A Model for Visual Specification of e-Contracts

Enrique Martinez, Gregorio Diaz, M. Emilia Cambronero Gerardo Schneider
Department of Computer Science Department of Applied IT
University of Castilla - La Mancha University of Gothenburg, Sweden
Albacete, Spain Department of Informatics
{emartinez, gregorio, emi¢i@dsi.uclm.es University of Oslo, Norway

gersch@chalmers.se

agent

Abstract—In a web service composition, an electronic con-
tract (e-contract) regulates how the services participatig in the g P R
composition should behave, including the restrictions thethese tr
services must fulfill, such as real-time constraints. In thé work
we present a visual model that allows us to specify e-contrés
in a user friendly way, including conditional behavior and real- Figure 1. Box structure

time constraints. A case study is presented to illustrate he this only in service-oriented architectures but also in compone

visual model defines e-contracts and a preliminary evaluatin . ‘i

of the model is also done. Esssdefgstems, requirements acquisition, software ptoduc
Keywords-contracts; deontic specifications; visual models; The contribution of this work is twofold. First, we define

a visual model to deal with the acquisition and elicitatidn o

requirement and restrictions. This visual model allowsaus t
Most of the research efforts spent on the theory ofspecify the notions of obligation, permission and profiit

electronic contracts in service-oriented architecturageh [14] as elements of a hierarchical diagram. In this way,éhes

been oriented to the formal definition of a public serviceglements are clauses that can be refined hierarchically and

interface with which other services can interact [5]. HOw- c5p include (real-time) constraints and a reparation thattm

ever, services e-contracts not only refer to the interfacegg performed when the main norm is not fulfilled. Second,

provided by these services, they also refer to a certaig preliminary evaluation of the model is presented, based on
number of clauses that must be satisfied by several partie§ser-hased tests and the principles defined in [16].

These clauses regulate how participants should behave, The rest of the work is structured as follows: Section
what are the penalties in case of misbehavior, and unday gescribes the visual model we have developed, showing
which conditions such clauses must be enacted (e.g. tim@ sSection Il a case study where this model is applied.
restrictions such as deadlines). When a clause is violategl, section 1V we present the results of the preliminary
the contract is breached. However, if the clause defines gyajuation and Section V is concerned with related work.

reparation (secondary clauses that come into force when ”’lﬂnally, in Section VI, we present the conclusions and feitur
main clause is not satisfied), and this reparation is fulfjlle vk

then the clause is eventually fulfilled [1].
Recently some works about specifying services e- Il. VISUAL MODEL
contracts in a formal manner have been released [2], [4], [7] In our visual model we define a hierarchical tree diagram
[18]. These approaches consist of formal languages whichsed to specify the contract clauses. We call this diagram
are hard to study and manipulate by untrained final users dfontract-Oriented Diagranor C-O Diagramfor short.
this technology, as business process developers. In Figure 1 we show the basic element of oGrO
The goal of this work is to introduce a new approach forDiagram It corresponds to a contract clause and we call
the specification of e-contracts in a user friendly way. E-it box. This box consists of four fields, allowing us to
contracts may be complex, consisting of composite clausespecify normative aspects or simple normgs, (reparations
making reference to other clauses in the same or in anoth€R), conditions ¢) and time restrictionst(). Each box has
contract. Furthermore, we consider contracts with timeda name and an agent. Tinameis useful both to describe
restrictions and conditions under which the contract daus the clause and to reference the box from other clauses, so it
must be applied. Hence, our approach is based on a visuatust be unique. Thagentindicates who is the performer
model, since it is well-known that the use of visual modelsof the action.
makes easier the perception of knowledge, and in this way, On the left-hand side of the box we specify the conditions
the intuitive understanding, reading and maintenance o&nd restrictions. Thguard g specifies the conditions under
complex problems [8], [9]. This approach can be useful notwhich the contract clause must be taken into account. The

name

|. INTRODUCTION

of a box in more detail.

