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Abstract

Memory consumption policies provide ameans to con-
trol resource usage on constrained devices, and play an
important role in ensuring the overall quality of soft-
ware systems, and in particular resistance against re-
source exhaustion attacks. Such memory consumption
policies have been previously enforced through static anal-
ysis, which yield automatic bounds at the cost of preci-
sion, or run-time analysis, which incur an overhead that
is not acceptable for constrained devices.

In this paper, we study the use of logical methods to
specify and statically verify precisememory consumption
policies for Java bytecode programs. First, we demon-
strate how the Bytecode Specification Language (a vari-
ant of the Java Modelling Language tailored to bytecode)
can be used to specify precise memory consumption poli-
cies for (sequential) Java applets, and how verification
tools can be used to enforce such memory consumption
policies. Second, we consider the issue of inferring some
of the annotations required to express the memory con-
sumption policy, and report on an inference algorithm.

Our broad conclusion is that logical methods provide a
suitable means to specify and verify expressive memory
consumption policies, with an acceptable overhead.

1. Introduction

Trusted personal devices (TPDs for short) such
as smart cards, mobile phones, and PDAs commonly
rely on execution platforms such as the Java Virtual
Machine and the Common Language Runtime. Such
platforms feature security mechanisms such as byte-
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code verification and stack inspection that guaran-
tee basic safety properties of downloaded applications.
However, current security architectures for TPDs do
not provide any mechanism to control resource usage
by downloaded applications, despite TPDs being sub-
ject to stringent resource constraints. Therefore, TPDs
are particularly vulnerable to denial-of-service attacks,
since executing a downloaded application may poten-
tially lead to resource exhaustion.

Several approaches have been suggested to date to
enforce memory consumption policies for programs, see
Section 2. All approaches are automatic, but none of
them is ideally suited for TPDs, either for their lack
of precision, or for the runtime penalty they impose on
programs.

The objective of this work is to explore an alterna-
tive approach that favours precision of the analysis at
the cost of automation, but without runtime penalty.
The approach is based on program logics and allows
users to perform a precise analysis of resource con-
sumption for Java bytecode programs (for the clarity of
the explanations all examples in the introduction deal
with source code). In order to illustrate the principles
of our approach, let us consider the following program:

public void m (A a) {

if (a == null)

{ a = new A(); }

a.b = new B(); }

In order to model the memory consumption of this pro-
gram, we introduce a ghost (or, model) variable Mem

that accounts for memory consumption; more precisely,
the value of Mem at any given program point is meant to
provide an upper bound to the amount of memory con-
sumed so far. To keep track of the memory consump-
tion, we perform immediately after every bytecode that
allocates memory an increment of Mem by the amount of
memory consumed by the allocation. Thus, if the pro-



grammer specifies that ka and kb is the memory con-
sumed by the allocation of an instance of class A and B

respectively, the program must be annotated as:

public void m (A a) {

if (a == null)

{a = new A(); //set Mem = Mem + ka;}

a.b = new B(); //set Mem = Mem + kb; }

Such annotations allow to compute at run-time the
memory consumed by the program. However, we are in-
terested in static prediction of memory consumption,
and resort to pre- and postconditions to this end.

Even for a simple example as above, one can express
the specification at different levels of granularity. For
example, fixing the amount of memory that the pro-
gram may use, Max, one can specify that the method
will use at most ka + kb memory units and will not
overpass the authorised limit Max, with the following
specification:

//@ requires Mem+ ka + kb ≤ Max

//@ ensures Mem ≤ \old(Mem) + ka+ kb

public void m (A a) { ... }

Or try to be more precise and relate memory consump-
tion to inputs with the following specification:

//@ requires a==null⇒ Mem+ ka + kb ≤ Max

∧ !(a==null)⇒ Mem+ kb ≤ Max

//@ ensures

\old(a)==null⇒ Mem ≤ \old(Mem) + ka+ kb

∧ !(\old(a)==null) ⇒ Mem ≤ \old(Mem) + kb

public void m (A a) { ... }

More complex specifications are also possible: one can
take into account whether the program will throw an
exception or not by using (possibly several) exceptional
postconditions stating that kE memory units are allo-
cated in case the method exits on exception E.

