
university-logo

Specification and Analysis of Contracts
Lecture 1

Introduction

Gerardo Schneider
gerardo@ifi.uio.no

http://folk.uio.no/gerardo/

Department of Informatics,
University of Oslo

SEFM School, Oct. 27 - Nov. 7, 2008
Cape Town, South Africa

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 1 / 28

university-logo

Plan

1 Formal Methods

2 Contracts ‘and’ Informatics

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 2 / 28

university-logo

Plan

1 Formal Methods

2 Contracts ‘and’ Informatics

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 3 / 28

university-logo

How to Guarantee Correctness?
Is it possible at all?

How to show a system is correct?
It is not enough to show that it can meet its requirement
We should show that a system cannot fail to meet its requirement
By testing? Dijkstra wrote (1972): “Program testing can be used to
show the presence of bugs, but never to show their absence”
By other kind of “proof”? Dijkstra again (1965): “One can never
guarantee that a proof is correct, the best one can say is: ’I have not
discovered any mistakes” ’
What about automatic proof? It is impossible to construct a general
proof procedure for arbitrary programs1

Any hope?

In some cases it is possible to mechanically verify
correctness; in other cases... we try to do our best

1Undecidability of the halting problem, by Turing.
Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 4 / 28

university-logo

How to Guarantee Correctness?
Is it possible at all?

How to show a system is correct?
It is not enough to show that it can meet its requirement
We should show that a system cannot fail to meet its requirement
By testing? Dijkstra wrote (1972): “Program testing can be used to
show the presence of bugs, but never to show their absence”
By other kind of “proof”? Dijkstra again (1965): “One can never
guarantee that a proof is correct, the best one can say is: ’I have not
discovered any mistakes” ’
What about automatic proof? It is impossible to construct a general
proof procedure for arbitrary programs1

Any hope?

In some cases it is possible to mechanically verify
correctness; in other cases... we try to do our best

1Undecidability of the halting problem, by Turing.
Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 4 / 28

university-logo

How to Guarantee Correctness?
Is it possible at all?

How to show a system is correct?
It is not enough to show that it can meet its requirement
We should show that a system cannot fail to meet its requirement
By testing? Dijkstra wrote (1972): “Program testing can be used to
show the presence of bugs, but never to show their absence”
By other kind of “proof”? Dijkstra again (1965): “One can never
guarantee that a proof is correct, the best one can say is: ’I have not
discovered any mistakes” ’
What about automatic proof? It is impossible to construct a general
proof procedure for arbitrary programs1

Any hope? In some cases it is possible to mechanically verify
correctness;

in other cases... we try to do our best

1Undecidability of the halting problem, by Turing.
Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 4 / 28

university-logo

How to Guarantee Correctness?
Is it possible at all?

How to show a system is correct?
It is not enough to show that it can meet its requirement
We should show that a system cannot fail to meet its requirement
By testing? Dijkstra wrote (1972): “Program testing can be used to
show the presence of bugs, but never to show their absence”
By other kind of “proof”? Dijkstra again (1965): “One can never
guarantee that a proof is correct, the best one can say is: ’I have not
discovered any mistakes” ’
What about automatic proof? It is impossible to construct a general
proof procedure for arbitrary programs1

Any hope? In some cases it is possible to mechanically verify
correctness; in other cases... we try to do our best

1Undecidability of the halting problem, by Turing.
Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 4 / 28

university-logo

System Correctness

A system is correct if it meets its design requirements

Example
System: A telephone system
Requirement: If user A want to call user B, then eventually (s)he will
manage to establish a connection

System: An operating system
Requirement: A deadly embracea will never happen
System: A contract for Internet services
Requirement: Signatory A will never be obliged to pay more than a
certain amount of money

a

A deadly embrace is entered when two processes obtain access to two mutually
dependent shared resources and each decide to wait indefinitely for the other

Saying ‘a program is correct’ is only meaningful w.r.t. a given specification!

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 5 / 28

university-logo

System Correctness

A system is correct if it meets its design requirements

Example
System: A telephone system
Requirement: If user A want to call user B, then eventually (s)he will
manage to establish a connection

System: An operating system
Requirement: A deadly embracea will never happen
System: A contract for Internet services
Requirement: Signatory A will never be obliged to pay more than a
certain amount of money

a

A deadly embrace is entered when two processes obtain access to two mutually
dependent shared resources and each decide to wait indefinitely for the other

Saying ‘a program is correct’ is only meaningful w.r.t. a given specification!