And-refinement Or-refinement Propositional Content P: This is the main field of

a box. It allows us to specify thebligations permissions
’ SubClause1 ‘ ’ SubCIauseZ‘ ’ SubClause1 ‘ ’ SubCIauseZ‘ and prOhibitiOﬂS as defined in deontic IOgiC [15]v that the
contract must be satisfied. In this work, we follow @nght-
Figure 2. AND/OR refinements to-doapproach [22], i.e., these normative aspects are applied
over actionsperformed by the participants in the contract.
Although we will see later that it is possible to specify
pSeretnenent & s compound actionswe only consider the specification of
atomic actionsin the P field of the leaf clauses of our

SubClause1

SubClause? | subClause1 | | subClausez]

diagrams. These actions are denoted by lower case Latin

Figure 3. SEQ refinement and repetition@O Diagram letters (‘a”,“b",“¢”, ...). We use a dash (“-”) to denote that
time restrictiontr specifies the time frame in which the there is no action specified in the no leaf clauses.
contract clause must be satisfied. The composition of actions can be achieved by means

The propositional contenf, on the center, is the main of the different kinds of refinement. In this way, an AND-
field of the box, and it is used to specify normative aspectgefinement can be used to modaeincurrency'&” between
(obligations, permissions and prohibitions) that are igpl actions, an OR-refinement can be used to modehaice
over actions, and/or the actions themselves. “+” between actions, and a SEQ-refinement can be used

The last field of these boxes, on the right-hand side, is théo modelsequence;” of actions. In Figure 4 we can see
reparation R. This reparation, if specified by the contract an example about how to model these compound actions
clause, is another contract that must be satisfied in case tlierough refinements, given two atomic actianandb.
main norm is not satisfied, considering the clause eventuall The deontic normgobligations, permissions and prohibi-
satisfied if this reparation is satisfied. tions) that are applied over these actions can be specified in

These basic elements of @O Diagramcan be refined any clause of ouC-O Diagrams affecting all the actions
by using AND/OR refinements, as shown in Figure 2, in thein the leaf clauses that are subclauses of this clause.df it i
same way that we refine goals into subgoals in goal modghe case that the clause where we specify the deontic norm
diagrams [21]. It is also possible to use another refinengent tis a leaf clause, the norm only affects the atomic action we
specify a temporal relationship of sequence (SEQ) betweehave in this clause. We use an upper casSgto denote an
the subclauses, as shown in the left part of Figure 3. Thebligation, an upper casé” to denote a permission, and an
aim of these refinements is to capture the hierarchical elausupper case F” to denote a prohibition (forbidden). These
structure followed by most contracts. AND-refinement letters are written in the top left corner of fieRl
means that all the subclauses must be satisfied in order The composition of deontic norms is also achieved by
to satisfied the parent clause. ADR-refinement means means of the different refinements we haveQrO Dia-
that it is only necessary to satisfy one of the subclausegrams Thus, an AND-refinement corresponds to tten-
in order to satisfy the parent clause, so as soon as one of ifgnction operator ‘A" between norms, an OR-refinement
subclauses is fulfilled, we conclude that the parent clasise icorresponds to thehoiceoperator “-” between norms, and
fulfilled as well. A SEQ-refinementmeans that the norm a SEQ-refinement corresponds to sexjuenceperator *”
specified in the target boxS(bClausedn Figure 3) must between norms. For example, we can imagine having a leaf
be fulfilled after satisfying the norm specified in the sourceclause specifying the obligation of performing an action
box (SubClauseln Figure 3). In this way, we can build «a, written asO(a), and another leaf clause specifying the
a hierarchical tree with the clauses defined by the contracgbligation of performing an actioh, written asO(b). These
where the leaf clauses correspond to the atomic clausés, th&vo norms can be combined in the three different ways
is, to the clauses that cannot be divided into subclauses. mentioned before through the different kinds of refinement

Finally, there is another structure that can be used tdFigure 5).
model repetition, apart from the refinements previously —However, the specification of obligations, permissions and
defined. This structure is represented as an arrow goingrohibitions in our diagrams must fulfill the following rse
from a subclause to one of its ancestor clauses (or to itself) 1. At least one deontic norm must be specified in each
meaning the repetitive application of all the subclauses of one of the branches of our hierarchical tree of clauses,
the target clause after satisfying the source subclause. Fo i.e., we cannot have an action without a deontic norm

example, in the right part of Figure 3, we have @R- applied over it.

refinementwith an arrow going fronBubClauselo Clause 2. No more than one deontic norm can appear in each
It means that after satisfyin§ubClauselve applyClause one of the branches of our hierarchical tree of clauses,
again, but not after satisfyin§ubClause2 i.e., we cannot have deontic norms applied over other

In the next paragraphs we describe each one of the fields deontic norms.

