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Hybrid Systems: interaction between discrete and
continuous behaviors

Examples: thermostat, automated highway
systems, air traffic management systems, robotic

systems, chemical plants, etc.
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Model: Hybrid Automata
|abel

dynamic:

invarian
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Example: Swimmer in a whirlpool
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A partition of the plane into convex
polygonal regions

A constant differential inclusion for each region

i€ /Pifx € R,
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The “swimmer” is a hybrid system
Hybrid Automata?
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The “swimmer” is a hybrid system
Hybrid Automata?

We will use the “geometric” representation instead of
the hybrid automata
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Motivation and Contributions

Algorithm for Reachability Problem (SPDIs)
Implementation — SPeeDlI

Algorithm for Phase Portrait construction

(SPDIs)

Other 2 dim
Between

Hybrid Systems
Decldability and Undecidability

Undecidability results

Summary of

Results and Perspectives
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Motivation and Contributions
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Scientific Context (Reachability)

reachability

Undecidable

Decidable

Planar 2—dim 3—-dim dim
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Scientific Context (Reachability)

reachability

Undecidable

Decidable - ‘ .

Planar 2—dim 3—-dim dim
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Challenge

Non Extensions
deterministic of
reachahility | PCDS PCDs

Undecidable

Decidable

Planar 2—dim 3—-dim dim
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Contributions (Reachability)

reachability f
Extensions
Undecidable of :
- PCDs
éExtensions
Open § of
Problem ~ PCDs
SPDIs
Decidable -
Planar 2—dim 3—-dim dim
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Scientific Context (Phase Portrait)

Phase Portrait for PCDs

Numerical algorithms for computing Viability
Kernels
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Contributions (Phase Portrait)

Phase Portrait for SPDIs
Viability Kernel
Controllability Kernel
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Reachability Analysis for SPDIs
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Reachability problem: Is there a trajectory from x, to x ;?
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1. From trajectories to simplified trajectories
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€9 es

Theorem: If there is an arbitrary trajectory between
two points then it always exists a straightened
non—crossing trajectory between them
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1. From trajectories to simplified trajectories
2. From simplified trajectories to signatures
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1. From trajectories to simplified trajectories
2. From simplified trajectories to signatures
3. From signatures to factorized signatures
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FOr o = e1e0e3...6e5€6€7 . .. €1366E7€8€15

eg
Rg ‘ s e
R7
x’ e7
R10 €15 e14
Rg
e11
R
N 12 e
R11
€12 el Rs
€1 R €eq €5
X
R Ry
) e
3
R3

We obtain the representation:
0 — €1€2€3 (64616263)265666768 (69 T 613666768)2 €15
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Representation Theorem: Any edge signature
o =e1,69,...,e,can be represented as

ko k

o =7r1(s1)"ra(82)"2 .. rn(sp) rng
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Representation Theorem: Any edge signature
o =e1,69,...,e,can be represented as

ko k

o =7r1(s1)"ra(82)"2 .. rn(sp) rng

Properties:
r; 1S a seq. of pairwise different edges;
s; IS a simple cycle;
r; and r; are disjoint

s; and s, are different

Proof based on topological properties of the plane
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1. From trajectories to simplified trajectories

2. From simplified trajectories to signatures

3. From signatures to factorized signatures

4. From factorized signatures to types of signatures
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Abstraction: Any edge signature

o =7r1(s1)"ra(82)" .. rn(sp) rng

belongs to a type

type(o) = 11, 51,72, 52, -« . Tny Spy Tnat
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Abstraction: Any edge signature
o =711(s1)"ry(s2)" .. rp(80) " rngn
belongs to a type

type(o) = 11, 51,72, 52, -« . Tny Spy Tnat

In the previous example:

type(o) =
€1€2€3, €4€1€92€3, E5EGETER, €9 * * * €13C€6ET7ER, €15
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Abstraction: Any edge signature

o =7r1(s1)"ra(82)" .. rn(sp) rng

belongs to a type

type(o) = 11, 51,72, 52, -« . Tny Spy Tnat

Prop. The set of types of signatures is finite
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From trajectories to simplified trajectories

From simplified trajectories to signatures

From signatures to factorized signatures

From factorized signatures to types of signatures

Analysis of each type of signature (computing
SUCCessors)

Ok whbhE
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One step (o = e1e9)

\4mas
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One cycle Iterated: solution of fixpoint equation
(acceleration): I" = Succe,,,, o Succ,...., © Succ,(x)
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L emma:; Successors have the form

Succ, (I, u) = |ail + by, asu + b)) N Jif [l u] C S

Lemma: Fixpoint equations
[@1l* + by, aol” + bg] — [Z*, u*]

can be explicitely solved (without iterating).
We have that (I = I, u]):

Succ (1) = [I*,u]NJ
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for each type of signature 7 do
check whether Reach.(xg, xy)

To test whether Reach(xg, x ) for
T=7r1(81)" - (8p) a1

Compute Succ,
Accelerate (Succy)*
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The capability of computing fixpoints for simple
cycles (acceleration)

