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ForewordNWPT'07The obje
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t CREDO: Modeling and analysis of evolutionary stru
turesfor distributed servi
es (IST-33826). The organizing 
ommittee 
onsists of Einar Bro
h Johnsen,Olaf Owe, and Gerardo S
hneider.The workshop attra
ted 40 submissions, of whi
h 30 were sele
ted. There are 3 invited talks:Gilles Barthe INRIA, Sophia-Antipolis Fran
eDavide Sangiorgi University of Bologna ItalyNeelam Soundarajan Ohio State University USAand 52 parti
ipants. The programme 
ommittee 
onsists of:Lu
a A
eto Reykjavík Univ., I
eland/Aalborg Univ., DenmarkMi
hael R. Hansen Te
hn. U. of Denmark, DenmarkAnna Ingolfsdottir Reykjavík Univ., I
eland, and Aalborg Univ., DenmarkEinar Bro
h Johnsen University of Oslo, Norway (
o-
hair)Kim G. Larsen Aalborg Univ., DenmarkBengt Nordström Univ. of Gothenburg, Chalmers Univ. of Te
h., SwedenOlaf Owe University of Oslo, Norway (
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hair)Gerardo S
hneider University of Oslo, Norway (
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al University, EstoniaMarina Waldén Åbo Akademi University, FinlandUwe E. Wolter Univ. of Bergen, NorwayWang Yi Uppsala Univ., SwedenFurther information 
an be found under the workshop homepage: http://nwpt07.ifi.uio.no.FLACOS'07The 1st Workshop on Formal Languages and Analysis of Contra
t-Oriented Software (FLA-COS'07) is held in Oslo, Norway. The aim of the workshop is to bring together resear
hersand pra
titioners working on language-based solutions to 
ontra
t-oriented software development.The workshop is partially funded by the Nordunet3 proje
t �COSoDIS� (Contra
t-Oriented Soft-ware Development for Internet Servi
es) and it attra
ted 32 parti
ipants.The program 
onsists of 5 regular papers and 12 invited parti
ipant presentations. The regularpapers were sele
ted by the following programme 
ommittee:Pablo Giambiagi SICS, SwedenOlaf Owe University of Oslo, Norway (
o-
hair)Anders P. Ravn Aalborg University, DenmarkGerardo S
hneider University of Oslo, Norway (
o-
hair)Further information 
an be found at the workshop homepage: http://www.ifi.uio.no/fla
os07.A
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Certificate translation

Gilles Barthe
INRIA Sophia Antipolis-Méditerranée

Gilles.Barthe@inria.fr

September 27, 2007

Proof Carrying Code (PCC) provides a means to establish trust in a mo-
bile code infrastructure, by requiring that mobile code is sent along with a
formal proof that it adheres to a security policy agreeable by the code con-
sumer. A typical PCC architecture comprises at least the following items: a
formalism for specifying policies, a verification condition generator (VCGen)
that generates proof obligations from the program and the policy, a formal rep-
resentation of proofs, known as certificates, and a certificate checker. While
PCC does not make any assumption on the way certificates are generated, the
prominent approach to certificate generation is certifying compilation, which
generates certificates automatically for safety policies such as memory safety
or type safety. Yet, experience has shown that powerful verification technology,
including possibly interactive verification, is often required, both for basic safety
policies such as exception safety, and for more advanced security policies such
as non-interference and resource control. Thus, there is a need for generating
certificates from program verification environments.

However, verification environments target high-level languages whereas code
consumers require certificates to bring correctness guarantees for compiled pro-
grams. One possible approach to solve the mismatch is to develop verification
environments for compiled programs, but the approach has major drawbacks,
especially in the context of interactive verification: one looses the benefit of rea-
soning on a structured language, and the verification effort is needlessly dupli-
cated, as each program must be verified once per target language and compiler.
A better solution is to develop methods for transferring evidence from source
code to compiled programs, so that verification can be performed as usual with
existing tools, and that code is only proved once.