Seg-refinement

=l] Bl e He]]

a+b a&b

Or-refinement And-refinement
n-
a
o[JEHa] }—’ﬁ
a;b

Figure 4. Compound actions i@-O Diagrams

And-refinement

Seg-refinement

Or-refinement

(101] o5 JE0sT]

=L

|
|S=EE O] |

O(a) + O(b)

O(a) A O(b)

0O(a) ; O(b)

Figure 5. Composition of deontic norms @O Diagrams

—oue] P[0 (el]

Figure 6.

Reparations i€-O Diagrams

3. The deontic norms we take into account to chec

At this point we can see clearly the difference between
having a composition of obligations over atomic actions and
having an obligation over a compound action. While the
former allows us to specify a different reparation for each
one of the atomic actions we are obliged to do, the latter
only allows us to specify one reparation for the compound
action that is under the obligation operator. For the firseca

e can consider the diagrams we have in Figure 5, where

restrictionsl. and2. can be shared by several branches,t js hossible to specify a different reparation in each ofe o
i.e., when we have a deontic norm applied over e |eaf clauses of the diagrams. For the second case, we can
compound action, this norm is part of several brancheﬁ.nagine having the diagrams shown in Figure 7, where we

of our diagram.

can only specify reparations in the no leaf clauses where we

Therepetitionof both, actions and deontic norms, can behave the obligations, affecting these reparations the evhol

achieved by means of the repetition structure we defir@ in

O Diagrams The meaning of this structure is similar to the

Kleene’s staroperator %” [10] applied over the elements of

composition of actions.
This difference is a bit trickier if we consider prohibition
or permissions, because it not only concerns to the specifi-

the target clause of the arrow, but it is richer in the senae th cation of reparations [17]. For example, given two atomic
the repetition can be conditioned to the satisfaction of theactionsa and b, the meaning of prohibiting the sequence
source clause of the arrow and not other alternative clausef these two actions, written a&(a.b), is different from

Reparation R: This field of a box can state aew
contractthat must be satisfied when the main fi€lds not
satisfied (aprohibition is violated or anobligation is not
fulfilled, there is not reparation fopermissiof). This new

the meaning of prohibiting action, and next prohibiting
actionbd, written asF'(a).F'(b). In the first case, the sequence
of actions starting withe and continuing with any action
different from b is allowed, while in the second case any

contract can be just a new norm, but it can also be a newequence of actions starting with is forbidden. Similar

hierarchical tree of clauses, including their own reparai

distinctions exist when we consider permissions instead of

In this way, we are able to specify nested reparations in ouprohibitions.

C-O Diagrams

Guard g: This field of a box is aoolean expression

The fieldR is only allowed in the clauses of our diagrams that evaluates some information provided by the clause
where we specify a deontic norm of obligation or prohibition Specification, telling us under which conditions the clause
in field P, being forbidden in the other clauses. E.g., wemust be taken into account. E.g., in a car insurance contract

can imagine a main contract stating that we have the
obligation of performing an atomic actiom and the pro-
hibition of performing an atomic actiob. However, if we
do not perform the obligatory actiom we can compensate
it by fulfilling another contract called”;, consisting of
performing an actiom or an actiond, and if we perform the

we can have a clause that is only applied to people under the
age of 21. In that case, we must include in the box modeling
this clause a guard likage < 21.

Basically, a guard is a set of expressions that evaluate to a
boolean {rue or false combined by means of conjunctions
(and), disjunctions ¢r), and negationsnpt). These expres-

forbidden actiorb, we can compensate it just by performing sions can include constant values, variables, and equaalty
an actione. This situation can be modeled in our diagramsinequality operators£=,! =,<,>, ...).

as shown in Figure 6.

