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ABSTRACTA polygonal hybrid system (SPDIs) is a planar hybrid sys-tem, whose dynami
s is de�ned by 
onstant di�erential in-
lusions, for whi
h the rea
hability problem is de
idable.The de
idability result is based, among other things, onthe fa
t that a traje
tory 
annot enter and leave a givenregion through the same edge. SPDIs without su
h an as-sumption are 
alled Generalized SPDIs (GSPDIs). In thispaper we show that in general it is not possible to redu
eGSPDI rea
hability to SPDI rea
hability. Furthermore, weprovide a terminating algorithm implementing a semi-testfor GSPDI rea
hability, based on that for SPDIs.
Categories and Subject DescriptorsD.2.4 [Software℄: Software/Program Veri�
ation
General TermsVeri�
ation
KeywordsHybrid systems, veri�
ation, rea
hability, de
idability, GSPDI.
1. INTRODUCTIONSystems 
ombining dis
rete and 
ontinuous behaviors, asfor instan
e robots and 
hemi
al pro
esses, are 
alled hybridsystems. Though hybrid automata [1℄ have gained popular-ity as a spe
i�
ation formalism for hybrid systems, theiranalysis remains a big 
hallenge as most problems are un-de
idable. An interesting and still de
idable (w.r.t rea
h-ability) 
lass of hybrid systems is the so-
alled PolygonalHybrid System (SPDI for short, [5, 7℄) whi
h is a sub
lassof hybrid systems on the plane whose dynami
s is de�ned by
onstant di�erential in
lusions. SPDIs are a generalizationof PCDs (deterministi
 systems with Pie
e-wise ConstantDerivatives) for whi
h it has been shown that the rea
habil-ity problem is de
idable for the planar 
ase but unde
idablefor three and higher dimensions [2℄.
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Figure 1: Example of an SPDI.Informally, an SPDI 
onsists of a partition of the planeinto polygonal regions where in ea
h region the dynami
s isgiven by two ve
tors determining the possible dire
tions atraje
tory might take; a simple SPDI, and a typi
al traje
-tory segment, are depi
ted in Fig. 1. The 
onstru
tive prooffor de
iding rea
hability on SPDIs given in [5℄ relies, amongother things, on the fa
t that the SPDI has the goodnessproperty, i.e. the dynami
s of any region does not allow atraje
tory to traverse any edge of the polygon de�ning theregion in both dire
tions. We say that an SPDI without thegoodness assumption is a Generalized SPDI �or GSPDI forshort. The frontier between de
idable and unde
idable low-dimensional hybrid systems has been studied in [4, 9℄. Inthose papers, a wide are of 
lasses was established for whi
hthe de
idability/unde
idability issue is still open. To date,it is not known whether rea
hability for GPSDIs is de
idableor not.In this paper we show that there is no stru
ture-preservingredu
tion from GSPDI rea
hability to SPDI rea
hability.However, the SPDI algorithm reveals to be very useful togive an algorithm implementing a semi-test (that gives YES/don't know answers) for GSPDI rea
hability. We provesoundness and termination of the algorithm.The paper is organized as follows. In next se
tion we ex-plain informally the problems arising when relaxing good-ness while in Se
tion 3 we give some preliminaries on SPDIs.In Se
tion 4 we present GSPDIs, whereas Se
tion 5 is 
on-
erned with GSPDI rea
hability analysis. We 
on
lude inthe last se
tion.
2. ON GOODNESSOne of the key 
on
epts of SPDI rea
hability is that ofgoodness. In Fig. 2 we 
an see a good region (isolated fromthe rest of the SPDI), where the two ve
tors a and b de-termine the impossibility of a traje
tory to enter and leavethe region P through the same edge of the polygon delim-iting the region. On the other hand, the �gure on the right
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Figure 2: a) A good region. b) A bad region.shows a �bad� region: Both e2 and e5 
an be 
rossed in bothdire
tions by a traje
tory entering and leaving P .Why Goodness is Good? The algorithm presented in[5, 7℄ for de
iding rea
hability on SPDI heavily depends onthe pre-pro
essing of traje
tory segments to guarantee thatit is possible to list all the possible sets of signatures, i.e.,those sequen
es of edges of the SPDI traversed by all thepossible traje
tories between two points. This is of 
oursenot possible in general as there are in�nitely many su
htraje
tories. However, a qualitative analysis allows to provethat indeed there is a �nite number of abstra
t signatures(
alled types of signatures) preserving rea
hability.The above is a
hieved by performing the following steps.1) Simpli�
ation of traje
tory segments: straightening themand removing self-
rossings. Given an arbitrary traje
torysegment from one point to another, it is possible to geta pie
ewise 
onstant derivative traje
tory segment withoutself-
rossing. 2) Abstra
tion of traje
tory segments into sig-natures, 
onsidering the sequen
e of traversed edges. Thisresult is based on the Poin
aré map [8℄, that relates n-dim
ontinuous-time systems with (n−1)-dim dis
rete-time sys-tems. 3) Fa
torization of signatures in a 
onvenient way,having only sequen
es of edges and simple 
y
les. This fa
-torization allows to have a ni
e representation of signatures.4) Abstra
tion of fa
torized signatures into types of signa-tures, that are signatures without taking into a

