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Abstract

The work reported here is concerned with the definition of a logic
(which we call CL) for reasoning about legal contracts. The report
presents the syntax of the logic and the associated semantics. There
are two semantics presented: one is defined with respect to linear
structures (i.e. traces of actions) and is intended for run-time moni-
toring of executions of contracts; the second semantics is given over
branching structures (i.e. Kripke-like structures) and is intended for
reasoning about contracts in a static manner (i.e. model-checking and
theorem proving). In the first part of the report we present the the-
oretical results underlying the branching semantics. It presents an
algebra of actions and restates some of previous results presented in
another report, as well as new results useful for the definition of the
branching semantics and for the proofs. The rest of the report is con-
cerned with the definition of the two semantics. Moreover, several
(non-standard) desired properties of the logic are proven.
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1 Introduction

With the advent of Internet-based development within e-business and e-
government there is an increasing need to define well-founded theories to
guarantee the successful integration and interoperability of inter-organizational
collaborations. It is now widely accepted that in such complex distributed
systems a contract is needed in order to determine what are the responsi-
bilities and rights of the involved participants. Such a contract should also
contain clauses stating what are the penalties in case of contract violations.
Ideally, one would like to guarantee that the contract is contradiction-free by
being able to reason about it, and to ensure that the contract is fulfilled once
enacted. In order to do so the contract should be written in a formal language
amenable to formal analysis. Legal contracts, as found in the usual judicial
or commercial arena, may serve as basis for defining such machine-oriented
electronic contracts (or e-contracts for short).

In [PS07b] we have introduced CL, a formal language for writing con-
tracts, which allows to write (conditional) obligations, permissions and prohi-
bitions of the different contract signatories, based on the so-called ought-to-do
approach. The ought-to-do approach considers the above normative notions
specified over (names of) actions, as for example “The client is obliged to
pay after each delivery”. In CL the above would be written as [d]O(p), where
d is an action representing “delivery”, after which O(p) is the obligation of
paying. Actions may be more complex, involving concurrent composition,
non-deterministic choice, negation (a, meaning any action but a), etc. We
have also given a formal semantics of the contract language in a variant of
µ-calculus.

Much of the motivations for the contract language CL and relevant related
work can be found in [PS07b] and even more discussions and results (like
deontical paradoxes we avoid) are in [PS07c]. In this report we do not give
such in depth motivations and we give intuitions only to the new constructs
or to notions that have changed from previous versions of CL.

A thorough investigation of the actions underlying CL has been done
in [PS07a] where a new algebraic structure CA was introduced to provide
a well-founded formal basis for the action-based contract language CL. In
this report we use a slightly simpler version of the algebra CA. We restate
previous results without the proofs and give new results relevant for the rest
of the report. The algebra is a crucial part of the branching semantics of CL
from Section 3.1 and is also used in the presentation of the linear semantics
of Section 3.2.

The report is organized as follows. The rest of the introduction presents
briefly the CL contract language and an intuitive understanding of the syn-
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tactical constructs.
In Section 2 we present the algebra of concurrent actions (capturing the

intuitions of actions found in contracts). The actions are interpreted as
specially defined guarded rooted trees which are used in the semantics of
CL. We state the main result of this section which is the completeness of
the algebra over rooted trees. The rest of the section is concerned with the
extension of the algebra with boolean tests and action negation (which is
defined using a canonical form of the actions).

In Section 3 we construct two direct semantics for the CL language. The
first semantics is a branching semantics given in terms of particular Kripke
structures (which we call normative structures). The branching semantics
is intended to provide for reasoning about the contracts written in CL; par-
ticularly model checking of contracts, or negotiation of contracts should be
performed using this semantics. Proof systems for CL should be based on the
branching semantics. We do not provide any of those in this report; we refer
the reader to future work. The second semantics is defined in terms of linear
models represented by traces of actions. The linear semantics captures the
notion of a trace fulfills a contract. The linear semantics is used for run-time
monitoring of the enforcement of contracts written in CL.

In the last section we conclude our work and give an extensive discussion
on related works. Examples from real contracts given in the end of the
introduction acompany the reader throughout the report in order to make
clear most of the notions we introduce. In the end of the report we analyze
in full one on the examples.

1.1 CL – A Formal Language for Contracts

In this section we recall the contract language CL first presented in [PS07b].
Here we give a slightly different and more general version, and we discuss the
differences.

Definition 1.1 (Contract Language Syntax). A contract is defined by the
grammar in Table 1.

In what follows we provide an intuitive explanation of the CL syntax. A
formal semantics is given later in Section 3.

A contract consists of two parts: definitions (D) and clauses (C). We
deliberately let the definitions part underspecified in the syntax above. D
specifies the assertions (or conditions) and the atomic actions present in the
clauses. φ denotes assertions and ranges over boolean expressions including
the usual boolean connectives, and arithmetic comparisons like “the budget
is more than 200$”. We let the atomic actions underspecified, which for our
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Contract := D ; C
C := CO | CP | CF | C ∧ C | [β]C′ | 〈β〉C′ | ⊤ | ⊥
C′ := φ | C
CO := OC(α) | CO ⊕ CO

CP := P (α) | CP ⊕ CP

CF := FC(α) | CF ∨ [α]CF

Table 1: Syntax grammar for the CL language to use in specifying contracts.

Contract := D ; C
C := φ | CO | CP | CF | C ∧ C | [β]C | 〈β〉C | ⊤ | ⊥

CO := OC(α) | CO ⊕ CO

CP := P (α) | CP ⊕ CP

CF := FC(α) | CF ∨ [α]CF

Table 2: Syntax grammar for the CL language to use in specifying properties
of contracts.

purposes can be understood as consisting of three parts: the proper action,
the subject performing the action, and the target of (or, the object receiving)
such an action. Note that, in this way, the parties involved in a contract are
encoded in the actions.

The purpose of the CL language is to give a unified framework for writing
both the original contract clauses and also contract properties that need to
be checked on the contract model. The syntax that we give in Table 2 is
for specifying properties of contracts. Note that an asserion φ alone may be
a contract clause; where in the definition above this is not allowed. This is
normal and desirable when one wants to write properties about a contract
like “The budget is more than...”. On the other hand it is not normal (and
one does not find in the original contracts) to have an assertion as a stand
alone contract clause. In a contract, assertions are used in a restricted fashon
and thus we need a second grammar for CL which would restrict the use of
assertions φ. The semantics of the operators remains the same, only the
allowed CL formulas are different.

In the contract clauses assertions are allowed only after the dynamic box
(i.e. after the execution of an action so that it asserts the outcome of that
action). This corresponds to the C′ in Table 1.

C is the general contract clause. CO, CP , and CF denote respectively obli-
gation, permission, and prohibition clauses. OC(α), P (α), and FC(α), repre-
sents the obligation, permission, or prohibition of performing a given action
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α. Intuitively OC(α) states the obligation to execute α, and the reparation C
in case the obligation is violated, i.e. whenever α is not performed (a CTD).
The reparation may be any contract clause.1 Obligations without CTDs are
written as O⊥(α) where ⊥ (and conversely ⊤) is the Boolean false (respec-
tively true). We usually write O(α) instead of O⊥(α). Obligations with no
reparation (like O(α)) are (sometimes in the literature) called categorical be-
cause they cannot be violated (i.e. there is no reparation for their violation,
thus a violation would give violation of the whole contract). Similarly, CTP
statements FC(α) may be thought as the actual forbearing of the action F (α)
together with the penalty C in case the prohibition is violated. The normal
prohibition is a special case of CTP.

One may be tempted to define OC(α) as syntactic sugar for O(α) ∧ [α]C
which is read as “there exists the obligation of doing α and if the action α
is not executed (i.e. some contradictory action is executed instead) then the
reparation C must be enforced”. Similarly, CTP statements FC(α) may be
thought as FC(α) = F (α)∧[α]C, where C is the penalty in case the prohibition
is violated (i.e. violating a prohibition means doing the prohibited action α).
If we take this approach and give instead of the modality OC(α) only O(α)
then we come into problems when coupling obligations with the exclusive
choice operator ⊕.

Notice that it is possible to express nested CTDs and CTPs. Nested CTDs
(or CTPs) produce finite chains of CTDs (respectively CTPs). Because we
lack explicit recursion (e.g. like µ-calculus has [Koz83]) in our syntax the
chains cannot be infinite. For infinite chains (where one obligation can be
the reparation of itself, or there can be circular reparations...) we can use
the strong recursion of µ-calculus. For example we write µX.OOX(β)(α) to
express two mutually reparation obligations (i.e. two obligations where the
first is the reparation of the second and the second is the reparation of the
first). This example gives an infinite chain of CTDs.

The symbol α denotes a compound action (i.e., an expression containing
one or more of the following operators: choice “+”; sequence “·”; concurrency
“&”, and test “?”). β are the actions found in dynamic logic which have the
extra operator Kleene star ∗. The investigation of the restricted actions α
and their interpretations as guarded rooted trees is caried out in Section 2.
The investigation of the standard β actions can be found in the literature
related to dynamic logic and to Kleene algebras; basically they define the
regular sets and have the syntax of regular expressions.

1We take a rather general approach and consider any CL clause as a reparation. More
natural would be when the reparation may be only contract clauses which are formed only
of OC and FC expressions.
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The Boolean operators ∧ and ⊕ may be thought as the classical conjunc-
tion and exclusive disjunction, which may be used to combine obligations and
permissions. For prohibition CF we have ∨, again with the classical mean-
ing of the corresponding operator. Note that syntactically ⊕ cannot appear
between prohibitions.

We borrow from propositional dynamic logic [FL77] the syntax [β]C to
represent that after performing β (if it is possible to do so), C must hold. The
[·] notation allows having a test, where [C1?]C2 must be understood as C1 ⇒
C2. 〈β〉C captures the idea that it must exist the possibility of executing α,
in which case C must hold afterwards.

Propositional dynamic logic can encode the temporal logic (TL) [Pnu77]
operators U (until), © (next), � (always), and ♦ (eventually). The special
action any = a1 + . . . + an is a shortcat which stands for the finite choice
between any basic action of AB (see Section 2).2 Thus C1 U C2 (in temporal
logic states that C1 holds until C2 holds) stands for 〈(C1? · any)∗〉C2 (which
is read in PDL, equivaletly as in TL, as there exists a state where C2 holds
and is reached by going through states where C1 holds). Note that C2 might
hold in the current state. ©C stands for [any]C and intuitively states that C
holds in the next moment, usually after something happens. �C stands for
[any∗]C and expresses that C holds in every moment. ♦C stands for 〈any∗〉C
expressing that C holds sometimes in a future moment. See [HTK00, sec.17.2]
for more on embedding linear temporal logic operators into propositional
dynamic logic.

Discussion: an natural contract clause would be that “obligation to do the
sequence of actions a and then b holds until some constraint ϕ is satisfied”
which one would write in a temporal logic style like O(a · b)Uϕ. Because the
U does not behave nicely when coupled with an operator over sequences of
actions we write the same clause nicely in our CL syntax like 〈((¬ϕ ∧ O(a ·
b))? · a · b)∗〉ϕ.

In CL we can write conditional obligations, permissions, and prohibitions
of two different kinds. Just as an example let us consider conditional obliga-

2The definition of any depends on the semantics of the PDL modality [·]. Consider
that we interpret the semantics as in Section 3.1 where [a]C means that after an action γ

which contains the a (i.e. a ≤& γ and e.g. γ can be a, a&b, a&b&c) is executed then C
must hold. Therefore, the definition we give here for any is suficient for the purpose of
encoding the TL next operator ©. Consider now that we interpret the [·] as in classical
PDL as saying that [a]C means that after doing only a then C holds. In this case the
definition of any changes to any = +α&∈A&

B

α&; i.e. the choice not only between basic
actions but also choice between concurrent actions. See next section of the definitions of
various new concepts like A&

B.
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tions. The first kind is represented as [β]O(α), which may be read as “after
performing β, one is obliged to do α”. The second kind is modeled using the
test operator ?: [ϕ?]O(α), representing “If ϕ holds then one is obliged to
perform α”. Similarly for permission and prohibition. For convenience, in
what follows we use the notation φ ⇒ C instead of the CL syntax [φ?]C.

1.2 Examples

We use throughout the report the following small example of a contract clause
in order to exemplify some of the main concepts we introduce.

Example 1.: “If the Client exceeds the bandwidth limit then (s)he must
pay [price] immediately, or (s)he must delay the payment and notify the
Provider by sending an e-mail. If in breach of the above (s)he must pay
double.”

2 Algebra of Concurrent Actions

CL is heavily based on actions (i.e. all modal operators are defined over
actions). We have investigated in [PS07a] the actions found in contracts and
formalized them as an algebra of actions. In this section we give a slightly
different algebraic structure but the main results, discussions, examples, or
background information are the same as in [PS07a]. For in depth reading and
for a more clear and motivated presentation we refer the reader to [PS07a].
Here we merely discuss the differences.

A main change is that the concurrency operator & is idempotent; thus no
longer having multisets as labels (but sets) and we can no longer represent
discrete values as we did with the non-idempotent version of &. Throughout
this section we make more clear these ideas, and also present briefly all the
other features of the algebra of actions found in contracts.3

Though the algebraic structure we define is somehow similar to Kleene
algebra with tests [Koz97], there are substantial differences due mainly to our
application domain. A first difference is that we do not include the Kleene
star (iteration) as it is not needed in our context4 (see [PS07b]). A second

3Actions can be enriched with features like parameters, subjects, or durations ; this is
the topic of a follow-up report. To compensate the loss of expresivity of the actions we can
add parameters of type N (Nat) so that we can again express discrete quantities. This is
just an example of adding parameters to the actions (the parameters may be of any type
with the operations and reasoning associated). On the same ideas actions can be enriched
with subjects or durations.

4It is counter intuitive to have iteration of actions under obligation, permission, or
prohibition; e.g. it is not normal to have in a contract a statement like: “One is obliged
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difference is that we introduce an operator to model concurrency. The alge-
bra has the following particularities: (1) Formalizes concurrent actions; (2)
Introduces a different kind of negation over actions; and (3) Has a standard
interpretation of the actions over specially defined rooted trees. Among oth-
ers, the interpretation using trees is used for giving the branching semantics
of Section 3.1.

2.1 The algebraic structure CA

We start by defining an algebraic structure CA = (A,Σ) which is the basis
of the algebra of concurrent actions and tests CAT = (CA,B) presented in
this section. CA defines the concurrent actions, and the Boolean algebra B
of Section 2.3 defines the tests.

The algebraic structure CA is defined by a carrier set of elements (called
compound actions, or just actions) denoted A and by the signature Σ =
{+, ·,&, 0, 1,AB} which gives the action operators and the basic actions.
More precisely CA is a family of algebras indexed by the finite set of basic
(or atomic) actions AB. The non-constant functions of Σ are: “+” for choice
of two actions, “·” for sequence of actions (or concatenation), and “&” for
concurrent composition of two actions. Each of the operators +, ·, and &
takes two actions and generates another action of A. The special elements
0 and 1 are constant function symbols. The set AB ∪ {0, 1} is called the
generator set of the algebra. The basic actions of AB and 0 and 1 have the
property that cannot be generated from other actions of A.

To be more precise about the syntactic structure of the actions of A we
set the rules for constructing actions. The operators +, ·, and & are some-
times called constructors because they are used to construct all the actions
of A as we see in Definition 2.1. This defines the term algebra TCA(AB) pa-
rameterized by the set of basic actions AB which is free in the corresponding
class of algebras over the generators of AB ∪ {0, 1}. We will just use TCA
whenever AB is understood by context.

Definition 2.1 (action terms of CA).

1. any basic action a of AB is an action of A;

2. 0 and 1 are actions of A;

3. if α, β ∈ A then α&β, α · β, and α + β are actions of A;

4. nothing else is an action of A.

to not pay, or pay once, o pay twice, or . . .”.
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(1) α + (β + γ) = (α + β) + γ
(2) α + β = β + α
(3) α + 0 = 0 + α = α
(4) α + α = α
(5) α · (β · γ) = (α · β) · γ
(6) α · 1 = 1 · α = α
(7) α · 0 = 0 · α = 0

(8) α · (β + γ) = α · β + α · γ
(9) (α + β) · γ = α · γ + β · γ

(10) α&(β&γ) = (α&β)&γ
(11) α&β = β&α
(12) α&1 = 1&α = α
(13) α&0 = 0&α = 0

(14) a&a = a for a ∈ AB

(15) α&(β + γ) = α&β + α&γ
(16) (α + β)&γ = α&γ + β&γ
(17) α&(α′ · β) → α(1)&α′(1) · . . . · α(n)&α′(n) · β

where l(α) = l(α′) = n

Table 3: Axioms of CA

Throughout this report we denote by a, b, c, . . . elements of AB (basic
actions) and by α, β, γ, . . . elements of A (compound actions). When the
difference between basic and compound actions is not important we just call
them generically actions. For brevity we often drop the sequence operator
and instead of α · β we write αβ. To avoid unnecessary parentheses we use
the following precedence over the constructors: & > · > +.