When the guard condition corresponding to a subclause of

And-refinement Seg-refinement

|
Hel]l Hellde1] Hellde] e[|

O(a+b) O(a & b) O(a; b)

Figure 7. Obligations over compound actions

an AND/SEQ refinement evaluates tdalse the subclause providerto develop a new software. Treoftware provider
is trivially satisfied, so we only must check the subclausesievelops the different components needed to implement this
with a true guard (or without guard). However, when the new software. Theoftware provideinforms twice theclient
guard condition corresponding to a subclause ofGRR- about the progress of the software development. Iictrent
refinement evaluates tdfalse we cannot satisfy that sub- wants any changes in the software, he can request them after
clause in order to satisfy the parent clause, so it is nepessathe first update. Any changes suggested after the second
to satisfy one of the other subclauses wittrize guard (or update are considered a violation. Thient can recover
without guard). E.g., in a payment system we can have th&om this violation by paying a penalty to thsoftware
obligation of paying by cash or by credit card, but the secongrovider or by withdrawing the suggested changes. Every
option is conditioned to be of legal age, so in case it is noupdate is followed by a payment from tratient to the
satisfied we have only the possibility of paying by cash. software provider If the software providerdoes not send
Time restriction tr: Each clause can have associated ahe updates to thelient at the schedule timelree months
time restriction, e.g., deadlines, timeouts, etc. Thesd re for the first update andine monthsfor the second update),
time aspects are expressed in the boxes of our diagraihis also considered a violation of the contract that can be
by means ofintervals within the field tr. These intervals repaired by paying a penalty charge to tlent
indicate the period of time in which the clauses must be Once all the software components are implemented, the
satisfied. software provideintegrates these components and sends the
The time restrictions can be specified in two differentfinal product to thetesting agencyfor testing. Then this
ways within the boxes: we can specify ttatesbinding the testing agencyends testing reports to the other parties. If
beginning and the end of the time frame corresponding to théhe tests fail, the components are revised by shéware
clause ébsolute timg or we can specify a deadline saying provider and then tested again. Finally, if the tests succeed,
the number ofime unitsthat can elapse before the clause isthe software providedelivers the final product to thelient
satisfy from the moment at which another clause is satisfied |n Table | we show a list of the obligations, permissions
or from the moment at which the contract comes into effectand prohibitions we can deduce from the scenario described
(relative timg. For example, in the case of absolute time, weahove. We can see here that there are two clauses specifying
can model a contract stating that a clause must be satisfigdal-time constraintslause 1andClause 4 If we consider
in thefirst five days of October (interval [10/1 00:00, 10/5 the moment when thelient asks thesoftware providerto
23:59]), whereas in the case of relative time a contract cagdevelop a new software as the moment when the contract
state that a clause must be satisfied not later fivendays comes into effect (denoted &3, the timesoftware provider
after satisfying another clause C(interval [C, 5days]). has to updatelient for the first time after being asked to
When we have a time restriction specified in a clausejevelop the new software is three months (denote@)s
that is refined into subclauses, this restriction affedtshal according toClause 1 Moreover, from the above scenario
subclauses, i.e., all the subclauses necessary to sdiisfy twe can deduce that there is a second time constraint, that the
parent clause must be satisfied in the time frame specified ifime software providerhas to updatelient for the second
this parent clause. Otherwise, the parent clause is caeside time after updating him for the first time is nine months
unfulfilled. (denoted a®M) according toClause 4 We can also see in
Table | thatClause 9and Clause 10are conditioned to the
result of the tests, so we consider a boolean variable we call
In this case study we present a contract regulated compdests Ok specifying if the tests have succeeded.
sition of services between a client and a software provider. The main problem we have with this textual specification
The case study is inspired by the one published in [13]of the contract is that it is no clear the relationship erigti
but with some modifications in the composition and thebetween the different clauses, which makes difficult any
contract specification, including the definition of reahé kind of analysis of the contract. Therefore, we aim at a
constraints. The parties involved in this contract are thespecification language that clearly defines the relatignshi
client, the software providerand thetesting agency between the different clauses, allowing the analysis of the
The scenario we are considering in this case is theontract, but not so formal that an expert is neededD
following: everything starts when thatient asks thesoftware =~ Diagramssatisfies the above requirements. In what follows

