An heuristic for verifying safety
properties of infinite-state systems

DEPARTMENT OF INFORMATION TECHNOLOGY
UPPSALA, SWEDEN

Joint work with Michael Baldamus and Richard Mayr

An heuristic for verifying safety properties of infinite-state systems — p.1/31



Motivation

« How to build correct complex systems?

, . A " 5 I
M g T An heuristic for verifying safety properties of infinite-state systems — p.2/3



Motivation

« How to build correct complex systems?
« Synthesis (from the specification)

, . A " 5 I
M g T An heuristic for verifying safety properties of infinite-state systems — p.2/3



Motivation

« How to build correct complex systems?
« Synthesis (from the specification)

e Build them and then
o Test
o Simulate

An heuristic for verifying safety properties of infinite-state systems — p.2/31



Motivation

How to build correct complex systems?

Synthesis (from the specification)

Build them and then
o Test
o Simulate

Alternative:

An heuristic for verifying safety properties of infinite-state systems — p.2/31



What 1s Verification?

* |nstance:

« P: Program (Hw circuit, communication
protocol, distributed system, C program,
Real-time system, etc)

* ¢. Specification
* Question:
* Does P satisfies ¢7?

An heuristic for verifying safety properties of infinite-state systems — p.3/31



Formal Verification

« Itis a very active field for theoretical research
and practical development

« Deductive vs Algorithmic approach

An heuristic for verifying safety properties of infinite-state systems — p.4/31



Formal Verification

« Model Checking (Algorithmic)
* By now, a quite well-established theory
(80’s)
« Exhaustive exploration of the state-space
 Fully automatic

 Practical applications:
« Hardware controllers
 Circult design
« Many communication protocols

An heuristic for verifying safety properties of infinite-state systems — p.4/31



Formal Verification

 Limitations of Model Checking:
* Finite-state systems
« State explosion problem

An heuristic for verifying safety properties of infinite-state systems — p.4/31



Formal Verification

 Limitations of Model Checking:
* Finite-state systems
« State explosion problem

* Infinite-state systems: More general but
more difficult to analyse!

An heuristic for verifying safety properties of infinite-state systems — p.4/31



Verification of Infinite-State
Systems

» Key aspects to take into account

« Non-bounded variables and/or data
structures (e.g. counters, clocks, queues)

« Parameterised systems (e.g. nets of
unbounded number of id. processes)

* Mobility
« Security

An heuristic for verifying safety properties of infinite-state systems — p.5/31



Verification of Infinite-State
Systems

« Examples of infinite-state systems
* Timed and hybrid automata
» Process rewrite systems
* Push-down automata

« Communicating FSA (e.g. Lossy channel
systems)

o Petri nets

« Parameterised systems (mutual exclusion
protocols, broadcast protocols, etc)

An heuristic for verifying safety properties of infinite-state systems — p.5/31



Verification of Infinite-State
Systems

« Techniques:
« Abstraction
« Symbolic analysis
« Well-quasi-ordering (WQO)

S _ A . ies of infinite- ms — 0.5/31
i An heuristic for verifying safety properties of infinite-state systems — p.5/3



The Problem

e Our Dream: Verify the w-calculus!

An heuristic for verifying safety properties of infinite-state systems — p.6/31



The Problem

e Our Dream: Verify the w-calculus!

* Not yet there! We start with something
simpler: CCS-like Calculus

Ny . ies of infinite- ms — 0.6/31
Y. An heuristic for verifying safety properties of infinite-state systems — p.6/3



The Problem

e Our Dream: Verify the w-calculus!

* Not yet there! We start with something
simpler: CCS-like Calculus

« Which kind of properties?
« Safety properties (Reachability)

An heuristic for verifying safety properties of infinite-state systems — p.6/31



The Problem

Our Dream: Verify the w-calculus!

Not yet there! We start with something
simpler: CCS-like Calculus

Which kind of properties?
« Safety properties (Reachability)

Problems?