The main characteristics of our approach are:

• Precision: our analysis allows to specify and en-
force precise memory consumption policies, in-
cluding those that take into account the results of
branching statements or the values of parameters
in method calls. Being based on program logics,
which are very versatile, the precision of our anal-
ysis can be further improved by using it in com-
bination with other analysis, such as control flow
analysis and exception analysis;

• Correctness: our analysis exploits existing pro-
gram logics which are (usually) already known
to be sound. In fact, it is immediate to derive
the soundness of our analysis from the soundness

of the program logic, provided ghost annotations
that update memory consumption variables are
consistent with an instrumented semantics that
extends the language operational semantics with
a suitable cost model that reflects resource usage;

• Language coverage: our analysis relies on the exis-
tence of a verification condition generator for the
programming language at hand, and is therefore
scalable to complex programming features. In the
course of the paper, we shall illustrate applications
of our approach to programs featuring recursive
methods, method overriding and exceptions;

• Usability: our approach can be put to practise im-
mediately using existing verification tools for pro-
gram logics. We have applied it to annotated Java
bytecode programs using a verification environ-
ment developed in [6]. It is also possible to use our
approach on JML annotated Java source code [7],
and more generally on programs that are written
in a language for which appropriate support for
contract-based reasoning exists;

• Annotation and proof generation: in contrast to
other techniques discussed above, our approach re-
quires user interaction, both for specifying the pro-
gram and for proving that it meets its specifica-
tion. In order to reduce the burden of the user,
we have developed heuristics that infer automat-
ically part of the annotations, and use automatic
procedures to help discharge many proof obliga-
tions automatically.

Furthermore, our analysis may be used to guarantee
that no memory allocation is performed in undesirable
states of the application, namely after initialisation or
during a transaction in a Java Card.

On the negative side, our method does not deal with
garbage collection nor arrays (see Section 6).

Contents The paper is organised as follows: the next
Section discusses related work while Section 3 provides
a brief introduction to Java bytecode programs and to
the modelling language and weakest precondition cal-
culus used to specify and verify such programs. Sec-
tion 4 describes in some detail program logics can be
used to specify and verify precise memory consump-
tion policies. Section 5 is devoted to inference of anno-
tations. We conclude in Section 6 with directions for
future work.

2. Related Work

• Static analysis and abstract interpretations: in such
an approach, one performs an abstract execution



of an approximation of the program. The approx-
imation is chosen to be coarse enough to be com-
putable, as a result of which it yields automati-
cally bounds on memory consumption, but at the
cost of precision. Such methods are not very accu-
rate for recursive methods and loops, and often fail
to provide bounds for programs that contain dy-
namic object creation within a loop or a recursive
method.

In a series of papers including [3], M. Hofmann
and co-authors have investigated the use of type
systems for estimating memory consumption. For
example, Hofmann and Jost [15] propose an auto-
matic heap space usage static analysis for first-
order functional programs. The analysis deter-
mines both the amount of free cells necessary be-
fore execution as well as a safe (under)-estimate of
the size of a free-list after successful execution of a
function. These numbers are obtained as solutions
to a set of linear programming (LP) constraints de-
rived from the program text. Automatic inference
is obtained by using standard polynomial-time al-
gorithms for solving LP constraints. The type sys-
tems are then used within a proof-carrying code
architecture for enforcing resource control policies.

In a similar line of work, R. Amadio and co-
workers have been studying the resource bounds
problem using type, size and termination verifica-
tions for programs that execute in a simple stack
machine. Their early work [24] defines an analysis
at the level of the bytecode for a sequential lan-
guage, while their later work [1] extends their re-
sult to cooperative threads, but works at the level
of source code.

Another related work is [2], which introduces a
first-order linearly typed assembly language that
allows the safe reuse of heap space for elements
of different types. The idea is to design a family
of assembly languages which have high-level typ-
ing features (e.g. the use of a special diamond re-
source type) which are used to express resource
bound constraints.

A different technique, based on the computa-
tion of linear invariants which relate program vari-
ables to memory consumption, is presented in [5].
In a nutshell, the amount of memory consumed by
a program is the number of integer points satis-
fying the invariant; such number is a polynomial
where the unknowns are method input parame-
ters. Many experiments are presented showing the
precision of the technique.