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 5 / 28

university-logo

System Correctness

A system is correct if it meets its design requirements

Example
System: A telephone system
Requirement: If user A want to call user B, then eventually (s)he will
manage to establish a connection
System: An operating system
Requirement: A deadly embracea will never happen

System: A contract for Internet services
Requirement: Signatory A will never be obliged to pay more than a
certain amount of money

aA deadly embrace is entered when two processes obtain access to two mutually
dependent shared resources and each decide to wait indefinitely for the other

Saying ‘a program is correct’ is only meaningful w.r.t. a given specification!

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 5 / 28

university-logo

System Correctness

A system is correct if it meets its design requirements

Example
System: A telephone system
Requirement: If user A want to call user B, then eventually (s)he will
manage to establish a connection
System: An operating system
Requirement: A deadly embracea will never happen
System: A contract for Internet services
Requirement: Signatory A will never be obliged to pay more than a
certain amount of money

aA deadly embrace is entered when two processes obtain access to two mutually
dependent shared resources and each decide to wait indefinitely for the other

Saying ‘a program is correct’ is only meaningful w.r.t. a given specification!

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 5 / 28

university-logo

System Correctness

A system is correct if it meets its design requirements

Example
System: A telephone system
Requirement: If user A want to call user B, then eventually (s)he will
manage to establish a connection
System: An operating system
Requirement: A deadly embracea will never happen
System: A contract for Internet services
Requirement: Signatory A will never be obliged to pay more than a
certain amount of money

aA deadly embrace is entered when two processes obtain access to two mutually
dependent shared resources and each decide to wait indefinitely for the other

Saying ‘a program is correct’ is only meaningful w.r.t. a given specification!

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 5 / 28

university-logo

What is Validation?

In general, validation is the process of checking if something satisfies a
certain criterion
Some authors differentiate validation and verification:

Validation: "Are we building the right product?", i.e., does the product
do what the user really requires

Verification: "Are we building the product right?", i.e., does the product
conform to the specifications

Remark
Some authors define verification as a validation technique, others talk about
V & V –Validation & Verification– as being complementary techniques.

In this tutorial I consider verification as a validation technique

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 6 / 28

university-logo

What is Validation?

In general, validation is the process of checking if something satisfies a
certain criterion
Some authors differentiate validation and verification:

Validation: "Are we building the right product?", i.e., does the product
do what the user really requires

Verification: "Are we building the product right?", i.e., does the product
conform to the specifications

Remark
Some authors define verification as a validation technique, others talk about
V & V –Validation & Verification– as being complementary techniques.

In this tutorial I consider verification as a validation technique

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 6 / 28

university-logo

What is Validation?

In general, validation is the process of checking if something satisfies a
certain criterion
Some authors differentiate validation and verification:

Validation: "Are we building the right product?", i.e., does the product
do what the user really requires

Verification: "Are we building the product right?", i.e., does the product
conform to the specifications

Remark
Some authors define verification as a validation technique, others talk about
V & V –Validation & Verification– as being complementary techniques.

In this tutorial I consider verification as a validation technique

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 6 / 28

university-logo

Usual Approaches for Validation

The following techniques are used in industry for validation:

Testing
Check the actual system rather than a model
Focused on sampling executions according to some coverage criteria –
Not exhaustive
It is usually informal, though there are some formal approaches

Simulation
A model of the system is written in a PL, which is run with different
inputs – Not exhaustive

Verification
“Is the process of applying a manual or automatic technique for
establishing whether a given system satisfies a given property or
behaves in accordance to some abstract description (specification) of
the system”2

2From Peled’s book “Software reliability methods”.
Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 7 / 28

university-logo

Usual Approaches for Validation

The following techniques are used in industry for validation:

Testing
Check the actual system rather than a model
Focused on sampling executions according to some coverage criteria –
Not exhaustive
It is usually informal, though there are some formal approaches

Simulation
A model of the system is written in a PL, which is run with different
inputs – Not exhaustive

Verification
“Is the process of applying a manual or automatic technique for
establishing whether a given system satisfies a given property or
behaves in accordance to some abstract description (specification) of
the system”2

2From Peled’s book “Software reliability methods”.
Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 7 / 28

university-logo

Usual Approaches for Validation

The following techniques are used in industry for validation:

Testing
Check the actual system rather than a model
Focused on sampling executions according to some coverage criteria –
Not exhaustive
It is usually informal, though there are some formal approaches

Simulation
A model of the system is written in a PL, which is run with different
inputs – Not exhaustive

Verification
“Is the process of applying a manual or automatic technique for
establishing whether a given system satisfies a given property or
behaves in accordance to some abstract description (specification) of
the system”2

2From Peled’s book “Software reliability methods”.
Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 7 / 28

university-logo

Usual Approaches for Validation

The following techniques are used in industry for validation:

Testing
Check the actual system rather than a model
Focused on sampling executions according to some coverage criteria –
Not exhaustive
It is usually informal, though there are some formal approaches

Simulation
A model of the system is written in a PL, which is run with different
inputs – Not exhaustive

Verification
“Is the process of applying a manual or automatic technique for
establishing whether a given system satisfies a given property or
behaves in accordance to some abstract description (specification) of
the system”2

2From Peled’s book “Software reliability methods”.
Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 7 / 28

university-logo

What are Formal Methods?