To have a complete algebraic theory we include the two special elements
0 and 1 which are the identity elements for +, respectively for · and &
operators. We call action 1 the skip action and 0 the violating action. In
Table 3 we collect the axioms that define the structure CA.

The properties of the operators + and · are defined by the axioms (1)-
(9) of Table 3. Axioms (1)-(4) define + to be associative, commutative,
with identity element 0, and idempotent. Axioms (5)-(7) define · to be
associative, with identity element 1, and with annihilator 0. The element 0

is an annihilator for the sequence operator both on the left and on the right
side. We call the two equations fail late (for α · 0 = 0) and fail soon (for
0 ·α = 0). Axioms (8)-(9) give the distributivity of · over +; property which
we exploit more in Section 2.5 when we define a canonic form of actions.
Because the + operator is idempotent (α+ α = α) all these axioms give the
algebraic structure of an idempotent semiring (A,+, ·, 0, 1).

The third constructor & is intended to model, what we call, eager true
concurrency. At this point we give an informal intuition of the elements (ac-
tions) of A: we consider that the actions are performed by somebody (being
that a person, a program, or an agent). We talk about “performing“ and one
should not think of processes executing actions and operational semantics; we
do not discuss operational semantics in this report. With this non-algebraic
intuition of actions we can elaborate on the purpose of &, which models the
fact that two actions are performed in a truly concurrent fashion. We call
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concurrent actions and denote by A&
B ⊆ A the subset of elements of A gener-

ated using only & constructor (e.g. a, a&b ∈ A&
B and a+b, a&b+c, a·b 6∈ A&

B).
Note that A&

B is finite because there is a finite number of basic actions in AB

which may be combined with the concurrency operator & in a finite number
of ways (due to the idempotence of & over basic actions; axiom (14)).

Axioms (10)-(13) give the properties of & to be associative, commutative,
with identity element 1, annihilator element 0 which make the algebraic
structure (A,&, 1) commutative monoid with element 0 as annihilator for
&. Axioms (10) and (11) basically say that the syntactic ordering of actions
in a concurrent action does not matter (the same as for choice +). Axiom (14)
defined & to be idempotent over the basic actions a ∈ AB.5 Axioms (15) and
(16) define the distributivity of & over +. From axioms (10)-(16) together
with the fact that (A,+, 0) is a commutative monoid we may conclude that
(A,+,&, 0, 1) is a commutative and idempotent semiring.6

For Example 1. in the introduction the basic actions are AB = {ebl , p, ne, d}
(for “extend bandwidth limit”, “pay”, “notify by email”, and “delay”). An
example of a concurrent action is d&ne ∈ A&

B, or even ebl & p& d& ne.
Note that throughout this section we use well known notions like strings,

sets, or multisets in association with our actions just for presentation pur-
poses only. All definitions or explanations (e.g. Definition 2.3) using these
classical notions can be given in a purely syntactical manner.

For axiom (17) we need some preliminary notions introduced in the fol-
lowing. We consider that basic actions are instantaneous7 with regard to
their execution time and we introduce the notion of length of an action.

Definition 2.2 (action length).
The length of an action α is defined (inductively) as a function l : A → N

which takes as argument an action and returns a natural number.

1. l(1) = l(0) = 0

2. l(a) = 1 for any basic action a of AB,

3. l(α&β) = l(α + β) = max(l(α), l(β)),

4. l(α · β) = l(α) + l(β).

5Note that this does not imply that we have an idempotent monoid.
6(A, +, &,0,1) is an idempotent semiring because the first operator + is idempotent;

and not because of the weaker idempotency property of & which is defined only over basic
actions.

7Note that when actions are extended with durations (i.e. the amount of time necessary
for the action to finish) some of these notions (like action length) need to be changed
accordingly.
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max : N × N → N is the standard function returning the maximum
value of the two arguments. For the special actions 1 and 0 the length is 0.
The intuition of the length function is that it counts the number of actions
in a sequence of actions given by the · constructor. From this perspective
we view the compound actions as strings where the elements of the string
are separated by the sequence constructor. We say that α(n) identifies the
action on position n in the string of actions α. The position 0 < n ≤ l(α) is
a strictly positive integer less than or equal to the length of the action. For
n = 0, α(0) = 1 returns the implicit skip action, which is natural because
every action α can have as starting action 1, i.e. α = 1 ·α. For example, for
action α = (a + b) · 1 · c we have l(α) = 2, α(1) = a+ b and α(2) = c. Note
that α(·) ignores 1’s. Therefore, 1 is ignored in the axiom (17) because 1

can be removed from a sequence as it is the identity element for · operator;
e.g. an action a&(1 · b) is equivalent to a&b.

Specific to our application domain we consider it is natural to relate &
and · as follows.

if l(α)= l(α′)=n then α&(α′ · β) = α(1)&α′(1) · . . . · α(n)&α′(n) · β (17)

A similar equation can be given for the corresponding action (α′ · β)&α
with the sequence on the left side of the concurrency constructor. The equa-
tion is defined using the action length. One can define the same property
using sorts as: (α& · α)&(β& · β) = α&&β& · α&β where α&, β& ∈ A&

B are
only concurrent actions and α, β can be any kind of action. We prefer the
one using action length as it is more clear and explicit.

We call the notion modelled by axiom (17) eager true concurrency. Intu-
itively that is because if we execute concurrently two sequences of actions the
behavior (which we want) is to execute immediately the first action of the
first sequence and the first action of the second sequence concurrently and
only after these are finished continue with executing the remaining actions.

Let us take a look at the properties of + and & of being idempotent.
If we take compound actions constructed only with + then because of the
idempotence we do not find the same basic action twice in the compound
action. For example, action a+ a+ b is the same as a+ b after we apply the
idempotence equation. From this point of view we consider that the basic
actions of an additive compound action (i.e. a compound action generated
only with +) form a set included in AB. The same holds for &; executing
an action concurrently with another copy of itself is impossible. We denote
by {α+} the set of basic actions associated to a compound action α+ which
is constructed only with +; similarly we denote by {α&} the set of basic
actions associated to a compound concurrent action α& which is constructed
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only with &. When it is obvious from the context that we ar talking about
the set of basic actions associated to an action α& and not about the action
itself we use just α& instead of {α&}.

Pratt [Pra86] introduces the concept of partially ordered multisets (or
pomsets) to model truly concurrent processes; i.e. processes which are se-
quences of events denoting actions. Pratt’s theory reasons about complex
systems and (time) ordering of the actions of processes, which is too power-
ful for our purpose. We do not want to model entire processes that are truly
concurrent, and we do not need true concurrency over time periods because
we do not have any notion of time in our model. For now we only want to
model atomic actions executing in a truly concurrent fashion.

Note that for our purpose the approach of considering the concurrent
actions as sets over the basic actions is in the spirit of Pratt’s theory. A
pomset intuitively states that if two events labelled by some actions are
related by the partial order of the pomset then the events are not concurrent,
but are executed in the sequence given by their ordering. On the other hand,
any events that are not related by the partial order are considered truly
concurrent. We recall that a set is equivalent to a pomset with the empty
order as the partial order (and an additional condition of injective labelling).
The empty order intuitively means that no event is related to another, which
in the theory of pomsets means that all the events of the set are executed
concurrently.

With the view of concurrent actions as sets over AB we can define a strict
partial order over concurrent actions with the help of inclusion of sets.

Definition 2.3 (demanding relation).
We define the relation <& as:

α& <& β&
def
= {α&} ⊂ {β&} (18)

where α&, β& ∈ A&
B are concurrent actions, and {α&} denotes the set of basic

actions associated to α&.

We call <& the demanding relation with the intuition that β is more
demanding than α iff α <& β. We consider the action 1 as the empty set,
with the intuition that skiping means not doing any action. Note that the
least demanding action is 1. On the other hand, if we do not consider 1 then
we have the basic actions of AB as the least demanding actions; the basic
actions are not related to each other by <&. We denote by ≤& the relation
<& ∪ =; i.e. α ≤& β iff either α <& β or α = β.

Proposition 2.1 ([PS07a]). The relation <& is a strict partial order.
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For a better intuitive understanding take the following examples: 1 <& a,
a <& a&b, a&b <& a&c&b, a 6<& b, a 6<& a, and a 6<& b&c.

By now we have defined the demanding relation only on concurrent com-
pound actions (i.e. for actions of the form α = a1& . . .&an). In order to
extend <& to the whole carrier set A we need to extend the definition with
sets for the & to some more complex definitions for · and + (see [PS07a]).

Because + is idempotent we can still define as in Kleene algebra a partial
order ≥+ on the elements of A. We call it the preference relation. That is:
α≥+ β means that action α has higher preference over action β.

Definition 2.4 (preference relation). The preference relation is defined as:

α≥+ β
def
⇐⇒ α + β = α (19)

An intuition for this is that whenever one has to choose among the two
actions α and β one always chooses α, the most preferable action (i.e. α+β =
α). Note that 0 is the least preferable action because 0 + α = α; so 0 is
never preferred over another action different than itself.

Proposition 2.2 ([PS07a]). The preference relation ≥+ is a partial order.

Note that the three operators are monotone with respect to the partial
order ≥+. For example for any actions α, β, and γ, for + operator this means
that: if α≥+ β then α + γ≥+ β + γ. This is easily proven.

Discussion: The intersection operator ∩ over actions form PDL∩ (i.e.
PDL extended with intersection of actions; see [HTK00, sec.10.4]) is inter-
preted as intersection of relations (corresponding to the actions). Therefore
∩ respects all our axioms (10)-(16) except (12); i.e. it is associative, com-
mutative, has the empty relation as anihilator element, is idempotent, and is
distributive over the union of relations ∪ (as in PDL∩ the choice of actions
+ is interpreted as union of relations). Our axiom (12) shows a difference
between the interpretation that we want for & and the interpretation that
PDL∩ gives to ∩. The identity element of ∪ is the universal relation and not
the identity relation (which is the interpretation of 1).

Note that axiom (14) is given only over basic actions. If we were to
give this over general actions α as is the case in PDL∩, in our algebra the
concurrency operator & may have unwanted behavior because of the com-
bination of idempotency and distributivety. For example the rewriting sys-
tem associated is not confluent; which means that one term may rewrite to

two different terms. For example: (a + b)&(a + b)
idem
= a + b and also

(a + b)&(a + b)
dist
= a&a + a&b + a&b+ b&b

idem
= a + a&b+ b, and the two
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terms on the right are not the same. One might argue that the two different
terms when used inside any of our CL modalities yeld the same models (i.e.
are interpreted the same), so why to make a difference between them?

In the case of intersection ∩ this problem does not occure because of
another property intersection has: absorbtion. Absorbtion property states
that

A ∪ (A ∩B) = A

which is the same as saying that if C ⊆ D then C ∪D = D.
In the case of actions found in contracts we decide not to have absorbtion

as it is not natural. In our case absorbtion is written as: if α <& β then
α&β = α. This means that when choosing between a + (a&b) one would
always have to choose the least demanding action which is a in this case.
We would call the least demanding action the most preferable. In practice
this is not the case, so absorption is not a desired property. In contracts the
choice depends on the subjects that execute the actions and it is not always
that they will choose the least demanding action. The criteria for choosing
the actions may depend on the subject performing the action and may also
depend on which actions are in the choice.

We can get a confluent rewriting system if we restrict the idempotence
of & only to atomic actions, as in axiom (14). This restriction does not
influence the desired behavior for the actions as by the rules that we have
the & operator is first pushed inside towards the basic actions and only then
the idempotence is applied.

Note that combination of compound actions α&α&α& . . . cannot go in-
definitely as it reaches a fixpoint. For example (a+b)&(a+b)&(a+b)& . . . =
(a + b)&(a + b) can be easily checked by induction where the basic case is
(a + b)&(a + b)&(a + b) = (a + b)&(a + b). The right hand side is equal
to a + a&b + b and the left hand side is equal to (a + a&b + b)(a + b) =
a + a&b+ a&b+ a&b+ a&b+ b = a + a&b+ b.

We define a relation for the concurrency operator & similar to the pref-
erence relation ≥+. We call it the absorbtion relation8 and denote it by
<ab

& .

Definition 2.5 (absorbtion relation). The absorbtion relation <ab
& is defined

over compound actions of CA as:

α <ab
& β iff α&β = β

For the absorbtion relation we can prove the following properties:

8Not to be confused with the absorbtion property.
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1. transitivity: for all α, β, γ if α <ab
& β and β <ab

& γ then α <ab
& γ;

Proof: From α <ab
& β and β <ab

& γ we have α&β = β (i) and
β&γ = γ (ii), and we need to prove α&γ = γ. We have the following

α&γ
(ii)
= α&β&γ

(i)
= β&γ

(ii)
= γ. 2

2. antisymmetry: for all α, β, if α <ab
& β and β <ab

& α then α = β (α and
β are the same element).

Proof: From the first inequality we have by definition that α&β = β.
By commutativity of & we get that β&α = β which by the second
inequality we get β&α = α, and thus α = β. 2

3. reflexivity: for all α we have α <ab
& α;

Proof: This is not true for all compound actions because the operator
& is not idempotent over all actions. Nevertheless, <ab

& is reflexive over
some particular actions. It is reflexive over basic actions of AB because
of the idempotence axiom (14).

For example an action like α = (a+b), taken from the discussion above,
breaks the reflexivity because as shown above (a+ b)&(a+ b) 6= (a+ b).

On the other hand there are other compound actions for which re-
flexivity holds. One example of actions comes from the discussion
above. Take β = (a + b)&(a + b); then we have β&β = β because
β&β = (a + b)&(a + b)&(a + b)&(a + b) = (a + b)&(a + b)&(a + b) =
(a + b)&(a+ b) = β. 2

We consider a relation over the set of basic actions AB which we call
conflict relation and denote by #C . The intuition of the conflict relation
is that if two actions are in conflict then the actions cannot be executed
concurrently. This relation is defined in terms of the & operator and says
that two actions that are in conflict, when executed concurrently yield the
special action 0. The converse relation of #C is the compatibility relation
which we denote by ∼C. The intuition of the compatibility relation is that if
two actions are compatible then the actions can be executed concurrently.

Definition 2.6 (conflict and compatibility).
The conflict relation is defined as:

a#C b
def
⇐⇒ a&b = 0 (20)

The compatibility relation is defined as:

a ∼C b
def
⇐⇒ a&b 6= 0, where a, b 6= 0 (21)
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Proposition 2.3 ([PS07a]). The following standard properties of the conflict
and compatibility relations for basic actions hold: reflexivity and symmetry
of ∼C, and symmetry of #C .

Remark: There is NO transitivity of #C or ∼C: In general, if a#C b
and b#C c, not necessarily a#C c. This is natural as action b may be in
conflict with both a and c but still a ∼C c.

The definition of the conflict and compatibility relations extend to all
actions of A by extending #C and ∼C to the +, ·, and & operators; see
[PS07a].

2.2 Standard interpretation of CA over rooted trees

We give the standard interpretation of the actions of A by defining a homo-
morphism ICA which takes any action of the CA algebra into a corresponding
rooted tree and preserves the structure of the action given by the construc-
tors. Before this, we define what are rooted trees and the operations we
consider over them.

2.2.1 Rooted trees

In this section we give the definition of rooted trees and define several oper-
ations over rooted trees.

Definition 2.7 (rooted tree). A rooted tree is an acyclic connected graph
(N , E) with a designated node r called root node. N is the set of nodes and
E is the set of edges (where an edge is a pair of nodes (n,m)).

