . .}.
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Regular Sets

Definition (Acceptance, Regularity)

A over Act accepts s = a1...an ∈ Act∗ if there
are q0

a1−→ q1, q1

a2−→ q2,. . ., qn−1

an−→ qn in
T (A) s.t., q0 ∈ So(A) and qn ∈ Sf(A).

The language of (or recognized by) A, L(A),
is the set of sequences accepted by A.
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Regular Sets

Definition (Acceptance, Regularity)

Regular sets are those recognized by
finite-state automata (FSA): I.e., S is regular
iff S = L(A) for some FSA A.

Regular Expressions (e.g., a.(b + c)∗) are
“equally expressive” to FSA.
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Automata: Some Nice Properties

Proposition:

1. Deterministic and Non-Deterministic FSA are
equally “expressive”.

2. Regular sets are closed under (a) union, (b)
complement, (c) intersection.
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Automata: Exercises

Exercises: (1) Prove 2.b and 2.c.
(2)? Prove that emptiness problem of a given
FSA is decidable.
(3)? Prove that language equivalence of two
given FSA is decidable.
(4)? ? ? Let B a FSA. Construct a FSA A
such that

s ∈ L(A) iff for every suffix s′ of s, s′ ∈ L(B)
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Automata Theory; what is it good for

Classic Automata Theory is solid and
foundational, and it has several applications
in computer science.
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Automata Theory; what is it good for

Classic Automata Theory is solid and
foundational, and it has several applications
in computer science.

Example: Two Vending-Machines

A1 s0

2$

s1 s2

coffee

tea

2$
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Automata Theory; what is it good for

Classic Automata Theory is solid and
foundational, and it has several applications
in computer science.

Example: Two Vending-Machines

s4

2$

s0

2$

s1 s2

coffee

tea

tea

2$
A2
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Automata Theory; what is it good for

Classic Automata Theory is solid and
foundational, and it has several applications
in computer science.

Example: Two Vending-Machines

If L(A1) = L(A2) then language equivalence
(trace equivalence) is too weak for interactive
behaviour!
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Automata Theory: The Problem

The theory allows to deduce that
a · (b + c) = a · b + a · c
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Automata Theory: The Problem

The theory allows to deduce that
a · (b + c) = a · b + a · c

p1

p2

p3

p0

a

b

c

q2

q3

q0

q′

1

q1

b

c

a

a
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Automata Theory: The Problem

The theory allows to deduce that
a · (b + c) = a · b + a · c

That is, the automata in the example are
equivalent and we want to differentiate them

We need a stronger equivalence that does
not validate the above.
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Simulation & Bisimulation Relations

Transition Systems are just automata in which
final and initial states are irrelevant

Definition: Let T be transition system.
A relation R ⊆ S(T ) × S(T ) is a simulation iff for
every (p, q) ∈ R:

If p
a

−→ p′ then there exists q′ such that
q

a
−→ q′ and (p′, q′) ∈ R

A relation R is a bisimulation iff R and its
converse R−1 are both simulations.
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Bisimilarity

Definition: We say that p simulates q iff there
exists a simulation R such that (p, q) ∈ R.
Also, p and q are bisimilar, written p ∼ q, if there
exists a bisimulation R such that (p, q) ∈ R.

Example: In the previous example p0 simulates
q0 but q0 cannot simulate p0, so p0 and q0 are
not bisimilar.

Question: If p simulates q and q simulates p; are
p and q bisimilar?
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Bisimilarity

Definition: We say that p simulates q iff there
exists a simulation R such that (p, q) ∈ R.
Also, p and q are bisimilar, written p ∼ q, if there
exists a bisimulation R such that (p, q) ∈ R.

Example: In the previous example p0 simulates
q0 but q0 cannot simulate p0, so p0 and q0 are
not bisimilar.

Question: If p simulates q and q simulates p; are
p and q bisimilar?