Building up on [24] (no mechanical proof nor
implementation is provided in such work), the

third author and co-workers [8] have also devel-
oped a certified static analysis for a Java-like byte-
code language. Their analysis uses a constraint-
based algorithm to check the existence of new in-
structions inside intra- and inter-procedural loops;
the analyser has been automatically extracted
from its Coq’s correctness proof.

• Run-timemonitoring: here the program also comes
equipped with a specification of its memory con-
sumption, but the verification is performed at run-
time, and interrupted if the memory consumption
policy is violated. Such an approach is both pre-
cise and automatic, but incurs a runtime overhead
which makes it unsuitable for TPDs.

L.-A. Fredlund [12] implements a runtime mon-
itor that controls the execution of a Java card ap-
plet. In order to guarantee the desired memory
allocation property, a call to a monitor method
is added before a new instruction; the monitor
method has as parameter the size of the alloca-
tion request and it halts the execution of the ap-
plet if a predefined allocation bound is exceeded.

A method for analysing, monitoring and con-
trolling dynamic memory allocation using pointer
and scope analysis is presented in [14]. A Java pro-
gram is automatically instrumented using the in-
formation given by the pointer and escape analy-
sis and a region-based memory manager is synthe-
sised, which dynamically maps “creation sites to
the region stack at runtime via a registering mech-
anism”.

A hybrid (i.e., static and dynamic) resource bound
checker for an imperative language designed is pre-
sented in [9]. The verifier is based on a variant of Dijk-
stra’s weakest precondition calculus using “generalised
predicates”, which keeps track of the resource units
available. Besides adding loop invariants, pre- and post-
conditions, the programmer must insert “acquires” an-
notations to reserve the resource units to be consumed.
The checker is designed to admit decidable verification,
and has been used on a realistic case study.

Type systems and program logics have been used to
enforce other resource consumption policies: for exam-
ple Vanderwaart and Crary [28] describe a type theory
for certified code, in which type safety guarantees co-
operation with a mechanism to limit the CPU usage of
untrusted code. In earlier work, Crary and Weirich [11]
define a logic for reasoning about execution time of pro-
grams. Finally, some earlier work has shown how gen-
eral purpose logics can be used to enforce security prop-
erties of Java programs, including confidentiality [4]
and high-level security rules [21].



Works defining bytecode logics comprise [22] and
[29]. In [22] a Hoare logic for bytecode is defined; the
approach is based on searching structure in the byte-
code programs which is not very natural for unstruc-
tured bytecode programs. In [29], on the other hand,
a Hoare bytecode logics is defined in terms of weak-
est precondition calculus over the Jinja language (sub-
set of Java). The logics is used for verifying bytecode
against arithmetic overflow.

3. Preliminaries

3.1. Java class files

The standard format for Java bytecode programs is
the so-called class file format which is specified in the
Java Virtual Machine Specification [18]. For the pur-
pose of this paper, it is sufficient to know that class files
contain the definition of a single class or interface, and
are structured into a hierarchy of different attributes
that contain information such as the class name, the
name of its superclass or the interfaces it implements,
a table of the methods declared in the class. Moreover
an attribute may contain other attributes. For example
the attribute that describes a single method contains
a Local_Variable_Table attribute that describes the
method parameters and its local variables.

In addition to these attributes which provide all the
information required by a standard implementation of
the JVM, class files can accommodate user-defined at-
tributes. We take advantage of this possibility and in-
troduce additional attributes given in the Bytecode
Specification Language, described below.

3.2. The Bytecode Specification Language

The Bytecode Specification Language (BCSL) [6] is a
variant of the Java Modelling Language (JML) [17] tai-
lored to Java bytecode. For our purposes, we only need
to consider a restricted fragment of BCSL, which is
given in Fig. 1; we let E and P denote respectively the
set of BCSL expressions and predicates. As for JML,
BCSL specifications contain different forms of state-
ments, in the form of predicates tagged with appro-
priate keywords. BCSL predicates are built from ex-
pressions using standard predicate logic; furthermore
BCSL expressions are bytecode programs that corre-
spond to effect-free Java expressions, or BCSL spe-
cific expressions. The latter include expressions of the
form \old(exp) which refers to the value of the ex-
pression exp at the beginning of the method, or exppc

which refers to the value of the expression expr at
program point pc. Note that the latter is not stan-

dard in JML but can be emulated introducing a ghost
variable exppc and performing the ghost assignment
set exppc= exp at program point pc.