An alternative definition of trees comes from ordered sets theory: a rooted
tree is a partially ordered set (N , <) of nodes such that for each node n ∈ N
all the nodes m ∈ N less than n with respect to the order < (i.e. m < n) are
well-ordered9 by the relation <, and there is only one least element r called
the root node. In this definition the nodes m are called the ancestor nodes of
node n, and their property of being well-ordered gives the intuitive property
of nodes in a tree (except the root node) to have one and only one parent10

node. Because of the partial order on the nodes of the tree we consider that
we have directed edges (i.e. the tree is a special directed graph), with the
direction of the edges going from the root node to the higher nodes with

9The well-ordering of the set N = {m |m < n} with respect to the partial order <

means that the partial order < transforms into a total order on N and for each subset
S ⊂ N there exists a least element with respect to the total order.

10A node m is the parent of node n iff m < n and ∄k ∈ N s.t. m < k and k < n.
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respect to the partial order. Note that there cannot be two edges (n,m) and
(m,n) in the same tree. All nodes {m | (n,m)} are called the descendents (or
children) nodes of n. The siblings of a node m are all the nodes which have
common parent with m; i.e. sibl(m) = {m′ | (n,m), (n,m′) ∈ E}. Note that
the root node has no siblings.

We consider rooted trees with labeled edges; i.e. each edge (n,m) has
associated a label α. We denote the labeled directed edges of the tree with
(n, α,m) and the tree with (N , E,A). The labels α ∈ A are sets of basic
labels of AB ∈ A; e.g. α1 = {a, b} or α2 = {a} with a, b ∈ AB. For the sake
of notation we use a instead of the singleton set {a}. Comparing two labels
α and β for equality means comparing the two associated sets. We denote
by τ the special empty label that is the empty set. When the label is not
important (i.e. can be any label) we may use the notation (n,m) instead of
(n, α,m) ∀α ∈ A.

We restrict our presentation to finite rooted trees. This means that there
is no infinite chain of nodes r < n1 < n2 . . . (or equivalently, there is no
infinite path in the directed graph starting from the root node). Such chains
are called branches of the tree. The final nodes on each branch are called
leaf nodes. The height of a tree T denoted h(T ) is the number of edges in
the longest branch of the tree which are not labelled by τ .

Definition 2.8 (Tree isomorphism). Two trees T1 = (N1, E1,A1) and T2 =
(N2, E2,A2) are isomorphic, denoted T1

.
= T2, iff A1 = A2 (the labels are the

same), and there is a bijective function rn : N1 → N2 s.t. rn(root1) = root2
and ∀(n, α,m) ∈ E1 then (rn(n), α, rn(m)) ∈ E2.

Equivalently, we say that the relation
.
= denotes the equality modulo re-

naming of the nodes between two rooted trees. Besides modulo renaming of
the nodes the relation

.
= is based on the usual equality on rooted trees where

for example the branches of a tree are not ordered.
Examples of rooted trees with labeled edges are given in Figure 1:

i. ({r}, ∅, ∅) - the tree with only one node the root, and no edges;

ii. ({r, n}, {(r, α, n)}, {α}) - the tree with only one edge;

iii. ({r, n,m}, {(r, α, n), (r, β,m)}, {α, β}) - the tree with two edges coming
from the root r;

iv. ({r, n,m}, {(r, α, n), (n, α,m)}, {α, β}) - the tree with only one path of
two edges;

v. ({r, n}, {(r, τ, n)}, {τ}) - the tree with only one edge labeled by the
empty label τ .
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Figure 1: Examples of finite rooted trees with labeled edges.

In the following we define three operations on rooted trees. We consider
the classical notion of subtree. The first operation is the join of two trees
and we denote it by ∪. Take two trees T1 = (N1, E1,A1) with root r1 and
T2 = (N2, E2,A2) with root r2 as in Figure2. Note that the two sets of
nodes are disjoint (thus also the sets of edges are disjoint), where the two
sets of labels may have elements in common. Joining T1 and T2 consists in
the following steps:

1. join the two root nodes r1 and r2 into a single root node (call it r12);

2. make the union of the two sets of nodes N12 = N1 \ {r1} ∪N2 \ {r2} ∪
{r12}, and the union of the two label sets A12 = A1 ∪ A2;

3. add to the empty set of edges E12 the edges on the first level of the two
trees, i.e. E12 = {(r12, n) | (r1, n) ∈ E1} ∪ {(r12, m) | (r2, m) ∈ E2};

4. for each two edges in E12 labeled with the same label ((r12, α, n) and
(r12, α,m)) keep only one edge in E12 and do the same joining operation
for the subtrees with roots n respectively m (in the case when one of
the subtrees has only the root node n and the other has several edges
then consider the tree with only one root node as the expanded tree
with only one edge (n, τ, n′ :W )). For all other single edges (r12, k) just
add to E12 all the edges of the subtrees with the root node k.

Note that the height of the new tree is the maximum of the heights of the
two joined trees: if we have h(T1) and h(T2) then h(T12) = max(h(T1), h(T2)).

The second operation is the concatenation of two trees and we denote
it by .̂ Take the two trees T1 and T2 as before. The picture in Figure3
illustrates this operation. To concatenate T1 with T2 follow the steps:
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Figure 2: Join of two rooted trees.
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̂

Figure 3: Concatenation of two rooted trees.

1. take the resulting tree T12 to be T1 for start. That means that N12 =
N1, E12 = E1, and A12 = A1.

2. replace each of the leaf nodes of T12 with the whole tree T2. This means:

(a) replace each edge (n,m) with node m a leaf node of T12 with
(n, r2);

(b) remove each leaf node from N12;

(c) add all the nodes of T2 to N12 renaming them such that each node
in N12 has a different name;

(d) add all the edges of E2 to E12 with the nodes names changed
accordingly to step 2c.

After the concatenation operation the new tree T12 has the hight equal
to the sum of the heights of the two trees: h(T12) = h(T1) + h(T2).

A third operation over our rooted trees is the concurrent join which we
denote by ‖. Concurrent joining involves also manipulating labels (basically
union and comparison of sets). The procedure of concurrently joining two
trees T1 and T2 taken as before consists in the following steps:
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{a, b}

{b, b}

c1 c2 c3 c4 {c1, c3} {c1, c4} {c2, c3} {c2, c4}

‖

Figure 4: Example of concurrent join of two rooted trees.

1. join the two root nodes r1 and r2 into a single root node and call it r12;

2. take the edges on the first level of each tree {(r12, α1, n1) | (r1, α1, n1) ∈
E1} and {(r12, α2, n2) | (r2, α2, n2) ∈ E2} and combine them as follows:

(a) combine the labels αi two by two.11 Each new label α′ = α1 ∪ α2

is the set union of the two component labels.

(b) add a new edge (r12, α
′, m) to E12 and add to N12 the new node

m obtained by joining n1 and n2;

(c) for each two edges (r12, α1, n1) and (r12, α2, n2) of the old edge sets
combined as in step (a) continue recursively to concurrently join
the two subtrees with the roots in the nodes n1 and n2 and put
the root of the new tree in the new node m created in step 2b.

(d) for each two new edges (r12, α
′, m1) and (r12, α

′′, m2) of E12, if
α′ = α′′ then unify the two edges into one and make the join of
the two new trees with roots in m1 and m2 created in step (c).

The height of the new tree is the maximum of the heights of the two
combined trees. This is because none of the steps (a)-(c) do not add to the
height of the new tree, and also the join in step (d) preserves the height. An
example of concurrent joining of two trees is given in Figure 4.

In the ‖ operation we use the union of two labels which is the union of the
two associated sets. Note that the empty label τ ”vanishes” when is joined
with another label because τ is the empty set and ∅ ∪ {. . .} = {. . .}. We
sometimes abuse the notation and instead of the union of two labels α ∪ β
(as they are considered sets of basic labels) we just write {α, β}. Moreover,
the τ label is often omitted so we consider {τ, α, β} = {α, β}.

11As in a cartesian product of two sets.
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For our purpose of giving a standard interpretation for CA we need to
be able to interpret the special actions 1 and 0, and therefore we make our
rooted trees more particular. Each tree has two kinds of nodes that we
distinguish by colors: the normal nodes (we have seen until now) are called
white nodes and the new kind of special nodes are called black nodes. The
black nodes are treated different (as we see below) and are found seldom in a
tree. Note that the operations on trees must preserve the colors of the nodes.
We sometimes use the notation n : B and n : W to denote the fact that node
n is black or white respectively. The exact use of black nodes will become
clear shortly.

Let us denote by RT the set of rooted trees. All the rooted trees in
this set are created from a set of minimal trees using the operations join,
concatenation, and concurrent join that we have defined in this section. The
set of minimal rooted trees is denoted by RT B and contains the trees formed
only of one root node, and the trees with only one edge labeled with a basic
label of AB or τ . Thus the number of basic trees is |RT B| = |AB| + 2.

We give a normalization technique called pruning a tree which refers
mostly to the empty label τ and to the black nodes.

Definition 2.9 (pruned tree). A pruned tree is a rooted tree obtained from
any rooted tree with black and white nodes and τ edges by applying the four
steps of the procedure below in that specific order.

1. contract all the τ labels on each path as follows:

(a) for sets {τ, α, . . .} the τ ”vanishes”, i.e. we write the label {α, . . .};

(b) for all edges (m, τ, n :W ) labelled with τ s.t. n is not a leaf node
with siblings, remove the edge (and combine the two nodes of the
endge into one) unless 1c;

(c) if the tree has only one edge (r, τ, n) then do nothing;

2. for each black node n:

(a) first remove the subtree with root n;

(b) afterwards label the edge (m,α, n) with τ , where α is an arbitrary
label;

3. for each edge (m, τ, n) with n a black node do either of:

(a) if ∄(m,α, n′) a different edge with an arbitrary label α then remove
the one edge before m, i.e. remove (k, β,m);
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(b) if ∃(m,α, n′) a different edge with an arbitrary label α then remove
(m, τ, n);

4. repeat step 3 as long as possible.

The above procedure refers mostly to the empty label τ and to the black
nodes. Consider the set RT pruned ∈ RT a subset of rooted trees which
contains only pruned rooted trees obtained by application of this procedure
which we denote by the function Prune : RT → RT pruned. Consider each

tree to be pruned. After performing one of the operations ∪, ,̂ or ‖ the new
tree may no longer be pruned, therefore we need to perform the pruning of
the new tree every time.

The height function h defined earlier is applied to pruned trees and has
one special case for the tree with only one edge labeled with τ ; for these trees
(with a white or black node) it returns the height 0.

Proposition 2.4 (characterization of pruned trees [PS07a]).

1. Any pruned tree either contains no black nodes, or it is the tree with
only one edge (r, τ, n : B) labeled with τ and ending in a black node.

2. A pruned tree has no label α which contains τ unless α = τ and it labels
an edge (n, τ,m :W ) and m is a leaf node with siblings or it is the tree
with only one edge (r, τ, n).

The size of a tree is the number of nodes together with the number of
edges; i.e. size(T ) = |N | + |E|.

Proposition 2.5 (time complexities).

1. The time complexity for the join and concatenation operations over
trees is linear in the size of the trees.

2. The time complexity for the concurrent join operation of two trees is
polinomial in the size of the two trees.

3. The pruning procedure is linear in the size of the tree that is pruned.

From the proof above it is easy to see the following:

1. The size of the tree resulting from the join or concatenation is at most
the sum of the sizes of the two trees.

2. The size of the tree resulting from the concurrent join is at most poli-
nomial in the sizes of the two trees.

3. The size of a pruned tree is clearly at most the size of the initial tree.
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2.2.2 Interpreting the actions

In this section we give a standard interpretation of the elements of the algebra
CA and of the algebraic operators using the rooted trees and the operations
defined in Section 2.2.1. For this we construct a map ICA which maps every
action of CA into a rooted tree and preserves the structure imposed by the
constructors. This means that ICA is the homomorphic extension of ĪCA :
AB ∪ {0, 1} → RT which is the map over the constructors (i.e. the basic
actions and the two special actions) of CA.

1. The definition of ĪCA(a) for basic actions a ∈ AB returns a basic rooted
tree Ta = ({r, n}, {(r, a, n)}, {a}) with only one edge labeled with a and
with n : W a white node.

2. For the special actions 1 and 0 we have respectively the trees:

(a) ĪCA(1) = ({r, n}, {(r, τ, n)}, {τ}) with n : W

(b) ĪCA(0) = ({r, n}, {(r, τ, n)}, {τ}) with n : B

Informally the skip action 1 means not performing any action and its
interpretation as an edge with an empty set of labels goes well with the
intuition. The fail action 0 is interpreted as taking the path into a black
node.

We now extend ĪCA from basic actions to compound actions of A using
an inductive definition, and obtain a homomorphism ICA : CA → RT .

3. ICA(α + β) = ICA(α) ∪ ICA(β);

4. ICA(α · β) = ICA(α)̂ ICA(β);

5. ICA(α&β) = ICA(α) ‖ ICA(β).

We still need to take care of the conflict relation #C of the algebra with
respect to the concurrency operator &; i.e. we need to interpret the fact that
a&b = 0 if a#C b. It is easy to define the same compatibility relation over
the basic actions of the algebra for the labels of the rooted trees. With this
definition we enforce each label of an edge of the form (m, {α, β}, n) with
α#C β and n : W to be replaced by the τ label and n : B becomes a black
node.

Note that the length of an action of CA corresponds to the height of
the interpretation of the action as a rooted tree. Because we always prune
the trees (and work only with pruned trees) we consider the function ÎCA :
CA → RT pruned which is defined as ÎCA = Prune ◦ ICA. Note that ÎCA is
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not a homomorphism and can be proven by giving a counter example to the
requirement ÎCA(α + β) = ÎCA(α) ∪ ÎCA(β).12 This means that the function
Prune is not homomorphic which means that after composing (using any of
the three operations ∪, ,̂ ‖) two pruned rooted trees the function Prune has
to be applied again. On the other hand Lemmas 2.6, 2.7, and 2.11 give other
useful properties of the Prune function.

Lemma 2.6 ([PS07a]). If Prune(T1) = Prune(T2) and T ′
1 and T ′

2 are sub-
trees of respectively T1 and T2 s.t. there is the same path from rT1

to rT ′
1

and
from rT2

to rT ′
2

which contains no black node, then Prune(T ′
1) = Prune(T ′

2).

Lemma 2.7 ([PS07a]). The function Prune preserves the substitution prop-
erty of the equality = on guarded trees.

Take [op] ∈ {∪, ,̂ ‖} then
if Prune(T1) = Prune(T ′

1) and Prune(T2) = Prune(T ′
2) then

Prune(T1[op]T2) = Prune(T ′
1[op]T

′
2).

Lemma 2.7 suggests the following result.

Corollary 2.8. ∀α, α′, β, β ′ ∈ CA if ÎCA(α) = ÎCA(α′) and ÎCA(β) = ÎCA(β ′)
then ÎCA(α[op]β) = ÎCA(α′[op]β ′) where [op] ∈ {+, ·,&}.

Theorem 2.9 (Completeness of CA over RT [PS07a]).
For any two actions α and β of A then α = β is a theorem of CA iff the

corresponding trees ÎCA(α) and ÎCA(β) are isomorphic (i.e. equal renaming
of the nodes).

Note: logicians would call the forward implication the soundness and the
backword implication the completeness.

Proof: The forward implication (⇒) can be rewritten as:
CA ⊢ α = β ⇒ ÎCA(α)

.
= ÎCA(β)

The relation ⊢ is the classical derivation relation from equational logic. It
meas that α = β can be derived from the axioms of the CA algebra using the
derivation rules of reflexivity, symmetry, transitivity, and substitution. We
use induction on the derivation and prove as base case that the implication
holds for the axioms of CA. The rooted trees in the theorem are only pruned
trees. Thus, after the standard interpretation generates a tree, then the tree
is pruned. The inductive step considers the derivation rules.

For the converse implication (⇐) of the theorem we need to prove that
the standard interpretation restricted to pruned tress ÎCA is an isomorphism

12The counterexample is ÎCA(a + 0) 6= ÎCA(a) ∪ ÎCA(0).
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up to the axioms of the CA algebra. This means that if ICA(α) is applied
to action α it returns a normal rooted tree Tα which is then pruned and
from the pruned tree one can get by applying an inverse function another
action α′. The obtained action α′ has to be equal by the axiom system of
Table 3 with the original action α = α′. Having the isomorphism up to, then
from two actions α and β we get the same tree Tγ from where we translate
back using the inverse mapping, to the same action γ = α = β which is our
conclusion.

First we take the usual way of defining a relation induced by the equality
on action terms and the derivation relation ⊢.