“Formal methods are a collection of notations and techniques for
describing and analyzing systems”3

Formal means the methods used are based on mathematical theories,
such as logic, automata, graph or set theory
Formal specification techniques are used to unambiguously describe
the system itself or its properties
Formal analysis/verification techniques serve to verify that a system
satisfies its specification (or to help finding out why it is not the case)

3From D.Peled’s book “Software Reliability Methods”.
Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 8 / 28

university-logo

What are Formal Methods?

“Formal methods are a collection of notations and techniques for
describing and analyzing systems”3

Formal means the methods used are based on mathematical theories,
such as logic, automata, graph or set theory
Formal specification techniques are used to unambiguously describe
the system itself or its properties
Formal analysis/verification techniques serve to verify that a system
satisfies its specification (or to help finding out why it is not the case)

3From D.Peled’s book “Software Reliability Methods”.
Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 8 / 28

university-logo

What are Formal Methods?

“Formal methods are a collection of notations and techniques for
describing and analyzing systems”3

Formal means the methods used are based on mathematical theories,
such as logic, automata, graph or set theory
Formal specification techniques are used to unambiguously describe
the system itself or its properties
Formal analysis/verification techniques serve to verify that a system
satisfies its specification (or to help finding out why it is not the case)

3From D.Peled’s book “Software Reliability Methods”.
Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 8 / 28

university-logo

Limitations

Software verification methods do not guarantee, in general, the
correctness of the code itself but rather of an abstract model of it
It cannot identify fabrication faults (e.g. in digital circuits)
If the specification is incomplete or wrong, the verification result will
also be wrong
The implementation of verification tools may be faulty
The bigger the system (number of possible states) more difficult is to
analyze it (state explosion problem)

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 9 / 28

university-logo

Any advantage?

OF COURSE!!

Formal methods are not intended to guarantee absolute reliability but to
increase the confidence on system reliability. They help minimizing the

number of errors and in many cases allow to find errors impossible to find
manually

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 10 / 28

university-logo

Any advantage?

OF COURSE!!

Formal methods are not intended to guarantee absolute reliability but to
increase the confidence on system reliability. They help minimizing the

number of errors and in many cases allow to find errors impossible to find
manually

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 10 / 28

university-logo

Using Formal Methods

Formal methods are used in different stages of the development process,
giving a classification of formal methods

1 We describe the system giving a formal specification
2 We can then prove some properties about the specification (formal

verification)
3 We can proceed by:

Deriving a program from its specification (formal synthesis)
Verifying the specification w.r.t. implementation (formal verification)

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 11 / 28

university-logo

Formal Specification

A specification formalism must be unambiguous: it should have a
precise syntax and semantics (e.g., natural languages are not suitable)
A trade-off must be found between expressiveness and analysis
feasibility

More expressive the specification formalism more difficult its analysis (if
possible at all)

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 12 / 28

university-logo

Proving Properties about the Specification

To gain confidence about the correctness of a specification it is useful to:
Prove some properties of the specification to check that it really
means what it is supposed to
Prove the equivalence of different specifications

Example
a should be true for the first two points of time, and then oscillates

First attempt: a(0) ∧ a(1) ∧ ∀t · a(t + 1) = ¬a(t)

INCORRECT! - The error may be found when trying to prove some
properties
Correct specification: a(0) ∧ a(1) ∧ ∀t ≥ 0 · a(t + 2) = ¬a(t + 1)

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 13 / 28

university-logo

Proving Properties about the Specification

To gain confidence about the correctness of a specification it is useful to:
Prove some properties of the specification to check that it really
means what it is supposed to
Prove the equivalence of different specifications

Example
a should be true for the first two points of time, and then oscillates

First attempt: a(0) ∧ a(1) ∧ ∀t · a(t + 1) = ¬a(t)

INCORRECT! - The error may be found when trying to prove some
properties
Correct specification: a(0) ∧ a(1) ∧ ∀t ≥ 0 · a(t + 2) = ¬a(t + 1)

