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Hybrid Systems

Usual representation: Hybrid Automata

reset

label

invariant

dynamics

guard

ON

x = m /γ

ẋ = 3− x

x = M

x ≤ M x ≥ m
ẋ = −x

OFF

In general, we can have differential inclusions instead of differential
equations
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Polygonal Hybrid Systems (SPDIs)

A finite partition of the plane into convex polygonal sets (regions)
Dynamics given by the angle determined by two vectors: ẋ ∈ ∠b

a
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Polygonal Hybrid Systems (SPDIs)

An SPDI can be seen as a hybrid automaton
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Polygonal Hybrid Systems (SPDIs)
Underlying Graph

The reachability algorithm operates on a graph representation, not
on the automaton
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Polygonal Hybrid Systems (SPDIs)
Underlying Graph

The reachability algorithm operates on a graph representation, not
on the automaton
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edge inf.

G. Pace & G. Schneider () Parallel Model Checking SPDIs ICTAC’06 – 23.11.2006 16 / 91



Polygonal Hybrid Systems (SPDIs)
Three Views
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e1 ẋ ∈ ∠b
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We will, however, use the geometrical representation in what
follows instead for clarity of presentation
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Known Results about SPDIs

Reachability is decidable –in the plane
(based on Poincaré maps, finite charact. of simple cycles, acceleration, ...)

DFS algorithm (HSCC’01)

BFS algorithm (VMCAI’04)

Tool: SPeeDI (CAV’02)

Reachability is undecidable –3-dim and higher (ICALP’94)

For slights extensions in 2-dim reachability is an open question,
for others is undecidable (CONCUR’02, FSTTCS’05)

Phase portrait computation
Viability and controllability kernels (HSCC’02)

Invariance kernels (NJC’04)

Semi-separatrices (FORMATS’06)

Contributors: E. Asarin, O. Maler, V. Mysore, G. Pace, A. Pnueli, G. Schneider, S. Yovine
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Motivation

Application: Use of SPDIs for approximating non-linear differential
equations

Triangulation of the plane: Huge number of regions

Need to reduce the complexity ... without too much overhead
Static analysis to reduce the state space
Parallelizing the reachability algorithm

G. Pace & G. Schneider () Parallel Model Checking SPDIs ICTAC’06 – 23.11.2006 23 / 91



Motivation

Application: Use of SPDIs for approximating non-linear differential
equations

Triangulation of the plane: Huge number of regions

Need to reduce the complexity ... without too much overhead
Static analysis to reduce the state space
Parallelizing the reachability algorithm

G. Pace & G. Schneider () Parallel Model Checking SPDIs ICTAC’06 – 23.11.2006 23 / 91



Parallelization

Reduction of memory and time requirements are the main
reasons for seeking parallelization

In verification the main bottleneck is usually memory

The challenge:

To partition the task among different processes keeping a
balanced distribution of the use of memory and execution time...

without a high communication cost

And, if possible

compositionally

Remark: Hybrid system are, by nature, non compositional
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Few Preliminaries

We only need to consider simple cycles
Given a sequence of non-repeating edges (except for the first and
last edge) – e.g., σ = e1, · · · , ek , e1
Consider the polygonal subset of the SPDI determined by such
sequence (denoted Kσ)
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Controllability Kernels

Given Kσ, its controllability kernel is the largest subset such that
any two points are reachable from each other
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Viability Kernels

Given Kσ, its viability kernel is the largest subset such that for any
point in the set, there is at least one trajectory which remains in
the set forever
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SPDI Decomposition

Given an SPDI and a reachability question, for each controllability
kernel, we can:

1 Answer the reachability question without any further analysis;
2 Reduce the state space necessary for reachability analysis; or
3 Decompose the reachability question into two smaller, and

independent reachability questions
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1. Immediate Answer

Two interesting properties:
Within the controllability kernel of a loop, any two points are
mutually reachable
Any point on the viability kernel of the same loop can eventually
reach the controllability kernel

Theorem 1
Given an SPDI S, Kσ, and two points I and I′, if

1 I ⊆ Viab(Kσ), and
2 I′ ⊆ Cntr(Kσ)

then REACH(S, I, I′).
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1. Immediate Answer
Example

I’

I
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2. Reduction of the State-Space

Theorem 2
Given an SPDI S, two points I and I′ and a controllability kernel
C = Cntr(Kσ), if

1 I ⊆ Cin, and
2 I′ ⊆ Cin,

then REACH(S, I, I′) iff REACH(S \ Cout , I, I′).