Definition 2.10. Consider the relation ≡⊆ TCA × TCA defined as:
α ≡ β ⇔ CA ⊢ α = β

The proof that ≡ is a congruence is classical and uses the deduction rules
and we leave it to the reader.

The rest of the proof is based on the following lemma which essentialy es-
tablishes the existence of the inverse function of the standard interpretation,
thus proving that ÎCA is an isomorphism up to ≡.

Lemma 2.10 (Existence of the inverse of the interpretation).
There exists a map Î−1

CA : RT pruned → CA which is the inverse map up to

≡ of ÎCA.

Proof: The proof of the lemma involves three parts:

1. ∀T̂ ∈ RT pruned then ∃α ∈ CA s.t. Î−1
CA(T̂ ) = α.

2. ∀T̂1
.
= T̂2 then Î−1

CA(T̂1) = Î−1
CA(T̂2).

The first two guarantee that Î−1
CA is a correctly defined function and

their proof will be part of the construction of Î−1
CA.

3. Î−1
CA ◦ ÎCA = Id/≡ i.e. ∀α ∈ CA then Î−1

CA ◦ ÎCA(α) = α′ and α ≡ α′.

We define Î−1
CA as the restriction of the function I−1

CA : RT → CA to
RT pruned the set of pruned trees. Note that one should not regard the no-
tation I−1

CA as the inverse function of ICA, our intension is just to keep an
intuitive notation. The construction of I−1

CA is first done for the basic trees
and in the second stage it is extended homomorphic to the tree operators.
The set of basic trees (nontrivial ones) contains the trees with only one edge
labeled with a basic action or τ ; i.e. {TB = ({r, n}, {(r, δ, n)}, {δ}) | δ ∈
AB ∪ {τ} and n : W or n : B}. The Prune function transforms all basic
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trees with black nodes and a label a 6= τ into a basic tree with label τ . This
means that Î−1

CA is applied only to trees with labels a 6= τ and white nodes
for which it returns the action a ∈ AB, the tree labeled with τ and white
node for which it returns action 1, and to the tree labeled with τ and black
node for which it returns action 0.

The extension of I−1
CA to the tree operators is natural:

• I−1
CA(T1 ∪ T2) = I−1

CA(T1) + I−1
CA(T2)

• I−1
CA(T1̂ T2) = I−1

CA(T1) · I
−1
CA(T2)

• I−1
CA(T1 ‖ T2) = I−1

CA(T1)&I
−1
CA(T2)

With this construction we have proven that I−1
CA is defined on the whole

domain RT and thus Î−1
CA is defined on the whole RT pruned. Now we have

to prove that it returns a unique value for each input, in order to call it a
function.

Note that the definition of Î−1
CA does not take into consideration the names

of the nodes of the trees thus, for any two trees T̂1
.
= T̂2 it will return the

same action. It remains to show that if two trees are equal in the usual sense
(T̂1 = T̂2) then the function Î−1

CA returns the same action. This is obvious as
two equal trees have the same nodes, the same edges (with the same labels),
and thus the same structure. It does not matter the order of the edges of
a node or the order of the basic labels in a compound label, but these are
dealt with at the level of the actions by the commutativity of the + and the
commutativity of the & operators. Consider just the following case when
two branches of a tree are interchanged so to give a second tree. This gives
the same action in the algebra modulo commutativity axiom. We conclude
that Î−1

CA is a well defined function.

Lemma 2.11. Function Prune preserves the relation ≡ on actions, meaning
that ∀T ∈ RT if Prune(T ) = T̂ then I−1

CA(T ) ≡ I−1
CA(T̂ ).

From Lemma 2.11 we conclude the following useful congruences:

I−1
CA ◦ ICA ≡ I−1

CA ◦ ÎCA (22)

which by restriction implies

I−1
CA ◦ ICA ≡ Î−1

CA ◦ ÎCA (23)

The proof of part 3 of Lemma 2.10 uses structural induction on the struc-
ture of the action α. Proving part 3 we prove that Î−1

CA is the isomorphic image

of ÎCA up to the congruence on actions ≡.

27



n1 : W n1 : W

r : W r : W

n2 : B

ICA ÎCA

τ aa
Prune

Figure 5: Example of applying the isomorphism ÎCA.

Consider as an example the special case when α = a+0 which is pictured
in Figure 5. ICA(α) = ({r, n1, n2}, {(r, a, n1), (r, τ, n2)}, {a, τ}) with n1 :
W and n2 : B. Applying the Prune function we obtain the tree T̂α =
({r, n1}, {(r, a, n1)}, {a}), where applying the Î−1

CA we obtain the action a ∈
CA. We have that CA ⊢ a + 0 = a as an instance of the axiom (3) of Table
3 and thus we have our conclusion α = a+ 0 ≡ a = Î−1

CA ◦ ÎCA(α). 2

To finish the proof of the second implication, i.e. ÎCA(α)
.
= ÎCA(β) ⇒

CA ⊢ α = β we make use of Lemma 2.10. From ÎCA(α)
.
= ÎCA(β) we apply

Î−1
CA and obtain α′ = Î−1

CA ◦ ÎCA(α) and β ′ = Î−1
CA ◦ ÎCA(β) with α′ = β ′ as

hypothesis and α ≡ α′ and β ≡ β ′ from Lemma 2.10. Thus we have the
conclusion α ≡ α′ = β ′ ≡ β which is CA ⊢ α = β. 2

We can take another way of viewing the rooted trees as the set of all paths
starting from the root node. This is similar to the way of giving semantics
to actions in process logic [Pra79] where each action is interpreted as a set
of trajectories.

2.3 The Boolean tests

In this section we extend CA with a Boolean algebra of tests to obtain an
action algebra with tests which we denote by CAT ; we follow the work of
Kozen [Koz97] on defining Kleene algebra with tests.

The structure CAT = (CA,B) combines the previous defined algebraic
structure CA with a Boolean algebra B in a special way we see in this section.
A Boolean algebra is a structure B = (A1,∨,∧,¬,⊥,⊤) where the function
symbols (∨, ∧, and ¬) and the constants (⊥ and ⊤) have the usual meaning of
disjunction, conjunction, negation, falsity, and truth respectively. Moreover,
the elements of set A1 are called tests and are included in the set of actions
of the CA algebra (i.e. tests are special actions; A1 ⊆ A). We denote
tests by letters from the end of the Greek alphabet φ, ϕ, . . . followed by a
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question mark ?. Our notation for tests is more related to the notation used
in Propositional Dynamic Logic (PDL).

For a more clear presentation, we abuse the syntax and use, e.g. (φ ∧
ϕ)? instead of φ? ∧ ϕ?. More generally, we consider ? only at the end of
an expression from A1; i.e. if ψ is a test expression generated using any
combination of the constructors of the boolean algebra then the notation for
the test is just ψ?.

The intuition behind tests is that in an action φ? · α formed of a test
φ? followed by an action α is the case that action α can be performed
only if the test succeeds (the condition φ is satisfied). Tests are sometimes
called guards and have been used to model while programs which involve pro-
gramming constructs like loops and conditionals. For example, consider the
if φ then a else b programming construct. We can model this using tests
as: φ? · a + ¬φ? · b. Some other properties of systems could be modelled by
giving equations involving both actions and tests. For example the following
commutative equation φ? · α = α · φ? models an action invariant13; i.e. if φ
is true before action α then we should consider it also true after performing
α.

We do not go into details about the properties of a Boolean algebra as
these are classical results in the literature. For a more thorough understand-
ing see [Koz97] and references therein. In the reminder of this section we
present the relation between tests and actions.

The first relation between the CA algebra and the boolean algebra B is
that ⊤? = 1 with the intuition that testing a tautology always succeeds. The
dual is ⊥? = 0 meaning that testing a falsity never succeeds. Furthermore,
1 ·α = α = ⊤? ·α which is obvious as testing a tautology always succeeds so
the action α can always be performed. For the dual we have 0·α = 0 = ⊥?·α
with the intuition that because testing a falsity never succeeds the action α
is never performed (the sequence of actions stops when it reaches the falsity
test).

We consider the sequence actions as strings separated by · constructor.
With the extension with tests we no longer have strings but guarded strings
[Kap69]. A guarded string (in our algebra) is a sequence of actions interplaced
with tests; e.g. φ1? a φ2? φ3? b φ4? is a guarded string (recall that we
sometimes omit the · for brevity). Moreover, note that is not necessary to
have more tests in a row because the sequence of test actions from CA algebra
is pushed inside the boolean algebra and shrunken into only one test with
the use of conjunction operator of B; e.g. φ2? φ3? = (φ2 ∧ φ3)? . Thus a

13Performing any action α does not affect the truth value of proposition φ.
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guarded string is an alternation of tests and actions:

φ0? α1 φ1? . . . αn φn? (24)

Note that a normal string of actions is a guarded string where instead of tests
φi? we have the tautology test ⊤? = 1.

For a better intuition of tests and actions we give the following example.
Take the test φ? to be: ”The bank account is less than 500$”, and an action
a of ”deposit 1000$”. We can give the more complex action φ? · a which
states that ”when the bank account is less than 500$ deposit 1000$ into the
account”. Another example is: φ? to test that ”The bank account is less
than 500$” and ϕ? to test that ”The bank account is greater than 500$”.
The complex test (φ ∧ ϕ)? which (because ϕ = ¬φ) is an instance of the
general falsity test (φ ∧ ¬φ)? never succeeds. The example is that whenever
one waits to ”deposit 1000$” after the test (of falsity) (φ∧ϕ)? succeeds then
the action of depositing the money will never be performed.

We extend the definition of the length function to apply it also to tests.
As we have seen the relation between 1 and ⊤? we consider the length of a
test is 0; i.e. l(φ?) = 0. In other words, the length function does not take
into consideration the tests; e.g. l(φ? a) = l(φ? a ϕ?) = 1. Moreover, the
position syntax α(n) skips the tests; e.g. if α = φ1? a φ2? φ3? b φ4? then
α(2) = b.

Other relations between CA and B are:

1. concurrent composition of two tests φ?&ϕ? is (φ ∧ ϕ)? which is the
same as the sequence of two tests.

2. concurrent composition of a test and an action φ?&a or a&φ? is the
same as the sequence of the test and the action φ? · a. An intuitive
motivation for this is that when performing at the same time an action
and a test one expects that the test is satisfied before the completion
of the action; and because we do not have a notion of start and end of
an action we have to consider the test before the action. This approach
is also motivated by the fact that an action can change the world and
thus the test may hold no longer.

3. concurrent composition of two sequence actions each formed of one test
followed by an actions; i.e. (φ? · a)&(ϕ? · b) which is (φ ∧ ϕ)? · a&b.
Note that this way of concurrently composing sequence of tests and
actions conforms with the axiom (17) of CA. More precisely, recall
that the length function (and the position syntax) for guarded strings
of actions do not take into consideration the tests. Thus, in the general
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concurrent composition of two guarded strings φ0? α1 φ1? . . . αn φn?
and ϕ0? β1 ϕ1? . . . βm φm? the axiom considers pairs of (φ0? ·α1)&(ϕ0? ·
β1).

Example 2.1. Let us consider some simple examples.

i. The action a&(ϕ? ·b) is an instance of the case 3. above where action a
is preceded by test ⊤?. Thus, the action is the same as (⊤∧ϕ)?·(a&b) =
ϕ? · (a&b).

ii. An example of the distributivity axion (9) of Table 3 is the action (a+
φ?) · b which is equivalent to a · b+ φ? · b.

iii. The action (a&φ?) · b transforms using the case 2. above into φ? · a · b.

The syntactic structure of the actions in CAT is given through defining
the term algebra TCAT . In the following we define inductively two kinds of
terms: the boolean terms and the action terms. The carrier set of the term
algebra TCAT is the set of all action terms.

Definition 2.11 (action terms of CAT ).

1. ⊤? and ⊥? are boolean terms;

2. if φ? and ϕ? are boolean terms then (φ ∧ ϕ)?, (φ ∨ ϕ)?, and ¬φ? are
boolean terms;

3. nothing else is a boolean term;

4. any boolean term is an action term;

5. any basic action a ∈ AB is an action term;

6. if α and β are action terms then α&β, α · β, and α + β are action
terms;

7. nothing else is an action term.

2.4 Standard interpretation of CAT over guarded rooted

trees

In this section we extend the rooted trees of Section 2.2.1 with tests and call
them guarded rooted trees. On this trees we give the standard interpretation
of the CAT algebra.
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Figure 6: Example of concatenation of two guarded rooted trees.

The extension is simple by associating with each node a boolean expres-
sion φ. We denote the new nodes by n : {φ} where φ is generated by the
Boolean algebra B of Section 2.3. The two colors of the nodes are now special
cases in the extended trees: a white node is n : {⊤} and the black node is
n : {⊥}.

All the constructions for rooted trees are the same with minor modifica-
tions. The operators ∪, ,̂ and ‖ for guarded rooted trees when combining two
nodes n1 : {φ} and n2 : {ϕ} make the conjunction of the Boolean expressions
into n12 : {φ ∧ ϕ}. The pruning procedure also adheres to this conjunction
of the Boolean expressions of the two nodes that need to be combined.

Example 2.2. We give in Figure 6 an example of concatenating two trees;
the first representing an action a and the second consisting of an empty label
τ and a test φ. The resulting guarded rooted tree represents the action of
performing a after which the Boolean expression φ is tested. Note that in a
first step the two trees are just combined using the concatenation operation
and only afterwards the tree is pruned by removing the τ edge. In the first
step the combination of the nodes n1 and r2 into m gives the expression
⊤∧⊤ = ⊤. After pruning of the tree the nodes m and n2 are combined into
p with the resulting conjunction ⊤∧ φ which is the same as just φ.

The standard interpretation of CAT algebra over the guarded rooted trees
is given through a map ICAT which maps every action term of TCAT into a
guarded rooted tree and preserves the structure imposed by the constructors.
ICAT is the same as ICA of Section 2.2 with the following differences:

1. for basic actions a ∈ AB the white nodes of the trees are replaced by
nodes with the ⊤ expression inside; i.e. r : {⊤} and n : {⊤}.

2. the special actions 1 and 0 have the white nodes replaced with ⊤ and
the black node with ⊥; i.e. n1 : {⊤} and n0 : {⊥}.
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3. the tree operators are changed as discussed above.

4. the major difference is that ICAT interprets test φ.

ICAT (φ) = ({r, n}, {(r, τ, n)}, {τ}) and n : {φ} is the tree with one edge
labeled with τ and the leaf node has φ inside.

As we have discussed there is only one test needed between any two
actions in the CAT algebra. At the level of the guarded trees this is respected
because of the pruning and of the conjunction of the expressions inside the
combined nodes. The interpretation of tests gives trees with hight 0 (as we
have seen for 1 and 0 earlier). Note that we can still interpret an action
formed of only one test.

We conjecture here that the algebra CAT is complete with respect to the
guarded rooted trees, and the proof is similar to the proof of the correspond-
ing Theorem 2.9 for CA algebra.

2.5 Canonic Form of Actions

One of the purposes of the investigation of the algebra in this report is to be
able to give a natural notion of action negation. There have been a few works
related to negation of actions [Mey88, HTK00, LW04, Bro03]. In [Mey88], the
same as in [HTK00] action negation is with respect to the universal relation
which, for example for PDL gives undecidability. Decidability of PDL with
negation of only atomic actions has been achieved in [LW04]. A so called
”relativized action complement” is defined in [Bro03] which is basically the
complement of an action (not with respect to the universal relation but)
with respect to a set formed of atomic actions closed under the application
of the action operators. This kind of negation still gives undecidability when
several action operators are involved.

It is known that for regular expressions there is no standard normal form;
for example, see the Starr-Height problem [Egg63] which looks at regular
expressions normal forms from the perspective of Kleene ∗. Similarly, there
is no action normal form for the action algebra of PDL.

A first attempt to identify a normal form for the classical action operators
of Kleene algebra choice ∪, sequence ;, and Kleene star ∗ underlying PDL is:

α = ∪
a∈A

a;α′

where α is a compound action, a is an atomic action, A is a subset of atomic
actions, and α′ is in normal form. For the semantics of actions given with
trajectories, as in Process Logics [Pra79] this way of representing actions
gives all the trajectories of an action.
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The problem with this definition is that it takes into account the ∗ oper-
ator which has an infinitary interpretation as the reflexive transitive closure
on binary relations. Looking at its unfolding a∗ = 1+a+a ·a+ . . . it respects
the normal form above. But, when we take one of the equations that define
it; a∗ = 1+a ·a∗ it is clear that we can not prove the existence of the normal
form. This is because the normal form of α = a∗ would be based on the fact
that α′ = a∗ is in normal form, and we get nontermination.