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 13 / 28

university-logo

Proving Properties about the Specification

To gain confidence about the correctness of a specification it is useful to:
Prove some properties of the specification to check that it really
means what it is supposed to
Prove the equivalence of different specifications

Example
a should be true for the first two points of time, and then oscillates

First attempt: a(0) ∧ a(1) ∧ ∀t · a(t + 1) = ¬a(t)
INCORRECT! - The error may be found when trying to prove some
properties

Correct specification: a(0) ∧ a(1) ∧ ∀t ≥ 0 · a(t + 2) = ¬a(t + 1)

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 13 / 28

university-logo

Proving Properties about the Specification

To gain confidence about the correctness of a specification it is useful to:
Prove some properties of the specification to check that it really
means what it is supposed to
Prove the equivalence of different specifications

Example
a should be true for the first two points of time, and then oscillates

First attempt: a(0) ∧ a(1) ∧ ∀t · a(t + 1) = ¬a(t)
INCORRECT! - The error may be found when trying to prove some
properties
Correct specification: a(0) ∧ a(1) ∧ ∀t ≥ 0 · a(t + 2) = ¬a(t + 1)

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 13 / 28

university-logo

Formal synthesis

It would be helpful to automatically obtain an implementation from
the specification of a system
Difficult since most specifications are declarative and not constructive

They usually describe what the system should do; not how it can be
achieved

Example
1 Specify the operational semantics of a programming language in a

constructive logic (Calculus of Constructions)
2 Prove the correctness of a given property w.r.t. the operational

semantics in Coq
3 Extract an OCAML code from the correctness proof (using Coq’s

extraction mechanism)

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 14 / 28

university-logo

Formal synthesis

It would be helpful to automatically obtain an implementation from
the specification of a system
Difficult since most specifications are declarative and not constructive

They usually describe what the system should do; not how it can be
achieved

Example
1 Specify the operational semantics of a programming language in a

constructive logic (Calculus of Constructions)
2 Prove the correctness of a given property w.r.t. the operational

semantics in Coq
3 Extract an OCAML code from the correctness proof (using Coq’s

extraction mechanism)

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 14 / 28

university-logo

Verifying Specifications w.r.t. Implementations

There are mainly two approaches:

Deductive approach (automated theorem proving)
Describe the specification Φspec in a formal model (logic)
Describe the system’s model Φimp in the same formal model
Prove that Φimp =⇒ Φspec

Algorithmic approach
Describe the specification Φspec as a formula of a logic
Describe the system as an interpretation Mimp of the given logic (e.g.
as a finite automaton)
Prove that Mimp is a “model” (in the logical sense) of Φspec

Remark
The same technique may be used to prove properties about the

specification

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 15 / 28

university-logo

Verifying Specifications w.r.t. Implementations

There are mainly two approaches:

Deductive approach (automated theorem proving)
Describe the specification Φspec in a formal model (logic)
Describe the system’s model Φimp in the same formal model
Prove that Φimp =⇒ Φspec

Algorithmic approach
Describe the specification Φspec as a formula of a logic
Describe the system as an interpretation Mimp of the given logic (e.g.
as a finite automaton)
Prove that Mimp is a “model” (in the logical sense) of Φspec

Remark
The same technique may be used to prove properties about the

specification

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 15 / 28

university-logo

When and Which Formal Method to Use?

It depends on the problem, the underlying system and the property we
want to prove
Examples:

Digital circuits ... (BDDs, model checking)
Communication protocol with unbounded number of processes....
(verification of infinite-state systems)
Overflow in programs (static analysis and abstract interpretation)
...

Open distributed concurrent systems with unbounded number of
processes interacting through shared variables and with real-time
constraints => VERY DIFFICULT!!
Need the combination of different techniques

Remark
In this tutorial: Specification and verification of contracts using logics and

model checking techniques

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 16 / 28

university-logo

When and Which Formal Method to Use?

It depends on the problem, the underlying system and the property we
want to prove
Examples:

Digital circuits ... (BDDs, model checking)
Communication protocol with unbounded number of processes....
(verification of infinite-state systems)
Overflow in programs (static analysis and abstract interpretation)
...

Open distributed concurrent systems with unbounded number of
processes interacting through shared variables and with real-time
constraints => VERY DIFFICULT!!
Need the combination of different techniques

Remark
In this tutorial: Specification and verification of contracts using logics and

model checking techniques

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 16 / 28

university-logo

When and Which Formal Method to Use?

It depends on the problem, the underlying system and the property we
want to prove
Examples:

Digital circuits ... (BDDs, model checking)
Communication protocol with unbounded number of processes....
(verification of infinite-state systems)
Overflow in programs (static analysis and abstract interpretation)
...