IIl. CASE STUDY: A SOFTWARE PROVISION SYSTEM

Clause Agent Modality Action Reparation
Updates client before three | Pays penalty, eventually updating
1 Software provider Obligation months (first update). client (Obligation).
Sen(_js the first payment software
2 Client Obligation provider. 0
Requests changes tosoftware
3 Client Permission provider after first update. 0
Updatesclient beforenine months | Pays penalty, eventually updating
4 Software provider Obligation after first update (second update)| client (Obligatior).
Sends thg second paymentdoft-
5 Client Obligation ware provider 0
Requests changes tosoftware | Pays penalty or withdraws changds
6 Client Prohibition provider after second update. (Obligation).
Sequ the integrated components |to
7 Software provider Obligation testing agency 0
Sends testing_ reports wient and
8 Testing agency Obligation software provider 0
If tests fail, revises components,
9 Software provider Obligation repeating after that the testing prg- 0
cess.
If tests sucgeed, delivers the fingl
10 Software provider Obligation product toclient 0
Table |
NORMS OF THESoftware Provision Syste@DNTRACT
Software_Provision_System First_Update
l SEQ SEQ
\
‘ ‘ ‘ ‘ Software provider
First_Update Second_Update Correct_Software Client_First_Behavior
- Sends_Update1 — —
Figure 8. Top-level of th€-O Diagramfor the Software Provision System AND
we explain how to model the contract with these diagrams, Hgiem ‘ ng"e"‘ ‘
. a a
taking into account the information provided in Table I. We : i :
. First_Payment First_Changes
usea,, to denote the action performed by clause number
andr,, to denote the reparation defined for clause number Figure 9. Decomposition of claugérst_Update
m. reparation, and after that we have the specificatio@latise

In Figure 8 we show the top-level of the-O Diagram 2 and Clause 3 both affecting the behavior of thelient
we specify for the contract, where we have grouped theind with anA relation between them, composing the parent
clauses in Table | into three more general clauses with @&lauseClient First_Behaviot
sequence relationship between thefirst_Update (Clause The decomposition of clausSecondUpdate into sub-
1, Clause 2and Clause 3, SecondUpdate (Clause 4 clauses can be seen in Figure 10 and it is very similar to the
Clause 5andClause §, andCorrect Software(Clause 7 previous one. We first have the specification of the obligatio
Clause § Clause 9and Clause 10. These three clauses contained inClause 4 including the deadlinenfne months
cover the three different phases we can distinguish in thérom the fulfilment of Clause 1, abridged asC1) and the
contract. reparation, and after that we have the specificatio@latise
The decomposition of claugérst_Updateinto subclauses 5 and Clause § both affecting the behavior of thelient
can be seen in Figure 9. In this case, we first have the speand with anA relation between them, composing the parent
ification of the obligation contained i€lause 1 including clauseClient SecondBehavior The main difference is that
the deadline three months from the beginning) and the the client is not allowed to request any change, so instead

Error Rate (%) Time (sec)
s T Ued Textual | Visual | Textual | Visual
econd_Update Basic 8% | 1.8% | 26 26
SEQ Composition | 22.0 % | 21.3% 53 45
\ _ Temporal 12.1% | 9.2% 42 37
Software provider Reparation | 54.5% | 33.6% | 98 83
Sends_Update2 Client_Second_Behavior Table Il
lAND RESULTS OBTAINED FOR THE VISUAL AND TEXTUAL NOTATIONS
| \ - : .
Client Client a clearly distinct shape and using the text with the name
}—{Oas \ }—{F 2,0 - \ of the refinement to complement the graphics (principle of
Second_Payment Second_Changes dual coding. We also have that the number of different
iim graphical symbols in the model is under the upper limit

of six categories for graphics complexity, so the principle
‘ of graphic economys accomplished. Finally, the principle
of complexity managemeist covered by the modularization
of the diagrams, as we have done in the case study. As we
Figure 10. Decomposition of clausiecondUpdate have seen in the previous section, modules are combined by
of a permission we have now a prohibition @lause 6 having the same box appearing in several diagrams (pracipl
This prohibition specifies two possible reparations, so weof cognitive integratioi