Certificate translation is a mechanism for bringing the benefits of interac-
tive source code verification to code consumers, using a Proof Carrying Code
architecture, More formally, the goal of certificate translation is to transform
certificates of original programs into certificates of compiled programs. Given a
compiler J.K, a function J.Kspec to transform specifications, and certificate check-
ers (expressed as a ternary relation “c is a certificate that P adheres to φ”,
written c : P |= φ), a certificate translator is a function J.Kcert such that for all

NWPT'07

Page 1



programs p, policies φ, and certificates c,

c : p |= φ =⇒ JcKcert : JpK |= JφKspec

The talk shall provide sufficient conditions for the existence of certificate trans-
lators, and discuss the relation between certification translation, certifying com-
pilation and certified compilation.

The talk is based on joint work with Benjamin Grégoire, César Kunz, Mariela
Pavlova, and Tamara Rezk. The work is funded by the EU project Mobius
http://mobius.inria.fr.
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Some historical remarks on bisimulation and

coinduction�

Davide Sangiorgi

University of Bologna, Italy

Bisimulation. The classical notion of bisimulation is defined on a Labelled Tran-
sition System (LTS) thus, where Σ is the set of all states of the LTS:

a relation R ⊆ Σ × Σ is a bisimulation if
(P1, P2) ∈ R and P1

µ−→ P ′
1

imply:
there is P ′

2
such that P2

µ−→ P ′
2

and (P ′
1
, P ′

2
) ∈ R,

and the converse, on the actions from P2. (1)

Bisimilarity is then defined as the union of all bisimulations. When the states of
the LTS are processes, bisimilarity can be taken as the definition of behavioural
equality for them.

Two important remarks on the definition of bisimilarity are the following:

1. The definition has a strong impredicative flavour, for bisimilarity itself is a
bisimulation and is therefore part of the union from which it is defined.

2. The definition immediately suggests a proof technique: To demonstrate that
P1 and P2 are bisimilar, find a bisimulation relation containing the pair
(P1, P2) (bisimulation proof method).

The definition of bisimilarity is an example of coinductive definition; the bisim-
ulation proof method is an example of coinductive proof method. What makes
make the bisimulation proof method practically interesting are two features of
the definition of bisimulation:

– the locality of the checks;
– the lack of a hierarchy on the pairs of the bisimulation.

The checks are local because we only look at the immediate transitions that
emanate from the states. An example of a behavioural equality that is non-local
is trace equivalence (two processes are trace equivalent if they can perform the
same sequences of transitions). It is non-local because computing a sequence of
transitions starting from a state s may require examining other states, different
from s.

There is no hierarchy on the pairs of a bisimulation in that no temporal
order on the checks is requires: all pairs have the same status. As a consequence,
bisimilarity can be effectively used to reason about infinite objects. This is in
� Sangiorgi’s research was partially supported by italian MIUR Project n. 2005015785,

”Logical Foundations of Distributed Systems and Mobile Code”.
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sharp contrast with inductive techniques, that require a hierarchy, and that
therefore are best suited for reasoning about finite objects. For instance, here is
a definition of equality that is local but inherently inductive:

P = Q if whenever P1

µ−→ P ′
1

there is P ′
2

such that P2

µ−→ P ′
2

and P ′
1

= P ′
2
, plus

the converse, on the actions from P2.
This definition is ill-founded if processes are infinite, that is, can perform an
infinite number of transitions.

The origins. In Computer Science, the standard reference for bisimulation and
the bisimulation proof method is David Park’s paper “Concurrency on Automata
and Infinite Sequences” [Par81a] (one of the most quoted papers in concurrency).
While the reference to David Park is fully justified, mentions to that particular
paper are sometimes questionable.

