Reachability Analysis of Generalized Polygonal Hybrid
Systems

Gerardo Schneider
Department of Informatics
University of Oslo

gerardo@ifi.uio.no

ABSTRACT

A polygonal hybrid system (SPDIs) is a planar hybrid sys-
tem, whose dynamics is defined by constant differential in-
clusions, for which the reachability problem is decidable.
The decidability result is based, among other things, on
the fact that a trajectory cannot enter and leave a given
region through the same edge. SPDIs without such an as-
sumption are called Generalized SPDIs (GSPDIs). In this
paper we show that in general it is not possible to reduce
GSPDI reachability to SPDI reachability. Furthermore, we
provide a terminating algorithm implementing a semi-test
for GSPDI reachability, based on that for SPDIs.

Categories and Subject Descriptors
D.2.4 [Software|: Software/Program Verification

General Terms

Verification

Keywords

Hybrid systems, verification, reachability, decidability, GSPDI.

1. INTRODUCTION

Systems combining discrete and continuous behaviors, as
for instance robots and chemical processes, are called hybrid
systems. Though hybrid automata [I] have gained popular-
ity as a specification formalism for hybrid systems, their
analysis remains a big challenge as most problems are un-
decidable. An interesting and still decidable (w.r.t reach-
ability) class of hybrid systems is the so-called Polygonal
Hybrid System (SPDI for short, B, [7]) which is a subclass
of hybrid systems on the plane whose dynamics is defined by
constant differential inclusions. SPDIs are a generalization
of PCDs (deterministic systems with Piece-wise Constant
Derivatives) for which it has been shown that the reachabil-
ity problem is decidable for the planar case but undecidable
for three and higher dimensions [Z].

Permission to make digital or hard copies of all or part of tiork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyooiherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

SAC’08 March 16-20, 2008, Fortaleza, Ceara, Brazil

Copyright 2008 ACM 978-1-59593-753-7/08/0003 ...$5.00.

€3 e:
Ry 3 2

pe > &R2
4 ZbQ Ny e
Ry
W<
Ry .

//R8

W

€5

AN
R

e
) i

€6 er

Figure 1: Example of an SPDI.

Informally, an SPDI consists of a partition of the plane
into polygonal regions where in each region the dynamics is
given by two vectors determining the possible directions a
trajectory might take; a simple SPDI, and a typical trajec-
tory segment, are depicted in Fig. [The constructive proof
for deciding reachability on SPDIs given in [5] relies, among
other things, on the fact that the SPDI has the goodness
property, i.e. the dynamics of any region does not allow a
trajectory to traverse any edge of the polygon defining the
region in both directions. We say that an SPDI without the
goodness assumption is a Generalized SPDI or GSPDI for
short. The frontier between decidable and undecidable low-
dimensional hybrid systems has been studied in @ B]. In
those papers, a wide are of classes was established for which
the decidability /undecidability issue is still open. To date,
it is not known whether reachability for GPSDIs is decidable
or not.

In this paper we show that there is no structure-preserving
reduction from GSPDI reachability to SPDI reachability.
However, the SPDI algorithm reveals to be very useful to
give an algorithm implementing a semi-test (that gives YES/
don’t know answers) for GSPDI reachability. We prove
soundness and termination of the algorithm.

The paper is organized as follows. In next section we ex-
plain informally the problems arising when relaxing good-
ness while in Section Blwe give some preliminaries on SPDIs.
In Section Bl we present GSPDIs, whereas Section Bl is con-
cerned with GSPDI reachability analysis. We conclude in
the last section.

2. ON GOODNESS

One of the key concepts of SPDI reachability is that of
goodness. In Fig. Bl we can see a good region (isolated from
the rest of the SPDI), where the two vectors a and b de-
termine the impossibility of a trajectory to enter and leave
the region P through the same edge of the polygon delim-
iting the region. On the other hand, the figure on the right

http://heim.ifi.uio.no/~gerardo

es P €3

Figure 2: a) A good region. b) A bad region.

shows a “bad” region: Both ez and es5 can be crossed in both
directions by a trajectory entering and leaving P.