usere, to represent the payment of a penalty ang to The quantitative evaluation of the model is done by means
represent the withdrawal of the changes by tient We of user-based tests. Our purpose with these tests is to com-
write this complex reparation in the same diagram insteaghare C-O Diagramswith textual notations for e-contracts,
of referencing another diagram just to save space. so in the tests we use a textual version of the diagrams very
Finally, the clauseCorrect Softwareis decomposed as similar to C£ language [18], as it is closely related to the
shown in Figure 11. We first have the obligation contained inapproach followed by-O Diagrams but adding agents and
Clause 7 about sending the software to ttesting agency time aspects that are not currently supportedc, We
After that we have the obligation contained @Glause § have designed two tests to compare the understandability
about sending the reports to theftware provideiand to the of both, textual and visual representation, where we have
client These two actions can be performed concurrently, sehat the same semantic concept is represented GG
we call as, the action of sending the testing reports to thepjagramin one test and by the textual language in the other
software provideandas, the action of sending these reports test, asking the same questions in both cases. These tests
to theclient Last, we have the specification Gfause 9and have been done by 20 students of our university who have
Clause 10 both affecting thesoftware providerand with previously attended two lectures about e-contracts @
a + relation between them, composing the parent claus@iagrams and we have obtained the results shown in Table
TestsResult We notice that the selection of one subclausey|. In the table we show the average error rate and time taken
or the other is related to the result of the tests, so we usBy students in both cases, for textual representation and
the variableTests Ok to model that situation. Each time we for visual representation. The results are divided intor fou
apply Clause 9(software providerevises the components), rows depending on the kind of contracts that the questions
we repeat the sequence of software testisng, going back vrrespond to: contracts with only a basic deontic norm; con
the application ofClause 7 If Clause 10is applied, the tracts with a composition of deontic norms, contracts with
software providedelivers the final product to thelientand temporal restrictions, and contracts including reparatio
the contract finishes. As we can see, in the simplest case there is no difference
between textual and visual representation, but in all therot
cases we obtain better results for visual representatiam th
In this section we present an evaluation of the visuaffor textual representation.
model described above, divided into a qualitative and a We also have defined another test to rank the subjective
guantitative evaluation. For the former evaluation we asc opinion of the users based on tisystem Usability Scale
how the model fits some of the most important principles for(SUS)[3]. It is a simple, ten-item scale giving a global view
designing effective visual notations defined in [16]. Fitse of subjective assessments of usability. In our case, we use
principle of semiotic clarityis accomplished by the model, this text not only to asses the usability 6fO Diagrams
as there is only one graphical structure corresponding tbut also to compare these diagrams with the textual notation
each semantic concept and vice versa. Second, the principJS scores have a range of 0 to 100, where 0 corresponds
of perceptual discriminabilitys taken into account to differ- to the worst evaluation of usability and 100 corresponds to
entiate between refinements, having each kind of refinemernhe best one. We have obtained an average scoré.8sin

A =

Pays_Penalty Withdraws_Changes

IV. EVALUATION OF THE MODEL

P Correct_Software

iSEQ
\ \
Software provider Testing agenc:
Oa7 I—’I O - [; -

Software_Integration Test_Reports Test_Result
i AND L iOR
‘ ‘ Software provider Software provider
H a, | A | ~Tests_OK Oag Tests_ Ok oa10
Provider_Reports Client_Reports
Software_Revision Software_Delivery

Figure 11. Decomposition of clauseorrect Software

this scale for our model. This is a score that clearly shows The approach followed ii€-O Diagramsfor the specifi-

the user’s preference to use the visual model instead of theation of e-contracts is close related to the formal languag

textual notation. CL [18]. In this language a contract is also expressed as
All these tests can be accessed via the Moodle cdi@se a composition of obligations, permissions and prohibgion

O Diagrams”in http://moodle.retics.uclm.info/. Anyone can over actions, and the way of specifying reparations is the

access this course login as a guest. The tests are availatlsleme that in our visual model. The main difference v@ith

at theSocial Activitiesbox, through the preview option. O Diagramsis thatCL does not support the specification
of agents nor timing constraints natively, so they have to be
V. RELATED WORK encoded in the definition of the actions. Also,d there

. . Is no sequence operator to combine the different clauses,
To the best of our knowledge, there is not any other visual, the notion of sequence has to be expressed always

model specially created for the definition of e—c:ontracts.by means of specifying the application of a clause after