Answer: No! P = a.0 + a.b.0 and Q = a.b.0
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Road Map

We have seen:
Basic Classic Automata theory, and
Transition Systems, Bisimilarity

Next: Process Calculi, in particular CCS.
Processes represented as transition systems
and their behavioural equivalence given by
bisimilarity.
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Process Calculi: Key Issues

(Syntax) Constructs that fit the intended
phenomena
E.g. Atomic actions, parallelism,
nondeterminism, locality, recursion.

(Semantics) How to give meaning to the
constructs
E.g. Operational, denotational, or algebraic
semantics

(Equivalences) How to compare processes
E.g. Observable Behaviour, process
equivalences, congruences...
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Process Calculi: Key Issues

(Specification) How to specify and prove
process properties
E.g. Logic for expressing process
specifications (Hennessy-Milner Logic)

(Expressiveness) How expressive are the
constructs?
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CCS: Calculus for Synchron. Communic.

Underlying sets (basic atoms)

A set N = a, b, . . . of names and
N = {a | a ∈ N} of co-names

A set L = N ∪N of labels (ranged over by
l, l′, . . .)

A set Act = L ∪ {τ} of actions (ranged over by
a,b, . . .)

Action τ is called the silent or unobservable
action

Actions a and a are “complementary”: a = a
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CCS: Process Syntax

P,Q, . . . := 0 | a.P | P ‖ Q | P+Q | P\a | A(a1, ..., an)

Bound names of P , bn(P ): Those with a
bound occurrence in P .

Free names of P , fn(P ): Those with a not
bound occurrence in P .

For each (call) A(a1, . . . , an) there is a unique
process definition A(b1 . . . bn) = P, with
fn(P ) ⊆ {b1, . . . , bn}.

The set of all processes is denoted by P.
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CCS: Operational Semantics

ACT
a.P

a

−→ P

SUM1
P

a

−→ P ′

P + Q
a

−→ P ′

SUM2

Q
a

−→ Q′

P + Q
a

−→ Q′

COM1
P

a

−→ P ′

P ‖ Q
a

−→ P ′ ‖ Q
COM2

Q
a

−→ Q′

P ‖ Q
a

−→ P ‖ Q′

COM3

P
l

−→ P ′ Q
l

−→ Q′

P ‖ Q
τ

−→ P ′ ‖ Q′
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CCS: Operational Semantics

RES
P

a

−→ P ′

P\a
a

−→ P ′\a
if a 6= a and a 6= a

REC
PA[b1, . . . , bn/a1, . . . , an]

a

−→ P ′

A(b1, . . . , bn)
a

−→ P ′

if A(a1, . . . , an)
def
= PA
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CCS: Operational Semantics

RES
P

a

−→ P ′

P\a
a

−→ P ′\a
if a 6= a and a 6= a

REC
PA[b1, . . . , bn/a1, . . . , an]

a

−→ P ′

A(b1, . . . , bn)
a

−→ P ′

if A(a1, . . . , an)
def
= PA

Notation: Instead of P\a we will use the infix
notation: (νa)P (“new” operator).
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CCS: Bisimilarity

The labelled transition system of CCS has P
as its states and its transitions are those given
by the operational (labelled) semantics. Hence,
define P ∼ Q iff the states corresponding to P
and Q are bisimilar.

Exercise Write a CCS expression for the vending
machine (in parallel with some thirsty user:-).
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CCS: Bisimilarity

Questions Do we have?

- P ‖ Q ∼ Q ‖ P
- P ‖ 0 ∼ P
- (P ‖ Q) ‖ R ∼ P ‖ (Q ‖ R)
- (νa)0 ∼ 0
- P ‖ (νa)Q ∼ (νa)(P ‖ Q)
- (νa)P ∼ (νb)P [b/a]
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CCS: The expansion law

Notice that a.0 ‖ b.0 is bisimilar to the
summation form a.b.0 + b.a.0

More generally, we have the expansion law
which allows to express systems in
summation form.
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CCS: The expansion law