David Park has been one the pioneers of theoretical Computer Science. For
instance, his contributions to fixed-point theory have been fundamental. David
Park has also been the first in Computer Science to formalise the notions of
bisimulation and bisimilarity. In doing so, Park has completed a line of studies
whose beginning may be dated back in the late 60s (the works by Landin, Manna,
Floyd, and others on program correctness) and that then continued through the
70s, most notably through the work by Milner (such as [Mil70,Mil71,Mil80]).
Park made the final step precisely guided by fixed-point theory. Park noticed that
the inductive notion of equivalence that Milner was using for his CCS processes
was based on a monotone functional over a complete lattice. By adapting an
example by Milner, Park showed that Milner’s equivalence was not a fixed-point
for the functional; he then derived bisimilarity as the greatest fixed-point of
the functional, and the bisimulation proof method from the theory of greatest
fixed-points.

Park’s discovery is only partially reported in [Par81a]. The main topic of
that paper is a different one, namely omega-regular languages and operators
for fair concurrency. Bisimulation only appears as a secondary contribution: a
proof technique for trace equivalence on variants of Buchi automata. Further, the
bisimulation in [Par81a] is not the classical one – for instance it is not transitive –
and, above all, bisimilarity and the coinduction proof method are not mentioned.
Indeed, Park never wrote a paper to report on his findings about bisimulation.
It is possible that this did not appear to him a contribution important enough
to warrant a paper: he considered bisimulation a variant of the earlier notions by
Milner [Mil70,Mil71]; and it was not in Park’s style to write many papers. The
best account I have found of Park’s discovery of bisimulation are the summary
and the slides of his talk at the 1981 Workshop on the Semantics of Programming
Languages [Par81b].

A very important contribution to the discovery and success of bisimulation
is also Milner’s. I have already pointed out that Park’s work was strongly based
on earlier results by Milner. Further, Milner immediately and enthusiastically
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adopted Park’s proposal, and made it the cornerstone of the theory of CCS
[Mil89].

Outside Computer Science, bisimulation was independently discovered, roughly
at the same time, in two other areas: Philosophical Logic (precisely, Modal Logic)
and Set Theory.

In Philosophical Logic, bisimulations, called p-relations, were introduced by
van Benthem in his work on correspondence theory (the study of the relationship
between modal and classical logics), in 1976 [Ben76]. Precisely, van Benthem in-
troduced bisimulation for his theorem stating that a formula of first-order logic
(over Kripke structures) is equivalent to a formula of modal logic iff it is bisimu-
lation invariant (that is, it does not distinguish bisimilar states). Only bisimula-
tion, however, appears in van Benthem’s work: he did not introduce bisimilarity
or the bisimulation proof method (in other words, there is no coinduction). van
Benthem’s definition of bisimulation was based on earlier works by de Jongh and
Troelstra [JT66], and Segerberg [Seg71].

In Set Theory, bisimulation appears at the beginning of 80’s in works devoted
to the the foundations of set-theory, in particular non-well-founded sets. The first
such work is Forti and Honsell [FH83]. Bisimulations are called f-conservative re-
lations. The bisimulation proof method is also introduced, derived from the the-
ory of fixed points. The method is however rather hidden in these works, whose
main goal is to study axioms of non-foundation and prove their consistency (for
this the main technique uses f-admissible relations, which are essentially bisim-
ulation equivalences). In Mathematics, bisimulation and non-well-founded sets
were made popular by Aczel [Acz88], who was looking for mathematical founda-
tions for infinite objects, such as the processes, that the work of Milner and others
had shown to be important in Computer Science. Aczel used the bisimulation
proof method to prove equalities between non-well-founded sets, developed the
theory of coinduction, in particular he set the basis of the coalgebraic approach
to semantics (Final Semantics).