ount thenumber of times ea
h simple 
y
le is iterated.Many of the lemmas for proving that the above providesa �nite number of types signatures 
riti
ally depend on thegoodness assumption, a�e
ting the 
onstru
tive proof givenfor de
iding rea
hability of SPDIs.Why Relaxing Goodness is not so Good? The mainquestion now is, how mu
h do we need to depend on thegoodness assumption to prove de
idability of rea
hability ofSPDIs? In other words, let us 
onsider SPDIs without thegoodness assumptions (GSPDIs). Is rea
hability still de
id-able? We have two alternatives: a) Redu
e GSPDI rea
ha-bility to SPDI rea
hability. This would imply to restate theproofs to make them independent of the goodness assump-tion. b) Provide a 
ompletely new de
idability proof forGSPDI. This will probably need to use di�erent te
hniquesand results than the ones used for SPDIs. The �rst alterna-tive above seems the most straightforward and easy to do.However, as we show in this paper it is not possible to redu
eGSPDI rea
hability to SPDI rea
hability with a stru
ture-preserving transformation (a more pre
ise de�nition of su
ha redu
tion will be given in Se
tion 5.1). This is done byproving that it is not possible, in general, to simplify 
ertaintraje
tories entering and leaving a given region through thesame edge, to traje
tories behaving as in SPDIs. One ofthe main problems when relaxing goodness is that a region
annot be bi-partitioned anymore into two semi-planes wereall the edges in one semi-plane 
an be traversed only in onedire
tion, w.r.t. the region, and all the edges in the other
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Figure 3: Ordering of edges on an SPDI.semi-plane 
an be traversed only in the other dire
tion. Asshown in Fig. 3 the goodness assumption determines a 
er-tain �
ontiguity� of entry-only edges (In) and exit-only edges(Out) belonging to two disjoint sub-regions. Some lemmasand proofs of soundness of the SPDI rea
hability algorithmdepend on this 
ontiguity. If we relax goodness, we shouldbe able to re-prove all su
h results without assuming the
ontiguity of entry-only and exit-only edges.This let us with the se
ond alternative. Unfortunately, todate there is no proof of de
idability (nor of unde
idability)to the rea
hability problem on GSPDIs. On the other hand,we will show that we 
an relax the goodness assumption asto give a terminating pro
edure for GPSDI rea
hability thatwhenever gives YES, the answer is 
orre
t, and otherwise theanswer is not known.
3. PRELIMINARIESThis se
tion is more te
hni
al, re
alling the main de�-nitions and 
on
epts needed to understand the rest of thepaper. For a more detailed presentation see [7℄.Let a = (a1, a2),x = (x1, x2) ∈ R