Open distributed concurrent systems with unbounded number of
processes interacting through shared variables and with real-time
constraints => VERY DIFFICULT!!
Need the combination of different techniques

Remark
In this tutorial: Specification and verification of contracts using logics and

model checking techniques

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 16 / 28

university-logo

Plan

1 Formal Methods

2 Contracts ‘and’ Informatics

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 17 / 28

university-logo

Contracts

“A contract is a binding agreement between two or more persons that
is enforceable by law.” [Webster on-line]

This deed of Agreement is made between:
1. [name], from now on referred to as Provider and
2. the Client.
INTRODUCTION
3. The Provider is obliged to provide the Internet Services as stipulated in this Agreement.
4. DEFINITIONS
a) Internet traffic may be measured by both Client and Provider by means of Equipment

and may take the two values high and normal.
OPERATIVE PART
1. The Client shall not supply false information to the Client Relations Department of the
Provider.
2. Whenever the Internet Traffic is high then the Client must pay [price] immediately, or the
Client must notify the Provider by sending an e-mail specifying that he will pay later.
3. If the Client delays the payment as stipulated in 2, after notification he must immediately
lower the Internet traffic to the normal level, and pay later twice (2 ∗ [price]).
4. If the Client does not lower the Internet traffic immediately, then the Client will have to pay
3 ∗ [price].
5. The Client shall, as soon as the Internet Service becomes operative, submit within seven (7)
days the Personal Data Form from his account on the Provider’s web page to the Client
Relations Department of the Provider.

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 18 / 28

university-logo

Contracts

“A contract is a binding agreement between two or more persons that
is enforceable by law.” [Webster on-line]

This deed of Agreement is made between:
1. [name], from now on referred to as Provider and
2. the Client.
INTRODUCTION
3. The Provider is obliged to provide the Internet Services as stipulated in this Agreement.
4. DEFINITIONS
a) Internet traffic may be measured by both Client and Provider by means of Equipment

and may take the two values high and normal.
OPERATIVE PART
1. The Client shall not supply false information to the Client Relations Department of the
Provider.
2. Whenever the Internet Traffic is high then the Client must pay [price] immediately, or the
Client must notify the Provider by sending an e-mail specifying that he will pay later.
3. If the Client delays the payment as stipulated in 2, after notification he must immediately
lower the Internet traffic to the normal level, and pay later twice (2 ∗ [price]).
4. If the Client does not lower the Internet traffic immediately, then the Client will have to pay
3 ∗ [price].
5. The Client shall, as soon as the Internet Service becomes operative, submit within seven (7)
days the Personal Data Form from his account on the Provider’s web page to the Client
Relations Department of the Provider.

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 18 / 28

university-logo

Contracts and Informatics

1 Conventional contracts
Traditional commercial and judicial domain

2 “Programming by contract” or “Design by contract” (e.g., Eiffel)
Relation between pre- and post-conditions of routines, method calls,
invariants, temporal dependencies, etc

3 In the context of web services (SOA)
Service-Level Agreement, usually written in an XML-like language (e.g.
WSLA)

4 Behavioral interfaces
Specify the sequence of interactions between different participants.
The allowed interactions are captured by legal (sets of) traces

5 Contractual protocols
To specify the interaction between communicating entities

6 “Social contracts”: Multi-agent systems
7 “Deontic e-contracts”: representing Obligations, Permissions,

Prohibitions, Power, etc

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 19 / 28

university-logo

Contracts and Informatics

1 Conventional contracts
Traditional commercial and judicial domain

2 “Programming by contract” or “Design by contract” (e.g., Eiffel)
Relation between pre- and post-conditions of routines, method calls,
invariants, temporal dependencies, etc

3 In the context of web services (SOA)
Service-Level Agreement, usually written in an XML-like language (e.g.
WSLA)

4 Behavioral interfaces
Specify the sequence of interactions between different participants.
The allowed interactions are captured by legal (sets of) traces

5 Contractual protocols
To specify the interaction between communicating entities

6 “Social contracts”: Multi-agent systems
7 “Deontic e-contracts”: representing Obligations, Permissions,

Prohibitions, Power, etc

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 19 / 28

university-logo

Contracts and Informatics

1 Conventional contracts
Traditional commercial and judicial domain

2 “Programming by contract” or “Design by contract” (e.g., Eiffel)
Relation between pre- and post-conditions of routines, method calls,
invariants, temporal dependencies, etc

3 In the context of web services (SOA)
Service-Level Agreement, usually written in an XML-like language (e.g.
WSLA)

4 Behavioral interfaces
Specify the sequence of interactions between different participants.
The allowed interactions are captured by legal (sets of) traces