Why Goodness is Good? The algorithm presented in
[5l [for deciding reachability on SPDI heavily depends on
the pre-processing of trajectory segments to guarantee that
it is possible to list all the possible sets of signatures, i.e.,
those sequences of edges of the SPDI traversed by all the
possible trajectories between two points. This is of course
not possible in general as there are infinitely many such
trajectories. However, a qualitative analysis allows to prove
that indeed there is a finite number of abstract signatures
(called types of signatures) preserving reachability.

The above is achieved by performing the following steps.
1) Simplification of trajectory segments: straightening them
and removing self-crossings. Given an arbitrary trajectory
segment from one point to another, it is possible to get
a piecewise constant derivative trajectory segment without
self-crossing. 2) Abstraction of trajectory segments into sig-
natures, considering the sequence of traversed edges. This
result is based on the Poincaré map [8], that relates n-dim
continuous-time systems with (n — 1)-dim discrete-time sys-
tems. 3) Factorization of signatures in a convenient way,
having only sequences of edges and simple cycles. This fac-
torization allows to have a nice representation of signatures.
4) Abstraction of factorized signatures into types of signa-
tures, that are signatures without taking into account the
number of times each simple cycle is iterated.

Many of the lemmas for proving that the above provides
a finite number of types signatures critically depend on the
goodness assumption, affecting the constructive proof given
for deciding reachability of SPDIs.

Why Relaxing Goodness is not so Good? The main
question now is, how much do we need to depend on the
goodness assumption to prove decidability of reachability of
SPDIs? In other words, let us consider SPDIs without the
goodness assumptions (GSPDIs). Is reachability still decid-
able? We have two alternatives: a) Reduce GSPDI reacha-
bility to SPDI reachability. This would imply to restate the
proofs to make them independent of the goodness assump-
tion. b) Provide a completely new decidability proof for
GSPDI. This will probably need to use different techniques
and results than the ones used for SPDIs. The first alterna-
tive above seems the most straightforward and easy to do.
However, as we show in this paper it is not possible to reduce
GSPDI reachability to SPDI reachability with a structure-
preserving transformation (a more precise definition of such
a reduction will be given in Section Bl). This is done by
proving that it is not possible, in general, to simplify certain
trajectories entering and leaving a given region through the
same edge, to trajectories behaving as in SPDIs. One of
the main problems when relaxing goodness is that a region
cannot be bi-partitioned anymore into two semi-planes were
all the edges in one semi-plane can be traversed only in one
direction, w.r.t. the region, and all the edges in the other

Figure 3: Ordering of edges on an SPDI.

semi-plane can be traversed only in the other direction. As
shown in Fig. Bl the goodness assumption determines a cer-
tain “contiguity” of entry-only edges (In) and ezit-only edges
(Out) belonging to two disjoint sub-regions. Some lemmas
and proofs of soundness of the SPDI reachability algorithm
depend on this contiguity. If we relax goodness, we should
be able to re-prove all such results without assuming the
contiguity of entry-only and exit-only edges.

This let us with the second alternative. Unfortunately, to
date there is no proof of decidability (nor of undecidability)
to the reachability problem on GSPDIs. On the other hand,
we will show that we can relax the goodness assumption as
to give a terminating procedure for GPSDI reachability that
whenever gives YES, the answer is correct, and otherwise the
answer is not known.

3. PRELIMINARIES

This section is more technical, recalling the main defi-
nitions and concepts needed to understand the rest of the
paper. For a more detailed presentation see |-

Let a = (a1,a2),x = (z1,72) € R? and o, 8 € R. The
inner product of two vectors a = (a1, a2) and x = (z1,x2) is
defined as a - x = a1x1 + azx2. We denote by %X the vector
(z2, —x1) obtained from x by rotating clockwise by the angle
7 /2. Notice that x - % = 0.