 Verifying safety properties is undecidable
in CCS

e Termination

An heuristic for verifying safety properties of infinite-state systems — p.6/31



Our Solution

Algorithm:

 Give a Petri net semantics to CCS-like
Agents

Agent: A, Petrinet: Ny

« Obtain an over-approximation Petri net
W(Ny4)

« Prove that W (Ny) is a Well-Structured
System

- Reachability is decidable in W (N y4)

o An heuristic for verifying safety properties of infinite-state systems — p.7/31



Our Solution

« Qur algorithm is partial:
o If it says (NO) YES: the property is (not)
satisfied
« Sometimes it says UNKNOWN

An heuristic for verifying safety properties of infinite-state systems — p.7/31



Agenda

* Preliminaries

« Well-Structured Systems

« An Agent Language (CCS-like)

* Petri Nets
« Petri Nets Semantics of the Agent Lang.
« Safety Properties Verification

« Concluding Remarks

An heuristic for verifying safety properties of infinite-state systems — p.8/31



Well-Structured Systems:
Preliminaries

et < S,—> (where S = (Q x D Is a set of states)
e a labelled transition system (LTS) and < a
oreorder (reflexive and transitive)

An heuristic for verifying safety properties of infinite-state systems — p.9/31



Well-Structured Systems:
Preliminaries

et < S,—> (where S = (Q x D Is a set of states)
e a labelled transition system (LTS) and < a
oreorder (reflexive and transitive)

« <Isa WQO If there Is no Iinfinite sequence
ap, a1, ..., Sothata; 2 a;forany ¢ <j

An heuristic for verifying safety properties of infinite-state systems — p.9/31



Well-Structured Systems:
Preliminaries

et < S,—> (where S = (Q x D Is a set of states)
e a labelled transition system (LTS) and < a
oreorder (reflexive and transitive)

 Let D be aset. Asubset U C D is upward
closed if whenever a € U,b € D and a < b,
then b € U. The upward closure of a set

ACDis
C(A):={be D|dac A.a=b}

An heuristic for verifying safety properties of infinite-state systems — p.9/31




Well-Structured Systems:
Preliminaries

et < S,—> (where S = (Q x D Is a set of states)
e a labelled transition system (LTS) and < a
oreorder (reflexive and transitive)

« ALTS < 5, —> Is monotonic if, whenever

s<tand s = s, thent = ¢ for some ¢ so
that s’ < ¢

An heuristic for verifying safety properties of infinite-state systems — p.9/31



Well-Structured Systems:
Definition
A trans. system £ =< .S, —> (with < on data
values) is well-structured If
« < Is a well-guasi—ordering, and
¢ < 5,—> IS monotonic with respect to <, and

« forall s € S and a € L, the set
min(pre, (C({s}))) is computable

An heuristic for verifying safety properties of infinite-state systems — p.10/31



WSS: Some Nice Properties

T heorem:

 Let < S,—> be a WSS, < ¢,d > a state and
U an upward—closed subset of the set of

data values

* Then it is decidable whether it is possible to
reach, from < ¢, d >, any state < ¢/, d’ > with
deU

An heuristic for verifying safety properties of infinite-state systems — p.11/31



An Agent Language (CCS-like)

» Given:
» A set of N (a,b,z,y...)
* A set of N ={a|ac N} The
set of cAct =N UN
« We denote by Act, =N UN U {7} (a)

' isti ifyi ies of infinite- ms — p.12/31
o An heuristic for verifying safety properties of infinite-state systems — p.12/3



An Agent Language (CCS-like)

» Glven:
» A set of N (a,b,z,y...)
* A set of N ={a|ac N} The
set of  Act =N UN

« We denote by Act, =N UN U {7} (a)
« The syntax Is given by:

P:=0|aP|P+Q|P\c|P|P|A

Where A aef P

isti ifyi ies of infinite- ms — p.12/31
o An heuristic for verifying safety properties of infinite-state systems — p.12/3



Petr1 Nets

« APetrinetisatuple N = (P, A,T, My):
« P iIs a finite set of places
« Ais a finite set of actions (or labels)
o« T'C M(P)x Ax M(P)is afinite set of
transitions
* My Is the initial marking

where M(P) is a collection of multisets (bags)
over P

An heuristic for verifying safety properties of infinite-state systems — p.13/31



Petri Nets: Graphical
representation

" @ :
A \ A
A A
/
- @ "

M :1s a mapping from places to the set of natural
numbers

M (P,)
M (Fy)

1
2

An heuristic for verifying safety properties of infinite-state systems — p.14/31



Agenda

* Preliminaries

« Well-Structured Systems

« An Agent Language (CCS-like)

» Petri Nets
e Petri Nets Semantics of the Agent Lang.
« Safety Properties Verification

« Concluding Remarks

An heuristic for verifying safety properties of infinite-state systems — p.15/31



Petri Nets Semantics of the Agent
Lang.