Notice that a.0 ‖ b.0 is bisimilar to the
summation form a.b.0 + b.a.0

More generally, we have the expansion law

I.e.
(ν~a)(P1 ‖ . . . ‖ Pn) ∼

Σ{ai.(ν~a)(P1 ‖ . . . ‖ P ′
i ‖ . . . ‖ Pn) | Pi

ai−→ P ′
i , a, ai 6∈ ~a}

+

Σ{τ.(ν~a)(P1 ‖ . . . ‖ P ′
i ‖ . . . ‖ P ′

j . . . ‖ Pn) |Pi
l

−→ P ′
i , Pj

l
−→ P ′

j}
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CCS: The expansion law

Notice that a.0 ‖ b.0 is bisimilar to the
summation form a.b.0 + b.a.0

So, every move in (ν~a)(P1 ‖ . . . ‖ Pn) is either
one of the Pi or a communication between
some Pi and Pj
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Congruence Issues

Suppose that P ∼ Q. We would like

P ‖ R ∼ Q ‖ R

More generally, we would like

C[P ] ∼ C[Q]

where C[.] is a process context
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Congruence Issues

Suppose that P ∼ Q. We would like

P ‖ R ∼ Q ‖ R

More generally, we would like

C[P ] ∼ C[Q]

where C[.] is a process context

I.e., we want ∼ to be a congruence.
The notion of congruence allows us to
replace “equals with equals”
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Congruence Issues

Suppose that P ∼ Q. We would like

P ‖ R ∼ Q ‖ R

More generally, we would like

C[P ] ∼ C[Q]

where C[.] is a process context

Question. How can we prove that ∼ is a
congruence?
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Observable Behaviour

In principle, P and Q should be equivalent iff
another process (the environment, an
observer) cannot observe any difference in
their behaviour

Notice τ.P 6∼ P , although τ is an
unobservable action. So ∼ could be too
strong
So, we look for other notion of equivalence
focused in terms of observable actions
(i.e., actions l

−→, l ∈ L)
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Observations

Think of any l
−→ as an observation; or that

an action a
−→ by P can be observed by an

action a
−→ by P ′s environment

An experiment e as a sequence l1.l2 . . . ln of
observable actions

Notation: If s = a1 . . . an ∈ Act∗ then define

s
=⇒= (

τ
−→)∗

a1−→ (
τ

−→)∗ . . . (
τ

−→)∗
an−→ (

τ
−→)∗
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Observations

Think of any l
−→ as an observation; or that

an action a
−→ by P can be observed by an

action a
−→ by P ′s environment

An experiment e as a sequence l1.l2 . . . ln of
observable actions

Notice that e
=⇒ for e = l1.l2 . . . ln ∈ L denotes

a sequence of observable actions
inter-spread with τ actions: The notion of
experiment.
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Trace Equivalence

Definition: (Trace Equivalence) P and Q are
trace equivalent , written P ∼t Q, iff for every
experiment (here called trace) e = l1 . . . ln ∈ L∗

P
e

=⇒ iff Q
e

=⇒
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Trace Equivalence

Examples.

τ.P ∼t P (nice!)

a.b.0 + a.c.0 ∼t a.(b.0 + c.0) (not that nice!)

a.b.0 + a.0 ∼t a.b.0 (not sensitive to
deadlocks)

a.0 + b.0 ∼t (νc)(c.0 ‖ c.a.0 ‖ c.b.0)
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Failures Equivalence

Definition: (Failures Equivalence) A pair (e, L),
where e ∈ L∗ (i.e. a trace) and L ⊂ L, is a failure
for P iff

(1)P
e

=⇒ P ′ (2) P ′ 6
l

−→ for all l ∈ L, (3)P ′ 6
τ

−→

P and Q are failures equivalent , written
P ∼f Q, iff they have the same failures.

Fact ∼f⊂∼t.
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Failures Equivalence

Examples

τ.P ∼f P

a.b.0 + a.c.0 6∼f a.(b.0 + c.0) (Exercise)

a.b.0 + a.0 6∼f a.b.0.

a.0 + b.0 6∼f (νc)(c.0 ‖ c.a.0 ‖ c.b.0)
(Exercise)

a.(b.c.0 + b.d.0) ∼f a.b.c.0 + a.b.d.0.

