Computing Invariance Kernels of Polygonal Hybrid Systems

GERARDO SCHNEIDER

gerardos@it.uu.se

UPPSALA UNIVERSITY

DEPARTMENT OF INFORMATION TECHNOLOGY

UPPSALA, SWEDEN

Overview of the presentation

- Motivation
- Introduction: Hybrid System
- Polygonal Differential Inclusion System (SPDI)
- Successors and Predecessors
- Classification of Simple Cycles
- Phase Portrait of SPDIs
- Invariance Kernels
- Conclusions

Motivation and Related Work

- For Hybrid Systems
 - Verification (reachability, ...):
 - Qualitative behavior (Phase Portrait, ...)

Motivation and Related Work

- For Hybrid Systems
 - Verification (reachability, ...):
 - Qualitative behavior (Phase Portrait, ...)
- For a class of non-deterministic systems (SPDI)
 - Verification (HSCC'01)
 - Undecidability of some extensions (CONCUR'02)
 - Phase Portrait (HSCC'02):
 - Viability Kernel
 - Controllability Kernel
 - Invariance Kernels

Why Invariance Kernels?

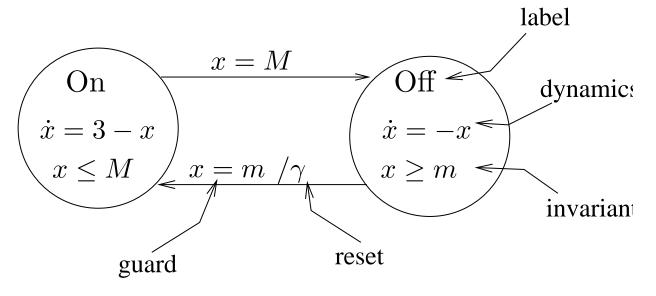
- Important objects for giving SPDIs
- Crucial for proving termination of a BFS reachability algorithm for SPDI

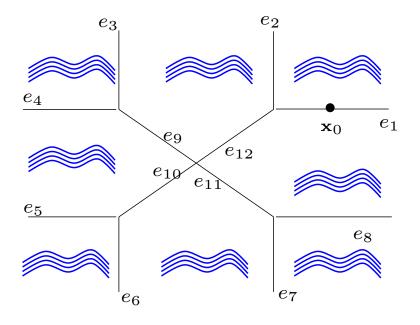
Overview of the presentation

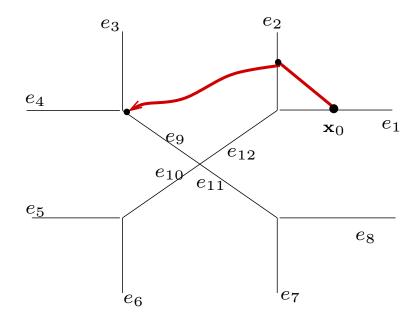
- Motivation
- Introduction: Hybrid System
- Polygonal Differential Inclusion System (SPDI)
- Successors and Predecessors
- Classification of Simple Cycles
- Phase Portrait of SPDIs
- Invariance Kernels
- Conclusions

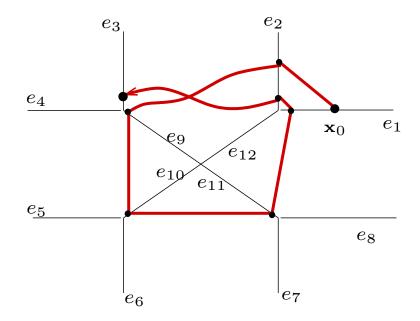
- Hybrid Systems: interaction between discrete and continuous behaviors
- Examples: thermostat, automated highway systems, air traffic management systems, robotic systems, chemical plants, etc.