5 Contractual protocols
To specify the interaction between communicating entities

6 “Social contracts”: Multi-agent systems
7 “Deontic e-contracts”: representing Obligations, Permissions,

Prohibitions, Power, etc

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 19 / 28

university-logo

Contracts and Informatics

1 Conventional contracts
Traditional commercial and judicial domain

2 “Programming by contract” or “Design by contract” (e.g., Eiffel)
Relation between pre- and post-conditions of routines, method calls,
invariants, temporal dependencies, etc

3 In the context of web services (SOA)
Service-Level Agreement, usually written in an XML-like language (e.g.
WSLA)

4 Behavioral interfaces
Specify the sequence of interactions between different participants.
The allowed interactions are captured by legal (sets of) traces

5 Contractual protocols
To specify the interaction between communicating entities

6 “Social contracts”: Multi-agent systems
7 “Deontic e-contracts”: representing Obligations, Permissions,

Prohibitions, Power, etc

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 19 / 28

university-logo

Contracts and Informatics

1 Conventional contracts
Traditional commercial and judicial domain

2 “Programming by contract” or “Design by contract” (e.g., Eiffel)
Relation between pre- and post-conditions of routines, method calls,
invariants, temporal dependencies, etc

3 In the context of web services (SOA)
Service-Level Agreement, usually written in an XML-like language (e.g.
WSLA)

4 Behavioral interfaces
Specify the sequence of interactions between different participants.
The allowed interactions are captured by legal (sets of) traces

5 Contractual protocols
To specify the interaction between communicating entities

6 “Social contracts”: Multi-agent systems
7 “Deontic e-contracts”: representing Obligations, Permissions,

Prohibitions, Power, etc

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 19 / 28

university-logo

Contracts and Informatics

1 Conventional contracts
Traditional commercial and judicial domain

2 “Programming by contract” or “Design by contract” (e.g., Eiffel)
Relation between pre- and post-conditions of routines, method calls,
invariants, temporal dependencies, etc

3 In the context of web services (SOA)
Service-Level Agreement, usually written in an XML-like language (e.g.
WSLA)

4 Behavioral interfaces
Specify the sequence of interactions between different participants.
The allowed interactions are captured by legal (sets of) traces

5 Contractual protocols
To specify the interaction between communicating entities

6 “Social contracts”: Multi-agent systems

7 “Deontic e-contracts”: representing Obligations, Permissions,
Prohibitions, Power, etc

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 19 / 28

university-logo

Contracts and Informatics

1 Conventional contracts
Traditional commercial and judicial domain

2 “Programming by contract” or “Design by contract” (e.g., Eiffel)
Relation between pre- and post-conditions of routines, method calls,
invariants, temporal dependencies, etc

3 In the context of web services (SOA)
Service-Level Agreement, usually written in an XML-like language (e.g.
WSLA)

4 Behavioral interfaces
Specify the sequence of interactions between different participants.
The allowed interactions are captured by legal (sets of) traces

5 Contractual protocols
To specify the interaction between communicating entities

6 “Social contracts”: Multi-agent systems
7 “Deontic e-contracts”: representing Obligations, Permissions,

Prohibitions, Power, etc
Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 19 / 28

university-logo

Conventional contracts

Traditional commercial and judicial domain
Research on Law and Informatics
Interesting questions:

Is it possible translate conventional contracts into formal
languages/logics? Which “properties” are preserved?
How to analyze traditional contracts? Detect superfluous clauses, cross
references, inconsistencies, etc?
Tools

A nice successful story
Jean-Marc Eber and Simon Peyton-Jones’ paper “How to write a
financial contract”
Eber’s startup: Lexifi Technologies

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 20 / 28

university-logo

Conventional contracts

Traditional commercial and judicial domain
Research on Law and Informatics
Interesting questions:

Is it possible translate conventional contracts into formal
languages/logics? Which “properties” are preserved?
How to analyze traditional contracts? Detect superfluous clauses, cross
references, inconsistencies, etc?
Tools

A nice successful story
Jean-Marc Eber and Simon Peyton-Jones’ paper “How to write a
financial contract”
Eber’s startup: Lexifi Technologies

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 20 / 28

university-logo

Conventional contracts

Traditional commercial and judicial domain
Research on Law and Informatics
Interesting questions:

Is it possible translate conventional contracts into formal
languages/logics? Which “properties” are preserved?
How to analyze traditional contracts? Detect superfluous clauses, cross
references, inconsistencies, etc?
Tools