For our action algebra CAT defined in Section 2 we have a canonic form
similar to the one above. The definition below shows how any action term
constructed by the term algebra TCAT can be written in a concise and clear
way.

Definition 2.12 (canonic form for CAT ). For any restricted action α defined
with the operators +, ·, &, and ? it exists a canonic form denoted by ACF α

and defined as follows, where αi
& ∈ A&

B or αi
& is a test and αi is a compound

action in canonic form.
α = +

i∈I
αi

& · αi

The indexing set I is finite as the compound actions α are finite; i.e. there
is a finite number of application of the + operator.

Theorem 2.12 ([PS07a]). For every action α of the algebra CAT we have
a corresponding ACF α.

2.6 Action negation as a derived operator

A natural and useful view of action negation is to say that the negation α
of action α is the action given by all the immediate trajectories that take
us outside the trajectory of α [BWM01]. With ACF α it is easy to formally
define α.

Definition 2.13 (action negation). The action negation is denoted by α and
is defined as:

α = +
i∈I

αi
& · αi = +

γ∈R

γ + +
i∈I

αi
& · αi

Consider R = {αi
& | i ∈ I}. The set R contains all the negation of the tests

in R together with the concurrent actions γ with the property that γ is not
more demanding than any of the actions αi

&:

R = {(¬φ)? |φ ∈ R} ∪ {γ | γ ∈ A&
B, and ∀i ∈ I, αi

& 6≤& γ}.
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We include action negation as a derived operator of the CAT algebra.
Action negation may be considered as a function : A → A which takes as
argument a compound action in canonic form and returns another compound
action (i.e. action negation is not a constructor of the algebra).

In the construction of the set R we include several things. First we look
at the negation of a single test φ? (i.e. when αi

& is the test φ?) which is just
the negated test in the Boolean algebra (¬φ)?. Therefore, the negation of
skip 1 = ⊤? =⊥? = 0 is the violation action and vice-cersa 0 = 1.

Let us take one particular case of the negation of the choice between two
basic actions a+ b. Any action which does not ”contain” neither a nor b is
part of the negation of a+ b; e.g. a&c 6∈ a + b, but c, c&d ∈ a+ b. Formally,
any concurrent action β ∈ A&

B with the properties that a 6≤& β and b 6≤& β is
a negation of a+ b. A more clear understanding of action negation will come
after reading the proof of Proposition 3.11 which gives a characterization of
action negation in terms of traces of actions.

The negation of a action says intuitively that the action which is negated
is not executed. This is why we do not include in the negation of an action
(eg. a) a concurrent action which is more demanding than a, i.e. contains a
(eg. executing action a&b means that action a is executed, so it cannot be
included in the negation of a).

From Example 1. consider the negation p+ d&ne of the action “pay or
delay and notify by e-mail”. Any action γ which does not ”contain” neither
p nor d&ne (i.e. p 6≤& γ and d&ne 6≤& γ) is part of the negation of p+d&ne;
e.g. p&ebl 6∈ p+ d&ne, but d, ebl , d&ebl ∈ p+ d&ne.

Discussion: We elaborate here on a discussion we had [PS07c] about the
nature of action negation. Literaly one may consider two kinds of action
negation: one “anything else but a” and another “not doing a”. We choose
the first type as in our setting the second type of action negation is not found.

We consider active systems which are systems that always do an action.
It is simple to model passivity by action 1 skip. If we add time for actions
(i.e. the duration of an action) and with time it is natural to model idling
by the skip action with a certain duration. Thus, not doing action a may
be represented by doing action skip or may be represented by doing another
explicit action. When adding time the “doing” of an action will become more
complicated.

Proposition 2.13 (action negation is an action).
The negation operator returns an action.
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Proof: We have to prove that the action returned by the negation operation
is indeed an action of CAT . This means that we need to prove that there is

no infinite branching and also no infinite depth in the action negation. This
is fairly simple to see.

As the actions α are finite then they have finite branching, thus the in-
dexing set I is finite. Therefore the only possible source of infinite branching
is R. On the other hand R is a finite set because it contains elements of A&

B

which is finite and for each test φ? it contains a test ¬φ? thus a finite number
of tests also.

It remains to argue that α has finite depth. The first part of the action
negation (i.e. +γ∈R γ) introduces only finite branches. Actually this is the
part which ends each branch of the action negation. Therefore the only
source of infinite depth may be the second part (i.e. +i∈I αi

& · αi). Note
that the definition of action negation is a recursive one and also note that it
goes stepwize; meaning at each recursion step it decreases the length of the
action it applies to. Naturally at some point (because the action α has finite

depth) αi will become 1. At this point the recursive application of stops
in a 0 action. 2

Note: The negation of an action α from Definition 2.13 is in canonic form.
It respects the canonic form because it is a choice between sequences of a
action (i.e. γ or αi

&) which is only a basic actio, a concurrent action or a
test; and each of these are followed by a action which is also in canonic form
(i.e. respectively 1 and αi which is in canonic form by structural induciton).

Definition 2.14 (representation independence). Consider a set S equiped
with an equivalence relation =. We call a function f : S → S independent

of the representation iff ∀a, b ∈ S then if a = b implies f(a) = f(b).

Intuitively, if a function is independent of the representation (of the ele-
ments in its domain) it means that it takes all elements from one equivalence
class to the same (possible different) equivalence class. In other words the
result of the application of the function on any of the elements of an equiva-
lence class is the same (i.e. is in the same equivalence class) as the result of
the application of f on the representant element of the equivalence class.

Consider the dynamic box modality of CL as a function [ ]C : CAT → CL
thich takes as argument an action of the CAT algebra (N.B. not an action
of PDL; i.e. not having the Kleene ∗ operator) and returns a formula in the
CL logic. It is proven in Proposition 3.10 that the box modality is indeed
independent of the representation of the actions. On the other hand the
next result is a negative one as it shows that the negation operator is not
independent of the representation.
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Proposition 2.14. The function : A → A is not independent of the
representation of the actions of A.

Proof: The proof is immediate by considering a counterexample. Take
the actions a and a+ b · 0 where AB = {a, b, c} contains three basic actions.
Obviously a = a + b · 0 by axioms (7) and (3). Then by Definition 2.13 we

have that a = c + b + b&c + a · 0
(7),(3)
= c + b + b&c and that a+ b · 0 =

c + a · 0 + b · 1
(7),(3),(6)

= c+ b. Note that the the first = sign is to show what
returns the function, where the second = sign represents the equality over
actions from the CAT algebra. Obviously c+ b+ b&c 6= c+ b which ends our
proof. 2

The following result proves some properties of the action negation we
have. The same properties hold for the action negation of [Mey88].

Proposition 2.15 (properties of action negation). The following hold:

α = α (25)

α · β = α + α · β (26)

Proof: We prove first property (25). Consider α = +i∈I αi
& ·αi in canonic

form. Then the negation α is:

α = +γ∈R γ + +i∈I αi
& · αi

= +γ∈RI
γ · αγ where RI = R ∪ {αi

& | i ∈ I} and

αγ = 1 if γ ∈ R

αγ = αi if γ ∈ {αi
& | i ∈ I}

All we did above is just to rewrite the α in a notation which would help
us to reason easier further. Consider now α which is:

α = +γ∈RI
γ · αγ

= +
γ∈RI

γ + +γ∈RI
γ · αγ

with RI = {γ | γ ∈ A&
B, and ∀γ′ ∈ RI , γ′ 6≤& γ}. It is easy to see that

RI = ∅. Consider ∃γ ∈ RI then by the definition of RI it means that
∀i ∈ I, αi

& 6≤& γ. On the other hand this implies, by the definition of R that

γ ∈ R. This is a contradiction with the supposition that γ ∈ RI because it
is violates the condition that ∀γ′ ∈ R, γ′ 6≤& γ.

Because RI = ∅ the double negation becomes:
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α = +γ∈RI
γ · αγ where RI = R ∪ {αi

& | i ∈ I} and

αγ = 1 if γ ∈ R

αγ = αi if γ ∈ {αi
& | i ∈ I}

= +γ∈R γ · 1 + +i∈I αi
& · αi

= +γ∈R γ · 0 + +i∈I αi
& · αi

(7),(3)
= +i∈I αi

& · αi.

By structural induction we know that αi = αi and thus we finish the
proof of property (25).

We continue by proving property (26). Consider α = +i∈I αi
& · αi in

canonic form, then:

α · β = (+i∈I αi
& · αi) · β

(9)
= +i∈I αi

& · αi · β.

Therefore the negation is:

α · β = +i∈I αi
& · αi · β

= +γ∈R γ + +i∈I αi
& · αi · β.

On the other hand we have that:

α+ α · β = +γ∈R γ + +i∈I αi
& · αi + +i∈I αi

& · αi · β

= +γ∈R γ + +i∈I αi
& · (αi + αi · β).

By induction on the structure of α we have that αi · β = αi + αi · β and
thus the proof is finished.

Note: The negation of α·β behaves as follows. It first unfolds by negation
the action α until it reaches the ends of each branch; i.e. reaches αi = 1.
At the end of each branch of α it is found β and thus the second member of
the choice; i.e. α · β. One thing remains to notice is that the negation of α
contains some branches which are exacly the branches of α but ending in a
0, and these branches are not contained in the negation of α ·β. Even so, by
applying the axioms (7) and (3) these extra branches dissapear. 2

After reading the proof above we observe easily the following corollary
which explains how the action and its negation should be viewd complemen-
tary (notion which becomes more clear after reading the proofs of Proposi-
tions 3.11 and 3.12).

Corollary 2.16. There always exists an action equal to the negation α which
does not contain any full path of the negated action α. That is because when-
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Contract := D ; C
C := CO | CP | CF | C ∧ C | [β]C′ | 〈β〉C′ | ⊤ | ⊥
C′ := φ | C
CO := OC(α) | CO ⊕ CO

CP := P (α) | CP ⊕ CP

CF := FC(α) | CF ∨ [α]CF

α := 0 | 1 | a | α&α | α · α | α + α
β := α | β∗ | C?

Table 4: CL syntax including the actions.

ever we reach the end of a path in the original action it means that we reach
a 1 action as αi. When negating αi = 1 = 0 that branch ends in 0 which
may propagate upwords by axiom (7) α · 0 = 0 and may dissapear eventually
by axiom (3) α + 0 = α.

3 Direct semantics of CL

In [PS07b] we have given an interpretation for CL with the help of a trans-
lation function into Cµ, an extension of µ-calculus we gave for this purpose.
In this section we give two direct semantics for the CL language using the
CAT algebra.

First we give a branching semantics in terms of normative structures.
This semantics is intended for model checking and for reasoning about the
contracts written in CL.

The second semantics is a linear semantics in terms of respecting traces of
actions. It is more poor14 than the branching semantics, as the structures (i.e.
action traces) cannot carry all the information that a normative structure
carries. The purpose for the linear semantics is to do run-time monitoring of
contracts written in CL.

The section ends by studying the relation between the two semantics.
We have seen the actions studied in the CA algebra. By now we have a

more clear view over the syntax of the CL language as we know exacty how
the actions α are constructed. More, we give in Table 4 also the definition
of the actions β from PDL.

14The linear semantics is more restricted in terms of expressivety and does not capture
what the branching semantics does.
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3.1 Branching semantics in terms of normative struc-

tures

We start by defining some preliminary notions. First we give the definition
of a labeled Kripke structure that we use.15

Definition 3.1 (Labelled Kripke Structure). A labeled Kripke structure is
a structure K = (W,R2AB ,V) where W is a set of worlds (states), V : P →
2W is a valuation function of the propositional constants returning a set of
worlds where the constants hold. AB is a finite set of basic labels (called
basic actions), 2AB is the set of sets built with the elements of AB, and
R2AB : 2AB → 2W×W is a function returning for each concurrent action (i.e.
set of basic actions) a set of pairs of worlds (intuitively R2AB gives a relation
on the worlds for each set label).

The rooted trees and the guarded rooted trees are defined as in sections
2.2.1 and 2.4 respectively. We use the notation Tn to denote the subtree of
T with root in the node n of T . Note that we are working only with pruned
trees as in Definition 2.9 which have far less τ labels and black nodes (see
Proposition 2.4). For brevity we always denote by an indexed t a node of a
tree and by an indexed k a world of a labeled Kripke structure. Henceforth we
use the more graphical notation t

α
−→ t′ (k

α
−→ k′) for an edge (transition)

in a tree (Kripke structure) instead of the classical one (t, α, t′) ((k, k′) ∈
R2AB (α)) that we had before. Note that we consider both the guarded rooted
trees and the labelled Kripke structures to have the same set of basic labels
(actions) AB.

Definition 3.2. For a rooted tree T = (N , E,A) and a labeled Kripke struc-
ture K = (W,R2AB ,V) we define a relation S ⊆ N ×W which we call the
simulation of the tree node by the structure node.

tS k iff ∀t
γ

−→ t′ | t, t′ ∈ N , ∃k′ ∈W s.t. k
γ′

−→ k′ ∧ (γ = γ′ ∨ γ <& γ′)
and t′ S k′

The simulation relation on nodes and worlds relates one node t of a tree
with one world k of a Kripke structure on the basis that all the edges (i.e.
actions) from the tree node t can be simulated by a transition (i.e. action)
from the world k. Moreover, the resulting node and world after the action is
executed are also in the same relation. Note that the label of the transition
in K may be more demanding than the label of the edge in the tree T . We
may strengthen this condition:

15The definition is standard, but several definitions of Kripke structures exist in the
literature and we want to avoid confusion.
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Definition 3.3. A strong simulation is denoted by Ss and in the same
conditions as before, it is defined as:

tSs k iff ∀t
γ

−→ t′ | t, t′ ∈ N , ∃k′ ∈ W s.t. k
γ

−→ k′ and
t′ Ss k′

Note that the simulation relation requires that all the edges starting at
the tree node t are simulated by a transition in the Kripke structure. We can
weaken this condition:

Definition 3.4. A partial simulation is denoted by S̃ and in the same con-
ditions as before, it is defined as:

t S̃ k iff ∃t
γ

−→ t′ | t, t′ ∈ N , s.t. ∃k′ ∈ W s.t. k
γ′

−→ k′ ∧ (γ = γ′ ∨ γ <& γ′)

and t′ S̃ k′

The partial simulation may be extended to a strong variant in the same
way as in Definition 3.3. We may now extend the simulations before to relate
trees and structures.

Definition 3.5 (Simulation for rooted trees). We say that a rooted tree
T = (N , E,A), with root r is simulated by a labeled Kripke structure K =
(W,R2AB ,V) with respect to a state i of K, denoted T S iK, iff r S i.

Definition 3.6 (Partial simulation for trees). We say that a rooted tree
T = (N , E,A) with root r is partially simulated by a labeled Kripke structure
K = (W,R2AB ,V) with respect to a state i of K, denoted T S̃ iK, iff r S̃ i.

The extension of the definitions before to guarded rooted trees, i.e. where
the nodes are labeled with guards φ is natural. We show below the extension
only for the simulation relation over nodes; the other extensions are done
analogue. For the conciseness of the notation we keep the same simbols for
the extended versions of the relations. Moreover, we do not use explicitely
the guard of the tree nodes when that guard is not important (but one may
understand that a guard exists for that particular node).

Definition 3.7. For a guarded rooted tree T = (N , E,A) and a labeled
Kripke structure K = (W,R2AB ,V) we extend the relation S ⊆ N ×W to
labeled tree nodes.
t : {φ} S k iff k ∈ V(φ) and ∀t

γ
−→ t′ | t, t′ ∈ N , ∃k′ ∈W s.t.

k
γ′

−→ k′ ∧ (γ = γ′ ∨ γ <& γ′) and t′ : {φ′} S k′

Definition 3.8 (Simulation for guarded rooted trees). We say that a guarded
rooted tree T = (N , E,A) with root r is simulated by a labeled Kripke struc-
ture K = (W,R2AB ,V) with respect to a state i of K, denoted TSiK, iff
r : {φ} S i.
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Simulation of a labeled Kripke structure by a guarded rooted tree (i.e.
the other direction of the simulation) is not possible to give, as in structures
there may be cycles, wheres the finite trees have not. We see later that
the simulation we have defined is enough for giving the semantics of the CL
operators.