The set of types of signatures is finite

Reachability Is decidable for SPDI
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SPeeDlI: a Tool for SPDIs
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We have implemented the reachability algorithm

for SPDIs: SPeeDI (joint work with Gordon
Pace)

Language: Haskell
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We have implemented the reachability algorithm

for SPDIs: SPeeDI (joint work with Gordon
Pace)

Language: Haskell

(" N
<file.spdi> — = | | o s
< . . . . .
<input interval> reachable ypi;(;ésgn urez simsig | U8 | simsig2fig <filef
<exit interval> L — )

NO
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Phase Portrait of SPDIs
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Phase Portrait: a picture of important objects of a
dynamical system
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Phase Portrait: a picture of important objects of a
dynamical system

A
} e[t

™ /

€6 €7

€4

€1

€5

€8

%mas Algorithmic Analysis of Polygonal Hybrid Systems — p.30/6t



Phase Portrait: a picture of important objects of a
dynamical system
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Viab(o): Is the greatest set of initial points of
trajectories which can cycle forever in o

\4mas Algorithmic Analysis of Polygonal Hybrid Systems — p.31/6t



Viab(o): Is the greatest set of initial points of
trajectories which can cycle forever in o

Example: O — €1€69...6e8€61
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Viab(o): Is the greatest set of initial points of
trajectories which can cycle forever in o

Example: O — €1€69...6e8€61

Theorem: Viab(c) = Pre,(Dom(Succ,))
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Cntr(o): Is the greatest set of mutually reachable
points via trajectories that remain in the cycle
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Cntr(o): Is the greatest set of mutually reachable
points via trajectories that remain in the cycle

Example: O — €169 ...6e8€61
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Cntr(o): Is the greatest set of mutually reachable
points via trajectories that remain in the cycle

Example: O — €169 ...6e8€61

(Succ, N Pre, ) (Cp(o)

Theorem: Cntr(o)
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Algorithm: phase portrait for SPDIs

for each simple cycle ¢ do
Compute Viab(o) (viability kernel)
Compute Cntr(o) (controllability kernel)

\4mae Algorithmic Analysis of Polygonal Hybrid Systems — p.33/6t



Algorithm: phase portrait for SPDIs

for each simple cycle ¢ do
Compute Viab(o) (viability kernel)
Compute Cntr(o) (controllability kernel)

Both kernels are exactly computed by non-iterative
algorithms!
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Theorem: Any viable trajectory in o converges to
Cntr(K,)

"Ry es e """"" Rg
2
eq ¢ €1
Ry Rq
es €s
" Rg e6 er  Rg |

Controllability Kernel: “Weak” analog of limit cycle

Viability Kernel: Its “local” attraction basin
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Every trajectory with infi nite signature without
self-crossings convergesto the controllability
kernel of some simple edge-cycle

R1y

R3

s \
N\
77777 R6 777777777 €6 .
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Between Decidable and
Undecidable
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What happens if ...
... we allow jJumps?

...the PCD i1s on a 2-dim surface/manifold?
L7
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What happens if ...
... we allow jJumps?

...the PCD i1s on a 2-dim surface/manifold?
L7

Answer: Reachability is equivalent to a well known
open problem
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1-dim Piecewise Affine Maps (PAMS):
f:R—R, f(z)=ax+ b forz € I
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1-dim Piecewise Affine Maps (PAMS):
f:R—R, f(z)=ax+ b forz € I

a1x + by
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1-dim Piecewise Affine Maps (PAMS):
f:R—R, f(z)=ax+ b forz € I

a1x + by
asx + by
A A . S
TER /NG w I5
asx + bo
asx + bs

\4mae Algorithmic Analysis of Polygonal Hybrid Systems — p.38/6t



1-dim Piecewise Affine Maps (PAMS):
f:R—R, f(z)=ax+ b forz € I

a1x + by
asx + by

R
_____ o

ISR /' N £ w I5

asx + bo
asx + bs

Reachability?
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Example: Torus
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Example: Torus

Reachability?
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Example: Torus

Reachabiiity?
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Example: Torus

Reachabiiity?
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Example: Torus

Reachabiiity?
Theorem:
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lo
Ro Ry
(a2, b2) / \(al,bl)
(as, bsN %4, bs)
R3 R4
.

Reachability?
Theorem:
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Undecidable 2-dim Systems
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HPCDs with One Counter (HPCD;.)
HPCDs with Infinite Partition (HPCD )
Origin-dependent rate HPCDs (HPCDy,)

Algorithmic Analysis of Polygonal Hybrid Systems — p.42/6f



HPCDs with One Counter (HPCD;.)
HPCDs with Infinite Partition (HPCD )
Origin-dependent rate HPCDs (HPCDy,)

Reachability?
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HPCDs with One Counter (HPCD;.)
HPCDs with Infinite Partition (HPCD )
Origin-dependent rate HPCDs (HPCDy,)

Reachability?