Statements can be used for the following purposes:

• Specifying method preconditions, which following
the design by contract principles, must be satisfied
upon method invocation. They are formulated us-
ing statements of the form requires P ;

• Specifying method postconditions, which must
be guaranteed upon returning normally from the
method. Such postconditions are formulated us-
ing statements of the form ensures P ;

• Specifying method exceptional postconditions,
which must be guaranteed upon returning ex-
ceptionally from the method. Such postcondi-
tions are formulated using statements of the form
exsures(Exception)P , that record the rea-
son for exceptional termination;

• Stating loop invariants, which are predicates that
must hold every time the program enters the loop:
invariant P ;

• Guaranteeing termination of loops and recursive
methods, using statements of the form variant E
which provide a measure (in the case of BCSL, a
positive number) that strictly decreases at each it-
eration of the loop/recursive call;

• Local assertions, using assert P , which asserts
that P holds at the program point immediately
after the assertion;

• Declaring and updating ghost variables, using
statements of the form declare Model Type name
and set E = E ;

• Keeping track of variables that are modified by
a method or in a loop, using declarations of the
form modifies var. During the generation of ver-
ification conditions, one checks that variables that
are not declared as modifiable by the clause above
will not be modified during the execution of the
method/loop. This information is also used to gen-
erate the verification conditions.

Note that, as alluded above, annotations are not in-
serted directly into bytecode; instead they are gathered
into appropriate user defined attributes of an extended
class file. Such extended class files can be obtained ei-
ther through direct manipulation of standard class files,
or using an extended compiler that outputs extended
class files from JML annotated programs, see [6].



BCSL − stmt = requires P
| ensures P
| exsures(Exception) P
| assert P
| invariant P
| variant E
| declare Model Type name
| modifies var
| set E = E

Figure 1. Specification language

3.3. Verification of annotated bytecode

In order to validate annotated Java bytecode pro-
grams, we resort to a verification environment for Java
bytecode, which is an adaptation by L. Burdy and the
second author [6] of JACK [7]. The environment con-
sists of two main components:

• A verification condition generator, which takes as
input an annotated applet and generates a set of
verification conditions which are sufficient to guar-
antee that the applet meets its specification;

• A proof engine that attempts to discharge the ver-
ification conditions automatically, and then sends
the remaining verification conditions to proof as-
sistants where they can be discharged interactively
by the user.

3.3.1. Generating the Verification Conditions

The verification condition generator (VCGen) takes as
input an extended class file and returns as output a set
of proof obligations, whose validity guarantees that the
program satisfies its annotations. The VCGen proceeds
in a modular fashion in the sense that it addresses each
method separately, and is based on computing weak-
est preconditions. More precisely, for every method m,
postcondition ψ that must hold after normal termina-
tion of m, and exceptional postcondition ψ′ that must
hold after exceptional termination of m (for simplic-
ity we consider only one exception in our informal dis-
cussion), the VCGen computes a predicate φ whose va-
lidity at the onset of method execution guarantees that
ψ will hold upon normal termination, and ψ′ will hold
upon exceptional termination. The VCGen will then re-
turn several proof obligations that correspond, among
other things, to the fact that the precondition of m
given by the specification entails the predicate φ that
has been computed, and to the fact that variants and
invariants are correct.

The procedure for computing weakest preconditions
is described in detail in [6]. In a nutshell, one first de-
fines for each bytecode a predicate transformer that
takes as input the postconditions of the bytecode, i.e.
the predicates to be satisfied upon execution of the
bytecode (different predicates can be provided in case
the bytecode is a branching instruction), and returns a
predicate whose validity prior to the execution of byte-
code guarantees the postconditions of the bytecode.
The definition of such functions is based on a single
instruction, so the next step is to use these functions
to compute weakest preconditions for programs. This
is done by building the control flow graph of the pro-
gram, and then by computing the weakest precondi-
tions of the program, using the graph.