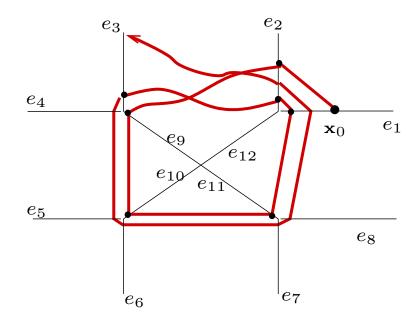
Model: Hybrid Automata

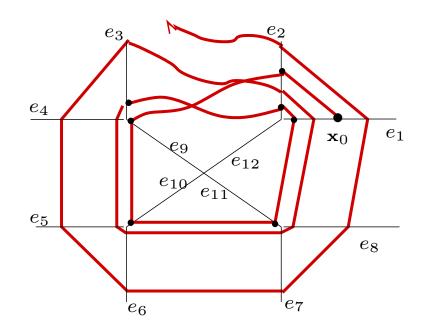


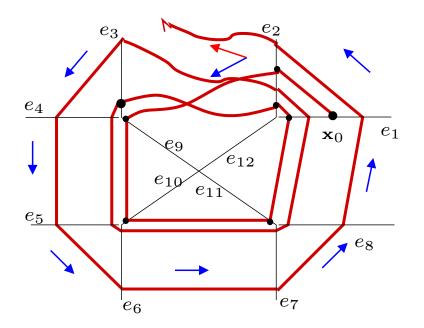










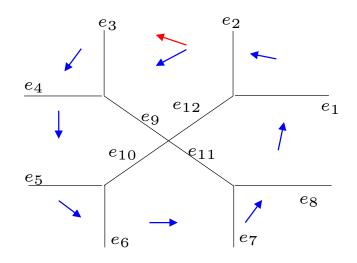


Overview of the presentation

- Motivation
- Introduction: Hybrid System
- Polygonal Differential Inclusion System (SPDI)
- Successors and Predecessors
- Classification of Simple Cycles
- Phase Portrait of SPDIs
- Invariance Kernels
- Conclusions

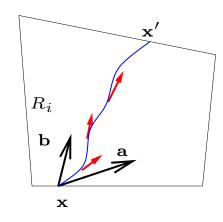
- A partition of the plane into convex polygonal regions
- A constant differential inclusion for each region

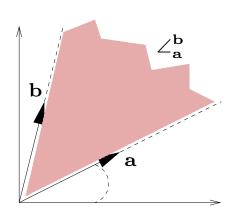
$$\dot{x} \in \angle_{\mathbf{a}}^{\mathbf{b}} \text{ if } \mathbf{x} \in R_i$$



- A partition of the plane into convex polygonal regions
- A constant differential inclusion for each region

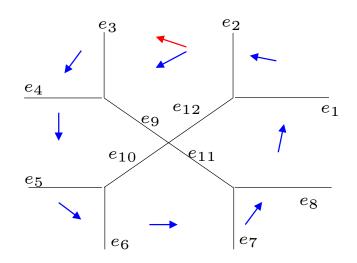
$$\dot{x} \in \angle_{\mathbf{a}}^{\mathbf{b}} \text{ if } \mathbf{x} \in R_i$$



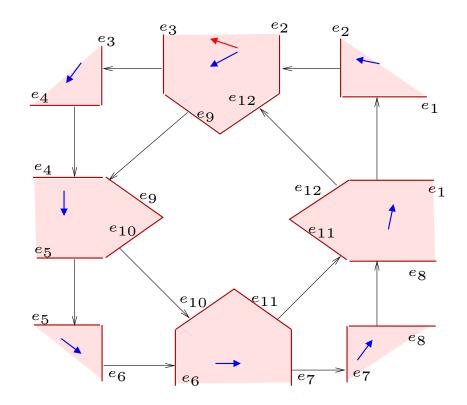


- The "swimmer" is a hybrid system
- Hybrid Automata?