T heorem:
HPCD,., HPCD, and HPCD,

simulate
Turing machines
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Summary of Results
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A ----» B "Aisaparticular case of B"
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_______

/ Reachability anal

. PCD -- - - - = SPD| \ Phase Portrait
“.... decidable ..

Exact computa

Controllability kernel Abstraction

Viability kernel Acceleration

Convergence properties Poincare map
SPeeDI

A---—-= B "Aisaparticular case of B"
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------

Reachability analy

PeD == = SPDI™..: PhasePortrait
./ decidable ..
y
HPCD
A ----» B "Aisaparticular case of B"
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: w7 Reachability analy
HPCD, - 0 — SPDl*-. i Phase Portrait
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HPCD1c

A ----» B "Aisaparticular case of B"
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....

’ . e Reachability analy
HPCDy. - P TSPl & Phase Portrait

TM HPCD=-- -~ HPCD

A ----= B "Aisaparticular case of B"

A —» B "Alissmulated by B"
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....

’ . e Reachability analy
HPCD.. . PeD 77770 = SPDl™. © Phase Portrait
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SPDI to approximate non-linear differential
equations

Conditions for decidability of PCDs on 2-dim
manifolds

Application of the geometric method to higher
dimensions

Extension of SPeeDI: algorithm for viability and
controllability kernels

SPeeDI: “Topological” optimizations
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Merci!
Gracias!
Obrigado!

(Brasil Campedo!)
Thank you!
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A non-empty compact limit set of C! planar
dynamical system that contains no equilibrium points
IS a close orbit.
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Example:

A
| (-1, 190
(_17_2f Al
(_1a 10

12\

Fixpoint: I* = (23%; 200)
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Final Point HyTech SPeeDI Reachable
199 overflow| 0.05 sec Yes
200 overfl ow| 0. 05 sec No
201 overfl ow| 0.01 sec No
210 overflow| 0.05 sec No

5 0.04 sec | 0. 05 sec No
20 0.07 sec | 0. 05 sec No
20 0.10 sec | 0.05 sec Yes
2 overfl ow| 0. 03 sec Yes
L= 0. 07 sec | 0. 04, ,S€GC b orronYES i ssec
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Simulation of reachability for z; = %
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TAMFs are closed under composition:
For

fl(ili) — Fl({ilj‘} M Sl) M J1

and
fz(il?) — FQ({ZIZ‘} M SQ) M JQ

we have that
FooFi(x) = Fpr g p(x)

with

F/ — FQ O F11

J = Jo N FQ(Jl M SQ) and
S =S NEH NSy
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Type of signature: o = (e1 - - - eg)*
Successor forthe loop s = ¢ .. . €s:

Succs(l,u) = [[

s+ 2N (5, 1)

(0,1)
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Fixpoint equation: Succ,, . (I[*) = I*
Solution: I* = [I*, u*] = [+, 2]

57 30
Hence: Succel...eg(l’o) C [%, %]

G2

\

SIES

€8
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Viab(K) =AUB
M 1s a viability domain if Vx € M, 3 at least one
trajectory &, starting in x and remaining in M

Viab(K): Viability kernel of K is the largest
viability domain M contained in K
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We can easily compute the Viability Kernel for
one cycle, which Is a polygon
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We can easily compute the Viability Kernel for
one cycle, which Is a polygon
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We can easily compute the Viability Kernel for
one cycle, which Is a polygon

T heorem:
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Cntr(K) = A

M 1s controllable If Vx,y € M, d a trajectory
segment £ starting in x that reaches an arbitrarily
small neighborhood of y without leaving M

Controllability kernel of K, denoted Cntr(K), is
the largest controllable subset of K
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Theorem: Cntr(K,) = (Succ, N Pre,)(Cp(o))
(We know how to compute the special interval
CD(U> — [l7u])
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r:=a;x+b;; y:=0
y:1/\ZEEIi

\4mas
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A
x:=a;(r—1)+b;; y:=0
y:1/\£IZ—1EI¢

e/ O/)

v(e, 2, y) = (e, iz — 1) + b, 0)
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- € U;
— (€j7y + f’L(l’L)ao)
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Cj + Bjaj

1T VIAL
.x.y <_ '~
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TM-state g;:

—_ —_ —_ —_- —_ —_ —_ —_— —_— —_— —_— —_— —_— —_— —_— — —_— e e e e e — — — =

= (e2, A+ 1,c—1)

v(e1, A ¢c) = (eg, A —1,c+ 1 g=ei ANc>0
g=e€l

\
|
|
|
|
|
|

g=e1 ANc=0
//\i\;
Y(e1, A, ¢) = (eq, f (A

7(637 A, C) — (€2a >\7 C)

g=ei Nc>0
’7(61,)\,0) — (€2a>‘+176_1)

_______________________________________________
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} 0, f(z0) = (—1)12%0))
| 0, f(zo) = (—1)t2"0))

1 if frac, < %
—1 otherwise
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