Let D = τ.D. We have τ.0 6∼f D.
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Weak Bisimilarity

Definition: A symmetric binary relation R on
processes is a weak bisimulation iff for every
(P,Q) ∈ R:

If P
e

=⇒ P ′ and e ∈ L∗ then there exists Q′

such that Q
e

=⇒ Q′ and (P ′, Q′) ∈ R.
P and Q are weakly bisimilar , written P ≈ Q iff
there exists a weak bisimulation containing the
pair (P,Q).
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Weak Bisimilarity

Examples.

τ.P ≈ P , a.τ.P ≈ a.P

However, a.0 + b.0 6≈ a.0 + τ.b.0

a.(b.c.0+ b.d.0) 6≈ a.b.c.0+ a.b.d.0 (Exercise)

Let D = τ.D. We have τ.0 ≈ D.

a.0 + b.0 6≈ (νc)(c.0 ‖ c.a.0 ‖ c.b.0)
(Exercise)
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An alternative definition of weak bisimulation

Verifying bisimulation using the previous
definition could be hard (there are infinitely
many experiments e!).

Fortunately, we have an alternative
formulation easier to work with:
Proposition: R is a weak bisimulation iff

If P
a

=⇒ P ′ and a ∈ Act then there exists
Q′ such that Q

â

=⇒ Q′ and (P ′, Q′) ∈ R.
Where â = a if a ∈ L (i.e. observable),
otherwise â = ε.
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Road Map

We have seen:
Basic Classic Automata theory, and
Transition Systems, Bisimilarity

Also: Process Calculi, in particular CCS.
Processes represented as transition systems
and their behavioural equivalence given by
bisimilarity.

Next: Process Logics
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Process Logic: Verification and Specification

Process can be used to specify and verify
the behaviour system (E.g. Vending
Machines).
E.g., 2p.tea.0 + 2p.coffe.0 specify a machine
which does not satisfy the behaviour
specified by a 2p.(tea.0 + coffe.0)

In Computer Science we use logics for
specification and verification of properties. A
logic whose formulae can express, e.g.,

“P will never not execute a bad action”, or
“P eventually executes a good action”
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Hennessy&Milner Logic

The syntax of the logic:

F := true | false | F1 ∧ F2 | F1 ∨ F2 | 〈K〉F | [K]F

where K is a set of actions

The boolean operators are interpreted as in
propositional logic
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Hennessy&Milner Logic

The syntax of the logic:

F := true | false | F1 ∧ F2 | F1 ∨ F2 | 〈K〉F | [K]F

where K is a set of actions

〈K〉F (possibility) asserts (of a given P ): It is
possible for P to do a a ∈ K and then evolve
into a Q that satisfy F

[K]F (necessity) asserts (of a given P ): If P
can do a a ∈ K then it must evolve into a Q
which satisfies F
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Hennesy&Milner Logic: Semantics

The compliance of P with the specification F ,
written P |= F , is given by:

P 6|= false

P |= true

P |= F1 ∧ F2 iff P |= F1 and P |= F2

P |= F1 ∨ F2 iff P |= F1 or P |= F2

P |= 〈K〉F iff for some Q

P
a

−→ Q, a ∈ K and Q |= F

P |= [K]F iff if P
a

−→ Q and a ∈ K then Q |= F
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Hennesy&Milner Logic: Semantics

Example. Let

P1 = a.(b.0 + c.0), P2 = a.b.0 + a.c.0

Also let

F = 〈{a}〉 (〈{b}〉true∧ 〈{c}〉true)

Notice that P1 |= F but P2 6|= F .

Theorem P ∼ Q if and only, for every F , P |= F iff
Q |= F .

Models of Concurrency – p.33/57



A Linear Temporal Logic

The syntax of the formulae is given by

F := true | false | L | F1∨F2 | F1∧F2 | ♦F | �F

where L is a set of non-silent actions.