However, several works in the literature define a meta’performing a certain action (denoted BEC, wherea is

model for the specification of e-contracts whose purpose compound action and is a general contract clause), like

is the enactment or the enforcement of this e-contract, nrqnositional dynamic logic. Refer to [15] for a general
For instance, in [6] Chiu et al. present a meta-model fordescription of deontic logic.

e-contract templates written in UML, where a template

consists of a set of contract clauses of three differentstype 5r04ch for formal modeling of e-contracts, paying specia
obligations, permissions and prohibitions. These claases itantion to the modeling of time aspects. They distinguish

later mapped into event-condition-action (ECA) rules forpayeen three different kinds of time in e-contracts: alisol
contract enforcement purposes, but the templates do Ngfne rejative time and repetitive time. The two first kinds

include any kind of reparatio_n or recovery associatgd to the o supported bg-O Diagrams but repetitive time is not in-
clauses, and the way of specifying the different possil&@ re .| ged yet in our model. Nevertheless, with the combination

tionships between clauses is not clear. In [11] Krishna et alyt ihe gther two kinds of time and the repetition structure, w
propose another meta-model of e-contracts based on entityz gchieve some repetitive time behaviors in our model. In

relationghip diagrams that they use .to generate Wprkf|OWﬁ3] Lomuscio et al. present an approach to verify contract-
supporting e-contract enactment. This meta-model ingludegyjated service compositions. They use the orchestratio

clauses, activities, parties and the possibility of sp@o |3n9,age WS-BPEL to specify all the possible behaviors of

exceptional behavior, but this approach is not based on thg,cy service and the contractually correct behaviors.r Afte
deontic notions of obligation, permission and prohibition 4t they translate these specifications into timed aumma

and says nothing about including real-time aspects nativel supported by the MCMAS model checker to verify the

Another approach can be found in [20], where Rouachegheayiors automatically. In this work we have that the scope
et al. propose a contract layered model for modeling andyt the e-contracts is limited to web services compositions,
mo_n_ltorlng e-contra_cts. Thls_model consists of a_bus'nes§pecifying the e-contract corresponding to each one of the
entities layer, a business actions layer, and a business rulgeyices separately. The specification of real-time caires

layer. These three layers specify the parties_, the .actioni§ not allowed because they are not supported by MCMAS
and the clauses of the contract respectively, including the,q the deontic norms are restricted to only obligations.
conditions under which these clauses are executed. However

real-time restrictions are not included and the specificati VI. CONCLUSIONS ANDFUTURE WORK
of the clauses follows an operational approach, not a deonti In this paper we have present€dO Diagrams a new
approach. visual formalism for electronic contracts. Though we have

In [14] Marjanovic and Milosevic also defend a deontic

shown the applicability of such diagrams on a case study[7] H. Davulcu, M. Kifer, and I. V. Ramakrishnan. CTR-S: A
taken from SOA, their usefulness go beyond services. They
can be used for negotiation via email, contracting on the
Internet, performing an Electronic Data Interchange Agree
ment (EDI), just to mention a few. Indee@;O Diagrams
may also be used as an intermediate (formal) language for
other applications. We are currently working on their use

in the context of requirements engineering (to formalize g
requirements), product software families (as an extension
of feature diagrams), and as a visual representatio@(of
contracts.

We are also working on a formal semantics based on
automata, making it possible to formally analyzeO
Diagrams using for instance UPPAAL [12]. Besides the
application ofC-O Diagramsto the mentioned domains, we
intend to explore how we can automatically obtain diagrams12]
from a controlled (structured) English, by using for ingtan
the Grammatical Framework (GF) [19]. We also envisage
the possibility of specifying a different diagram for eaateo
of the parties involved in an e-contract instead of having a
global C-O Diagramwith multiple agents. This composi-
tional approach can be useful if we define a composition
operator, specifying when two of these n€xO Diagrams
can be composed and the result of the composition.

ACKNOWLEDGMENT

(8]

(10]

(11]

[13]

(14]

Partially supported by the Spanish government (cofi-
nanced by FEDER founds) with the project TIN2009-14312{15]

C02-02, the JCCLM regional project PEII09-0232-7745,

and the Nordunet3 project “COSoDIS”. The first author is
supported by the European Social Fund and the JCCLM. [16]

[1] A. Boulmakoul and M. Sall.
Technical Report HPL-2002-183, Hewlett-Packard,

(2]

(3]

(4]

(5]

(6]

REFERENCES

Integrated Contract Manage-
ment.
2002.