A nice successful story
Jean-Marc Eber and Simon Peyton-Jones’ paper “How to write a
financial contract”
Eber’s startup: Lexifi Technologies

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 20 / 28

university-logo

“Programming by contract”

The term originated with the language Eiffel (“Programming by
contract” or “Design by contract”) —Used in the context of
Object-Oriented Programming
Software designers should define precise verifiable interface
specifications for software components

Based on the theory of abstract data types
Inspired by business contracts

Impose an obligation to be guaranteed when calling a module: the
routine’s precondition

An obligation for the client, and a benefit for the supplier (of the
routine)

Guarantee a property on exit: the routine’s postcondition
An obligation for the supplier, and a benefit for the client

Maintain a property, assumed on entry and guaranteed on exit: the
class invariant

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 21 / 28

university-logo

“Programming by contract”

The term originated with the language Eiffel (“Programming by
contract” or “Design by contract”) —Used in the context of
Object-Oriented Programming
Software designers should define precise verifiable interface
specifications for software components

Based on the theory of abstract data types
Inspired by business contracts

Impose an obligation to be guaranteed when calling a module: the
routine’s precondition

An obligation for the client, and a benefit for the supplier (of the
routine)

Guarantee a property on exit: the routine’s postcondition
An obligation for the supplier, and a benefit for the client

Maintain a property, assumed on entry and guaranteed on exit: the
class invariant

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 21 / 28

university-logo

“Programming by contract”

The term originated with the language Eiffel (“Programming by
contract” or “Design by contract”) —Used in the context of
Object-Oriented Programming
Software designers should define precise verifiable interface
specifications for software components

Based on the theory of abstract data types
Inspired by business contracts

Impose an obligation to be guaranteed when calling a module: the
routine’s precondition

An obligation for the client, and a benefit for the supplier (of the
routine)

Guarantee a property on exit: the routine’s postcondition
An obligation for the supplier, and a benefit for the client

Maintain a property, assumed on entry and guaranteed on exit: the
class invariant

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 21 / 28

university-logo

Contracts in the Context of SOA

Several SOA standards provide a way to describe ’contractual’ aspects
Usually written in an XML-like language (e.g. WSLA)
These service contracts act at different levels, specific to different
aspects

Between service provider and consumer
Orchestration of services
Functional aspects
Describe collaboration between business partners

Service-Level Agreement
It describes different levels of service

Availability, serviceability, performance, operation, other attributes like
billing and even penalties in the case of violation

Note
We will expand on a taxonomy of SOA contract specification
languages in next lecture

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 22 / 28

university-logo

Contracts in the Context of SOA

Several SOA standards provide a way to describe ’contractual’ aspects
Usually written in an XML-like language (e.g. WSLA)
These service contracts act at different levels, specific to different
aspects

Between service provider and consumer
Orchestration of services
Functional aspects
Describe collaboration between business partners

Service-Level Agreement
It describes different levels of service

Availability, serviceability, performance, operation, other attributes like
billing and even penalties in the case of violation

Note
We will expand on a taxonomy of SOA contract specification
languages in next lecture

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 22 / 28

university-logo

Contracts in the Context of SOA

Several SOA standards provide a way to describe ’contractual’ aspects
Usually written in an XML-like language (e.g. WSLA)
These service contracts act at different levels, specific to different
aspects

Between service provider and consumer
Orchestration of services
Functional aspects
Describe collaboration between business partners

Service-Level Agreement
It describes different levels of service

Availability, serviceability, performance, operation, other attributes like
billing and even penalties in the case of violation

Note
We will expand on a taxonomy of SOA contract specification
languages in next lecture

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 22 / 28

university-logo

Contracts in the Context of SOA

Several SOA standards provide a way to describe ’contractual’ aspects
Usually written in an XML-like language (e.g. WSLA)
These service contracts act at different levels, specific to different
aspects

Between service provider and consumer
Orchestration of services
Functional aspects
Describe collaboration between business partners

Service-Level Agreement
It describes different levels of service

Availability, serviceability, performance, operation, other attributes like
billing and even penalties in the case of violation

Note
We will expand on a taxonomy of SOA contract specification
languages in next lecture

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 22 / 28

university-logo

Behavioral interfaces

Specify the sequence of interactions between different participants
Such interface represents a “contract” between the participants

The allowed interactions are captured by legal (sets of) traces
The behavior of objects and components can be completely defined in
terms of their reaction to incoming message sequences
Advantages:

Different objects and component implementations can be compared
based on their behavior
It helps analyzing compositionality of components
It is possible to analyze component implementations without knowing
the context

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 23 / 28

university-logo

Behavioral interfaces

Specify the sequence of interactions between different participants
Such interface represents a “contract” between the participants