Formulae assert properties of traces

Boolean operators are interpreted as usual

L asserts (of a given trace s) that the first
action of s must be in L ∪ {τ}
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A Linear Temporal Logic

The syntax of the formulae is given by

F := true | false | L | F1∨F2 | F1∧F2 | ♦F | �F

where L is a set of non-silent actions.

♦F asserts (of a given trace s) that at some
point in s, F holds.

�F asserts (of a given trace s) that at every
point in s, F holds.
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Temporal Logic: Semantics

An infinite sequence of actions s = a1.a2 . . .
satisfies (or is a model of) F , written s |= F , iff
〈s, 1〉 |= F , where

〈s, i〉 |= true

〈s, i〉 6|= false

〈s, i〉 |= L iff ai ∈ L ∪ τ

〈s, i〉 |= F1 ∨ F2 iff 〈s, i〉 |= F1 or 〈s, i〉 |= F2

〈s, i〉 |= F1 ∧ F2 iff 〈s, i〉 |= F1 and 〈s, i〉 |= F2

〈s, i〉 |= �F iff for all j ≥ i 〈s, j〉 |= F

〈s, i〉 |= ♦F iff there is a j ≥ i s.t. 〈s, j〉 |= F
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Temporal Logic: Semantics

Moreover,
P |= F

iff whenever P
s

=⇒ then ŝ |= F , where
ŝ = s.τ.τ. . . .
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Temporal Logic: Example

Example. Consider

A(a, b, c)
def
= a.(b.A(a, b, c) + c.A(a, b, c)) and

B(a, b, c)
def
= a.b.B(a, b, c) + a.c.B(a, b, c).

Notice that the trace equivalent processes
A(a, b, c) and B(a, b, c) satisfy �♦(b ∨ c)

I.e. they always eventually do b or c
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Temporal Logic: Example

Theorem If P ∼t Q then for every linear temporal
formula F ,

P |= F iff Q |= F

Question. Does the other direction of the
theorem hold?
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Temporal Logic: Exercises

Exercises: Which one of the following
equivalences are true?

- �(F ∨ G) ≡ �F ∨ �G?
- ♦(F ∨ G) ≡ ♦F ∨ ♦G?
- �♦F ≡ ♦�F?
- �♦F ≡ ♦F?
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Temporal Logic: Exercises

Exercises: Which one of the following
equivalences are true?

- �(F ∨ G) 6≡ �F ∨ �G
- ♦(F ∨ G) ≡ ♦F ∨ ♦G
- �♦F 6≡ ♦�F
- �♦F 6≡ ♦F
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Road Map

Basic classic automata theory and the
limitation of language equivalence.

Bisimilarity Equivalence for automata
(transition systems).

CCS
Behaviour −→ transitions systems
Behaviour using: bisimilarity, trace
equivalence, failures equivalence, weak
bisimilarity
Specification of properties using HM and
Temporal Logics.
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Road Map

Basic classic automata theory and the
limitation of language equivalence.

Bisimilarity Equivalence for automata
(transition systems).

CCS

Mobility and the π calculus
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Mobility

What kind of process mobility are we talking
about?

Processes move in the physical space of
computing sites

Processes move in the virtual space of
linked processes

Links move, in the virtual space of linked
processes
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Mobility

What kind of process mobility are we talking
about?

Links move, in the virtual space (of linked
processes)

The last one is the π-calculus’ choice; for
economy, flexibility, and simplicity.