« We will use Coloured Petri

An heuristic for verifying safety properties of infinite-state systems — p.16/31



Petri Nets Semantics of the Agent
Lang.

« We will use Coloured Petri

@, @n
A\ A
A A
/

¢ e

An heuristic for verifying safety properties of infinite-state systems — p.16/31



Petri Nets Semantics of the Agent
Lang.

« We will use Coloured Petri

@, @n
A\ A
A A
/

¢ e

* In particular, we will use strings as colours

An heuristic for verifying safety properties of infinite-state systems — p.16/31



Petri Nets Semantics of the Agent
Lang.: Formal Definition

* Places : all agent constants together with all
agents and sub—agents that occur on the
right—hand side of any defining equation
within the environment

LA -~ An heuristic for verifying safety properties of infinite-state systems — p.17/31



Petri Nets Semantics of the Agent
Lang.: Formal Definition

e Places
e Transitions :

Trans(a.P) = {<{a.P}, {P}> — a}

Trans(P + Q) = { ({P+Q}, {P}), ({P + @}, {Q})}
Trans(P|Q) = {({PIQ},{P—1,Q+—1})}
Trans(P\c) = {<{P\c}, {P}> — \c}

Trans(A) = {<{A}, {P}>}, giventhat A 2 P

An heuristic for verifying safety properties of infinite-state systems — p.17/31



Petri Nets Semantics of the Agent
Lang.. Example

A (((a.0 +0.0) || (@0 +c.0)) || A)\a

: y I . ifinite- ms — 0.18/31
o An heuristic for verifying safety properties of infinite-state systems — p.18/3



Petri Nets Semantics of the Agent
Lang.. Example

AQ@
{
(((.0+b.0) || (@0 +c.0)) || A)\qy

: y I . ifinite- ms — 0.18/31
o An heuristic for verifying safety properties of infinite-state systems — p.18/3



Petri Nets Semantics of the Agent
Lang.. Example

A @
{
(((.0+b.0) || (@0 +c.0)) || A)\qy

{
\
((a.0 +1.0) || (@.0 + c.0)) | A‘

a

An heuristic for verifying safety properties of infinite-state systems — p.18/31



Petri Nets Semantics of the Agent
Lang.. Example

AQ@-—
f
(((a-0 +5.0) | (@.0 +c.0)) || A)\qy

{
\a
((a.0 +0.0) || (@.0 + c.0)) | Aé
L /N

(a.0 4 5.0) || (@.0 + c.0)@

An heuristic for verifying safety properties of infinite-state systems — p.18/31



Petri Nets Semantics of the Agent
Lang.. Example

AQ@-—
f
(((a-0 +5.0) || (@.0 +-c.0)) || A)\qy

{
\a
((a.0 +b.0) || (.0 + c.0)) || Aé
I /N

(a.0 4 5.0) || (@.0 + c.0)@

1 r
a.0 +b.0 ’/\‘ a.0 +c.0

An heuristic for verifying safety properties of infinite-state systems — p.18/31



Petri Nets Semantics of the Agent
Lang.. Example

AQ@-—
f
(((a-0 +5.0) || (@.0 +-c.0)) || A)\qy

{
\a
((a.0 +b.0) || (.0 + c.0)) || Aé
I /N

(a.0 4 5.0) || (@.0 + c.0)@

An heuristic for verifying safety properties of infinite-state systems — p.18/31



Petri Nets Semantics of the Agent
Lang.. Example

A @-—
{
(((a.0 + .0 || (@.0 + ¢.0)) || A)\a }

#
((a.0 4+ b.0) || (@.0 4+ c.0)) ||fb;

L /N

(a.0 4 5.0) || (@.0 + c.0)@

1 r
a.0 + b.o/./ﬁ a.0+ c.0
AN \

{ {
a.0 .0
O e o

; C
51)/\’0 o

An heuristic for verifying safety properties of infinite-state systems — p.18/31

;
b.0 @
b

&
0@



Petri Nets Semantics of the Agent
Lang.: Formal Definition

« Tokens : (Act U {l,r})*; Empty token: e.
They carry history information about:
« Concurrent threads, and