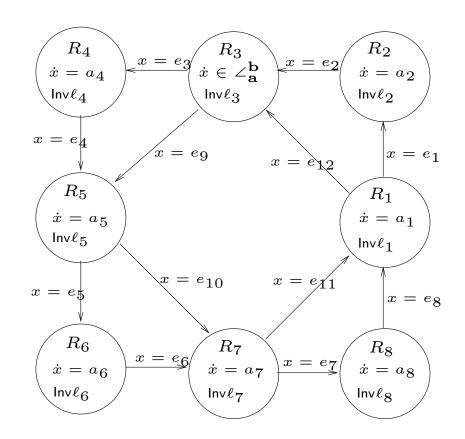
- The "swimmer" is a hybrid system
- Hybrid Automata?



- The "swimmer" is a hybrid system
- Hybrid Automata?



- The "swimmer" is a hybrid system
- Hybrid Automata?



- The "swimmer" is a hybrid system
- Hybrid Automata?

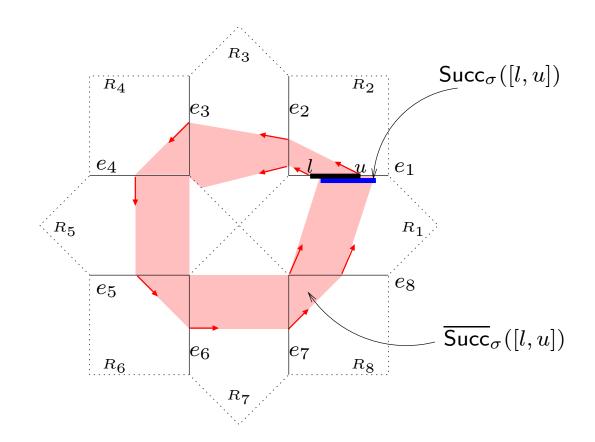
We will use the "geometric" representation instead of the hybrid automata

Overview of the presentation

- Motivation
- Introduction: Hybrid System
- Polygonal Differential Inclusion System (SPDI)
- Successors and Predecessors
- Classification of Simple Cycles
- Phase Portrait of SPDIs
- Invariance Kernels
- Conclusions

Successor Operators

For a *signature* $\sigma = e_1 \dots e_8 e_1$:



Successor Operators

Successors have the form

$$Succ_{\sigma}(l, u) = [a_1l + b_1, a_2u + b_2] \cap J \text{ if } [l, u] \subseteq S$$

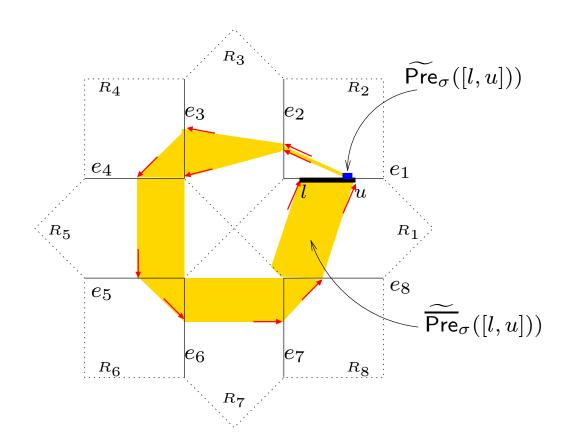
Fixpoint equations

$$[a_1l^* + b_1, a_2u^* + b_2] = [l^*, u^*]$$

can be explicitely solved (without iterating).

Predecessor Operators

For
$$\sigma = e_1 \dots e_8 e_1$$
:



Overview of the presentation

- Motivation
- Introduction: Hybrid System
- Polygonal Differential Inclusion System (SPDI)
- Successors and Predecessors
- Classification of Simple Cycles
- Phase Portrait of SPDIs
- Invariance Kernels
- Conclusions

Given a cyclic signature $\sigma = e_1 \dots e_8 e_1$. Let $e_1 = [L, U]$.

$$Succ_{\sigma}^* = [l^*, u^*]$$

$$\mathsf{Succ}_{\sigma}([l,u]) \subseteq [l^*,u^*]$$

Given a cyclic signature $\sigma = e_1 \dots e_8 e_1$. Let $e_1 = [L, U]$.

