
An heuristic for verifying safety
properties of infinite-state systems

GERARDO SCHNEIDER

UPPSALA UNIVERSITY

DEPARTMENT OF INFORMATION TECHNOLOGY

UPPSALA, SWEDEN

Joint work with Michael Baldamus and Richard Mayr

An heuristic for verifying safety properties of infinite-state systems – p.1/31

Motivation

• How to build correct complex systems?

An heuristic for verifying safety properties of infinite-state systems – p.2/31

Motivation

• How to build correct complex systems?
• Synthesis (from the specification)

An heuristic for verifying safety properties of infinite-state systems – p.2/31

Motivation

• How to build correct complex systems?
• Synthesis (from the specification)
• Build them and then

• Test
• Simulate

An heuristic for verifying safety properties of infinite-state systems – p.2/31

Motivation

• How to build correct complex systems?
• Synthesis (from the specification)
• Build them and then

• Test
• Simulate

• Alternative: Formal verification

An heuristic for verifying safety properties of infinite-state systems – p.2/31

What is Verification?

• Instance:
• P : Program (Hw circuit, communication

protocol, distributed system, C program,
Real-time system, etc)

• φ: Specification
• Question:

• Does P satisfies φ?

An heuristic for verifying safety properties of infinite-state systems – p.3/31

Formal Verification

• It is a very active field for theoretical research
and practical development

• Deductive vs Algorithmic approach

An heuristic for verifying safety properties of infinite-state systems – p.4/31

Formal Verification

• Model Checking (Algorithmic)
• By now, a quite well-established theory

(80’s)
• Exhaustive exploration of the state-space
• Fully automatic
• Practical applications:
• Hardware controllers
• Circuit design
• Many communication protocols

An heuristic for verifying safety properties of infinite-state systems – p.4/31

Formal Verification

• Limitations of Model Checking:
• Finite-state systems
• State explosion problem

An heuristic for verifying safety properties of infinite-state systems – p.4/31

Formal Verification

• Limitations of Model Checking:
• Finite-state systems
• State explosion problem

• Infinite-state systems: More general but
more difficult to analyse!

An heuristic for verifying safety properties of infinite-state systems – p.4/31

Verification of Infinite-State
Systems

• Key aspects to take into account
• Non-bounded variables and/or data

structures (e.g. counters, clocks, queues)
• Parameterised systems (e.g. nets of

unbounded number of id. processes)
• Mobility
• Security

An heuristic for verifying safety properties of infinite-state systems – p.5/31

Verification of Infinite-State
Systems

• Examples of infinite-state systems
• Timed and hybrid automata
• Process rewrite systems
• Push-down automata
• Communicating FSA (e.g. Lossy channel

systems)
• Petri nets
• Parameterised systems (mutual exclusion

protocols, broadcast protocols, etc)

An heuristic for verifying safety properties of infinite-state systems – p.5/31

Verification of Infinite-State
Systems

• Techniques:
• Abstraction
• Symbolic analysis
• Well-quasi-ordering (WQO)

An heuristic for verifying safety properties of infinite-state systems – p.5/31

The Problem

• Our Dream: Verify the π-calculus!

An heuristic for verifying safety properties of infinite-state systems – p.6/31

The Problem

• Our Dream: Verify the π-calculus!
• Not yet there! We start with something

simpler: CCS-like Calculus

An heuristic for verifying safety properties of infinite-state systems – p.6/31

The Problem

• Our Dream: Verify the π-calculus!
• Not yet there! We start with something

simpler: CCS-like Calculus
• Which kind of properties?

• Safety properties (Reachability)

An heuristic for verifying safety properties of infinite-state systems – p.6/31

The Problem

• Our Dream: Verify the π-calculus!
• Not yet there! We start with something

simpler: CCS-like Calculus
• Which kind of properties?

• Safety properties (Reachability)
• Problems?