Note that the verification condition generator op-
erates on BCSL statements which are built from ex-
tended BCSL expressions. Indeed, predicate transform-
ers for instructions need to refer to the operand stack
and must therefore consider expressions of the form
st(i) which represent the i-element of the stack st.

3.3.2. Discharging verification conditions Veri-
fication conditions are expressed in an intermediate
language and then translated to automatic theorem
provers and proof assistants. In our examples, we have
used Simplify [25] as automatic prover and Coq [10] as
proof assistant. The Coq plug-in for Jack was devel-
oped by J. Charles, and adapted to Java bytecode by
L. Burdy.

3.4. Correctness of the method

The verification method is correct in the sense that
one can prove that for all methods m of the program
the (exceptional) postcondition of the method holds
upon (exceptional) termination of the method provided
the method is called in a state satisfying the method
precondition and provided all verification conditions
can be shown to be valid.

The correctness of the verification method is estab-
lished relative to an operational semantics that de-
scribes the transitions to be taken by the virtual ma-
chine depending upon the state in which the machine
is executed. There are many formalisations of the oper-
ational semantics of the JVM, see e.g. [13, 16, 26, 27].

We have proved the correctness of our method
for a fragment of the JVM that includes the fol-
lowing constructs: Stack manipulation: push, pop,
dup, dup2, swap, numop, etc; Arithmetic instruc-
tions: type add, type sub, etc; Local variables manipu-
lation: type load, type store, etc; Jump instructions:
if, goto; Object creation and object manipula-
tion: new, putfield, getfield, newarray, etc; Ar-



ray instructions: arraystore, arrayload, etc; Method
calls and return: invokevirtual, return; Subrou-
tines: jsr and ret.

Note however that our method imposes some mild
restrictions on the structure of programs: for example,
we require that jsr and throw instructions are not en-
try for loops in the control flow graph in order to pre-
vent pathological recursion. Lifting such restrictions is
left for future work.

4. Modelling memory consumption

The objective of this section is to demonstrate how
the user can annotate and verify programs in order to
obtain an upper bound on memory consumption. We
begin by describing the principles of our approach, then
turn to establish its soundness, and finally show how
it can be applied to non-trivial examples involving re-
cursive methods and exceptions.

4.1. Principles

Let us begin with a very simple memory consump-
tion policy which aims at enforcing that programs do
not consume more than some fixed amount of mem-
ory Max. To enforce this policy, we first introduce a
ghost variable Mem that represents at any given point
of the program the memory used so far. Then, we an-
notate the program both with the policy and with ad-
ditional statements that will be used to check that the
application respects the policy.

The precondition of the method m should ensure that
there must be enough free memory for the method ex-
ecution. Suppose that we know an upper bound of the
allocations done by method m in any execution. We
will denote this upper bound by mthdCon(m). Thus
there must be at least mthdCon(m) free memory units
from the allowed Max when method m starts execu-
tion. Thus the precondition for m is:

//@ requires Mem+ mthdCon(m) ≤ Max.

The precondition of the program entry point (i.e., the
main method from which an application may start its
execution) should also give the initial memory used by
the virtual machine, i.e. require that variable Mem is
equal to some fixed constant.

The normal postcondition of the method m must guar-
antee that the memory allocated during a normal ex-
ecution of m is not more than some fixed number
mthdCon(m) of memory units. Thus for the method
m the postcondition is:

//@ ensures Mem ≤ \old(Mem) + mthdCon(m).

The exceptional postcondition of the method m must
specify that the memory allocated during an execution
of m terminating by throwing an exception Exception

is not more than mthdCon(m) units. Thus for the
method m the exceptional postcondition is:

//@ exsures(Exception)

Mem ≤ \old(Mem) + mthdCon(m).

For every instruction that allocates memory the ghost
variable Mem must be updated accordingly. For the pur-
pose of this paper, we only consider dynamic object cre-
ation with the bytecode new; arrays are left for future
work and briefly discussed in the conclusion.