$$\mathsf{Succ}_{\sigma}^* = [l^*, u^*]$$

$$\mathsf{Succ}_{\sigma}([l,u]) \subseteq [l^*,u^*]$$

STAY: $L \leq l^* \leq u^* \leq U$

DIE: $u^* < L \lor l^* > U$

EXIT-BOTH: $l^* < L \wedge u^* > U$

EXIT-LEFT: $l^* < L \le u^* \le U$

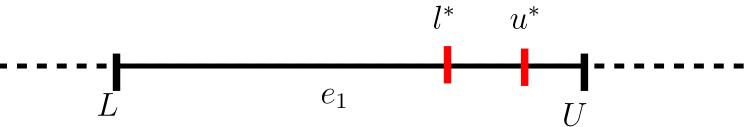
EXIT-RIGHT: $L \le l^* \le U < u^*$

Given a cyclic signature $\sigma = e_1 \dots e_8 e_1$. Let $e_1 = [L, U]$.

$$Succ_{\sigma}^* = [l^*, u^*]$$

$$\mathsf{Succ}_{\sigma}([l,u]) \subseteq [l^*,u^*]$$

STAY:

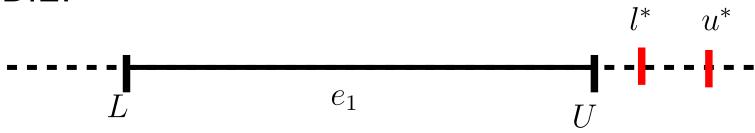


Given a cyclic signature $\sigma = e_1 \dots e_8 e_1$. Let $e_1 = [L, U]$.

$$Succ_{\sigma}^* = [l^*, u^*]$$

$$\mathsf{Succ}_{\sigma}([l,u]) \subseteq [l^*,u^*]$$

DIE:



Given a cyclic signature $\sigma = e_1 \dots e_8 e_1$. Let $e_1 = [L, U]$.

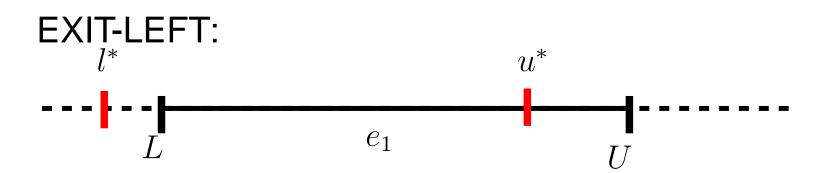
$$Succ^*_{\sigma} = [l^*, u^*]$$

$$\mathsf{Succ}_{\sigma}([l,u]) \subseteq [l^*,u^*]$$

Given a cyclic signature $\sigma = e_1 \dots e_8 e_1$. Let $e_1 = [L, U]$.

$$Succ^*_{\sigma} = [l^*, u^*]$$

$$\mathsf{Succ}_{\sigma}([l,u]) \subseteq [l^*,u^*]$$

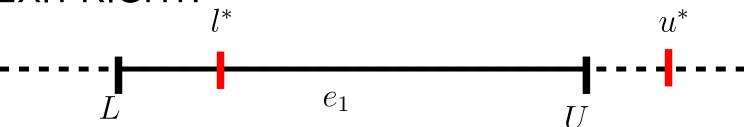


Given a cyclic signature $\sigma = e_1 \dots e_8 e_1$. Let $e_1 = [L, U]$.

$$Succ^*_{\sigma} = [l^*, u^*]$$

$$\mathsf{Succ}_{\sigma}([l,u]) \subseteq [l^*,u^*]$$

EXIT-RIGHT:

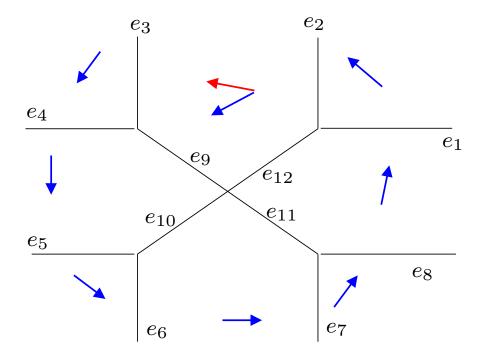


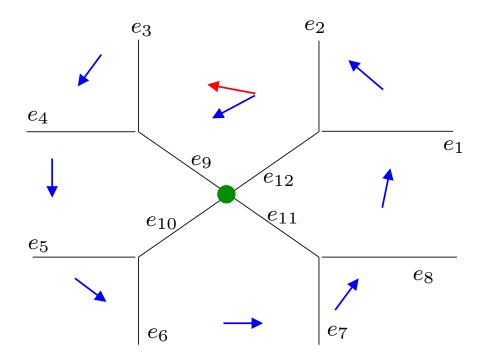
Overview of the presentation

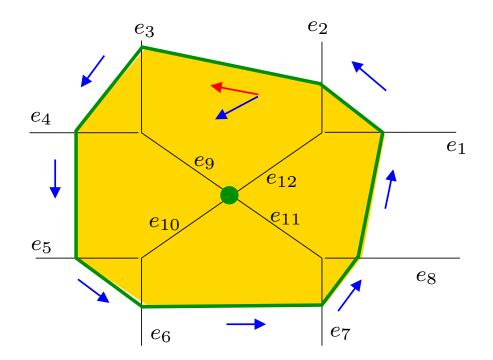
- Motivation
- Introduction: Hybrid System
- Polygonal Differential Inclusion System (SPDI)
- Successors and Predecessors
- Classification of Simple Cycles
- Phase Portrait of SPDIs
- Invariance Kernels
- Conclusions

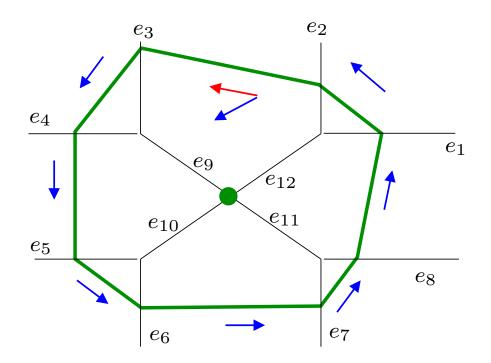
Phase Portrait

Phase Portrait: a picture of important objects of a dynamical system









Overview of the presentation

- Motivation
- Introduction: Hybrid System
- Polygonal Differential Inclusion System (SPDI)
- Successors and Predecessors
- Classification of Simple Cycles
- Phase Portrait of SPDIs
- Invariance Kernels
- Conclusions

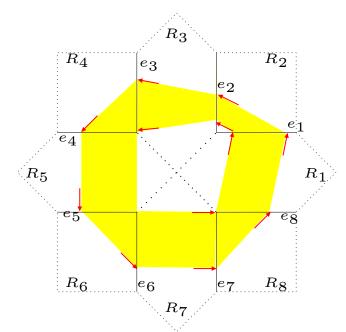
Invariance Kernel

 $Inv(\sigma)$: Is the greatest set of points such that every trajectory starting in such points remains in the set forever.

Invariance Kernel

 $Inv(\sigma)$: Is the greatest set of points such that every trajectory starting in such points remains in the set forever.

Example: $\sigma = e_1 e_2 \dots e_8 e_1$



Invariance Kernel

 $Inv(\sigma)$: Is the greatest set of points such that every trajectory starting in such points remains in the set forever.