Definition 3.9 (maximal simulating structures). Whenever TSiK, a tree
T is simualted by a structure K w.r.t. a state i then we call the maximal
simulating structure w.r.t. T and i, and denote it by KT,i

max = (W ′, R′
2AB

,V ′)
the sub-structure of K = (W,R2AB ,V) s.t.:

1. i ∈W ′

2. V ′ = V|W ′

3. ∀t
γ

−→t′ ∈ T then ∀k
γ′

−→k′ ∈ K s.t. tS k ∧ (γ<&γ
′ ∨ γ=γ′) do add k′

to W ′ and add k
γ′

−→k′ to R′
2AB

.

4. nothing else is in KT,i
max

We call the non-simulating reminder of K w.r.t. T and i the sub-structure
KT,i

rem = K −KT,i
max.

We consider a slight variation of a Kripke structure which we call norma-
tive structure and usually denote by KN . All the definitions of simulation
that we defined above hold without change on normative structures. The
notations are also extended naturally to the new notation.

Definition 3.10 (Normative structure). A normative structure is a labeled
Kripke structure as in Definition 3.1 with the following extensions:

• There is a set Pc of special propositional constants Oa and Fa indexed
by the atomic actions of AB (a ∈ AB);

• The transitions are deterministic; i.e. the function R2AB associates to
each label a partial function instead of a relation, therefor for each label
from one world there is at most one reachable world.

The deterministic restriction of our normative structure has been investi-
gated in [BAHP81] as the restriction of PDL to a deterministic structure and
there an EXPTIME decision procedure is given for the satisfiability problem.
The axiom that encodes the determinism of the structure is:

〈a〉C ⇒ [a]C, ∀a ∈ AB

42



PSfrag

a

a

a
a

a

a
a

b

b
b

b

b

c

c d d

d

d

r

r1

r2

i ii iii iv

Figure 7: Examples of finite rooted trees with labeled edges.

We present now a direct semantics for CL in terms of satisfiability w.r.t.
a model and a state. Our model is the normative structure KN .

The semantics of the assertions φ, or the dynamic modalities [·] and 〈·〉
are the classical ones.

KN , i |= φ iff i ∈ V(φ)

KN , i |= [β]C iff ∀k ∈W s.t. (i, k) ∈ R2AB (β) then KN , k |= C.

For 〈β〉C we just need to change the ∀k into ∃k. Recall from dynamic
logic that compound actions β define relations over the worlds of the Kripke
structure starting from the partial functions given for the basic actions by the
R2AB using relation union ∪ for choice +, relation composition ◦ for sequence
· and reflexive and transitive closure ∗ for the Kleene star.

Example: Consider the following example for action negation inside the
dynamic modality: take the set of basic actions AB = {a, b, c, d}, the com-
pound action α = a · (b + c) with the tree of Figure 7-i, and the labeled
Kripke structure KN of Figure 7-iii. The action negation α has the tree in
Figure 7-ii. We want to check if [α]C holds in the structure KN at state r, i.e.
KN , r |= [α]C. The relation defined by α is {d, b, ad, aa, c} (instead of a pair
of nodes we write the corresponding sequence of labels through the tree and
consider the pair of the nodes at the begining and the end of the sequence).
All the nodes from the Kripke structure that are in this relation are {b, ad}
(i.e. r1 and r2). In order for the formula to hold in the structure at node
r it remains that in all these nodes the clause C should hold; essentialy this
means that KN , r1 |= C and KN , r2 |= C.

The propositional connectives have the classical semantics:
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KN , i |= C1 ∧ C2 iff KN , i |= C1 and KN , i |= C2

For the connectives ∨ respectively ⊕ the semantics is similar to the one
for ∧ where we change the word and to respectively or, xor.

More interesting and particular to our CL logic is the interpretation of
the deontic modalities.

KN , i |=OC(α) iff ÎCA(α)SiK
N and

∀t
γ

−→t′ ∈ ÎCA(α), ∀k
γ′

−→k′ ∈ KN s.t. tS k ∧ (γ<&γ
′ ∨ γ=γ′)

then ∀a ∈ AB if a ∈ γ then k′ ∈ V(Oa) and

∀k
γ′

−→k′ ∈ K
ÎCA(α),i
rem

then ∀a ∈ AB if a ∈ γ′ then k′ 6∈ V(Oa)
and KN , i |= [α]C.

Note that because KN simulates the pruned tree ÎCA(α) corresponding
to the action α under the obligation, we are guaranteed that for each edge
t

γ
−→ t′ in the tree there exists at leas one corresponding transition in the

structure.
Notations: we have in the CL language the two special propositions

⊤ and ⊥ (i.e. true and false); we denote by just O(α) the O⊤(α) which
basically means that there is no reparation associated with the obligation.
The semantics of O(α) is the semantics of O⊤(α) and because [α]⊤ is true
in all the states then the last line in the semantical definition of obligation
can be ignored.

For the OC the semantics has basically two parts: the second part is just
the last line and states that if the obligation is violated (i.e. α negation of
the action is executed) then the reparation C should hold. The first part
of the semantics is the interpretation of the obligation. The structure KN

must simulate the tree of the action α; note that it is not strong simulation,
because in the structure there may be transitions labeled with more demand-
ing actions (eg. a&b&c is more demanding than a) which intuitively if we
execute these actions then the obligation in α is still respected. The second
and third lines formalize the fact that for all the transitions of the structure
which simulate edges in the tree it must be that in the ending states k′ there
must be one proposition Oa for each basic action that makes the label of the
simulated edge of the tree. Lines four and five of the semantics interpret the
fact that on any other edges of the structure appear no proposition Oa.

We see how each of the particularities of this semantics helps in provind
the properties of Lemma 3.6 and in proving the Proposition 3.1.
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Fair obligations: We add to the above semantics for obligation a fairness
constraint to obtain what we call fair obligations. Consider the tree unfolding
of the minimal simulating structure w.r.t. a tree ÎCA(α) of an action α, and

denote that by TK
ÎCA(α),
max . Note that the unfolding may give an infinite tree.

We add the fairness condition (27) below to the definition of the semantics
of obligation so to get fair obligations:

∃β s.t. ÎCA(α) ‖ ÎCA(β)
.
= TK ÎCA(α),

max (27)

Because of the completeness of the algebra of actions w.r.t. the interpre-
tation as guarded rooted trees we can give an alternative characterization
of the fairness condition above. The characterization is in terms of actions.
Without loss of generality we can restrict the infinite tree TK

ÎCA(α),
max to a finite

one by removing all the nodes which are below a depth equal to the height of
the tree interpreting α (i.e. ÎCA(α)). Take the action α which is character-
istic for the tree ÎCA(α) and the action γ which is the action corresponding

to the restricted finite tree TK
ÎCA(α),
max . Condition (27) is written as: ∃β s.t.

α&β = γ. We are working on the term algebra at the syntactic level and
thus we can consider the condition above in a term rewriting system given
by the axioms of the CAT algebra. In term rewiting the condition involves
a variable X in place of the β. Thus we have the equality α&X = γ which is
known as the syntactic unification problem which is undecidable in general.

We are interested in having decidability for this problem (i.e. for our
initial fairness condition).

Absorbtion constraint: We add to the fair obligations another constraint
which guarantes that the maximal simulating Kripke structure does not ab-
sorbe the tree of the action α (the action that is obligatory). We say that
a fair obligation respects the absorbtion constraint iff it the following is the
case:

α 6<ab
& β

If the absorbtion constraint is not satisfied then it might be the case that
the β given by the fairness constraint absorbes the α; i.e. α&β = β like in
the case of (a + b)&β = a&b where β returned by the fairness constraint is
(a&b). We see later where the absorbtion constraint is necessary.

Notations: we use (as in dynamic logic [HTK00]) p ⇒ q for [p?]q; in
the CL language we have C1 ⇒ C2 for [C1?]C2. We use C1 ⇔ C2 for C1 ⇒
C2 ∧ C2 ⇒ C1. As is often the case in tableau reasoning we denote negation
of formulas ¬O(a) using implication O(a) ⇒⊥.
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KN , i |= F (α) iff whenever ÎCA(α)S∼
i K

N then,

∀T a subtree of ÎCA(α) s.t. TSiK
N , and ∀σ a branch in T

∃t
γ

−→ t′ ∈ σ s.t.

∀k
γ′

−→ k′ with tS k ∧ t′ S k′

then ∀a ∈ AB if a ∈ γ′ then k′ ∈ V(Fa).

For the F modality we use partial simulation S∼
r between the tree and

the normative structure in order to have our intuition that if an action is not
present as a label of an outgoing transition of the model then the action is
by default considered forbidden. In the second line we consider all subtrees
and for each of them all branches in order to respect the intuition that
F (a + b) = F (a) ∧ F (b), prohibition of a choice must prohibit all. In the
third line we consider just the existence of a node on each path in order to
respect the intuition that F (a · b) = F (a) ∨ 〈a〉F (b), forbidding a sequence
means forbidding some action on that sequence. In the last two lines of the
semantics of F we look for all the transitions of the normative structure from
the chosen node which have a label more demanding than the label of the
tree; this is in order to respect the intuition that F (a) ⇒ F (a&b), forbidding
an action implies forbidding any action more demanding. The semantics of
O, P , or F relates to the trace-based semantics of Process Logic [Pra79] and
to some extent to the modalities of [VdM90].

KN , i |= P (α) iff ÎCA(α)Ss
iK

N , and

∀t
γ

−→ t′ ∈ ÎCA(α), ∀k
γ

−→ k′ ∈ KN s.t. tSs k ∧ t′ Ss k′

then ∀a ∈ AB if a ∈ γ then k′ ∈ V(¬Fa).

Note that for O, P , or F the semantic interpretation “walks” through the
nodes of the whole tree of the action, where in the case of [β] it has to look
only at the nodes at the boundary of the tree (the leaf nodes).

We may see the semantics given in terms of “actions as trees” as a uni-
fication of the two semantics known for Dynamic Logics: the one given in
terms of relations over the states of the Kripke structure, and the other given
in terms of traces over the Kripke structure. The semantics for our language
combines the two: for O, P , or F the semantics is given in terms of traces
where for [·] or 〈·〉 the semantics is given in terms of relations.

We say that a contract C is satisfied in a normative structure KN at
a state w iff KN , w |= C. We say that a contract C is satisfiable w.r.t.
a normative structure KN , and denote it by KN |= C iff ∀w ∈ KN then
KN , w |= C. Satisfiability for contracts, intuitively means that given a model
of a contract in the form of a normative structure then a contract (or contract
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clause) can be respected in a given world w if it is satisfied in that world.
Moreover, a contract can be respected any time in the model (starting in
any world) iff it is respected in any world of the model.

Satisfiability for contracts is interesting as informally it models that fact
that given a contract we ask if there exists some parties (which are the ones
in the contract) with some specific behavior that would respect the contract
(i.e. satisfy the contract). This guarantes that the contract is not some
fictive contract which cannot be respected under any means.

We say that a contract is valid and denote it by |= C iff the contract is
satisfiable in any model; i.e. ∀KN , KN |= C. At an intuitive understanding,
whatever model of a contract one takes the original contract (clause) C will
be respected in any world of this model. Picking any normative structure
KN is the same as saying that we pick an arbitrary valuation function V for
the propositional simbols in the worlds.

We say that a set of formulas ∆ is satisfiable in a model KN and denote
it by KN |= ∆ iff for all formulas C ∈ ∆ we have that KN |= C. We say
that a set of formulas ∆ entails another formula C, and denote it by ∆ |= C
iff ∀KN s.t. KN |= ∆ then KN |= C. We call the theory of ∆ and denote
it by ThN the set of all formulas entailed by ∆; i.e. ThN = {C | ∆ |= C}.
We denote by ‖C‖N the set of all normative structures which are models of
the formula C; i.e. ‖C‖N = {KN | KN |= C}. In contracts terminology we
say that a contract C′ conforms with another contract C iff C′ |= C; i.e. C′

logicaly entails C.
The validity problem for contracts is not so interesting. This makes the

valid contract a not interesting contract. Intuitively it means that this valid
contract cannot be violated. Whatever parties one takes with whatever be-
havior, they will still respect the contract. There is no freedom of contract.

Note that we are using the word “can” when we are talking about satisfi-
ability w.r.t. normative structures because these may contain violating runs.
In next section we expand on violating/accepting runs in the context of nor-
mative automata. If we take as models just the subset of normative automata
which do not contain violating runs then we talk about strict satisfiability.
This means that if a contract is strictly satisfiable then the contract cannot
be violated; i.e. the contract must be respected in the given model.

Satisfiability and validity of contracts are strong related to the tableau
based proof methods. In this direction the work of Rajeev Gore on the TWB
tool [AG07, AGW07] is relevant. The TWB takes as input the syntax of the
logic and the tableau proof rules and returns a proof checker. Following this
work it would be rather straightforward to obtain a proof checker for our CL.

The model-checking problem is interesting in practice as it says: given
a model KN and a contract C is it the case that the contract is satisfied
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by the model; KN |= C? Informally this means that given a contract and
given some specific parties with some particular behavior, the model-checking
problem will decide if the parties will respect the contract. Moreover, the
model-checking problem will give a counter example in case the answer to the
question is negative. The counterexample is used to change the particular
behavior of the parties such that they will respect the contract. Note that
the same contract may be violated if we chnage only one of the parties. This
make the contract rather specific for some particular contracting situation.
This gives freedom of contract.

Another interesting problem related to model-checking and to the sat-
isfiability problem is the problem of finding all the models which satisfy a
contract. This amount to finding all the possible bahaiours of the contracting
parties such that they do not violate the contract.

3.1.1 Properties of the branching semantics

With the above semantics we cannot prove validity of expressions like F (a)∧
(ϕ ⇒ P (a)) which may be intuitive for the reader as (s)he may think of
real examples where some action a is declared forbidden and only in some
exceptional cases (ϕ holds) it is permitted. It is easy to see that there exists
a model in which the formula is not satisfied. This is because the semantics
of F (a) requires to have the propositional constant Fa in a state where the
semantics of P (a) requires to have in the same state the negation ¬Fa which
is impossible. In this case the same intuitive example can be modelled in CL
as (¬ϕ ⇒ F (a)) ∧ (ϕ ⇒ P (a)) which is easily proven valid from a logical
point of view is also more natural.

Proposition 3.1 (Properties of obligations).

OC(a) ∧OC(b) ⇒ OC(a&b) (28)

OC(a) 6|= OC(a&b) (29)

OC(a + b) 6|= OC(a&b) (30)

OC(a&b) 6|= OC(a+ b) (31)

OC(a+ b) 6|= OC(a) (32)

OC(a) 6|= OC(a+ b) (33)

OC(a+ b) 6|= OC(a) ⊕OC(b) (34)

OC(a) ⊕ OC(b) 6|= OC(a+ b) (35)

OC(a&b) ∧ OC(a+ b) ⇒ OC(a&b) (36)

Proof: Proof of (30) follows from (32). Proof of (36) is known from
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classical propositional logic, and it can also be deduced from (28). Proof of
(29) follows from (28).

• Proof of property (28):

The method is the classical one for validity of implication where we need to
look at all and only the models which satisfy the formula on the left of the
implication and make sure that they satisfy also the formula on the right.
We suppose that there exist two obligations enforced at the same time, say
OC(α) and OC(β), where α and β are different compound actions; i.e. ∃K a
normative structure and ∃w ∈ W a world in K s.t. K,w |= OC(α) ∧ OC(β).
We have to prove that the structure satisfies the obligation on the right; i.e.
K,w |= OC(α&β).

We give first a series of helper results.

Lemma 3.2. If K,w |= OC(α) ∧ OC(β) then K
ÎCA(α),w
max = K

ÎCA(β),w
max .