M. Bravetti and G. Zavattaro. Towards a unifying theooy f
choreography conformance and contract complian&go-

(17]

ceedings of the Sixth International Symposium on SoftwarélS]

Composition pages 34-50, 2007.

J. Brooke. SUS - A “quick and dirty” usability scale.
Usability Evaluation in Industrypages 189-194, 1996.

M. G. Buscemi and U. Montanari. Cc-Pi: A Constraint-Bése
Language for Contracts with Service Level AgreemeRi®-

ceedings of Second International Workshop on Formal Lan-

guages and Analysis of Contract-Oriented Softwarages
1-8, 2008.

S. Carpineti, G. Castagna, C. Laneve, and L. Padovani.
formal account of contracts for Web servic&oceedings of
Third International Workshop on Web Services and Formal
Methods pages 148-162, 2006.

D. Chiu, S. Cheung, and S. Till. A Three-Layer Architegtu
for E-Contract Enforcement in an E-Service Environment.
Proceedings of the 36th Hawaii International Conference on
System Sciences (HICSS-3pages 74-83, 2003.

(19]

[20]

A

(21]

(22]

Logic for Specifying Contracts in Semantic Web Services.
Proceedings of the Thirteenth international World Wide Web
conferencepages 144-153, 2004.

E. M. Haber, Y. E. loannidis, and M. Livny. Foundations of
Visual Metaphors for Schema Displajournal of Intelligent
Information Systems3(3—4):263—-298, 1994.

D. Harel. On Visual Formalisms.Communications of the
ACM, 31(5):514-530, 1988.

S. C. Kleene. Representation of events in nerve netsinitel
automata.Automata Studiegpages 3-41, 1956.

P.R. Krishna, K. Karlapalem, and A.R. Dani. From Coaotra
to E-Contracts: Modeling and Enactmemformation Tech-
nology and Managemen6(4):363-387, 2005.

K. G. Larsen, Z. Pettersson, and Y. Wang. UPPAAL in a
Nutshell. STTT: International Journal on Software Tools for
Technlogy Transferl(1-2):134-152, 1997.

A. Lomuscio, H. Qu, and M. Solanki. Towards verifying
contract regulated service compositidProceedings of IEEE
International Conference on Web Services (ICWS 2008)
pages 254-261, 2008.

O. Marjanovic and Z. Milosevic. Towards formal model-
ing of e-Contracts. Proceedings of 5th IEEE International
Enterprise Distributed Object Computing Conferenpages
59-68, 2001.

P. McNamara. Deontic Logic. IGabbay, D.M., Woods,
J., eds.: Handbook of the History of Logieolume 7, pages
197-289. North-Holland Publishing, 2006.

D. L. Moody. The “Physics” of Notations: Toward a Sci-
entific Basis for Constructing Visual Notations in Software
Engineering. IEEE Transactions on Software Engineering
35(6):756—779, 2009.

G.J. Pace and G. Schneider. Challenges in the spemificat
of full contracts.Proceedings of 7th International Conference
on integrated Formal Methodgages 292-306, 2009.

C. Prisacariu and G. Schneider. A formal language for
electronic contracts.Proceedings of 9th IFIP International
Conference on Formal Methods for Open Object-Based Dis-
tributed Systemspages 174-189, 2007.

A. Ranta. Gramatical FrameworkJournal of Functional
Programming 14(2):145-189, 2004.

M. Rouached, O. Perrin, and C. Godart. A Contract Lagere
Architecture for Regulating Cross-Organisational Busie
ProcessesProceedings of Third International Conference on
Business Process Managemepages 410-415, 2005.

A. van Lamsweerde, A. Dardenne, and S. Fickas. Goal-
directed requirements acquisitionSelected Papers of the
Sixth International Workshop on Software Specification and
Design. Science of Computer Programmirg(1-2):3-50,
1993.

G. H. V. Wright. Deontic logic: A personal overvievRatio
Juris, 12(1):26—38, 1999.