* In which scope w.r.t. restriction they are

LA -~ An heuristic for verifying safety properties of infinite-state systems — p.19/31



Petri Nets Semantics of the Agent
Lang.: Formal Definition

 Tokens

* Firing (Enabling of Transitions):

 For transition ¢ with one input place and a
token 6, t I1s enabled If some of the
following hold
* t1s not labelled with a visible action
* t 1S labelled with a visible action ¢ and 6

doesn’t contain a

LA -~ An heuristic for verifying safety properties of infinite-state systems — p.19/31



Petri Nets Semantics of the Agent
Lang.: Formal Definition

 Tokens

* Firing (Enabling of Transitions):

 For transition ¢ with two input places p;
and p, and tokens #; and 6, t Is enabled
If both of the following hold
* pc(pre;(t)) \ Act # ¢, 1= 1,2, while
pc(prei(t)) \ Act # pc(preg( )\ Act
+ maxpref,(pc(pre, (1)) =
maxpref ,(pc(pre,(t)))

a

e isti ifyi i infinite- ms — p.19/31
e, A An heuristic for verifying safety properties of infinite-state systems — p.19/3



Petri Nets Semantics of the Agent
Lang.. Example

A (((a.0 +0.0) || (@0 +c.0)) || A)\a

: y I . —— ms — 0.20/31
o An heuristic for verifying safety properties of infinite-state systems — p.20/3



Petri Nets Semantics of the Agent
Lang.. Example

: y I . —— ms — 0.20/31
o An heuristic for verifying safety properties of infinite-state systems — p.20/3



Petri Nets Semantics of the Agent
Lang.. Example

: y I . —— ms — 0.20/31
o An heuristic for verifying safety properties of infinite-state systems — p.20/3



Petri Nets Semantics of the Agent
Lang.. Example

|

??

: y I . —— ms — 0.20/31
o An heuristic for verifying safety properties of infinite-state systems — p.20/3



Petri Nets Semantics of the Agent
Lang.. Example

: y I . —— ms — 0.20/31
o An heuristic for verifying safety properties of infinite-state systems — p.20/3



Petri Nets Semantics of the Agent
Lang.. Example

: y I . —— ms — 0.20/31
o An heuristic for verifying safety properties of infinite-state systems — p.20/3



Petri Nets Semantics of the Agent
Lang.. Example

infinite-state systems — p.20/31



Petri Nets Semantics of the Agent
Lang.. Example

arar @ —
;

\
®
'
{
arall?m

\‘/‘dah‘

An heuristic for verifying safety properties of infinite-state systems — p.20/31



Petri Nets Semantics of the Agent
Lang.. Example

alr

An heuristic for verifying safety properties of infinite-state systems — p.20/31



Petri Nets Semantics of the Agent
Lang.. Example

alr

An heuristic for verifying safety properties of infinite-state systems — p.20/31



Petri Nets Semantics of the Agent
Lang.: Extra Structure

« We define a preorder between tokens:

n < 6 if n I1s a (not necessarily contiguous)
substring of 6

Example:

all < ararall

"_.-..-;E‘-.,-" r .. e . f.nf.n. _ ms — 21 1
o An heuristic for verifying safety properties of infinite-state systems — p.21/3



Petri Nets Semantics of the Agent
Lang.: Extra Structure

« We define an ordering between markings:
my1 & mo
Example m;

1 r
L .