2 and α, β ∈ R. Theinner produ
t of two ve
tors a = (a1, a2) and x = (x1, x2) isde�ned as a · x = a1x1 + a2x2. We denote by x̂ the ve
tor
(x2,−x1) obtained from x by rotating 
lo
kwise by the angle
π/2. Noti
e that x · x̂ = 0.An angle ∠

b

a on the plane, de�ned by two non-zero ve
tors
a,b is the set of all positive linear 
ombinations x = α a +
β b, with α, β ≥ 0, and α + β > 0. We 
an always assumethat b is situated in the 
ounter-
lo
kwise dire
tion from a.Definition 1. A polygonal hybrid system (SPDI) is apair H = 〈P, φ〉, where P is a �nite partition of the plane(with ea
h P ∈ P being a 
onvex polygon), 
alled the regionsof the SPDI, and φ is a fun
tion whi
h asso
iates a pairof ve
tors to ea
h polygon: φ(P ) = (aP ,bP ). In an SPDIevery point on the plane has its dynami
s de�ned a

ordingto whi
h polygon it belongs to: if x ∈ P , then ẋ ∈ ∠

bP
aP

.Let E(P ) be the set of edges of P . We say that e ∈ E(P )is an entry-only of P if for all x ∈ e and for all c ∈ φ(P ),
x + cǫ ∈ P for some ǫ > 0. We say that e is an exit-only of
P if the same 
ondition holds for some ǫ < 0. We denote byIn(P ) ⊆ E(P ) the set of all entry-only edges of P and byOut(P ) ⊆ E(P ) the set of all exit-only edges of P .Assumption 1. All the edges in E(P ) are either entry-only or exit-only, that is, E(P ) = In(P ) ∪Out(P ). We saythen that all the regions in an SPDI are good or that theyhave the goodness property.In SPDIs, sliding on an edge is not allowed. That meansthat a traje
tory segment rea
hing an edge being exit-onlyto two adja
ent regions will blo
k.



Example 1. In Fig. 2-(a), region P (with φ(P ) = (a,b))is good, sin
e all are entry-only or exit-only edges. Fig. 2-(b) shows a region that is not good: edges e2 and e5 are notin In(P ) ∪Out(P ).A traje
tory segment of an SPDI is a 
ontinuous fun
tion
ξ : [0, T ] → R

2 whi
h is smooth everywhere ex
ept in adis
rete set of points, and su
h that for all t ∈ [0, T ], if
ξ(t) ∈ P and ξ̇(t) is de�ned then ξ̇(t) ∈ φ(P ). The signature,denoted Sig(ξ), is the ordered sequen
e of edges traversed bythe traje
tory segment, that is, e1, e2, . . ., where ξ(ti) ∈ eiand ti < ti+1. If T = ∞, a traje
tory segment is 
alled atraje
tory.Example 2. The SPDI illustrated in Fig. 1 
ontains 8regions R1, . . . , R8. To ea
h region Ri we asso
iate a pair ofve
tors (ai,bi) meaning that ẋ belongs to their positive hull:
a1 = b1 = (1, 5), a2 = b2 = (−1, 1

2
), a3 = (−1, 11

60
) and

b3 = (−1,− 1

4
), a4 = b4 = (−1,−1), a5 = b5 = (0,−1),

a6 = b6 = (1,−1), a7 = b7 = (1, 0), a8 = b8 = (1, 1).
3.1 Successors and predecessorsGiven an SPDI, we �x a one-dimensional 
oordinate sys-tem on ea
h edge to represent points lying on edges. Fornotational 
onvenien
e, we will use e to denote both theedge and its one-dimensional representation. A

ordingly,we write x ∈ e or x ∈ e, to mean �point x in edge e with
oordinate x in the one-dimensional 
oordinate system of e�.The same 
onvention is applied to sets of points of e repre-sented as intervals (e.g., x ∈ I or x ∈ I , where I ⊆ e) andto traje
tories (e.g., �ξ starting in x� or �ξ starting in x�).Now, let P ∈ P, e ∈ In(P ) and e′ ∈ Out(P ). For I ⊆ e,
Succee′(I) is the set of all points in e′ rea
hable from somepoint in I by a traje
tory segment ξ : [0, t] → R