Theorem: If σ is STAY: $Inv(\sigma) = \overline{Pre}_{\sigma}(\widetilde{Pre}_{\sigma}(J))$

Overview of the presentation

- Motivation
- Introduction: Hybrid System
- Polygonal Differential Inclusion System (SPDI)
- Successors and Predecessors
- Classification of Simple Cycles
- Phase Portrait of SPDIs
- Invariance Kernels
- Conclusions

Conclusions

ACHIEVEMENTS:

 Algorithm for obtaining a new object of SPDI's Phase Portrait: Invariance Kernel

APPLICATIONS:

- Find "sinks" of non-linear differential equations
- IK are important for proving termination of a BFS reachability algorithm for SPDIs

FUTURE WORK:

 Extend the tool SPeeDI to compute Invariance Kernels

Auxiliary Slides

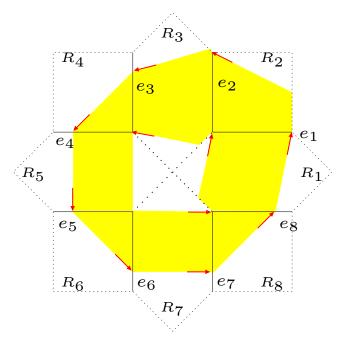
Viability Kernel

 $V_{iab}(\sigma)$: Is the greatest set of initial points of trajectories which can cycle forever in σ

Viability Kernel

 $V_{iab}(\sigma)$: Is the greatest set of initial points of trajectories which can cycle forever in σ

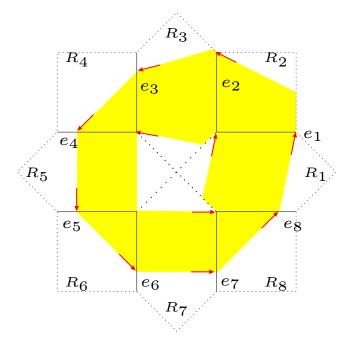
Example: $\sigma = e_1 e_2 \dots e_8 e_1$



Viability Kernel

 $V_{iab}(\sigma)$: Is the greatest set of initial points of trajectories which can cycle forever in σ

Example: $\sigma = e_1 e_2 \dots e_8 e_1$



Theorem: $Viab(\sigma) = \overline{Pre}_{\sigma}(Dom(Succ_{\sigma}))$

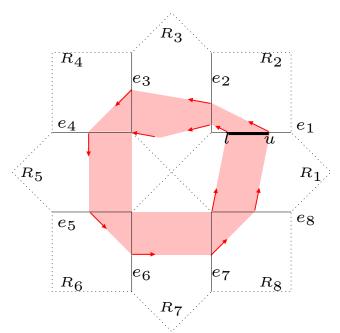
Controllability Kernel

 $Cntr(\sigma)$: Is the greatest set of mutually reachable points via trajectories that remain in the cycle

Controllability Kernel

 $Cntr(\sigma)$: Is the greatest set of mutually reachable points via trajectories that remain in the cycle

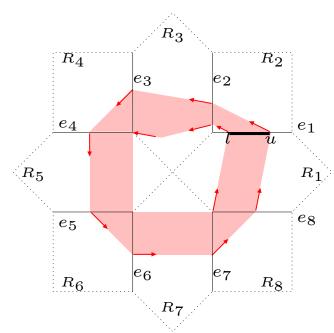
Example: $\sigma = e_1 e_2 \dots e_8 e_1$



Controllability Kernel

 $Cntr(\sigma)$: Is the greatest set of mutually reachable points via trajectories that remain in the cycle

Example: $\sigma = e_1 e_2 \dots e_8 e_1$



Theorem: $Cntr(\sigma) = (\overline{Succ}_{\sigma} \cap \overline{Pre}_{\sigma})(\mathcal{C}_{\mathcal{D}}(\sigma))$

Phase Portrait of SPDIs

Algorithm: phase portrait for SPDIs

for each simple cycle σ do Compute $Viab(\sigma)$ (viability kernel) Compute $Cntr(\sigma)$ (controllability kernel)

Phase Portrait of SPDIs

Algorithm: phase portrait for SPDIs

for each simple cycle σ do Compute $Viab(\sigma)$ (viability kernel) Compute $Cntr(\sigma)$ (controllability kernel)

Both kernels are exactly computed by non-iterative algorithms!