• Verifying safety properties is undecidable
in CCS

• Termination

An heuristic for verifying safety properties of infinite-state systems – p.6/31

Our Solution

Algorithm:
• Give a Petri net semantics to CCS-like

Agents
Agent: A, Petri net: NA

• Obtain an over-approximation Petri net
W (NA)

• Prove that W (NA) is a Well-Structured
System

• Reachability is decidable in W (NA)

An heuristic for verifying safety properties of infinite-state systems – p.7/31

Our Solution

• Our algorithm is partial:
• If it says (NO) YES: the property is (not)

satisfied
• Sometimes it says UNKNOWN

An heuristic for verifying safety properties of infinite-state systems – p.7/31

Agenda

• Preliminaries
• Well-Structured Systems
• An Agent Language (CCS-like)
• Petri Nets

• Petri Nets Semantics of the Agent Lang.
• Safety Properties Verification
• Concluding Remarks

An heuristic for verifying safety properties of infinite-state systems – p.8/31

Well-Structured Systems:
Preliminaries

Let < S,→> (where S = Q×D is a set of states)
be a labelled transition system (LTS) and � a
preorder (reflexive and transitive)

An heuristic for verifying safety properties of infinite-state systems – p.9/31

Well-Structured Systems:
Preliminaries

Let < S,→> (where S = Q×D is a set of states)
be a labelled transition system (LTS) and � a
preorder (reflexive and transitive)
• � is a WQO if there is no infinite sequence

a0, a1, . . ., so that ai 6� aj for any i ≤ j

An heuristic for verifying safety properties of infinite-state systems – p.9/31

Well-Structured Systems:
Preliminaries

Let < S,→> (where S = Q×D is a set of states)
be a labelled transition system (LTS) and � a
preorder (reflexive and transitive)
• Let D be a set. A subset U ⊆ D is upward

closed if whenever a ∈ U, b ∈ D and a � b,
then b ∈ U . The upward closure of a set

A ⊆ D is

C(A) := {b ∈ D | ∃a ∈ A. a � b}

An heuristic for verifying safety properties of infinite-state systems – p.9/31

Well-Structured Systems:
Preliminaries

Let < S,→> (where S = Q×D is a set of states)
be a labelled transition system (LTS) and � a
preorder (reflexive and transitive)
• A LTS < S,→> is monotonic if, whenever

s � t and s
α
→ s′, then t

α
→ t′ for some t′ so

that s′ � t′

An heuristic for verifying safety properties of infinite-state systems – p.9/31

Well-Structured Systems:
Definition

A trans. system L =< S,→> (with � on data
values) is well-structured if
• � is a well–quasi–ordering, and
• < S,→> is monotonic with respect to �, and
• for all s ∈ S and α ∈ L, the set
min(preα(C({s}))) is computable

An heuristic for verifying safety properties of infinite-state systems – p.10/31

WSS: Some Nice Properties

Theorem:
• Let < S,→> be a WSS, < q, d > a state and

U an upward–closed subset of the set of
data values

• Then it is decidable whether it is possible to
reach, from < q, d >, any state < q′, d′ > with
d′ ∈ U

An heuristic for verifying safety properties of infinite-state systems – p.11/31

An Agent Language (CCS-like)

• Given:
• A set of names, N (a, b, x, y . . .)
• A set of co-names, N = {a | a ∈ N}. The

set of visible actions: Act = N ∪ N
• We denote by Act τ = N ∪ N ∪ {τ} (α)

An heuristic for verifying safety properties of infinite-state systems – p.12/31

An Agent Language (CCS-like)

• Given:
• A set of names, N (a, b, x, y . . .)
• A set of co-names, N = {a | a ∈ N}. The

set of visible actions: Act = N ∪ N
• We denote by Act τ = N ∪ N ∪ {τ} (α)

• The syntax is given by:

P ::= 0 | α.P | P + Q | P\c | P ‖ P | A

Where A
def
= P

An heuristic for verifying safety properties of infinite-state systems – p.12/31

Petri Nets

• A Petri net is a tuple N = (P,A, T,M0):
• P is a finite set of places
• A is a finite set of actions (or labels)
• T ⊆M(P)× A×M(P) is a finite set of

transitions
• M0 is the initial marking

whereM(P) is a collection of multisets (bags)
over P

An heuristic for verifying safety properties of infinite-state systems – p.13/31

Petri Nets: Graphical
representation

P3

P1

t

P2

P4

Marking
M : is a mapping from places to the set of natural
numbers

M(P1) = 3 M(P2) = 1

M(P3) = 0 M(P4) = 2
An heuristic for verifying safety properties of infinite-state systems – p.14/31

Agenda

• Preliminaries
• Well-Structured Systems
• An Agent Language (CCS-like)
• Petri Nets

• Petri Nets Semantics of the Agent Lang.
• Safety Properties Verification
• Concluding Remarks

An heuristic for verifying safety properties of infinite-state systems – p.15/31

Petri Nets Semantics of the Agent
Lang.