An angle /2 on the plane, defined by two non-zero vectors
a, b is the set of all positive linear combinations x = o a +
B b, with o, 8 > 0, and a + 8 > 0. We can always assume
that b is situated in the counter-clockwise direction from a.

DEFINITION 1. A polygonal hybrid system (SPDI) is a
pair H = (P, ¢), where P is a finite partition of the plane
(with each P € P being a convex polygon), called the regions
of the SPDI, and ¢ is a function which associates a pair
of vectors to each polygon: ¢(P) = (ap,bp). In an SPDI
every point on the plane has its dynamics defined according
to which polygon it belongs to: if x € P, then x € 425.

Let E(P) be the set of edges of P. We say that e € E(P)
is an entry-only of P if for all x € e and for all ¢ € ¢(P),
X + ce € P for some € > 0. We say that e is an ezit-only of
P if the same condition holds for some ¢ < 0. We denote by
In(P) C E(P) the set of all entry-only edges of P and by
Out(P) C E(P) the set of all exit-only edges of P.

AssumMpPTION 1. All the edges in E(P) are either entry-
only or ezit-only, that is, E(P) = In(P) U Out(P). We say
then that all the regions in an SPDI are good or that they
have the goodness property.

In SPDIs, sliding on an edge is not allowed. That means
that a trajectory segment reaching an edge being exit-only
to two adjacent regions will block.

ExampLE 1. In Fig.B&(a), region P (with ¢(P) = (a,b))
is good, since all are entry-only or exit-only edges. Fig. &
(b) shows a region that is not good: edges ex and es are not
in In(P) U Out(P). |

A trajectory segment of an SPDI is a continuous function
€ :[0,T] — R? which is smooth everywhere except in a
discrete set of points, and such that for all ¢ € [0,7], if
£(t) € Pand £(t) is defined then £(t) € ¢(P). The signature,
denoted Sig(£), is the ordered sequence of edges traversed by
the trajectory segment, that is, e1,es,..., where £(t;) € e;
and t; < tig1. If T = oo, a trajectory segment is called a
trajectory.

ExaAMPLE 2. The SPDI illustrated in Fig. 0 contains 8
regions Ri,..., Rg. To each region R; we associate a pair of
vectors (a;,b;) meaning that X belongs to their positive hull:
a; = by = (1,5), a; = by = (—1,%), az = (—1,%) and
b3 = (—1,—%), as = b4 = (—1,—1), as — b5 = (0,—1),
a(;:b(;:(l,—l), a7:b7:(1,()), agzbgz(l,l). |

3.1 Successors and predecessors

Given an SPDI, we fix a one-dimensional coordinate sys-
tem on each edge to represent points lying on edges. For
notational convenience, we will use e to denote both the
edge and its one-dimensional representation. Accordingly,
we write X € e or x € e, to mean “point x in edge e with
coordinate z in the one-dimensional coordinate system of e”.
The same convention is applied to sets of points of e repre-
sented as intervals (e.g., x € I or x € I, where I C ¢e) and
to trajectories (e.g., “£ starting in 2”7 or “£ starting in x7).

Now, let P € P, e € In(P) and ¢’ € Out(P). For I C e,
Succ..(I) is the set of all points in €’ reachable from some
point in I by a trajectory segment ¢ : [0,¢] — R? in P
(ie., £(0) € T NE(L) € € ASig(é) = ee’). Given I = [l,u],
Succeer (I) = F(IN Seer) N Jeer, where S.or € e and J.or € €
are intervaldl, F([l,u]) = (fi(1), fu(u)l and f; and f, are
affine functions (a function f : R — R is affine iff f(z) =
ax + b with a > 0).