Proof: If K,w |= OC(α) ∧ OC(β) then K,w |= OC(α) and K,w |= OC(β).
From the first we have by the semantics that ÎCA(α) Sw K which means that

there exists the maximal simulating structure K
ÎCA(α),w
max . From the semantics

of OC(β) we obtain similarly K
ÎCA(β),w
max . Both maximal simulating structures

are substructures of the same K. We use the proof principle reductio ad

absurdum and suppose that K
ÎCA(α),w
max 6= K

ÎCA(β),w
max then (without loss of gen-

erality we suppose that) K
ÎCA(α),w
max \ K ÎCA(β),w

max = K ′ 6= ∅. This means that

K ′ ∩ K
ÎCA(β),w
max = ∅ and K ′ ⊆ K

ÎCA(β),w
rem and by the semantics of OC(β) we

know that ∀k
γ′

−→ k′ ∈ K ′ then ∀a ∈ AB if a ∈ γ′ then k′ 6∈ V(Oa). On

the other hand K ′ ⊆ K
ÎCA(α),w
max which by the semantics of OC(α) means that

∀k
γ′

−→ k′ ∈ K ′ then ∀a ∈ AB if a ∈ γ then k′ ∈ V(Oa). This results in a
contradiction and thus we have a contradiction with our initial supposition

forcing us to conclude that K
ÎCA(α),w
max = K

ÎCA(β),w
max . 2

Lemma 3.3. For any pruned trees that satisfy the following: T1 ‖ T2 = T
and T3 ‖ T4 = T then it is the case that T = T1 ‖ T3 ‖ T5.

We would like to use a more familiar notation instead of the general
one from the statement of the lemma so we rewrite it as: for any trees
Tα ‖ Tγ′ = T and Tβ ‖ Tγ′′ = T then we have T = Tα ‖ Tβ ‖ Tγ′′′ . This

general presentation can be then particularized as: ÎCA(α) ‖ T ′ = T and
ÎCA(β) ‖ T ′′ = T then we have T = ÎCA(α) ‖ ÎCA(β) ‖ T ′′′. This particular
instance of the lemma involves pruned trees. There might appear special
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cases from the application of the pruning procedure when the trees of the
actions α and β contain some black nodes or some τ labels on the edges
(which come from the fact that the actions contain in their composition
occurrences of the special actions 1 or 0). The proof of the special cases
require special care for the details in the application of the ‖ operator and
the pruning procedure. We leave these for the interested reader.

Proof: We will use the more familiar notation and sometimes we oversim-
plify the notation for the sake of a more clear and succint presentation. The
proof is based on the definition of the ‖ operator from Section 2.2.1. Note
that the definition of ‖ works on one level of the trees at a time; that is, it
first deals with the edges on the first levels of the two trees and builds from
these the first level of the resulting tree; afterwards it goes on to the lower
levels. Therefore, w.l.o.g. we can look only at the first levels of the trees.
Take α1, α2, . . . , αk to be the labels of the edges on the first level of the tree
Tα; note that there are k edges. Take β1, β2, . . . , βl the labels of the first level
of the tree Tβ.

To prove the lemma we use the proof principle reductio ad absurdum and
suppose that T 6= Tα ‖ Tβ ‖ T ′′′ where the tree T ′′′ is an arbitrary tree. The
supposition is equivalent to saying that the labels on the first level of the
tree T (we will denote these labels of T by τi) are not constructed from the
labels of the tree Tα ‖ Tβ. This may come from several reasons.

First, it may be that none of the labels τi on the first level of the tree
T contain one of the labels on the first level of Tα ‖ Tβ ;16 i.e. say the label
α1 ∪ β1 is not contained in any of the τi.

Take n′ and n′′ to be the number of labels on the first level of the tree T ′

respectively T ′′. From the hypothesis Tα ‖ Tγ′ = T of the lemma we know
that there exit n′ labels on the first level of the tree T which contain α1; we
call them τ i

α1
with 0 < i ≤ n′. Similarly from the hypothesis Tβ ‖ Tγ′′ = T

we know that β1 appears n′′ times in the labels of T which we denote by τ j
β1

.
On the other hand, from the supposition we know that β1 does not appear
in any of the τ i

α1
labels; and similarly α1 does not appear in any of the τ j

β1
.

Also from the hypothesis Tβ ‖ Tγ′′ = T we know that in all τ labels of T
it appears one of the βj labels. This meant that in each of the labels τ i

α1

it appears one of the βj where j 6= 1. W.l.o.g. we consider one of these
labels τ 1

α1
= α1β2γ for some γ which may very well be empty. From the same

hypothesis Tβ ‖ Tγ′′ = T and knowing that α1β2γ is a label from T then it

16Recall that the labels on the first level of the tree Tβ ‖ Tβ are α1β1, . . . , α1βl, . . . , αkβl.
Note that we sometimes just write α1β1 instead of α1 ∪ β1. Some of these labels may be
the same and the operator ‖ combines them into on and makes the join of the two subtrees.
This does not interfeer with the proof of the lemma.
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means that α1γ is a label on the first level of the tree T ′′. This implies that
between the labels τ of T there exist each of the following labels α1γβj with
j 6= 2; i.e. the label α1γ must be attached to each of the βj labels of Tβ

including β1.
Thus we obtain that there exists a label τ which contains α1β1 which is a

contradiction with the initial supposition. Therefore, each of the labels αiβj

of the tree Tα ‖ Tβ are contained in the labels τ of T .
A second way to contradict the lemma is to suppose that it is not the

case that for all pairs αiβj there exits a same label γ such that αiβjγ = τ
is a label on the first level of the tree T . To explain it differently, this
supposition wants to contradict the second ‖ operator in the conclusion of
the lemma (Tα ‖ Tβ) ‖ Tγ′′′ which by the definition it must be that for each γ
a label on the first level of the tree T ′′′ it must be combined with each label
αiβj of the tree Tα ‖ Tβ.

We take an arbitrary pair αiβj, say α1β1 and w.l.o.g. suppose it has some
extra label γ which may be also empty. Thus α1β1γ is a label on the first
level of the tree T . From the hypothesis Tβ ‖ Tγ′′ = T and knowing that β1 is
combined with the label α1γ it implies that all other βj with 1 < j ≤ n′′ must
be combined with the same label. Therefore, the following are also labels τ :
α1β2γ, . . . , α1βlγ. On the other hand, from the hypothesis Tα ‖ Tγ′ = T and
knowing that α1β1γ is a τ label it means that all other αi labels must be
combined with β1γ. Therefore, we also have as τ labels: α2β1γ, . . . , αkβ1γ.

We continue to apply recursively the same reasoning on the new deduced
labels like α2β1γ and we obtain in the end that all the labels αkβl appear
among the labels τ on the first level of the tree T combined with the same
label γ. Thus, the second false supposition is contradicted.

The last way of contradicting the lemma is trivial and it supposes that it
is not the case that all the τ labels of T come from combination by ‖ with
the labels αiβj . More clearly this tries to say that there exit other τ labels
that do not follow the pattern decuced by the first two reasoning we had
before. This cannot be as if there is another label besides αiβjγ, say τ ′ we
have proven by contradicting the first supposition that this must be of the
form αiβjγ

′ and by the second supposition we again get that there exist all
the αiβjγ

′ with 0 < i ≤ n′ and 0 < j ≤ n′′ as labels τ on the first level of the
tree T .

Thus the proof of the lemma is finished. 2

Lemma 3.4. For any actions α, β it is the case that

ÎCA(α) ‖ ÎCA(β) = ÎCA(α&β).
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Recall that ÎCA is not homomorphic with respect to the + operator (as
argued on page 25) but the present lemma proves ÎCA to be homomorphic
with respect to the ‖ operator. Note also that we are working with pruned
trees and we remind the reader of the characterization of pruned trees from
Proposition 2.4.

Lemma 3.5. For any K a normative structure and α, β two distinct actions
we have that if K,w |= OC(α) ∧ OC(β) then ÎCA(α&β) Sw K.

Proof: From the statement of the lemma K,w |= OC(α) ∧ OC(β) by

applying the Lemma 3.2 we get that K
ICA(α),w
max = K

ICA(β),w
max . This implies

that the corresponding trees which unfold these maximal substructures are
the same; i.e. TK

ICA(α),w
max = TK

ICA(β),w
max = TKmax .

Moreover, from the hypothesis of the lemma we get that K,w |= OC(α)
and K,w |= OC(β). Considering the fair obligations constraint it implies
that:

∃T ′ s.t. ÎCA(α) ‖ T ′ = TK ICA(α),w
max

∃T ′′ s.t. ÎCA(β) ‖ T ′′ = TK ICA(β),w
max

From these and knowing that the maximal simulating structures are the
same we get that ÎCA(α) ‖ T ′ = ÎCA(β) ‖ T ′′ = TKmax . By applying the
Lemma 3.3 we get that TKmax = ÎCA(α) ‖ ÎCA(β) ‖ T ′′′. By using Lemma 3.4
we know that ÎCA(α) ‖ ÎCA(β) = ÎCA(α&β). Thus, TKmax = ÎCA(α&β) ‖ T ′′′.

Following the Definition 3.5 of the simulation relation Sw , in order to
prove the conclusion ÎCA(α&β) Sw K we need to prove that (1) r S w and

(2) ∀r
γ

−→ t′ ∈ ÎCA(α&β), ∃w
γ′

−→ k′ ∈ K s.t. γ = γ′ ∨ γ <& γ′ and t′ S k′.
The proof of (1) is immediate from one of the hypothesis of the lemma (say
from ÎCA(α) Sw K).

Using the results above the proof of (2) becomes simple. As ÎCA(α&β) ‖
T ′′′ = TKmax which is the tree unfolding of the substructure of K then it is
simple to see that for any transition r

γ
−→ t′ of the tree ÎCA(α&β) there is a

transition w
γ′

−→ k′ ∈ TKmax which clearly γ = γ′ ∨ γ <& γ′ depending on
T ′′′. The fact that t′ S k′ is true is obvious by applying a similar recursive
reasoning. 2

2

Corollary 3.6. At each moment in the execution of a contract there is one
and only one obligation enforced over a complex action of the form +j(&iaij).

The statement of the lemma is the same to the following statement: At
each state of a normative structure the combination of all the immediate

52



transitions define a unique obligation over the complex action defined by the
corresponding subtree.

With the above semantics we have the following:

Proposition 3.7.

if F (a) then F (a&b) (37)

F (a+ b) iff F (a) ∧ F (b) (38)

P (a+ b) iff P (a) ∧ P (b) (39)

F (a · b) iff F (a) ∨ 〈a〉F (b) (40)

P (a · b) iff P (a) ∧ [a]P (b) (41)

is not the case that if F (a&b) then F (a) (42)

is not the case that if P (a&b) then P (a) (43)

Proof: All are easily proven by following the semantics above and the
classical semantics for the propositional operators. For equation 50 for ex-
ample the proof has to follow the standard way that ∀KN a model of F (a)
we must prove that it is also a model of F (a&b), i.e. if KN |= F (a) then
KN |= F (a&b). 2

Theorem 3.8 (tree model property). If a formula C has a model KN then
it has a tree model T N .

Theorem 3.9 (finite model theorem). If a formula C has a model then it
has a finite model.

Related to Definition 2.14 we have the following.

Proposition 3.10. The function [ ]C : CAT → CL is independent of the
representation of the actions of CAT .

3.2 Linear semantics in terms of respecting traces

The present section is devoted to constructing a semantics for CL with the
scope of monitoring enforcement of contracts. For this we are interested
which actions are respecting the contract and which actions are violating the
contract. More general which sequences of actions (called traces henceforth;
in formalisms modelling programs a sequence of program actions is called an
execution trace) are respecting the contract. We call a trace that respects a
contract a respecting trace.

The roadmap is as follows: we first give a linear semantics for the expres-
sions of CL in terms of respecting traces. This expresses the fact that a trace
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respects (does not violate) a contract clause (expression of CL). Obviously
we do not capture everything that we do with the semantics based on norma-
tive structures of Section 3.1; Theorem 3.14 relates the two semantics. After
having defined which traces do not violate a contract we construct a Büchi
automaton for a contract clause which recognizes all the traces which do not
violate the contract. This automaton is used to monitor the enforcement of
a contract.

We continue by pin-pointing more formally what we understand by a
trace. We follow the many works in the literature which have a presenta-
tion based on traces [Pra79, VdM90, Eme90, Maz88]. Consider a trajectory
denoted σ = (s0, a0, s1, . . . , am, sm+1) as an ordered sequence of subsequent
alternation of states and actions. mσ ∈ N ∪∞ is the length of a trajectory;
note that trajectories may be infinite. When σ is obvious from the context
we use just m instead of mσ. We need to talk both about the states and
about the actions of a trajectory. For this we use two projection functions:
τ which returns just the sequence of actions (a0, . . . , am) of a trajectory and
π which returns the sequence of states (s0, . . . , sm+1). We call τ traces and
π strings. For both traces and strings we use ε to denote the empty trace or
string (or sometimes the empty trajectory). We denote by σ(i) an instance
of a trajectory, by σ(i..j) a finite subtrajectory, and by σ(i..) the infinite sub-
trajectory starting at point i in σ (eg. π(0) is the first state of a trajectory,
τ(m) is the mth action of a trajectory, σ = σ(0..i)σ′ where σ′ = σ(i + 1..)).
These notions are similarly defined for traces and strings.

A trajectory (and naturally a trace or string) is finite iff the length
m 6= ∞, and infinite otherwise. Runtime monitoring is supposed to monitor
systems that run forever. This means monitoring infinite traces. In many
cases it is useful to give results for systems that halt/fail/abort/deadlock.
This means giving answers regarding finite traces. These finite traces are
special in the sense that they should indicate somehow that the system has
stopped unnatural and that nothing can happen after it stops. We follow
Pratt [Pra79] and denote a special finite trace like this as ending in a special
action denoted Λ. We call such traces failing traces (or trajectories). The
concatenation of two trajectories σ′ and σ′′ is denoted σ′σ′′ and is defined
iff the trajectory σ′ is finite and not failing and π′(m) = π′′(0) (i.e. the
last state of σ′ is the same as the first state of σ′′). If σ′ is failing then the
concatenation σ′σ′′ is just σ′ as no observations can be done after a failing
action. Concatenation is naturally extended to traces or strings; in the case
of traces it is not the case to test the last and first actions, but in the case
of string this is still required to test the last and first states.

The actions of a trace may be concurrent actions. We denote by α& ∈
AB ∪ A&

B actions which are either basic actions or concurrent actions (i.e.
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compount actions generated from basic actions by using only the & operator).
We denote by {α&} ⊆ AB the associated set of basic actions which form the
concurrent action α&. This is in accordance witht both the actions we defined
for normative structures and for the guarded rooted trees. Henceforth we
consider τ(i) = {a, b, . . .} as a set of basic actions. Consequently we introduce
an enclosing relation over traces defined as τ ⊇ τ ′ iff ∀i ∈ N, τ ′(i) ⊆ τ(i)
where ⊆ is the classical set inclusion. Note that this definition requires that
mτ ≥ mτ ′ . When we use the relation over trajectories σ ⊇ σ′ we understand
it over the associated traces τ ⊇ τ ′.

We define a trajectory model M = (σ,V) corresponding to a trajectory σ
as a pair formed of the trajectory together with a valuation function V : S →
2AP which assigns to each state of the trajectory a set of asserions which are
true in that state. We denote by Sσ the set of states of the trajectory σ
(i.e. the codomain of π) and by Aσ the set of actions of trajectory σ (i.e. the
codomain of τ). For brevity we write just S and A when σ is understood from
the context. We denote by Mσ the set of all trajectory models associated to
σ which are obtained by giving different valuation functions.

A trace τ ∈ T is said to be contained by the tree T iff τ represents a path
in the tree (i.e. τ(0) = r). Recall that we called a full path of a tree a path
which ends in a leaf of the tree, and a subpath is one that does not end in a
leaf. Naturally, any trace τ which is contained in a tree ICA(α) of an action
α is finite as the trees are of finite depth (see Section 2.2.1). A trajectory is
contained in a tree, denoted σ ∈ T iff its associated trace is contained in the
tree, i.e. τ ∈ T . We consider here the set of all trajectories which are full
paths in the tree T and denote it by ‖T‖ = {σ | σ a full path in T}.

Recall the canonic form of an action ACF α = +i∈I αi
& · αi where I is an

indexing set and αi
& can be basic actions a, concurrent actions α&, or tests

(therefore also 1 = ⊤? and 0). In other words αi
& is either a test or a set

of basic actions. For the propositions below we consider negation only over
actions that do not contain tests other than 1 and 0 the equivalent of ⊤?
and ⊥?. Recall the negation of a compound action:

α = +
i∈I
αi

& · αi = +
γ∈R

γ + +
i∈I
αi

& · αi

where R = {γ | γ ∈ A&
B and ∀i ∈ I, {αi

&} 6⊆ {γ}}.

Proposition 3.11 (Characterization of action negation with traces).
The set of traces which are full paths of the tree interpreting the negation

of α = +i∈I αi
& · αi denoted by ‖ICA(α)‖ is equal to the set defined below.