• We will use Coloured Petri Nets

An heuristic for verifying safety properties of infinite-state systems – p.16/31

Petri Nets Semantics of the Agent
Lang.

• We will use Coloured Petri Nets

P1 P2

P4

t

P3

An heuristic for verifying safety properties of infinite-state systems – p.16/31

Petri Nets Semantics of the Agent
Lang.

• We will use Coloured Petri Nets

P1 P2

P4

t

P3

• In particular, we will use strings as colours

An heuristic for verifying safety properties of infinite-state systems – p.16/31

Petri Nets Semantics of the Agent
Lang.: Formal Definition

• Places : all agent constants together with all
agents and sub–agents that occur on the
right–hand side of any defining equation
within the environment

An heuristic for verifying safety properties of infinite-state systems – p.17/31

Petri Nets Semantics of the Agent
Lang.: Formal Definition

•• Places
• Transitions :

Trans(α.P) =
nD

{α.P}, {P}
E

7→ α
o

Trans(P + Q) =
nD

{P + Q}, {P}
E

,
D

{P + Q}, {Q}
Eo

Trans(P |Q) =
nD

{P |Q}, {P 7→ l, Q 7→ r}
Eo

Trans(P\c) =
nD

{P\c}, {P}
E

7→ \c
o

Trans(A) =
nD

{A}, {P}
Eo

, given that A
∆
= P

An heuristic for verifying safety properties of infinite-state systems – p.17/31

Petri Nets Semantics of the Agent
Lang.: Example

A
def
= (((a.0 + b.0) ‖ (a.0 + c.0)) ‖ A)\a

An heuristic for verifying safety properties of infinite-state systems – p.18/31

Petri Nets Semantics of the Agent
Lang.: Example

$\res a$

$\ur$$\ul$

$\ur$$\ul$

a b

$\bara.\Nil +c.\Nil$$a.\Nil +b.\Nil$

$c.\Nil$$b.\Nil$

\Nil

$((a.\Nil +b.\Nil)\parallel (\bara.\Nil +c.\Nil))\parallel A$

$(a.\Nil +b.\Nil)\parallel (\bara.\Nil +c.\Nil)$

τ
\bara c

$\bara.\Nil$$a.\Nil$

A

(((a.0 + b.0) ‖ (a.0 + c.0)) ‖ A)\a

An heuristic for verifying safety properties of infinite-state systems – p.18/31

Petri Nets Semantics of the Agent
Lang.: Example

$\bara.\Nil +c.\Nil$

$\ur$$\ul$

$\ur$$\ul$

a b

$a.\Nil +b.\Nil$

$c.\Nil$$b.\Nil$

\Nil

$(a.\Nil +b.\Nil)\parallel (\bara.\Nil +c.\Nil)$

τ
\bara c

$\bara.\Nil$$a.\Nil$

\a

(((a.0 + b.0) ‖ (a.0 + c.0)) ‖ A)\a

A

((a.0 + b.0) ‖ (a.0 + c.0)) ‖ A

An heuristic for verifying safety properties of infinite-state systems – p.18/31

Petri Nets Semantics of the Agent
Lang.: Example

$\bara.\Nil +c.\Nil$
$\ur$$\ul$

a b

$a.\Nil +b.\Nil$

$c.\Nil$$b.\Nil$

\Nil

τ
\bara c

$\bara.\Nil$$a.\Nil$

\a

rl

(a.0 + b.0) ‖ (a.0 + c.0)

((a.0 + b.0) ‖ (a.0 + c.0)) ‖ A

(((a.0 + b.0) ‖ (a.0 + c.0)) ‖ A)\a

A

An heuristic for verifying safety properties of infinite-state systems – p.18/31

Petri Nets Semantics of the Agent
Lang.: Example

τ

$b.\Nil$ $\bara.\Nil$ $c.\Nil$

\bara $c$$a$ b

\Nil

$a.\Nil$

\Nil

\a

rl

rl
a.0 + c.0a.0 + b.0

(a.0 + b.0) ‖ (a.0 + c.0)

((a.0 + b.0) ‖ (a.0 + c.0)) ‖ A

(((a.0 + b.0) ‖ (a.0 + c.0)) ‖ A)\a

A

An heuristic for verifying safety properties of infinite-state systems – p.18/31

Petri Nets Semantics of the Agent
Lang.: Example

τ

$\bara.\Nil$ $c.\Nil$

\bara c

\a

rl

rl

b

a.0 + c.0a.0 + b.0

(a.0 + b.0) ‖ (a.0 + c.0)