2 in P(i.e., ξ(0) ∈ I ∧ ξ(t) ∈ e′ ∧ Sig(ξ) = ee′). Given I = [l, u],
Succee′(I) = F (I ∩See′ )∩ Jee′ , where See′ ∈ e and Jee′ ∈ e′are intervals1, F ([l, u]) = 〈fl(l), fu(u)〉2 and fl and fu area�ne fun
tions (a fun
tion f : R → R is a�ne i� f(x) =
ax + b with a > 0).
3.2 Qualitative analysis of simple edge-cyclesLet σ = e1 · · · eke1 be a simple edge-
y
le, i.e., ei 6= ejfor all 1 ≤ i 6= j ≤ k. Let Succσ(I) = F (I ∩ Sσ) ∩ Jσ with
F = 〈fl, fu〉.Given a simple 
y
le σ, let l∗ and u∗ be the �x-points3 of
fl and fu, respe
tively, and 〈L, U〉 = Sσ ∩ Jσ. Any simple
y
le 
an be of one of the following kinds. STAY: The 
y
leis not abandoned neither by the leftmost nor the rightmosttraje
tory, that is, L ≤ l∗ ≤ u∗ ≤ U . DIE: The rightmosttraje
tory exits the 
y
le through the left (
onsequently theleftmost one also exits) or the leftmost traje
tory exits the
y
le through the right (
onsequently the rightmost one alsoexits), that is, (u∗ < L) ∨ (l∗ > U). EXIT-BOTH: Theleftmost traje
tory exits the 
y
le through the left and therightmost one through the right, that is, (l∗ < L) ∧ (u∗ >1The intervals See′ and Jee′ intuitively `trun
ate' the domainand 
o-doamin of the su

essor fun
tion. See [7℄ for a moredetailed presentation.2〈·, ·〉 denotes an interval. For notational 
onvenien
e, wedo not make expli
it whether intervals are open, 
losed, left-open or right-open, unless required for 
omprehension.3The �x-point x∗ is 
omputed by solving a linear equation
f(x∗) = x∗, whi
h 
an be �nite or in�nite.

U). EXIT-LEFT: The leftmost traje
tory exits the 
y
le(through the left) but the rightmost one stays inside, that is,
l∗ < L ≤ u∗ ≤ U . EXIT-RIGHT: The rightmost traje
toryexits the 
y
le (through the right) but the leftmost one staysinside, that is, L ≤ l∗ ≤ U < u∗.The 
lassi�
ation above provides useful information aboutthe qualitative behavior of traje
tories. Any traje
tory thatenters a DIE 
y
le will eventually quit it after a �nite num-ber of turns. If the 
y
le is STAY, all traje
tories that hap-pen to enter it will keep turning inside it forever. In all other
ases, some traje
tories will turn for a while and then exit,and others will 
ontinue turning forever. This information is
ru
ial for solving the rea
hability problem for SPDIs, andprovides a means to a

elerate the analysis.We re
all now the representation theorem for SPDIs thatallows to fa
torize the signatures (step 3 in Se
tion 2) ina 
onvenient way. The theorem not only guarantees theexisten
e of the above representation for SPDIs but alsoprovides a 
onstru
tive way of doing so [7℄.Theorem 1. Given an SPDI, let σ = e1 . . . ep be an edgesignature, then it 
an always be written as σA = r1s

k1

1 . . . rn

skn
n rn+1, where for any 1 ≤ i ≤ n + 1, ri is a sequen
e ofpairwise di�erent edges and for all 1 ≤ i ≤ n, si is a simple
y
le (i.e., without repetition of edges).This representation of signatures is the base to obtaintypes of signatures (step 4 in Se
tion 2) with the followinggood propertiesLemma 2. Given an SPDI, let σ = e0 . . . ep be a feasiblesignature, then its type, type(σ) = r1, s1, . . . , rn, sn, rn+1satis�es the following properties:

P1 For every 1 ≤ i 6= j ≤ n + 1, ri and rj are disjoint;
P2 For every 1 ≤ i 6= j ≤ n, si and sj are di�erent.The above lemma guarantees that there are only �nitelymany di�erent types of signatures, ensuring termination ofthe SPDI rea
hability algorithm.
4. GSPDIThe goodness restri
tion (Assumption 1) was originallyintrodu
ed to simplify treatment of traje
tories to guaran-tee, among other things, that ea
h region 
an be partitionedinto entry-only and exit-only edges in an ordered way, a fa
tused in the proof of de
idability of the rea
hability problem.Without goodness there are edges that are neither of entry-only nor of exit-only as shown in Fig. 2. This naturallyleads to the following de�nition.Definition 2. An edge e ∈ P is an inout edge of P if eis neither an entry-only nor an exit-only edge of P .Note that formally speaking the de�nition of SPDI doesnot ex
lude inouts edges, however, to make a 
lear separa-tion between SPDIs with the goodness assumption and thosewithout su
h an assumption, we 
all the latter generalizedSPDI (GSPDI). Thus, in GSPDIs there are three kinds ofedges: inouts, entry-only and exit-only edges.Self-
rossing of traje
tory segments of SPDIs 
an be elim-inated whi
h allow us to 
onsider only non-
rossing traje
-tory (segments). The proof given in [7℄ 
an be extended
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Figure 4: (a) Proper inout edge; (b) Sliding edge.to deal with the 
ase when the self-
rossing traje
tories in-volve inout edges, so the result still holds for GSPDIs. Thusin what follows we will 
onsider only traje
tory segmentswithout self-
rossings.Noti
e that on GSPDIs a traje
tory 
an �interse
t� anedge at an in�nite number of points be
ause it 
an slide atit. Thus, a tra
e is not anymore a sequen
e of points butrather a sequen
e of intervals.Definition 3. The tra
e of a traje
tory ξ is the sequen
e
trace(ξ) = I0I1 . . . of the interse
tion intervals of ξ with theset of traversed edges.A point interval I = [x,x] will be written as x wheneverno 
onfusion might arise.Definition 4. An edge signature (or simply a signature)of a GSPDI is a sequen
e of edges. The edge signatureof a traje
tory ξ, Sig(ξ), is the ordered sequen
e of tra-versed edges by the traje
tory, that is, Sig(ξ) = e0e1 . . ., with
trace(ξ) = I0I1 . . . and Ii ⊆ ei. The region signature of ξis the sequen
e RSig(ξ) = P0P1 . . . of traversed regions, thatis, ei ∈ In(Pi).Noti
e that in many 
ases the intervals of a tra
e are infa
t points. We say that a traje
tory with edge signature
Sig(ξ) = e0e1 . . . ei . . . and tra
e trace(ξ) = I0I1 . . . Ii . . .interval-
rosses edge ei if Ii is not a point.Given a traje
tory segment, we will make the di�eren
ebetween proper inout edges and sliding edges.Definition 5. Let ξ be a traje
tory segment from point
x0 ∈ e0 to xf ∈ ef , with edge signature Sig(ξ) = e0 . . . ei . . . en,and ei ∈ E(P ) be an inout edge of P . We say that ei is asliding edge of P for ξ if ξ interval-
rosses ei, otherwise e issaid to be a proper inout edge of P for ξ.We say that a traje
tory segment ξ slides on an edge e if
e is a sliding edge of P for ξ and ξ is said to be a slidingtraje
tory if there is at least one sliding edge e ∈ Sig(ξ).Example 3. In Fig. 4-(a), e is a proper inout edge. Edge
e on Fig. 4-(b) is a sliding edge.
5. REACHABILITY ANALYSIS OF GSPDIIn order to get a sound de
ision algorithm, based on theSPDI algorithm, we would need to prove the following the-oreti
al results: (1) Show that it is enough to 
onsider tra-je
tories without self-
rossing (argument of its validity pre-sented in the previous se
tion); (2) Show that it is possible toeliminate all inout edges, preserving rea
hability; (3) Showthat it is possible to eliminate all sliding edges, preserv-ing rea
hability (Se
tion 5.1); (4) Re-state and prove someresults on SPDI rea
hability useful to GPSDI rea
habilityanalysis (Se
tion 5.2); (5) Prove soundness and termination(Se
tion 5.3).