} /Ldalr
¢

An heuristic for verifying safety properties of infinite-state systems — p.21/31



Petri Nets Semantics of the Agent
Lang.: Extra Structure

« We define an ordering between markings:
my1 & mo
Example:

my =A1...,(P,{arall}), (P, {all}), (Ps, {alr, aralr}),

(P47 {})7 (P57 {})7 (P67 {})7 (P77 {})7 (P87 {})}
mo ={...,(P,{arall}), (P, {ararall}), (Ps,{alr,aralr}),

(P47 {CLTCLT‘CLZT‘}), (P57 {all})a (P67 {})7 (P77 {})7 (P87 {})}

UFFEALR. URIYERSITET



Petri Nets Semantics of the Agent
Lang.: Extra Structure

« We define an ordering between markings:
my1 & mo

Intuition: m T m' if m’ represents a (not
necessarily strictly) longer firing history than
™m

il -~ An heuristic for verifying safety properties of infinite-state systems — p.21/31



Petri Nets Semantics of the Agent
Lang.: Extra Structure

« We define an ordering between markings:
my1 & mo

« Markings represent upward closed sets
Example:

my ={...,(P,{arall}), (P, {all}), (Ps, {alr, aralr}),
(P47 {})7 (P57 {})7 (P67 {})7 (P77 {})7 (P87 {})}

LA -~ An heuristic for verifying safety properties of infinite-state systems — p.21/31



Our Petri Nets are not WSS

Very nice, but...

An heuristic for verifying safety properties of infinite-state systems — p.22/31



Our Petri Nets are not WSS

Very nice, but...
o Qur Petri nets are not monotonic!

An heuristic for verifying safety properties of infinite-state systems — p.22/31



Our Petri Nets are not WSS

« Counter-example: Let

my ={...,(P,{arall}), (P, {all}), (Ps, {alr, aralr}),
(P47 {})7 (P57 {})7 (P67 {})7 (P77 {})7 (P87 {})}

1 r
L .

b {4 ab
araH@ @all @
NGt S

b N L

@ @ e @

An heuristic for verifying safety properties of infinite-state systems — p.22/31



Our Petri Nets are not WSS

« Counter-example: Let

my ={...,(P,{arall}), (P, {all}), (Ps, {alr, aralr}),
(P47 {})7 (P57 {})7 (P67 {})7 (P77 {})7 (P87 {})}

mo =1...,(P,{arall}), (P, {ararall}), (Ps, {alr, aralr}),
(P47 {ara’ralr}), (P57 {all})v (P67 {})7 (P77 {})7 (P87 {})}

* Notice that m{ C m»

UFFEALR. URIYERSITET



Our Petri Nets are not WSS

« Counter-example: Let

my ={...,(P,{arall}), (P, {all}), (Ps, {alr, aralr}),
(P47 {})7 (P57 {})7 (P67 {})7 (P77 {})7 (P87 {})}

- Moreover, m; — m/, where

mi = {...,(P,{arall}), (P, {}), (P3,{aralr})
(Pi,{}): (P5:{}), (B, {all}), (Pr,{alr}), (Ps,{})}

UFFEALR. URIYERSITET



Our Petri Nets are not WSS

« Counter-example: Let

my ={...,(P,{arall}), (P, {all}), (Ps, {alr, aralr}),
(P47 {})7 (P57 {})7 (P67 {})7 (P77 {})7 (P87 {})}

But, there is no mj; such that m’ C mj; and
My — M),

It IS not monotonic!

An heuristic for verifying safety properties of infinite-state systems — p.22/31



Petri Nets as WSS

We make an over-approximation of the Petri net

« We change the synchronisation policy: A
transition may be fired even Iif the tokens
don’t synchronise ( )

An heuristic for verifying safety properties of infinite-state systems — p.23/31



Petri Nets as WSS

We make an over-approximation of the Petri net

« We change the synchronisation policy: A
transition may be fired even Iif the tokens
don’t synchronise ( )

Lemma: P—nets with weak firings are well—-
structured systems

An heuristic for verifying safety properties of infinite-state systems — p.23/31



Petri Nets as WSS

We make an over-approximation of the Petri net

« We change the synchronisation policy: A
transition may be fired even Iif the tokens
don’t synchronise ( )

Lemma: P—nets with weak firings are well—-
structured systems

Corollary: The control state reachability problem
IS decidable for p—nets with weak firings

An heuristic for verifying safety properties of infinite-state systems — p.23/31



Agenda

* Preliminaries

« Well-Structured Systems

« An Agent Language (CCS-like)

* Petri Nets
« Petri Nets Semantics of the Agent Lang.
o Safety Properties Verification

« Concluding Remarks

An heuristic for verifying safety properties of infinite-state systems — p.24/31



Verification of Safety Properties:
The Problem

An agent A with initial state in: and an
atomic action a

Can agent A ever execute action a?