3.2 Qualitative analysis of simple edge-cycles

Let 0 = e1---erer be a simple edge-cycle, i.e., e; # e;
for all 1 <i# j < k. Let Succo(I) = F(I N Ss) N Jy with
E=(fi; fu)-

Given a simple cycle o, let [* and u* be the fix-pointd] of
fi and fu, respectively, and (L,U) = S, N J,. Any simple
cycle can be of one of the following kinds. STAY: The cycle
is not abandoned neither by the leftmost nor the rightmost
trajectory, that is, L < [* < u* < U. DIE: The rightmost
trajectory exits the cycle through the left (consequently the
leftmost one also exits) or the leftmost trajectory exits the
cycle through the right (consequently the rightmost one also
exits), that is, (v* < L)V (I* > U). EXIT-BOTH: The
leftmost trajectory exits the cycle through the left and the
rightmost one through the right, that is, (I* < L) A (u* >

'The intervals S../ and J.., intuitively ‘truncate’ the domain
and co-doamin of the successor function. See || for a more
detailed presentation.

2(.,-) denotes an interval. For notational convenience, we
do not make explicit whether intervals are open, closed, left-
open or right-open, unless required for comprehension.
The fix-point z is computed by solving a linear equation
f(z*) = 2*, which can be finite or infinite.

U). EXIT-LEFT: The leftmost trajectory exits the cycle
(through the left) but the rightmost one stays inside, that is,
I" < L <u" <U. EXIT-RIGHT: The rightmost trajectory
exits the cycle (through the right) but the leftmost one stays
inside, that is, L < " < U < u”.

The classification above provides useful information about
the qualitative behavior of trajectories. Any trajectory that
enters a DIE cycle will eventually quit it after a finite num-
ber of turns. If the cycle is STAY, all trajectories that hap-
pen to enter it will keep turning inside it forever. In all other
cases, some trajectories will turn for a while and then exit,
and others will continue turning forever. This information is
crucial for solving the reachability problem for SPDIs, and
provides a means to accelerate the analysis.

We recall now the representation theorem for SPDIs that
allows to factorize the signatures (step 3 in Section [in
a convenient way. The theorem not only guarantees the
existence of the above representation for SPDIs but also
provides a constructive way of doing so [7].

THEOREM 1. Given an SPDI, let 0 = ey ...ep be an edge

. . . - k1
signature, then it can always be written as o4 = 187" ... 7Tn
sk, where for any 1 < i < n41, r; is a sequence of
pairwise different edges and for all 1 < i < n, s; is a simple

cycle (i.e., without repetition of edges).

This representation of signatures is the base to obtain
types of signatures (step 4 in Section B) with the following
good properties

LEMMA 2. Given an SPDI, let 0 = eg...ep be a feasible
signature, then its type, type(o) = r1,81,...
satisfies the following properties:

y T'ny Sny Tn+1

P1 For every 1 <i# j<n+1, r; and r; are disjoint;
P2 For every 1 <i# j <mn, s; and s; are different.

The above lemma guarantees that there are only finitely
many different types of signatures, ensuring termination of
the SPDI reachability algorithm.

4. GSPDI

The goodness restriction (Assumption 0) was originally
introduced to simplify treatment of trajectories to guaran-
tee, among other things, that each region can be partitioned
into entry-only and exit-only edges in an ordered way, a fact
used in the proof of decidability of the reachability problem.
Without goodness there are edges that are neither of entry-
only nor of exit-only as shown in Fig. This naturally
leads to the following definition.

DEFINITION 2. An edge e € P is an inout edge of P if e
is meither an entry-only nor an exit-only edge of P. |

Note that formally speaking the definition of SPDI does
not exclude inouts edges, however, to make a clear separa-
tion between SPDIs with the goodness assumption and those
without such an assumption, we call the latter generalized
SPDI (GSPDI). Thus, in GSPDIs there are three kinds of
edges: inouts, entry-only and exit-only edges.