The π calculus extends CCS with the ability
of sending private and public links (names).
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π−Calculus: Syntax

P := P ‖ P | Σi∈I αi.P | (νa)P | !P | if a = b then P

where α := τ | a(b) | a(x)

Names=Channels=Ports=Links.

a(b).P : “send b on channel a and then
activate P ”

a(x).P : “receive a name on channel a (if
any), and replace x with it in P ”
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π−Calculus: Syntax

P := P ‖ P | Σi∈I αi.P | (νa)P | !P | if a = b then P

where α := τ | a(b) | a(x)

(νa).P : “create a fresh name a private to P ”

(νa)P and a(x).Q are the only binders

!P : “replicate P ” i.e., !P represents
P ‖ P ‖ P ‖ . . .
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Mobility: Example

Client & Printer-Server:

The printer-server
Serv = (νp) (s(r).r(p) ‖ p(j).P rint)

The Client Client = s(c).c(plink).plink(job)

The System Client ‖ Serv.
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Mobility: Exercises

Write an agent that

- Reads sthg from port a and sends it twice along port b

- Reads two ports and sends the first along the second
- Sends b and c on channel a so that only one (sequential)
process receive both b and c

- Contains three agents P,Q,R such that P can
communicate with both Q and R; but Q and R cannot
communicate
- Generates infinitely many different names—and send
them along channel a.
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Reaction Semantics of π

The reactive semantics of π consists of a
structural congruence ≡ and the reactive rules.

The structural congruence describe irrelevant
syntactic aspects of processes

The reactive rules describe the evolutions
due to synchronous communication between
processes.
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Structural Congruence

Definition: (Structural Congruence) The relation
≡ is the smallest process equivalence satisfying:

P ≡ Q if P can be alpha-converted into Q.

P ‖ 0 ≡ P , P ‖ Q ≡ Q ‖ P ,
(P ‖ Q) ‖ R ≡ P ‖ (Q ‖ R)

(νa)0 ≡ 0, (νa)(νb)P ≡ (νb)(νa)P

(νa)(P ‖ Q) ≡ P ‖ (νa)Q if a 6∈ fn(P )

!P ≡ P ‖!P
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Structural Congruence

Examples. Notice that (νc)(a(b) ‖ 0) ≡ a(b).

Do we have?

1. (νa)P ≡ P if a 6∈ fn(P )

2. x(y).y(z) ≡ x(z).y(y)

3. x ‖ y ≡ x.y + y.x

4. x(y).x(z) ‖ y(z).z(y) ≡ y(y).y(z) ‖ x(z).x(y)
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Structural Congruence

Examples. Notice that (νc)(a(b) ‖ 0) ≡ a(b).

Do we have?

1. (νa)P ≡ P if a 6∈ fn(P ) True!

2. x(y).y(z) ≡ x(z).y(y)

3. x ‖ y ≡ x.y + y.x

4. x(y).x(z) ‖ y(z).z(y) ≡ y(y).y(z) ‖ x(z).x(y)
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Structural Congruence

Examples. Notice that (νc)(a(b) ‖ 0) ≡ a(b).

Do we have?

1. (νa)P ≡ P if a 6∈ fn(P ) True!

2. x(y).y(z) ≡ x(z).y(y) Not true! (. . . ‖ x(d))

3. x ‖ y ≡ x.y + y.x

4. x(y).x(z) ‖ y(z).z(y) ≡ y(y).y(z) ‖ x(z).x(y)
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Structural Congruence

Examples. Notice that (νc)(a(b) ‖ 0) ≡ a(b).

Do we have?

1. (νa)P ≡ P if a 6∈ fn(P ) True!

2. x(y).y(z) ≡ x(z).y(y) Not true! (. . . ‖ x(d))

3. x ‖ y ≡ x.y + y.x Not true! (If y = x then:
a(x, x).(x ‖ y) 6≡ a(x, x).(xy + y.x))

4. x(y).x(z) ‖ y(z).z(y) ≡ y(y).y(z) ‖ x(z).x(y)
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Structural Congruence

Examples. Notice that (νc)(a(b) ‖ 0) ≡ a(b).

Do we have?

1. (νa)P ≡ P if a 6∈ fn(P ) True!