In order to perform the update for new bytecodes,
we assume given a function allocInst : Class → int
gives an estimation of the memory used by an instance
of a class. Then at every program point where a byte-
code new A is found, the ghost variable Mem must be
incremented by allocInst(A). This is achieved by in-
serting a ghost assignment associated with any new in-
struction, as shown below:

new A //set Mem = Mem+ allocInst(A).

4.2. Correctness

An important question is whether our approach
guarantees that the memory allocated by a given pro-
gram conforms to the memory consumption policy im-
posed by BCSL annotations. We can prove that our ap-
proach is correct by instrumenting the operational se-
mantics of the bytecode language to reflect memory
consumption. Concretely, this is achieved by extend-
ing states with the special variable Mem, and describ-
ing for each bytecode and for ghost assignments the ef-
fect of the weakest precondition calculus on Mem (in the
fragment of the language considered, the only instruc-
tion to modify memory is new, thus the only instruc-
tion whose weakest precondition calculus has an effect
on Mem is new).

We can then prove the correctness of the annotations
w.r.t. the instrumented operational semantics, under
the proviso that ghost assignments triggered by object
creation are compatible with the instrumented opera-
tional semantics.

4.3. Examples

We illustrate hereafter our approach by several ex-
amples, coping with recursive and overridden methods
and with exceptions.



Specification of method m in class A:

//@ requires Mem+ k ≤ Max

//@ modifies Mem

//@ ensures Mem ≤ \old(Mem) + k

Specification for method m in class B:

//@ requires Mem+ l ≤ Max

//@ modifies Mem

//@ ensures Mem ≤ \old(Mem) + l

public void n (A a)

...
//Prove Mem + max(l,k) <= Max

invokevirtual <A.m>

//Assume Mem <= \old(Mem) + max(l,k)

...

Figure 2. Example of overridden methods

4.3.1. Inheritance and overridden meth-

ods Overriding methods are treated as follows:
whenever a call to a method m is performed, we re-
quire that there is enough free memory space for the
maximal consumption by all the methods that over-
ride or are overridden by m . In Fig. 2 we show
a class A and its extending class B, where B over-
rides the method m from class A. Method m is invoked
by method n. Given that the dynamic type of the pa-
rameter passed to n is not known, we cannot know
which of the two methods will be invoked. This is the
reason for requiring enough memory space for the ex-
ecution of any of these methods.

4.3.2. Recursive Methods In Fig. 3 the bytecode
of the recursive method m and its specification are
shown. For simplicity we show only a simplified ver-
sion of the bytecode; we assume that the construc-
tors for the class A and C do not allocate memory. Be-
sides the pre- and the postcondition, the specification
also includes information about the termination of the
method: variant localVar(1), meaning that the lo-
cal variable localVar(1) decreases on every recursive
call down to 0, guaranteeing that the execution of the
method will terminate.

We explain first the precondition. If the condition
of line 1 is not true, the execution continues at line
2. In the sequential execution up to line 7, the pro-
gram allocates at most allocInst(A) memory units
and decrements by 1 the value of localVar(1). The in-
struction at line 8 is a recursive call to m, which ei-
ther will take the same branch if localVar(1) > 0
or will jump to line 12 otherwise, where it allocates
at most allocInst(A)+allocInst(C)memory units.

public class D {
public void m (int i) {

if (i > 0) { new A(); m(i-1); new A(); }
else { new C(); new A(); } } }

//@ requires Mem+ allocInst(A)+ allocInst(C))
+localVar(1) ∗ 2 ∗ allocInst(A)≤ Max

//@ variant localVar(1)
//@ ensures localVar(1) ≥ 0 ∧ Mem ≤ \old(Mem) +

\old(localVar(1)) ∗ 2 ∗ allocInst(A) +
allocInst(A)+ allocInst(C))

public void m()
0 load 1 //Local var. loaded on the stack of m

1 ifle 12 //If localVar(1) <= 0 jump

2 new <A> //Here localVar(1) > 0

//set Mem = Mem + allocInst(A)

3 invokespecial <A.<init>>

4 aload 0

5 iload 1

6 iconst 1

7 isub //localVar(1) decremented with 1

8 invokevirtual <D.m> //Recursive call

9 new <A>

//set Mem = Mem + allocInst(A)