Self-crossing of trajectory segments of SPDIs can be elim-
inated which allow us to consider only non-crossing trajec-
tory (segments). The proof given in [[7] can be extended

(&) oy

LY L0
(a) (@)

Figure 4: (a) Proper inout edge; (b) Sliding edge.

to deal with the case when the self-crossing trajectories in-
volve inout edges, so the result still holds for GSPDIs. Thus
in what follows we will consider only trajectory segments
without self-crossings.

Notice that on GSPDIs a trajectory can “intersect” an
edge at an infinite number of points because it can slide at
it. Thus, a trace is not anymore a sequence of points but
rather a sequence of intervals.

DEFINITION 3. The trace of a trajectory £ is the sequence
trace(§) = Iol1 ... of the intersection intervals of & with the
set of traversed edges. |

A point interval I = [x,x] will be written as x whenever
no confusion might arise.

DEFINITION 4. An edge signature (or simply a signature)
of a GSPDI is a sequence of edges. The edge signature
of a trajectory &, Sig(§), is the ordered sequence of tra-
versed edges by the trajectory, that is, Sig(§) = eoex . .., with
trace(§) = Ioli... and I; C e;. The region signature of &
is the sequence RSig(§) = Po Py ... of traversed regions, that
18, e; € In(P). [|

Notice that in many cases the intervals of a trace are in
fact points. We say that a trajectory with edge signature
Sig(§) = epe1...e;... and trace trace(§) = Ioli...I;...
interval-crosses edge e; if I; is not a point.

Given a trajectory segment, we will make the difference
between proper inout edges and sliding edges.

DEFINITION 5. Let & be a trajectory segment from point

X0 € eo to Xy € ey, with edge signature Sig(§) =eo...€;i...¢€n,

and e; € E(P) be an inout edge of P. We say that e; is a
sliding edge of P for £ if € interval-crosses e;, otherwise e is
said to be a proper inout edge of P for &. |

We say that a trajectory segment & slides on an edge e if
e is a sliding edge of P for £ and £ is said to be a sliding
trajectory if there is at least one sliding edge e € Sig(¢).

ExAmMPLE 3. In Fig. J}(a), e is a proper inout edge. Edge
e on Fig. J}(b) is a sliding edge. |

5. REACHABILITY ANALYSIS OF GSPDI

In order to get a sound decision algorithm, based on the
SPDI algorithm, we would need to prove the following the-
oretical results: (1) Show that it is enough to consider tra-
jectories without self-crossing (argument of its validity pre-
sented in the previous section); (2) Show that it is possible to
eliminate all inout edges, preserving reachability; (3) Show
that it is possible to eliminate all sliding edges, preserv-
ing reachability (Section BJ); (4) Re-state and prove some
results on SPDI reachability useful to GPSDI reachability
analysis (Section B22); (5) Prove soundness and termination

(Section BE3).

Figure 5: Counter-example for Proposition [I

However, as we will see in Section Bl step (2) is not valid,
and we thus get a semi-test algorithm for GSPDI reachabil-
ity analysis instead, by proving the rest of the above steps.

Due to lack of space we do not provide full proofs here;
see [I0)] for more details.

5.1 Simplification of Trajectory Segments

We first start by showing that the good properties of the
representation theorem for SPDIs are not valid any longer
for GSPDIs.

PropPOSITION 1. Property P2 of the representation the-
orem for SPDIs (Lemma @) does not hold in general for
GSPDIs.

PROOF SKETCH: Let £ be a trajectory with signature Sig(¢) =
o =¢e€p...€...en... of a given GSPDI. The proposition
states that it is not possible in general to write o in the
form o4 = rl.s’fl oo Tnsfrr. 1 with the properties stated
in Lemma The proof is done by providing a counter-
example. A typical counter-example should allow to obtain
a signature consisting of a clockwise spiral followed by a
counter-clockwise spiral (or vice-versa) and then back to the
first spiral. In such a case it is possible to find two simple
cycles which are repeated in the type of signature. Let us
consider the GSPDI of Fig. To keep it simple we do not
write down the dynamics of the regions and we assume that
they are as to allow the segments of trajectories shown in
the picture to be well-defined. In such a GSPDI it is possible
to obtain the following type of signature: risirsssrsss...,
where s1 = (abed), s2 = (dcba), and s3 = (abed). Since
$1 = 83, then property P2 of Lemma B is not satisfied. [

The following lemma presents some typical cases where it
is possible to eliminate proper inout edges.