2. x(y).y(z) ≡ x(z).y(y) Not true! (. . . ‖ x(d))

3. x ‖ y ≡ x.y + y.x Not true! (If y = x then:
a(x, x).(x ‖ y) 6≡ a(x, x).(xy + y.x))

4. x(y).x(z) ‖ y(z).z(y) ≡ y(y).y(z) ‖ x(z).x(y)
True!
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Reactive Rules

TAU
τ.P + M −→ P

REACT
(a(x).P + M) ‖ (a(b).Q + N) −→ P [b/x] ‖ Q

STRUCT
P −→ P ′

Q −→ Q′
if P ≡ Q and P ′ ≡ Q′

PAR P −→ P ′

P ‖ Q −→ P ′ ‖ Q RES
P −→ P ′

(νa)P −→ (νa)P ′
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Reactive Rules

How to express that a private channel can /
cannot be “exported”?
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Reactive Rules

How to express that a private channel can /
cannot be “exported”?
Example:

((νa)x(a).0) ‖ x(y).P

How can we reflect that x communicate with
x?
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Reactive Rules

How to express that a private channel can /
cannot be “exported”?
Example:

((νa)x(a).0) ‖ x(y).P

How can we reflect that x communicate with
x?

It seems that the rules do not allow to do so

This is hidden somewhere; where?
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Reactive Rules

How to express that a private channel can /
cannot be “exported”?
Example:

((νa)x(a).0) ‖ x(y).P

How can we reflect that x communicate with
x?

It seems that the rules do not allow to do so

This is hidden somewhere; where?
Answer: In the STRUCT rule!

Models of Concurrency – p.47/57



Reactive Rules

Example. Give reductions for

x(z).y(z) ‖ !(νy)x(y).Q
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π: Some Remarks

We have not considered in this course:

How to introduce recursion: recursive
operator vs. replication

Notions of process equivalence: weak, early,
open, late bisimulations; barbed congruence

Variants of semantics: symbolic, late, early
semantics, etc

Models of Concurrency – p.49/57



Road Map

Basic classic automata theory and the
limitation of language equivalence.

Bisimilarity Equivalence for automata
(transition systems).

CCS

Mobility and the π calculus

Petri Nets
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Petri Nets

A Petri net is a bipartite graph whose
Classes of nodes (places) represent
system conditions and resources
Each place can contain tokens
Transitions represent system activities

First model for (true) concurrency (Petri,
1962)

Widely used for analysis and verification of
concurrent systems
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Petri Nets (more formally)

A Petri net is a tuple N = (P,A, T,M0):
P is a finite set of places
A is a finite set of actions (or labels)
T ⊆ M(P ) × A ×M(P ) is a finite set of
transitions
M0 is the initial marking

where M(P ) is a collection of multisets (bags)
over P
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Graphical representation

P4

P2

t

P3

P1

Marking
M : is a mapping from places to the set of natural
numbers

M(P1) = 3 M(P2) = 1

M(P3) = 1 M(P4) = 2
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Transition relation (firing)

P4

P2

t

P3

P1
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Transition relation (firing)

P4

P2

t

P3

P1

P4

P2

t

P3

P1
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Petri Nets: Some remarks

Petri nets are infinite-state systems
Example:

P1 P2

Starting with M(P1) = 1 and M(P2) = 0 (10)
Firing the transition successively gives:
11, 12, 13, 14, . . .

Exercise: How to generate the Natural numbers,
using Petri nets?
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Example: mutex

W2

C2

R = 0?

R := 1

C1

R = 0?

R := 1

W1

R := 0 R := 0
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Example: mutex
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R := 1

C1
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R := 0 R := 0

W1C1 W2

R = 0

C2
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Example: mutex

W2

C2
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R := 1

C1

R = 0?

R := 1

W1

R := 0 R := 0

W1C1 W2

R = 0

C2
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Example: mutex

W2

C2

R = 0?

R := 1

C1

R = 0?

R := 1

W1

R := 0 R := 0

W1C1 W2

R = 0

C2
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Road Map

Basic classic automata theory and the
limitation of language equivalence.

Bisimilarity Equivalence for automata
(transition systems).

CCS

Mobility and the π calculus

Petri Nets
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