((a.0 + b.0) ‖ (a.0 + c.0)) ‖ A

(((a.0 + b.0) ‖ (a.0 + c.0)) ‖ A)\a

A

b.0 a.0

0 0

a

An heuristic for verifying safety properties of infinite-state systems – p.18/31

Petri Nets Semantics of the Agent
Lang.: Example

A

\a

rl

b a
τ

a c

l r

(((a.0 + b.0) ‖ (a.0 + c.0)) ‖ A)\a

((a.0 + b.0) ‖ (a.0 + c.0)) ‖ A

(a.0 + b.0) ‖ (a.0 + c.0)

a.0 + c.0

c.0a.0a.0b.0

0 0 0 0

a.0 + b.0

An heuristic for verifying safety properties of infinite-state systems – p.18/31

Petri Nets Semantics of the Agent
Lang.: Formal Definition

• Tokens : (Act ∪ {l, r})∗; Empty token: ε.
They carry history information about:
• Concurrent threads, and
• In which scope w.r.t. restriction they are

An heuristic for verifying safety properties of infinite-state systems – p.19/31

Petri Nets Semantics of the Agent
Lang.: Formal Definition

• Tokens
• Firing (Enabling of Transitions):

• For transition t with one input place and a
token θ, t is enabled if some of the
following hold
• t is not labelled with a visible action
• t is labelled with a visible action a and θ

doesn’t contain a

An heuristic for verifying safety properties of infinite-state systems – p.19/31

Petri Nets Semantics of the Agent
Lang.: Formal Definition

• Tokens
• Firing (Enabling of Transitions):

• For transition t with two input places p1

and p2 and tokens θ1 and θ2, t is enabled
if both of the following hold
• pc(pre i(t)) \ Act 6= ε, i = 1, 2, while
pc(pre1(t)) \ Act 6= pc(pre2(t)) \ Act

• maxprefa(pc(pre1(t))) =
maxprefa(pc(pre2(t)))

An heuristic for verifying safety properties of infinite-state systems – p.19/31

Petri Nets Semantics of the Agent
Lang.: Example

A
def
= (((a.0 + b.0) ‖ (a.0 + c.0)) ‖ A)\a

An heuristic for verifying safety properties of infinite-state systems – p.20/31

Petri Nets Semantics of the Agent
Lang.: Example

\a

rl

l r

b a
τ

a c

aral

aralr

ε

An heuristic for verifying safety properties of infinite-state systems – p.20/31

Petri Nets Semantics of the Agent
Lang.: Example

\a

rl

l r

b a
τ

a c

ε

aral

aralr

An heuristic for verifying safety properties of infinite-state systems – p.20/31

Petri Nets Semantics of the Agent
Lang.: Example

b a
τ

a c

rl

l r

\a

a

aral

aralr

An heuristic for verifying safety properties of infinite-state systems – p.20/31

Petri Nets Semantics of the Agent
Lang.: Example

b a

l r

τ
a c

\a

rl

al

ar

aral

aralr

An heuristic for verifying safety properties of infinite-state systems – p.20/31

Petri Nets Semantics of the Agent
Lang.: Example

\a

rl

l r

b a
τ

a c

alrall

ar

aral

aralr

An heuristic for verifying safety properties of infinite-state systems – p.20/31

Petri Nets Semantics of the Agent
Lang.: Example

\a

rl

l r

b a
τ

a c

all

alr

ara

aral

aralr

An heuristic for verifying safety properties of infinite-state systems – p.20/31

Petri Nets Semantics of the Agent
Lang.: Example

\a

rl

l r

b a
τ

a c

aral

aralr

all
alr

aral

arar

An heuristic for verifying safety properties of infinite-state systems – p.20/31

Petri Nets Semantics of the Agent
Lang.: Example

\a

rl

l r

b a
τ

a c

aralr

arall aralr

aral

arar

all
alr

An heuristic for verifying safety properties of infinite-state systems – p.20/31

Petri Nets Semantics of the Agent
Lang.: Example

\a

rl

l r

b a
τ

a c

aralr

arall

arara

all
alr

An heuristic for verifying safety properties of infinite-state systems – p.20/31

Petri Nets Semantics of the Agent
Lang.: Extra Structure

• We define a preorder between tokens:

η � θ if η is a (not necessarily contiguous)
substring of θ

Example:

all � ararall

An heuristic for verifying safety properties of infinite-state systems – p.21/31

Petri Nets Semantics of the Agent
Lang.: Extra Structure

• We define an ordering between markings:
m1 v m2

Example: m1

l r

b a
τ

a c

all

alr
aralr

arall
P1 P2 P3 P4

P5 P6 P7 P8

An heuristic for verifying safety properties of infinite-state systems – p.21/31

Petri Nets Semantics of the Agent
Lang.: Extra Structure

• We define an ordering between markings:
m1 v m2

Example:

m1 = {. . . , (P1, {arall}), (P2, {all}), (P3, {alr, aralr}),

(P4, {}), (P5, {}), (P6, {}), (P7, {}), (P8, {})}

m2 = {. . . , (P1, {arall}), (P2, {ararall}), (P3, {alr, aralr}),

(P4, {araralr}), (P5, {all}), (P6, {}), (P7, {}), (P8, {})}

An heuristic for verifying safety properties of infinite-state systems – p.21/31

Petri Nets Semantics of the Agent
Lang.: Extra Structure

• We define an ordering between markings:
m1 v m2

Intuition: m v m′ if m′ represents a (not
necessarily strictly) longer firing history than
m

An heuristic for verifying safety properties of infinite-state systems – p.21/31

Petri Nets Semantics of the Agent
Lang.: Extra Structure

• We define an ordering between markings:
m1 v m2

• Markings represent upward closed sets
Example:

m1 = {. . . , (P1, {arall}), (P2, {all}), (P3, {alr, aralr}),

(P4, {}), (P5, {}), (P6, {}), (P7, {}), (P8, {})}

An heuristic for verifying safety properties of infinite-state systems – p.21/31

Our Petri Nets are not WSS

Very nice, but...

An heuristic for verifying safety properties of infinite-state systems – p.22/31

Our Petri Nets are not WSS

Very nice, but...
• Our Petri nets are not monotonic!

An heuristic for verifying safety properties of infinite-state systems – p.22/31

Our Petri Nets are not WSS

• Counter-example: Let

m1 = {. . . , (P1, {arall}), (P2, {all}), (P3, {alr, aralr}),

(P4, {}), (P5, {}), (P6, {}), (P7, {}), (P8, {})}

l r

b a
τ

a c

all

alr
aralr

arall
P1 P2 P3 P4

P5 P6 P7 P8

An heuristic for verifying safety properties of infinite-state systems – p.22/31

Our Petri Nets are not WSS

• Counter-example: Let

m1 = {. . . , (P1, {arall}), (P2, {all}), (P3, {alr, aralr}),

(P4, {}), (P5, {}), (P6, {}), (P7, {}), (P8, {})}

m2 = {. . . , (P1, {arall}), (P2, {ararall}), (P3, {alr, aralr}),

(P4, {araralr}), (P5, {all}), (P6, {}), (P7, {}), (P8, {})}

• Notice that m1 v m2

An heuristic for verifying safety properties of infinite-state systems – p.22/31

Our Petri Nets are not WSS

• Counter-example: Let

m1 = {. . . , (P1, {arall}), (P2, {all}), (P3, {alr, aralr}),

(P4, {}), (P5, {}), (P6, {}), (P7, {}), (P8, {})}

• Moreover, m1 → m′1, where

m′
1 = {. . . , (P1, {arall}), (P2, {}), (P3, {aralr})

(P4, {}), (P5, {}), (P6, {all}), (P7, {alr}), (P8, {})}

An heuristic for verifying safety properties of infinite-state systems – p.22/31

Our Petri Nets are not WSS

• Counter-example: Let

m1 = {. . . , (P1, {arall}), (P2, {all}), (P3, {alr, aralr}),

(P4, {}), (P5, {}), (P6, {}), (P7, {}), (P8, {})}

But, there is no m′2 such that m′1 v m′2 and
m2 → m′2

=⇒ It is not monotonic!