b

c

a

dFigure 5: Counter-example for Proposition 1.However, as we will see in Se
tion 5.1 step (2) is not valid,and we thus get a semi-test algorithm for GSPDI rea
habil-ity analysis instead, by proving the rest of the above steps.Due to la
k of spa
e we do not provide full proofs here;see [10℄ for more details.
5.1 Simplification of Trajectory SegmentsWe �rst start by showing that the good properties of therepresentation theorem for SPDIs are not valid any longerfor GSPDIs.Proposition 1. Property P2 of the representation the-orem for SPDIs (Lemma 2) does not hold in general forGSPDIs.Proof Sket
h: Let ξ be a traje
tory with signature Sig(ξ) =
σ = e0 . . . ei . . . en . . . of a given GSPDI. The propositionstates that it is not possible in general to write σ in theform σA = r1s

k1

1 . . . rnskn
n rn+1 with the properties statedin Lemma 2. The proof is done by providing a 
ounter-example. A typi
al 
ounter-example should allow to obtaina signature 
onsisting of a 
lo
kwise spiral followed by a
ounter-
lo
kwise spiral (or vi
e-versa) and then ba
k to the�rst spiral. In su
h a 
ase it is possible to �nd two simple
y
les whi
h are repeated in the type of signature. Let us
onsider the GSPDI of Fig. 5. To keep it simple we do notwrite down the dynami
s of the regions and we assume thatthey are as to allow the segments of traje
tories shown inthe pi
ture to be well-de�ned. In su
h a GSPDI it is possibleto obtain the following type of signature: r1s1r2s2r3s3 . . .,where s1 = (abcd), s2 = (dcba), and s3 = (abcd). Sin
e

s1 = s3, then property P2 of Lemma 2 is not satis�ed.The following lemma presents some typi
al 
ases where itis possible to eliminate proper inout edges.Lemma 3. Let ξ be a traje
tory segment with initial point
x0 ∈ e0 and �nal point xf ∈ ef , with edge signature Sig(ξ) =
e0 . . . ei . . . en. If ei is a proper inout edge then in some
ases there exists a traje
tory segment ξ′ from x0 to xf thattraverses ei in at most one sense (that is, ei is either anentry-only or an exit-only, but no both).Proof Sket
h. In Fig. 6-(a) we illustrate a typi
al 
asewhere edge ei is a proper inout edge. After a straightfor-ward algebrai
 ve
tor manipulation, on the same lines ofelimination of self-
rossings, the traje
tory segment shownin Fig. 6-(a') is obtained.Note that the above does not establish 
ompleteness of aredu
tion from GSPDIs into SPDIs rea
hability sin
e thereare 
ases where the above is not possible, as shown in thefollowing proposition.Proposition 2. Given a GSPDI, assume there exists atraje
tory segment from points x0 ∈ e0 to xf ∈ ef , traversing
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Figure 7: A non-eliminating inout edge.inout edges in both dire
tions. Then it is, in general, notpossible to �nd a traje
tory segment whose edge signature
ontains no proper inout edges (traversed in both dire
tions),between them.Proof Sket
h: The GSPDI of Fig. 7 presents a typi-
al example of an inout edge (e2) whi
h 
annot be dire
tlyeliminated as to preserve that xf is rea
hable from x0. Tokeep the explanation simple we do not present here a formalGSPDI as 
ounter-example. The example, however, shedssome light on the kind of GSPDI regions serving as 
ounter-examples. It su�
es to take any traje
tory exiting a regionthrough an edge (e2 in the �gure) and entering to the regionagain through the same edge, with a dynami
s forbiddingthe sliding from the exit point (x1) to the entry point (x2).The traje
tory must not have self-
rossings.The above result is based on the fa
t that the underlying
onvex polygons of the GSPDI as well as its dynami
s is�xed; the only restri
tion is the prohibition of traje
toriesentering and exiting a region through the same edge, thoughthe dynami
s still would allow to do so. Let G be a GSPDI,and S a GSPDI obtained from G with the above restri
-tion, then we say that S preserves the underlying stru
tureof G, and that S is an underlying SPDI of G (noti
e that ingeneral there are many underlying SPDIs for ea
h GSPDI).We say that there is a stru
ture-preserving redu
tion fromthe GSPDI rea
hability problem to the SPDI rea
habilityproblem if there is a transformation from any GSPDI in-stan
e G into an underlying SPDI instan
e S of G, su
h thatRea
h(G,x0,xf ) = Yes i� ReachSPDI(S ,x0,xf ) = Yes.From the above proposition we 
on
lude that it is notpossible to redu
e GSPDI rea
hability to SPDI rea
habilitysin
e we may miss some of the positive answers. We havethen the following result.Proposition 3. There is no stru
ture-preserving redu
-tion from the GSPDI rea
hability problem to the SPDI rea
h-ability problem.In what follows we 
on
entrate on sliding edges; we show�rst that we 
an eliminate sliding edges.Lemma 4. Let ξ be a traje
tory segment from x0 ∈ e0 to
xf ∈ ef with edge signature Sig(ξ) = e0 . . . ei . . . ef . If ei isa sliding edge for ξ then there exists a traje
tory segment ξ′from x0 to xf that does not slide on edge ei.
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Figure 8: Sliding 
ases.Proof Sket
h. Sliding edges 
an arise in four di�erent
ases (plus the symmetri
 
