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Motivation and Related
Work

* For Hybrid Systems
* Verification (reachability, ...):
* Qualitative behavior (Phase Portrait, ...)
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Motivation and Related
Work

* For Hybrid Systems
* Verification (reachability, ...):
* Qualitative behavior (Phase Portrait, ...)

* For a class of non-deterministic systems (SPDI)
* Verification (HSCC’01)

* Undecidablility of some extensions
(CONCUR’02)

* Phase Portrait (HSCC’02):
* Viablility Kerne
« Controllability Kernel
e |nvariance Kernels
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Why Invariance Kernels?

* Important objects for giving SPDIs

* Crucial for proving termination of a BFS
reachability algorithm for SPDI
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Hybrid Systems

* Hybrid Systems: interaction between discrete and
continuous behaviors

* Examples: thermostat, automated highway
systems, air traffic management systems, robotic
systems, chemical plants, etc.
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Hybrid Systems

odel: Hybrid Automata
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Hybrid Systems

. Swimmer in a whirlpool
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Hybrid Systems
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Polygonal Differential Inclusion
Systems (SPDIs)

* A partition of the plane into convex
polygonal regions

* A constant differential inclusion for each region

ie/PifxeR;
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Polygonal Differential Inclusion
Systems (SPDI s)

* The “swimmer” is a hybrid system
* Hybrid Automata?
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Polygonal Differential Inclusion
Systems (SPDIs)

* The “swimmer” is a hybrid system
* Hybrid Automata?

We will use the “geometric” representation instead of
the hybrid automata

1{"
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Successor Operators

or a signature o = ey ... egeq:

TR R Succo ([1, u))

€3
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can be exp

Successor Operators

* Successors have the form
Succy (I, u) = [arl + by, asu + bl N J If [[,u] C S

* Fixpoint equations

:(ILll* —+ bl, agu* —+ bg] — [Z*, u*]

icitely solved (without iterating).
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Predecessor Operators

Ofo=e1...e5€1.
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Classiricatior or simpie
Cycles

Ilven a cyclic signature o = e; ... egeq.
Let e; = [L, U].
Succ, = [I*, u*]

Succ, ([, u]) C [I*, u”]
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Classiricatior or simpie

Cycles
Ilven a cyclic signature o = e; ... egeq.
Let e; = [L, U].
Succ, = [I*, u*]
Succ, ([I,u)) C 17, u™]
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Phase Portrait

hase Portrait: a picture of important objects of a
dynamical system
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Invariance Kernel

v(o): Is the greatest set of points such that every
trajectory starting in such points remains in the set
forever.
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Invariance Kernel

v(o): Is the greatest set of points such that every
trajectory starting in such points remains in the set
forever.

N

Theorem: If o is STAY: Inv(c) = Pre,(Pre,(.J))
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Conclusions

ACHIEVEMENTS:

 Algorithm for obtaining a new object of SPDI’s
Phase Portrait: Invariance Kernel

APPLICATIONS:
* Find “sinks” of non-linear differential equations

* |K are important for proving termination of a BFS
reachability algorithm for SPDIs

FUTURE WORK:

* Extend the tool SPeeDI to compute Invariance
Kernels
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Viability Kernel

iab(o): Is the greatest set of initial points of
trajectories which can cycle forever in o
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Viability Kernel

iab(o): Is the greatest set of initial points of
trajectories which can cycle forever in o

Example: o = ejes ... ege1

. Viab(o) = P_reJ(Ddxm(Succa))
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Controllability Kernel

ntr(o): IS the greatest set of mutually reachable
points via trajectories that remain in the cycle
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Controllability Kernel

ntr(o): IS the greatest set of mutually reachable
points via trajectories that remain in the cycle

Example: g = €1€9...6e8€1

Cntr(o) = (Suce, A Pre,)(Cp(o))
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Phase Portrait of SPDIs

Algorithm: phase portrait for SPDIs

for each simple cycle o do
Compute Viab(c) (viability kernel)
Compute Cntr(o) (controllability kernel)
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Phase Portrait of SPDIs

Algorithm: phase portrait for SPDIs

for each simple cycle o do
Compute Viab(c) (viability kernel)
Compute Cntr(o) (controllability kernel)

Both kernels are exactly computed by non-iterative
algorithms!
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