LEMMA 3. Let & be a trajectory segment with initial point
Xo € eo and final point xy € ey, with edge signature Sig(§) =
€0...€i...en. If e is a proper inout edge then in some
cases there exists a trajectory segment £ from xo to x5 that
traverses e; in at most one sense (that is, e; is either an
entry-only or an exit-only, but no both).

Proor SkeETcH. In Fig. El(a) we illustrate a typical case
where edge e; is a proper inout edge. After a straightfor-
ward algebraic vector manipulation, on the same lines of
elimination of self-crossings, the trajectory segment shown
in Fig. B} (a’) is obtained. [

Note that the above does not establish completeness of a
reduction from GSPDIs into SPDIs reachability since there
are cases where the above is not possible, as shown in the
following proposition.

PROPOSITION 2. Given a GSPDI, assume there erists a
trajectory segment from points Xo € eo to Xy € ey, traversing

6 xy ‘ Zo
(a) (a)

Figure 6: Inout case.

€4
€3

e -
T2 Y
es !

€6
zf z1
zo el

Figure 7: A non-eliminating inout edge.

inout edges in both directions. Then it is, in general, not
possible to find a trajectory segment whose edge signature
contains no proper inout edges (traversed in both directions),
between them.

Proor SkrETcH: The GSPDI of Fig. [presents a typi-
cal example of an inout edge (e2) which cannot be directly
eliminated as to preserve that x is reachable from zo. To
keep the explanation simple we do not present here a formal
GSPDI as counter-example. The example, however, sheds
some light on the kind of GSPDI regions serving as counter-
examples. It suffices to take any trajectory exiting a region
through an edge (e2 in the figure) and entering to the region
again through the same edge, with a dynamics forbidding
the sliding from the exit point (x1) to the entry point (x2).
The trajectory must not have self-crossings. [l

The above result is based on the fact that the underlying
convex polygons of the GSPDI as well as its dynamics is
fixed; the only restriction is the prohibition of trajectories
entering and exiting a region through the same edge, though
the dynamics still would allow to do so. Let G be a GSPDI,
and S a GSPDI obtained from G with the above restric-
tion, then we say that S preserves the underlying structure
of G, and that S is an underlying SPDI of G (notice that in
general there are many underlying SPDIs for each GSPDI).
We say that there is a structure-preserving reduction from
the GSPDI reachability problem to the SPDI reachability
problem if there is a transformation from any GSPDI in-
stance G into an underlying SPDI instance S of G, such that
Reach(g,xo,xf) = Yes iff ReaChSPD[(S,Xo,Xf) = Yes.

From the above proposition we conclude that it is not
possible to reduce GSPDI reachability to SPDI reachability
since we may miss some of the positive answers. We have
then the following result.

ProrosiTiON 3. There is no structure-preserving reduc-
tion from the GSPDI reachability problem to the SPDI reach-
ability problem.

In what follows we concentrate on sliding edges; we show
first that we can eliminate sliding edges.

LEMMA 4. Let € be a trajectory segment from Xo € eo to
Xy € ey with edge signature Sig(§) = eo...e;...ep. If €; is
a sliding edge for & then there exists a trajectory segment &
from xo to x5 that does not slide on edge e;.

o o

(@) (d)

Figure 8: Sliding cases.