An heuristic for verifying safety properties of infinite-state systems – p.22/31

Petri Nets as WSS

We make an over-approximation of the Petri net
• We change the synchronisation policy: A

transition may be fired even if the tokens
don’t synchronise (Weak Firings)

An heuristic for verifying safety properties of infinite-state systems – p.23/31

Petri Nets as WSS

We make an over-approximation of the Petri net
• We change the synchronisation policy: A

transition may be fired even if the tokens
don’t synchronise (Weak Firings)

Lemma: P–nets with weak firings are well–
structured systems

An heuristic for verifying safety properties of infinite-state systems – p.23/31

Petri Nets as WSS

We make an over-approximation of the Petri net
• We change the synchronisation policy: A

transition may be fired even if the tokens
don’t synchronise (Weak Firings)

Lemma: P–nets with weak firings are well–
structured systems

Corollary: The control state reachability problem
is decidable for p–nets with weak firings

An heuristic for verifying safety properties of infinite-state systems – p.23/31

Agenda

• Preliminaries
• Well-Structured Systems
• An Agent Language (CCS-like)
• Petri Nets

• Petri Nets Semantics of the Agent Lang.
• Safety Properties Verification
• Concluding Remarks

An heuristic for verifying safety properties of infinite-state systems – p.24/31

Verification of Safety Properties:
The Problem

Instance: An agent A with initial state ini and an
atomic action a

Question: Can agent A ever execute action a?

An heuristic for verifying safety properties of infinite-state systems – p.25/31

Verification of Safety Properties:
The Algorithm

Preparatory phase:

[1] Build the p–net N associated with A

[2] For every transition t labelled with a there is a
minimal marking mt that enables t. It is given by
an ε–token on all places in pre(t). Then
Ma = {mt | t labelled by a}.

An heuristic for verifying safety properties of infinite-state systems – p.26/31

Verification of Safety Properties:
The Algorithm

Preparatory phase:

[1] Build the p–net N associated with A

[2] For every transition t labelled with a there is a
minimal marking mt that enables t. It is given by
an ε–token on all places in pre(t). Then
Ma = {mt | t labelled by a}.

Remark: mt is an upward closed set: “At least
one token in pre(t)”

An heuristic for verifying safety properties of infinite-state systems – p.26/31

Verification of Safety Properties:
The Algorithm

Algorithm:

function Reachability(N,M a, ini) :
(OB , s) := Searchbackward (Ma, ini)
if ini /∈ OB

then←− NO
else←− Search forward(ini ,Ma,OB , b(s))

An heuristic for verifying safety properties of infinite-state systems – p.27/31

Agenda

• Preliminaries
• Well-Structured Systems
• An Agent Language (CCS-like)
• Petri Nets

• Petri Nets Semantics of the Agent Lang.
• Safety Properties Verification
• Concluding Remarks

An heuristic for verifying safety properties of infinite-state systems – p.28/31

Concluding Remarks

• We have given a (finite-control) Petri net
semantics to a CCS-like calculus

• We have presented a general technique for
reachability analysis of non-WSS
• It combines backward and forward

reachability analysis
• It produces answers: YES, NO,

UNKNOWN (YES and NO always correct)
• We have applied it to partially decide the

reachability problem for a CCS-like calculus

An heuristic for verifying safety properties of infinite-state systems – p.29/31

Future Work (Research Topics)

• Use this methodology for verifying safety
properties of
• π-calculus
• Concurrent Constraint Programming
• Others?

• Implementation of the Algorithm

An heuristic for verifying safety properties of infinite-state systems – p.30/31

MUITO OBRIGADO!

An heuristic for verifying safety properties of infinite-state systems – p.31/31

	Motivation
	What is Verification?
	Formal Verification
	Verification of Infinite-State Systems
	The Problem
	Our Solution
	Agenda
	Well-Structured Systems: Preliminaries
	Well-Structured Systems: Definition
	WSS: Some Nice Properties
	An Agent Language (CCS-like)
	Petri Nets
	Petri Nets: Graphical representation
	Agenda
	Petri Nets Semantics of the Agent Lang.
	Petri Nets Semantics of the Agent Lang.: Formal Definition
	Petri Nets Semantics of the Agent Lang.: Example
	Petri Nets Semantics of the Agent Lang.: Formal Definition
	Petri Nets Semantics of the Agent Lang.: Example
	Petri Nets Semantics of the Agent Lang.: Extra Structure
	Our Petri Nets are not WSS
	Petri Nets as WSS
	Agenda
	Verification of Safety Properties: The Problem
	Verification of Safety Properties: The Algorithm
	Verification of Safety Properties: The Algorithm
	Agenda
	Concluding Remarks
	Future Work (Research Topics)
	 	extcolor {green}{M}	extcolor {yellow}{U}	extcolor {green}{I}	extcolor {yellow}{T}	extcolor {green}{O} 	extcolor {yellow}{O}	extcolor {green}{B}	extcolor {yellow}{R}	extcolor {green}{I}	extcolor {yellow}{G}	extcolor {green}{A}	extcolor {yellow}{D}	extcolor {green}{O!}