The allowed interactions are captured by legal (sets of) traces
The behavior of objects and components can be completely defined in
terms of their reaction to incoming message sequences
Advantages:

Different objects and component implementations can be compared
based on their behavior
It helps analyzing compositionality of components
It is possible to analyze component implementations without knowing
the context

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 23 / 28

university-logo

Contractual protocols

Protocols may be seen as “contracts” regulating the parties’ ideal
mode of interaction
Other names for the same kind of “contracts”

Trade procedures
Business protocols
Specifications

This definition of a contract could be mostly seen as a specification
Usually one specify the point of view of each party as a Finite State
Machine or Petri net

Sometimes the ’contract’ is not explicit, but implicit in the interaction
of the parties

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 24 / 28

university-logo

Contractual protocols

Protocols may be seen as “contracts” regulating the parties’ ideal
mode of interaction
Other names for the same kind of “contracts”

Trade procedures
Business protocols
Specifications

This definition of a contract could be mostly seen as a specification
Usually one specify the point of view of each party as a Finite State
Machine or Petri net

Sometimes the ’contract’ is not explicit, but implicit in the interaction
of the parties

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 24 / 28

university-logo

“Social contracts”

Based on different modal logics
In the context of multi-agent systems
Aim at simulate/specify “social” behavior

Interaction between agents who can decide based on knowledge and
trust on other agents
Agents act according to certain normative rules prescribing:

Proper and acceptable behavior (moral)
Acceptable behavior (legal)

Very expressive: It considers various types of norms
What ought to be
Expectation on what will be
Particular reactions to behavior
Sanctions to be applied, or how to induce a particular kind of conduct

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 25 / 28

university-logo

“Social contracts”

Based on different modal logics
In the context of multi-agent systems
Aim at simulate/specify “social” behavior

Interaction between agents who can decide based on knowledge and
trust on other agents
Agents act according to certain normative rules prescribing:

Proper and acceptable behavior (moral)
Acceptable behavior (legal)

Very expressive: It considers various types of norms
What ought to be
Expectation on what will be
Particular reactions to behavior
Sanctions to be applied, or how to induce a particular kind of conduct

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 25 / 28

university-logo

“Social contracts”

Based on different modal logics
In the context of multi-agent systems
Aim at simulate/specify “social” behavior

Interaction between agents who can decide based on knowledge and
trust on other agents
Agents act according to certain normative rules prescribing:

Proper and acceptable behavior (moral)
Acceptable behavior (legal)

Very expressive: It considers various types of norms
What ought to be
Expectation on what will be
Particular reactions to behavior
Sanctions to be applied, or how to induce a particular kind of conduct

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 25 / 28

university-logo

Electronic “deontic” contracts

Based on deontic logic and combined with other modal logics
It contains constructs to specify at least

Obligations, Permissions, and Prohibitions
A contract can be obtained

From a conventional contract
Written directly in a formal specification language

It allows formal reasoning

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 26 / 28

university-logo

Contracts

In this tutorial

We will see ‘deontic’ e-contracts

Two scenarios:
1 Obtain an e-contract from a conventional contract

Context: legal (e.g. financial) contracts
2 Write the e-contract directly in a formal language

Context: web services, components, OO, etc

Definition
A contract is a document which engages several parties in a transaction
and stipulates their (conditional) obligations, rights, and prohibitions, as
well as penalties in case of contract violations.

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 27 / 28

university-logo

Contracts

In this tutorial

We will see ‘deontic’ e-contracts

Two scenarios:
1 Obtain an e-contract from a conventional contract

Context: legal (e.g. financial) contracts
2 Write the e-contract directly in a formal language

Context: web services, components, OO, etc

Definition
A contract is a document which engages several parties in a transaction
and stipulates their (conditional) obligations, rights, and prohibitions, as
well as penalties in case of contract violations.

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 27 / 28

university-logo

Links and Papers

Introduction to Formal Methods: See first lecture of the course
“Specification and verification of parallel systems” (INF5140) and
references therein: http://www.uio.no/studier/emner/matnat/ifi/

INF5140/v07/undervisningsmateriale/1-formal-methods.pdf

Gerardo Schneider (UiO) Specification and Analysis of e-Contracts SEFM, 3-7 Nov 2008 28 / 28

http://www.uio.no/studier/emner/matnat/ifi/INF5140/v07/undervisningsmateriale/1-formal-methods.pdf
http://www.uio.no/studier/emner/matnat/ifi/INF5140/v07/undervisningsmateriale/1-formal-methods.pdf

	Formal Methods
	Contracts `and' Informatics