10 invokespecial <A.<init>>

11 goto 16

12 new <A> //Target of the jump at 1

//set Mem = Mem + allocInst(A)

13 invokespecial <A.<init>>

14 new <C>

//set Mem = Mem + allocInst(C)

15 invokespecial <C.<init>>

16 return

Figure 3. Example of a recursive method

On returning from the recursive call one more alloca-
tion will be performed at line 9. Thus m will execute,
localVar(1) times, the instructions from lines 2 to 7,
and it finally will execute all the instructions from lines
12 to 16.

The postcondition states that the method will per-
form no more than \old(localVar(1)) recursive calls
(i.e., the value of the register variable in the pre-state
of the method) and that on every recursive call it allo-
cates no more than two instances of class A (one cor-
responding to line 2 and the other to line 9) and that
it will finally allocate one instance of class A (line 12)
and another of class C (line 14).

For proving the correctness of this method, 18 proof
obligations were generated with Jack, most of which
were automatically proved in Coq using its standard
tactics.



Loops must also be annotated with appropriate invari-
ants, and with variants that guarantee their termina-
tion. If we know that some expression e bound by 0

decreases at every iteration of the loop, and that each
loop iteration will not allocate more than k units, then
we can strengthen the loop invariant to:

//@ modifies i, Mem
//@ invariant 0 ≤ e ∧ Mem ≤ MemBeforel + e ∗ k
//@ variant e

MemBeforel is a special variable denoting the value of
the consumed memory just before entering for the first
time the loop l. At every iteration the consumed mem-
ory must not go beyond the upper bound given for the
body of loop.

4.3.3. More precise specification We can be more
precise in specifying the precondition of a method by
considering the field values of an instance, for exam-
ple. Let m be the method shown in Fig. 4 and assume
no allocations are done in the constructor of the class
A. The first line of m initialises one of the fields of field
b. Since nothing guarantees that b is not null, the ex-
ecution may terminate with NullPointerException.
Depending on the values of the parameters passed to
m, the memory allocated will be different. The pre-
condition specifies the required memory space depend-
ing on whether the field b is null or not. In the nor-
mal postcondition we state that the method has al-
located an object of class A. The exceptional post-
condition states that no allocation is performed if
NullpointerException causes the termination.

5. Inferring memory allocation

In the previous section, we have described how the
memory consumption of a program can be modelled
in BCSL and verified using an appropriate verification
environment. While our examples illustrate the bene-
fits of our approach, especially regarding the precision
of the analysis, the applicability of our method is ham-
pered by the cost of providing the annotations manu-
ally. In order to reduce the burden of manually annotat-
ing the program, one can rely on annotation assistants
that infer automatically some of the program annota-
tions (indeed such assistants already exist for loop in-
variants [20] and class invariants [19]). In this section,
we describe an implementation of an annotation assis-
tant dedicated to the analysis of memory consumption,
and illustrate its functioning on an example.

//@ requires !(localVar(1) == null) ⇒
Mem+ allocInst(A)≤ Max

//@ modifies Mem

//@ ensures Mem ≤ \old(Mem) + allocInst(A)

//@ exsures(NullPointerException)

Mem == \old(Mem)

0 aload 0

1 getfield<C.b>

2 iload 2

3 putfield <B.i>

4 new <A>

//set Mem = Mem +

allocInst(A)

5 dup

6 invokespecial <A.<init>>

7 astore 1

8 return

public class C {
B b;

public void

m (A a, int i){
b.i = i ;

a = new A();}}

Figure 4.Example of amethod with possible

exceptional termination

5.1. Annotation assistant

The annotation assistant performs two tasks. First,
it inserts the ghost assignments on appropriate places;
for this task, the user must provide annotations about
the memory required to create objects of the given
classes.

Second, it inserts pre- and postconditions for each
method. In this case, variants for loops and recursive
methods may be given by the user or be synthesised
through appropriate mechanisms. Based on this infor-
mation, the annotation assistant recursively computes
the memory allocated on each loop and method. Es-
sentially, it finds the maximal memory that can be al-
located in a method by exploring all its possible exe-
cution paths.