An heuristic for verifying safety properties of infinite-state systems — p.25/31



Verification of Safety Properties:
The Algorithm

Build the p—net N associated with A

For every transition ¢ labelled with « there Is a
minimal marking m; that enables t. It is given by
an c—token on all places in pre(t). Then
M®* = {m; |t labelled by a}.

An heuristic for verifying safety properties of infinite-state systems — p.26/31



Verification of Safety Properties:
The Algorithm

Build the p—net N associated with A

For every transition ¢ labelled with « there Is a
minimal marking m; that enables t. It is given by
an c—token on all places in pre(t). Then
M®* = {m; |t labelled by a}.

Remark: m; Is an upward closed set: “At least
one token in pre(t)”

An heuristic for verifying safety properties of infinite-state systems — p.26/31



Verification of Safety Properties:
The Algorithm

function Reachability(N, M®, ini) :
(OB, s) := Searchpyckwara(M?, int)
if int ¢ OB
then «—— NO
else «—— Search joryora(ini, M, OB, b(s))

An heuristic for verifying safety properties of infinite-state systems — p.27/31



Agenda

* Preliminaries

« Well-Structured Systems

« An Agent Language (CCS-like)

* Petri Nets
« Petri Nets Semantics of the Agent Lang.
« Safety Properties Verification

e Concluding Remarks

An heuristic for verifying safety properties of infinite-state systems — p.28/31



Concluding Remarks

« We have given a (finite-control) Petri net
semantics to a CCS-like calculus

« We have presented a general technique for
reachability analysis of non-WSS

It combines backward and forward
reachabllity analysis

* It produces answers: YES, NO,
UNKNOWN (YES and NO always correct)

« We have applied it to partially decide the
reachability problem for a CCS-like calculus

An heuristic for verifying safety properties of infinite-state systems — p.29/31



Future Work (Research Topics)

« Use this methodology for verifying safety
properties of

 m-calculus
« Concurrent Constraint Programming
* Others?

* Implementation of the Algorithm

An heuristic for verifying safety properties of infinite-state systems — p.30/31



MUITO OBRIGADO!

An heuristic for verifying safety properties of infinite-state systems — p.31/31




	Motivation
	What is Verification?
	Formal Verification
	Verification of Infinite-State Systems
	The Problem
	Our Solution
	Agenda
	Well-Structured Systems: Preliminaries
	Well-Structured Systems: Definition
	WSS: Some Nice Properties
	An Agent Language (CCS-like)
	Petri Nets
	Petri Nets: Graphical representation
	Agenda
	Petri Nets Semantics of the Agent Lang.
	Petri Nets Semantics of the Agent Lang.: Formal Definition
	Petri Nets Semantics of the Agent Lang.: Example
	Petri Nets Semantics of the Agent Lang.: Formal Definition
	Petri Nets Semantics of the Agent Lang.: Example
	Petri Nets Semantics of the Agent Lang.: Extra Structure
	Our Petri Nets are not WSS
	Petri Nets as WSS
	Agenda
	Verification of Safety Properties: The Problem
	Verification of Safety Properties: The Algorithm
	Verification of Safety Properties: The Algorithm
	Agenda
	Concluding Remarks
	Future Work (Research Topics)
	 	extcolor {green}{M}	extcolor {yellow}{U}	extcolor {green}{I}	extcolor {yellow}{T}	extcolor {green}{O} 	extcolor {yellow}{O}	extcolor {green}{B}	extcolor {yellow}{R}	extcolor {green}{I}	extcolor {yellow}{G}	extcolor {green}{A}	extcolor {yellow}{D}	extcolor {green}{O!} 