PrOOF SKETCH. Sliding edges can arise in four different
cases (plus the symmetric cases); they are shown in Fig. B
(a) to (d). The corresponding primed figures (Fig. Bt(a’) to
(d”)) show the transformation done in order to avoid sliding
on edge e. We do not give a formal proof of completeness
of the result here. Notice that indeed the above transforma-
tion is always possible since in all the cases the new obtained
segment of trajectory can be expressed as a positive linear
combination of two suitable existing segments of trajectory.
Such two segments are the sliding segment, and another seg-
ment of trajectory with starting point at the beginning or
the end of the sliding segment. [

As a consequence we have the following result, showing
the existence of a non-sliding trajectory.

PROPOSITION 4. If there exists a sliding trajectory seg-
ment from points Xo € eo to Xy € ey then there always
exists a non-sliding trajectory segment between them.

ProoF. By induction on the number n of sliding edges
of the signature of the trajectory segment using Lemma[]in
the induction step. [

Sliding is not easy to treat in general since an edge al-
ways belongs to two different regions with different dynam-
ics. Thus a trajectory may be “allowed” to slide by one of
the dynamics but not by the other. For our purposes we as-
sume that at an inout edge a trajectory can slide if at least
one of the dynamics allows so. This assumption does not
affect the reachability analysis.

5.2 SPDI Results used in GSPDI Analysis

We will see in next subsection that the semi-test algo-
rithm for reachability analysis of GSPDIs depends on the
generation of all the possible underlying SPDIs obtained af-
ter fixing the inout edges as entry-only or exit-only edges.

In order to guarantee that we can still apply the reachability
algorithm for SPDIs, we need to: (1) Redefine the edge-to-
edge successor operator, Succ, to be able to deal with sliding
edges; (2) “Topologically” rephrase and prove the results of
|7 that use the contiguity between entry-only and exit-only
edges in their proofs; (3) The proofs of soundness of the
Exit-LEFT and Exit-STAY algorithms also rely on the con-
tiguity hypothesis, and need thus to be re-proved (see [I0]).

Concerning the first point above, note that it is convenient
to define a (trivial) successor Succ. where e is a single edge.
The only way to do it preserving the semi-group property
for SPDIs is to put Succe(/) = I. Notice that for GSPDIs,
however, we add the following cases in case e is an inout
edge, with I = (I, u), and given (L,U) = SeNJe: Succe(I) =
(L,u), or Succe(I) = (I,U), depending on which direction e
allows the sliding.

5.3 Reachability Algorithm

Given a GSPDI H, we denote by Hyeq = {H1,...,Hn}
the set of all the underlying SPDIs obtained after fixing all
the inout edges of H as entry-only or exit-only, considering
all the possible permutations.

Let Reach(H, xo0,xy) be the reachability algorithm for a
GSPDI H. It consists of the following steps:

1. Detect all the inout edges;

2. Generate the set of SPDIs Hyeq = {H1,...,Hn};

3. Apply the reachability algorithm for SPDIs to each H;
(1 S 7 S ’I’L), ReaChSPDI(Hi,Xo,Xf).

4. Tf there exists at least one SPDI H; € H,.cq such that
Reachsppr(Hi, x0,x5) = Yes then Reach(H,xo,xs) =
Yes, otherwise we do not know.

We have then the following result about termination of
GSPDI reachability.

LeMMmA 5. Reach(H,xo,xy) always terminates.

PROOF. The result follows from the termination of steps
1 and 2 of the above algorithm (based on a finiteness argu-
ment), as well as from that of Reachsppr(Hi,xo,xy) (for

all H; € Hrea, 1 <i<n) B Q. O

We finish this section with the main result of our paper,
which follows from all the previous results.

THEOREM 6. Given a GSPDI 'H, Reach(H,xo,x5) =
Yes if Reachsppr(Hi,x0,%x5) = Yes for some Hi € Hyed-
On the other hand, Reach(H,xo,xy) is inconclusive if for
all H; € Hyed, Reachsppr(Hi,x0,x5) = No.