The function mthdCon(.) is defined as follows:

• Input: Annotated bytecode of a method m , and
memory policies for methods that are called by m;

• Output: Upper bound of the memory allocated
by m;

• Body: The first step is to compute the loop struc-
ture of the method, then to compute an upper
bound to the memory allocated by each loop us-
ing its variant, and then to compute an upper
bound to the memory allocated along each exe-
cution path.



The annotation assistant currently synthesises only
simple memory policies (i.e., whenever the memory
consumption policy does not depend on the input).
Furthermore, it does not deal with arrays, subrou-
tines, nor exceptions, and is restricted to loops with
a unique entry point. The latter restriction is not criti-
cal because it accommodates code produced by non-
optimising compilers. However, a pre-analysis could
give us all the entry points of more general loops, for in-
stance by the algorithms given in [8]; our approach may
be thus applied straightforwardly. How to treat arrays
is briefly discussed in the conclusion.

5.2. Example

Let us consider the bytecode given in Fig. 5,
which is a simplified version of the bytecode corre-
sponding to the source code given in the right of
the figure. For simplicity of presentation, we do not
show all the instructions (the result of the infer-
ence procedure is not affected). Method m has two
branching instructions, where two objects are cre-
ated: one instance of class A and another of class B.
Our inference algorithm gives that mthdCon(m) =
allocInst(A)+ mthdCon(A.init)+ allocInst(B)+
mthdCon(B.init).

0 aload 1

1 ifnonnull 6

2 new <A>

...

4 invokespecial <A.<init>>

6 aload 2

7 ifnonnull 12

8 new <B>

...

10 invokespecial <B.<init>>

...

12 return

public void

m (A a , B b ) {
if (a == null) {

a = new A(); }
if (b == null) {

b = new B(); }}

Figure 5. Example

6. Conclusion

Program logics have traditionally been used to ver-
ify functional properties of applications, but we have
shown that such logics are also appropriate to en-
force security properties including memory consump-
tion policies. We have shown that program logics com-
plement nicely existing methods to verify memory con-
sumption, over which they are superior in terms of the

precision of the analysis (and inferior in terms of au-
tomation).

We intend to pursue our work in four directions.
Firstly, we would like to extend our approach to arrays.
In principle, it should be reasonably easy to extend the
verification method to arrays; however, it seems more
complicated to extend our inference algorithm to ar-
rays. The main difficulty here is to provide an estimate
of the size of an array, as it is given by the top value on
the operand stack at the time of its creation. Our in-
tuition is that this can be done using an abstract in-
terpretation or a symbolic evaluation of the program.
If we look at the example code below (in source code):

void m(int s)

{ int len = s; int[] i = new int[len] }

where len is a local variable to the method, one can in-
fer by symbolic computation that its value is the value
of the method parameter. Thus the method can be
given the precondition Mem + s.sizeof(int) <= Max.
In a similar line of work, we would like to extend our re-
sults to concurrency using recent advances in program
logics for multi-threaded Java programs [23]. Providing
an appropriate treatment of arrays and multi-threading
is an important step towards applying our results to
mobile phone applications.

Secondly, we would like to adapt our approach to
account for explicit memory management. More pre-
cisely, we would like to consider an extended language
with a special instruction free(o) that deallocates the
object o, and establish the correctness of our method
under the assumption that deallocation is correct, i.e.
that the object o is not reachable from the program
point where free(o) is inserted. By combining our ap-
proach with existing compile-time analysis that infers
for each program point which objects are not reach-
able, we should be able to provide more precise esti-
mates of memory consumption.

Thirdly, we intend to apply our technique to other
resources such as communication channels, bandwidth,
and power consumption, as well as to more refined anal-
ysis that distinguish between different kinds of mem-
ory, such as RAM or non-volatile EEPROM. As sug-
gested by the MRG project [3], it seems also interesting
to consider policies that enforce limits on the interac-
tion between the program and its environment, for ex-
ample w.r.t. the number of system calls or the bounds
on parameters passed to them.

Finally, we envisage to experiment with more com-
plex applets and to compare the results with other ap-
proaches.
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