{α} ={σ | σ = σ(0)ε ∧ ∀i ∈ I, αi
& 6⊆ σ(0)}∪

{σ | σ = σ(0)σ(1..) ∧ ∃i ∈ I, s.t. αi 6= 1 ∧αi
& = σ(0) ∧ σ(1..) ∈ {αi}}

55



Proof: The definition of the set of traces is inductive. This is because the
definition of the canonical form of actions is inductive and therefore also the
action negation. The tree ICA(α) is the same as ICA(+i∈I αi

& · αi) which is
ICA(+γ∈R γ + +i∈I α

i
& ·αi). The first part of the action, i.e. +γ∈R γ gives the

full paths of the tree of length 1 (i.e. on the first level). It is simple to observe
that these paths are captured by the first set of traces {σ | σ = σ(0)ε ∧ ∀i ∈
I, αi

& 6⊆ σ(0)}. These are traces with one element σ(0) (i.e. ending in the
empty trace ε) and they respect the same condition like in the definition of R.
Note that when I is a singleton and we have only one α& then the condition
α& 6⊆ σ(0) becomes σ(0)=σ′(0) ∪ σ′′(0) ∧ σ′(0)⊂α& ∧ σ′′(0) ⊆ A&

B\α&. We
read this condition as: the first element of σ (which we recall is a set of basic
actions) has some actions, i.e. σ′(0), among those, but not all, of the basic
actions of α& and the other basic actions, i.e. σ′′(0) are different than those
of α&; i.e. are among A&

B\α&.
The other full paths of length greater than 1 of the tree are given by the

second part of the action, i.e. +i∈I α
i
& ·α

i. All these paths are captured by the
second set of traces which are of length at least 2. All branches of +i∈I α

i
& ·αi

where αi = 1 dissapear. This is because when negating αi = 1 = 0 that
branch ends in 0 which propagates upwards by α · 0 = 0 and dissapears
eventually by α+0 = α. Therefore we are looking only at traces s.t. αi 6= 1.
From these we take the traces which start with the action αi

& (i.e. αi
& = σ(0))

and are followed by a trace (i.e. σ(1..)) which is part of the traces of the
negation of the smaller compound action αi. 2

Note: We can use an equivalent characterization of the traces of length
one where instead of testing for (non)inclusion of sets we can test for nonempti-
ness of set subtraction; i.e. replace {αi

&} 6⊆ τ(0) with {αi
&} \ τ(0) 6= ∅.

Proposition 3.12. Any infinite trace τ of a trajectory is either starting with
a trace bigger w.r.t. ⊇ then a complete path of ICA(α) or it starts with trace
bigger than a complete path of ICA(α).

Proof: The proof is by reductio ad absurdum. If the trace τ ⊇ τ ICA(α)τ ′

starts with a full path of the tree ICA(α) the proof is finished. Suppose it
is not the case that τ ⊇ τ ICA(α)τ ′. This means that ∃i ≤ h(ICA(α)) s.t.
τ(0..i − 1) ⊇ τ ICA(α)(0..i − 1) and for all ways τ ICA(α)(i) of extending the
trace τ ICA(α)(0..i− 1) in the tree ICA(α) it is the case that τ(i) 6⊇ τ ICA(α)(i).
Consider the characterization of the negation of Proposition 3.11. It is easy
to see that the trace τ ICA(α)(0..i − 1)τ(i) is a full path of the tree ICA(α)
interpreting the negation of α because the first part is a trace of the action α
and the last step of the trace respects the condition in the first set of states
of Proposition 3.11. More explicitely, in Proposition 3.11 ∀i ∈ I, {αi

&} means
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that for all branches... each action on the branch must not be less than the
current element of the trace. This is the same as the argument needed above.

Considering that τ ICA(α)(0..i − 1)τ(i) is a full path of ICA(α) and that
τ(0..i − 1) ⊇ τ ICA(α)(0..i − 1) we finish the proof as the trace τ is starting
with the trace τ(0..i) ⊇ τ ICA(α) which is greater than a full path of the tree
interpreting the negation of α. 2

Giving semantics to the assertions or to the propositional and dynamic
connectives of CL is rather standard. We define an entailment relation |=
over pairs (σ, C) of traces and contracts, usually written σ |= C and we say
that “trajectory σ does not violate the contract (clause) C”.

σ |= φ iff φ ∈ V(π(0))

σ |= C1 ∧ C2 iff σ |= C1 and σ |= C2

σ |= C1 ∨ C2 iff σ |= C1 or σ |= C2

σ |= C1 ⊕ C2 iff (σ |= C1 and σ 6|= C2) or (σ 6|= C1 and σ |= C2).

Because we are giving semantics in a linear model (i.e. a trajectory) the
dynamic modality does not behave branching as it does in the semantics
given in terms of normative structures. Moreover the two complementary [ ]
and 〈 〉 colapse to a single modality which for convenience we denote just [α]
(this expresses “after doing action α”).

σ |= [α]C iff σ′ ∈ ICA(α) a full path and σ = σ′σ′′ or
σ′ ∈ ICA(α) a full path and σ ⊇ σ′σ′′ and σ′′ |= C

σ |= 〈α〉C iff σ |= [α]C

The interesting part is the semantics for obligation OC and prohibition
FC operators.

σ |=OC(α) iff ∃σ′ ∈ ICA(α) a full path s.t. σ ⊇ σ′σ′′

or σ |= [α]C.

The obligation operator has two parts: one is the obligation itself O(α) of
a compound action α (which may include choices, sequence, and concurrent
execution at the basic actions level); the second part is the reparation C
in case the obligation is violated (OC(α) is what in the deontic comunity is
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termed as contrary-to-duty, i.e. CTD). Violation of an obligatory action is
encoded by the action negation. The reparation C should be enforced after
executing a trace which is part of the negation of the action α.

A trajectory σ respects an obligation OC(α) if either of the two comple-
mentary (see Proposition 3.12) conditions is satisfied. The first condition
deals with the obligation itself. The trajectory σ respects the obligation
O(α) if it starts with a finite trajectory s.t. each action in its trace includes
the corresponding action of the trajectory σ′ (this is what the operator ⊇ is
defined for earlier). Afterwords it may continue with any trajectory σ′′. The
trajectory σ′ has to be a full path in the tree ICA(α) representing the action
α. Note that it is required only the existsance of a full path σ′ in the tree
ICA(α). Obligation considers only a path of the tree and not the whole tree.
This is because in a choice action α1 +α2 which is obligatory, respecting this
choice obligation means that it must be executed one of the actions α1 or α2.

If this first condition is not respected then the only way of fulfilling the
obligation is to respect the second condition. This simply says that the
trajectory σ must satisfy [α]C. See the proof of Proposition 3.12 for a more
clear understanding of this behavior.

σ |= FC(α) iff ∀σ′ ∈ ICA(α) a full path either
6 ∃σ′′ s.t. σ ⊇ σ′σ′′ or
σ ⊇ σ′σ′′ then σ′′ |= C.

An equivalent definition of the |= relation which is also compositional is
the following.

σ |= [α&]C iff α& ⊆ σ(0) and σ(1..) |= C or
σ(0)=σ′(0) ∪ σ′′(0) ∧ σ′(0)⊂α& ∧ σ′′(0) ⊆ A&

B\α&.

The second line in the definition above is the characterization of the tree
defining the negation of only a concurrent action α&. This characterization
gives the same set of traces as the tree defined by Definition 2.13. The
complete characterization of the action negation in terms of traces is given
in Proposition 3.11.

A short note on the related PDL∩ with intersection of actions. In [BV03]
interpretation of actions is modelled as the intersection of the associated
relations.17 The axiomatization presented there gives as asiom: 〈α ∩ β〉φ⇒
〈α〉φ. One can infer from this the following theorem: [α]φ ⇒ [α ∩ β]φ. In
our linear models there is no more distinction between the existencial and
universal flavours of the two dynamic modalities. On the other hand one can

17The same approach is taken in the other works in the literature on PDL∩ with inter-
section.
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easily see that with the semantics given above if a trajectory σ satisfies [α&]C
then it will also satisfy [α&&β&]C. This means that our semantics preserves
the theorem given for PDL∩.

σ |= [α · β]C iff σ |= [α][β]C.

σ |= [α + β]C iff σ |= [α]C and σ |= [β]C.

σ |= [β∗]C iff σ |= C and σ |= [β][β∗]C.

σ |= [C1?]C2 iff σ 6|= C1 or (σ |= C1 and σ |= C2).

Another theorem which holds in PDL∩ is 〈α〉φ∧〈β〉ϕ⇒ 〈α∩β〉φ∧ϕ. We
easily prove that a similar theorem holds in our semantics, which is natural
considering the intuition:

[α]φ ∧ [β]ϕ⇒ [α&β]φ ∧ ϕ

σ |=OC(α&) iff α& ⊆ σ(0) or σ(1..) |= C.

σ |=OC(α · α′) iff σ |= OC(α) and σ |= [α]OC(α
′).

σ |=OC(α + α′) iff σ |= O⊥(α) or σ |= O⊥(α′) or σ |= [α + α′]C.

The trace σ respects the obligation O(α&) if the first action of the trace
includes α&. Otherwise, in case the obligation is violated,18 the only way of
fulfilling the contract is by respecting the reparation C; i.e. σ |= [α&]C. (See
the proof of Proposition 3.12 in the appendix for a more clear understanding
of this behavior.) Obligation considers only a path of the tree ICA(α) and
not the whole tree. Therefore, respecting an obligation of a choice action
OC(α1 + α2) means that it must be executed one of the actions α1 or α2.

σ |= FC(α&) iff σ(0)=σ′(0) ∪ σ′′(0) ∧ σ′(0)⊂α& ∧ σ′′(0) ⊆ A&
B\α& or

α& ⊆ σ(0) and σ(1..) |= C.

σ |= FC(α · α′) iff σ |= F⊥(α) or σ |= [α]FC(α
′).

σ |= FC(α + α′) iff σ |= FC(α) and σ |= FC(α
′).

18Violation of an obligatory action is encoded by the action negation.
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Recall that O⊥(α) is denoted by just O(α) and is called cathegorical
obligation which must not be violated. The other constructs of CL have the
same semantics as given before.

Guided by the characterization of action negation in terms of traces of
Proposition 3.11 it is easy to give σ |= [α + β]C in a compositional way so
that we do not have to compute the negation of the action α+ β which can
be rather expensive.

σ |= [α&]C iff σ(0)=σ′(0) ∪ σ′′(0) ∧ σ′(0)⊂α& ∧ σ′′(0) ⊆ A&
B\α& and σ(1..) |=C

or α& ⊆ σ(0).

σ |= [α · α′]C iff σ |= [α]C or σ |= [α][α′]C.

σ |= [α + α′]C iff σ |= [α]C and σ |= [α′]C.

Example 1. as traces : Consider the CL formula on page ?? which encodes
the contract clause of the introduction. We give here few examples of traces
of actions which respect the contract clause:

• ebl , p (“exceed bandwidth limit” and then “pay”) which respects the
contract because it respects the top level obligation;

• ebl , d, p, p (“exceed bandwidth limit” and then “delay payment” after
which “pay” twice in a row) which even if it violates the top level
obligation because it does not notify by e-mail at the same time when
“delaying payment”, it still respects the reparation by paying twice;

• p, p, p (“pay” three times in a row) because every trace which does not
start with the action ebl respects the contract.

Examples of traces which violate the clause are:

• ebl , ebl , ebl (constantly exceeding the limit) which violates both the
first obligation and the second one by not paying;

• ebl , d&ne, d (after exceeding the bandwidth limit it constantly delays
the payment) which again violates both obligations.

The relation |= which we call “does not violate” is usually called in clas-
sical logic “models”. This relation is extended to the “semantic entailment”
relation ∆ |= C where ∆ is a set of formulas of our CL logic. The above
notation is read as “the formulas in ∆ semantically entail C”. The semantic
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entailment is defined as: for all trajectories which satisfy all the formulas of
∆ they must also satisfy the formula C (i.e. ∀σ s.t. σ |= C′, ∀C′ ∈ ∆ then
σ |= C). For some ∆, the set of all the formulas C s.t. ∆ |= C is called the
theory of ∆ and is denoted by Thσ∆. We denote by ‖C‖σ = {σ | σ |= C} the
set of all trajectories which are models of (i.e. satisfy) C.

We say that a contract C′ respects another contract C iff ∀σ a run of C′

then σ is also a run of C (e.g. for a contract O(a&b) all the runs respect the
contract O(a) and we can say that O(a&b) respects O(a)).

3.2.1 Properties of the linear semantics

Proposition 3.13 (properties on traces).

O⊤(α) ⇔ ⊤ (44)

OC(a) ∧OC(b) ⇔ OC(a&b) (45)

OC(a) 6|= OC(a&b) (46)

O(a+ b) 6⇔ O(a&b) (47)

O(a+ b) 6⇔ O(a) (48)

O(a+ b) 6⇔ O(a) ⊕ O(b) (49)

if F (a) then F (a&b) (50)

F (a+ b) iff F (a) ∧ F (b) (51)

P (a+ b) iff P (a) ∧ P (b) (52)

F (a · b) iff F (a) ∨ 〈a〉F (b) (53)

P (a · b) iff P (a) ∧ [a]P (b) (54)

is not the case that if F (a&b) then F (a) (55)

is not the case that if P (a&b) then P (a) (56)

Proof: The proofs of these properties is routine. The method is the
classical one for validity of implication where we need to look at all and only
the models which satisfy the formula on the left of the obligation and make
sure that they satisfy also the formula on the right.

For property (45): We must prove two implications. We deal first with
the ⇒ one. Take a trajectory σ s.t. it satisfies the formula on the left, i.e.
σ |= OC(a) and σ |= OC(b). We are in the simple case when we consider basic
actions a and b. We look at the semantics of obligation. If it is the case that
σ(1..) |= C than it is clear that σ |= O(a&b). Otherwise we have the case
when both τ(0) ⊇ a and τ(0) ⊇ b. It implys that τ(0) ⊇ a&b which means
that σ |= O(a&b). The second implication ⇐ is simpler and uses the same
judgement. We leav that to the reader.
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For property (46): This property is expressed in terms of the entailment
relation and it says that it is not the case that OC entails OC(a&b). Proving
such kind of properties requires finding one model which satisfies the formula
on the left and does not satisfy the formula on the right. From classical logic
we know that OC(a) 6|= OC(a) ∧ OC(a), and by property (45) the proof is
finished. 2

3.3 Relating the linear and the branching semantics

Theorem 3.14 (Relating the linear and the branching semantics).
If σ |= C then ∀KN and ∀w ∈ KN s.t. KN , w |= C then σ ∈ KN .

Corollary 3.15. For any formula C we have that

⋂

T N∈‖C‖N

T N = ‖C‖σ.

The corollary intuitively states that the intersection of all the sets of
trajectories denoted by the tree models of the formula C is equal to the set
of trajectories given by the linear semantics.

4 Conclusion

By now we have presented the CL action-based logic which can be used for
reasoning about contracts. Case study examples of how one can use CL for
writing specifications of legal contracts are done elsewhere (e.g. see [PS07c,
PPS07]). The theoretical discourse was concerned only with defining the
semantics of the CL logics. We have give two different semantics (a branching
and a linear semantics) with completely different purposes (respectively run-
time monitoring of contracts and static reasoning about contracts). The
semantics are related in the end of the report which gives confidence in the
correctness of their definitions.

Further work is directed towards building theoretical tool on top of the
two semantics. A first step is in building a tableau proof system for the
branching semantics.

4.1 Related Work

Some of the most known and studied action algebras come from the work
on dynamic logics [Pra76]. We base our work on Kleene algebra which was
introduced by Kleene in 1956 and further developed by Conway in [Con71].
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For references and an introduction to Kleene algebra see the extensive work
of Kozen [Koz81, Koz90, Koz97]. In these research efforts the authors used,
for example, regular languages as the objects of the algebra, or relations
over a fixed set and analyze properties like completeness [Koz94], complexity
[CKS96] and applications [Coh94] of variants of Kleene algebra. Some vari-
ants include the notion of tests [Koz97], and others add some form of types or
discard the identity element 1 [Koz98]. An interpretation for Kleene algebra
with tests has been given using automata over guarded strings [Koz03]. An
introduction to the method of giving interpretation using trees and opera-
tions on trees can be found in [Hen88].
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