ases); they are shown in Fig. 8-(a) to (d). The 
orresponding primed �gures (Fig. 8-(a') to(d')) show the transformation done in order to avoid slidingon edge e. We do not give a formal proof of 
ompletenessof the result here. Noti
e that indeed the above transforma-tion is always possible sin
e in all the 
ases the new obtainedsegment of traje
tory 
an be expressed as a positive linear
ombination of two suitable existing segments of traje
tory.Su
h two segments are the sliding segment, and another seg-ment of traje
tory with starting point at the beginning orthe end of the sliding segment.As a 
onsequen
e we have the following result, showingthe existen
e of a non-sliding traje
tory.Proposition 4. If there exists a sliding traje
tory seg-ment from points x0 ∈ e0 to xf ∈ ef then there alwaysexists a non-sliding traje
tory segment between them.Proof. By indu
tion on the number n of sliding edgesof the signature of the traje
tory segment using Lemma 4 inthe indu
tion step.Sliding is not easy to treat in general sin
e an edge al-ways belongs to two di�erent regions with di�erent dynam-i
s. Thus a traje
tory may be �allowed� to slide by one ofthe dynami
s but not by the other. For our purposes we as-sume that at an inout edge a traje
tory 
an slide if at leastone of the dynami
s allows so. This assumption does nota�e
t the rea
hability analysis.
5.2 SPDI Results used in GSPDI AnalysisWe will see in next subse
tion that the semi-test algo-rithm for rea
hability analysis of GSPDIs depends on thegeneration of all the possible underlying SPDIs obtained af-ter �xing the inout edges as entry-only or exit-only edges.



In order to guarantee that we 
an still apply the rea
habilityalgorithm for SPDIs, we need to: (1) Rede�ne the edge-to-edge su

essor operator, Succ, to be able to deal with slidingedges; (2) �Topologi
ally� rephrase and prove the results of[7℄ that use the 
ontiguity between entry-only and exit-onlyedges in their proofs; (3) The proofs of soundness of theExit-LEFT and Exit-STAY algorithms also rely on the 
on-tiguity hypothesis, and need thus to be re-proved (see [10℄).Con
erning the �rst point above, note that it is 
onvenientto de�ne a (trivial) su