Similarly, if
1 I ⊆ Cout , and
2 I′ ⊆ Cout

then REACH(S, I, I′) iff REACH(S \ Cin, I, I′).
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2. Reduction of the State-Space
Example

I
I’
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3. Decomposition into Independent Questions

Theorem 3
Given an SPDI S, two points I and I′ and a controllability kernel
C = Cntr(Kσ), if

1 I ⊆ Cin and
2 I′ ⊆ Cout

then

REACH(S, I, I′)
iff

REACH(S \ Cout , I, C) ∧ REACH(S \ Cin, C, I′).

Similarly, for I ⊆ Cout , and I′ ⊆ Cin.
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Unavoidable Kernels

Definition
Given an SPDI S and two points I and I′, we say that a controllability
kernel Cntr(Kσ) is unavoidable if any segment of line with extremes on
points lying on I and I′ intersects with both the edges of Cntrl(Kσ) and
those of Cntru(Kσ) an odd number of times (disregarding tangential
intersections with vertices).
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Unavoidable Kernels
Example

I’
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Unavoidable Kernels

Theorem
Given an SPDI S, two points I and I′, and a controllability kernel
C = Cntr(Kσ), then C is an unavoidable kernel if and only if one of the
following conditions holds

I ⊆ Cin and I′ ⊆ Cout ; or
I ⊆ Cout and I′ ⊆ Cin.
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Counting Subproblems

Theorem (upper bound)
Given an SPDI S and two points I and I′, the question REACH(S, I, I′)
can be split into no more than k reachability questions, k is the number
of mutually-disjoint controllability kernels

Theorem (lower bound)
Given an SPDI S and two points I and I′, the question REACH(S, I, I′)
can be split into at least u+1 reachability questions, u is the number of
mutually-disjoint unavoidable controllability kernels
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Algorithm

function ReachPar(S, I, I′) =
ReachParKernels (S, ControllabilityKernels(S), I, I′)

function ReachParKernels(S, [], I, I′) =
Reach(S, I, I′);
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Algorithm

function ReachParKernels(S, k : ks, I, I′) =
if (ImmedieteAnswer(S, I, I′)) then

True;
elsif (SameSideOfKernel(S, k, I, I′)) then

S_I := S \ EdgesOnOtherSideOf(S, k, I′);
ReachParKernels(S_I, ks, I, I′);

else
S_I := S \ EdgesOnOtherSideOf(S, k, I);
S_I’ := S \ EdgesOnOtherSideOf(S k, I′);
parbegin

r1 := ReachParKernels(S_I, ks, I, viability(k));
r2 := ReachParKernels(S_I’, ks, k, I′);

parend;
return (r1 and r2);
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Parallel (Independent) Reachability Questions
Example

I’

I

C1

C2

C3

Question 3:
Reach(C3in,C3,I’)

Reach(C1in,I,C1)
Question 1:

Reach(S’,C1,C3)
Question 2:
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Soundness and Completeness

Theorem
Given an SPDI S and two points I ⊆ e and I′ ⊆ e′,

REACH(S, I, I′)
iff

REACH||(S, I, I′).

G. Pace & G. Schneider () Parallel Model Checking SPDIs ICTAC’06 – 23.11.2006 81 / 91



Final Remarks
Contributions

A parallel algorithm for reachability analysis of polygonal hybrid
systems

Compositional
Each parallel task is performed, in general in smaller independent
state-spaces
No extra work needed to perform the computation of the kernels:
identification and analysis of loops is performed in the first part of
the reachability algorithm

The only extra work is the computation of unavoidable kernels

Combination of techniques
The detection of unavoidable kernels may be done by using
standard geometrical test (odd-parity test, used in computer
graphics)
The analysis is then performed on the graph
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Thank you!
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Final Remarks
Further Work

Extensions and Applications
Not exact extensions to higher dimensions (undecidable)

Maybe use the idea for approximations
Use of SPDIs for approximating non-linear differential equations
on the plane

Approximation of phase portrait objects

Implementation
Implementation in SPeeDI+
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Invariance Kernels

Given Kσ, its invariance kernel is the largest subset such that for
any point x in the set, there is at least one trajectory starting in it
and every trajectory starting in x is viable
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Semi-Separatrices

A semi-separatrix is a closed curve dissecting the state space into
two subsets such that one is reachable from the other but not
vice-versa
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Semi-Separatrices

Based on properties of limit trajectories on simple cycles and the
invariance kernel we have an algorithm for computing
semi-separatrices

Theorem
The computation of semi-separatrices for SPDIs is decidable
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