Proor. Termination is guaranteed by Lemma[l Sound-
ness follows from soundness of the algorithm for SPDIs [l
7, and from that of the steps described in Section 221 That
reachability is inconclusive whenever Reachsppr(Hi, Xo,Xy)
= No for all H; € H,cq, follows from Proposition O

6. FINAL DISCUSSION

In this paper we presented a terminating algorithm im-
plementing a semi-test for reachability analysis of GSPDIs,
based on the decision procedure for SPDIs, and proved its

soundness. We first showed that there is no structure-preserving

reduction from GSPDI reachability to SPDI reachability by

showing that for some trajectories traversing an inout edge
in both directions there is no trajectory traversing the edge
only in one direction. Since those trajectories are, however,
obtained only on very specific cases (Proposition B, we ar-
gue that we miss indeed few positive answers. This would
need to be practically corroborated by implementing the al-
gorithm, which remain a future work. Note that the most
difficult part is already implemented in the tool SPeeDI [3]
and we would only need to implement steps 1 and 2 of the
GSPDI algorithm.

Complexity is another issue. In the worst case it is clear
that the algorithm introduces an exponential blow-up as it
has to generate all possible underlying SPDIs after fixing in-
out edges as entry-only or exit-only edges. Some qualitative
analysis may help here, to guide the reachability analysis as
to eliminate beforehand the analysis of some of the types of
signatures. This might be done by computing some objects
of GSPDI'’s phase portrait as previously done for SPDIs [6].

We believe this paper positively contributes to the analy-
sis of low-dimensional hybrid systems, given that the GSPDI
class lies on the frontier of decidable/undecidable hybrid sys-
tems. Moreover, GSPDIs may be used to approximate non-
linear planar differential equations, for which exact solutions
are not easy to obtain.

7. REFERENCES

[1] R. Alur, C. Courcoubetis, T. Henzinger, and P.-H. Ho.
Hybrid automata: An algorithmic approach to the
specification and verification of hybrid systems. In
HS’93, number 736 in LNCS, pages 209-229, 1993.

[2] E. Asarin, O. Maler, and A. Pnueli. Reachability
analysis of dynamical systems having
piecewise-constant derivatives. T'CS, 138:35—-65, 1995.

[3] E. Asarin, G. Pace, G. Schneider, and S. Yovine.
SPeeDI: a verification tool for polygonal hybrid
systems. In CAV’02, number 2404 in LNCS, pages
354 358, July 2002.

[4] E. Asarin and G. Schneider. Widening the boundary
between decidable and undecidable hybrid systems. In
CONCUR’02, number 2421 in LNCS, pages 193 208,
2002.

[5] E. Asarin, G. Schneider, and S. Yovine. On the
decidability of the reachability problem for planar
differential inclusions. In HSCC’01, number 2034 in
LNCS, pages 89 104, 2001.

[6] E. Asarin, G. Schneider, and S. Yovine. Towards
computing phase portraits of polygonal differential
inclusions. In HSCC’02, number 2289 in LNCS, pages
49-61, 2002.

[7] E. Asarin, G. Schneider, and S. Yovine. Algorithmic
Analysis of Polygonal Hybrid Systems. Part I:
Reachability. TCS, 379(1-2):231-265, 2007.

[8] M. W. Hirsch and S. Smale. Differential Equations,
Dynamical Systems and Linear Algebra. Academic
Press Inc., 1974.

[9] V. Mysore and A. Pnueli. Refining the undecidability
frontier of hybrid automata. In FSTTCS, number
3821 in LNCS, pages 261-272, 2005.

[10] G. Schneider. On the decidability of the reachability
problem for GSPDIs. Technical Report 359, Dept. of
Informatics, University of Oslo, June 2007.

	Introduction
	On Goodness
	Preliminaries
	Successors and predecessors
	Qualitative analysis of simple edge-cycles

	GSPDI
	Reachability Analysis of GSPDI
	Simplification of Trajectory Segments
	SPDI Results used in GSPDI Analysis
	Reachability Algorithm

	Final Discussion
	References