essor Succe where e is a single edge.The only way to do it preserving the semi-group propertyfor SPDIs is to put Succe(I) = I . Noti
e that for GSPDIs,however, we add the following 
ases in 
ase e is an inoutedge, with I = 〈l, u〉, and given 〈L, U〉 = Se∩Je: Succe(I) =
〈L, u〉, or Succe(I) = 〈l, U〉, depending on whi
h dire
tion eallows the sliding.
5.3 Reachability AlgorithmGiven a GSPDI H, we denote by Hred = {H1, . . . , Hn}the set of all the underlying SPDIs obtained after �xing allthe inout edges of H as entry-only or exit-only, 
onsideringall the possible permutations.Let Rea
h(H, x0,xf ) be the rea
hability algorithm for aGSPDI H. It 
onsists of the following steps:1. Dete
t all the inout edges;2. Generate the set of SPDIs Hred = {H1, . . . , Hn};3. Apply the rea
hability algorithm for SPDIs to ea
h Hi(1 ≤ i ≤ n), ReachSPDI(Hi, x0,xf ).4. If there exists at least one SPDI Hi ∈ Hred su
h that

ReachSPDI(Hi,x0, xf ) = Yes thenRea
h(H,x0,xf ) =
Yes, otherwise we do not know.We have then the following result about termination ofGSPDI rea
hability.Lemma 5. Rea
h(H,x0,xf ) always terminates.Proof. The result follows from the termination of steps1 and 2 of the above algorithm (based on a �niteness argu-ment), as well as from that of ReachSPDI(Hi,x0,xf ) (forall Hi ∈ Hred, 1 ≤ i ≤ n) [5, 7℄.We �nish this se
tion with the main result of our paper,whi
h follows from all the previous results.Theorem 6. Given a GSPDI H, Rea
h(H, x0,xf ) =

Yes if ReachSPDI(Hi,x0,xf ) = Yes for some Hi ∈ Hred.On the other hand, Rea
h(H,x0,xf ) is in
on
lusive if forall Hi ∈ Hred, ReachSPDI(Hi,x0,xf ) = No.Proof. Termination is guaranteed by Lemma 5. Sound-ness follows from soundness of the algorithm for SPDIs [5,7℄, and from that of the steps des
ribed in Se
tion 5.2. Thatrea
hability is in
on
lusive wheneverReachSPDI(Hi,x0,xf )
= No for all Hi ∈ Hred, follows from Proposition 2.
6. FINAL DISCUSSIONIn this paper we presented a terminating algorithm im-plementing a semi-test for rea
hability analysis of GSPDIs,based on the de
ision pro
edure for SPDIs, and proved itssoundness. We �rst showed that there is no stru
ture-preservingredu
tion from GSPDI rea
hability to SPDI rea
hability by

showing that for some traje
tories traversing an inout edgein both dire
tions there is no traje
tory traversing the edgeonly in one dire
tion. Sin
e those traje
tories are, however,obtained only on very spe
i�
 
ases (Proposition 2), we ar-gue that we miss indeed few positive answers. This wouldneed to be pra
ti
ally 
orroborated by implementing the al-gorithm, whi
h remain a future work. Note that the mostdi�
ult part is already implemented in the tool SPeeDI [3℄and we would only need to implement steps 1 and 2 of theGSPDI algorithm.Complexity is another issue. In the worst 
ase it is 
learthat the algorithm introdu
es an exponential blow-up as ithas to generate all possible underlying SPDIs after �xing in-out edges as entry-only or exit-only edges. Some qualitativeanalysis may help here, to guide the rea
hability analysis asto eliminate beforehand the analysis of some of the types ofsignatures. This might be done by 
omputing some obje
tsof GSPDI's phase portrait as previously done for SPDIs [6℄.We believe this paper positively 
ontributes to the analy-sis of low-dimensional hybrid systems, given that the GSPDI
lass lies on the frontier of de
idable/unde
idable hybrid sys-tems. Moreover, GSPDIs may be used to approximate non-linear planar di�erential equations, for whi
h exa
t solutionsare not easy to obtain.
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