More or less at the same time as Forti and Honsell, and independently from
them, bisimulation-like relations are used by Roland Hinnion [Hin80,Hin81] (a
related, but later, paper is also [Hin86]). Hinnion however does not formulate ax-
ioms of anti-foundation. Thus while imposing the anti-foundation axiom (called
AFA) of Forti-Honsell and Aczel makes equality the only possible bisimulation
for any structure, Hinnion uses bisimulations to define new structures, via a quo-
tient. Constructions similar to Hinnion’s, that is, uses of relations akin to bisim-
ulation to obtain extensional quotient models, also appear in works by Harvey
Friedman [Fri73] and Lev Gordeev [Gor82]. In this respect, however, the first
appearance of a bisimulation relation I have seen is in a work by Jon Barwise,
Robin O. Gandy, and Yiannis N. Moschovakis [BGM71], and used in the main
result about the characterisation of the the structure of the next admissible set
A+ over a given set A. (Admissible Sets form a Set Theory weaker than Zermelo-
Fraenkel’s in the principles of set existence; it was introduced in the mid 60s by
Saul Kripke and Richard Platek with the goal of generalising ordinary recursion
theory on the integers to ordinals smaller than a given “well-behaved” one.) As
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most of the above results, so the Barwise-Gandy-Moschovakis Theorem was in-
spired by Mostowski’s collapse lemma. While the papers [Fri73,Gor82,BGM71]
make use of specific bisimulation-like relations, they do not isolate or study the
concept, not do they introduce bisimilarity.

Earlier on, in Set Theory we find however constructions that have already
a definite bisimulation flavor. A good example of this is Dimitry Mirimanoff’s
pioneering work on non-well-founded sets (e.g., the notion of set isomorphism
introduced in [Mir17]).

Both in Computer Science, and in Philosophical Logic, and in Set Theory,
bisimulation has roughly been derived through refinements of the notion of ho-
momorphism between algebraic structures.

Bisimulation and bisimilarity are coinductive notions, and as such intimately
related to fixed points. More details on the history of bisimulation, coinduction,
and fixed points can be found in [San07].
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19:37–52, 1917.

[Par81a] D. Park. Concurrency on automata and infinite sequences. In P. Deussen,
editor, Conf. on Theoretical Computer Science, volume 104 of Lecture Notes
in Computer Science, pages 167–183. Springer, 1981.

[Par81b] D. Park. A new equivalence notion for communicating systems. In G. Maurer,
editor, Bulletin EATCS, volume 14, pages 78–80, 1981. Abstract of the talk
presented at the Second Workshop on the Semantics of Programming Lan-
guages, Bad Honnef, March 16–20 1981. Abstracts collected in the Bulletin
by B. Mayoh.

[San07] D. Sangiorgi. On the origins of bisimulation, coinduction, and fixed points.
Draft, June 2007.

[Seg71] Krister Segerberg. An essay in classical modal logic. Filosofiska Studier,
Uppsala, 1971.

NWPT'07

Page 7



Design Refinement

Neelam Soundarajan∗

Computer Science & Engineering
Ohio State University, Columbus, OH 43210, USA

September 15, 2007

Refinement has been a central theme of software engineering for many years. Indeed,
the field is often considered to have been born at about the same time as when the concept
of procedural refinement, or stepwise refinement, was initially developed. The concept of
data refinement, developed a few years later, extends the ideas underlying procedural refine-
ment and provides a powerful set of techniques for use by software developers in designing
and implementing ADTs as well as object-oriented (OO) systems1. Equally important, cor-
responding to each refinement concept, suitable reasoning techniques or refinement calculi
have been developed that the software engineer can use to verify the correctness of the refine-
ment steps he or she has performed in the design and implementation of a given system. The
result has been a dramatic improvement in the quality and reliability of software developed
using these techniques.

The thesis underlying the work that this talk is based on is that there is another type of
refinement, design refinement, that corresponds to going from a set of design patterns [1, 2]
to the design of a system or part thereof. Over the last decade and half, design patterns
have indeed fundamentally altered the way we think about the design of large software
systems. This is not surprising since the use of design patterns helps system designers
exploit the collective wisdom and experience of the community as captured in the patterns.
Patterns provide time-tested solutions to recurring problems, solutions that can be tailored
–refined– to the needs of the individual system. But there has been relatively little effort
to develop techniques that software designers can use to demonstrate that their systems,
as implemented, are faithful to the underlying designs, or to check that, as the system
evolves over time, that it does so in a manner that is consistent with the original design.
Indeed, while patterns play a prominent role in the initial design of the system, their role
tends to diminish quickly through the software lifecycle, from implementation to testing to
maintenance and system evolution.

The primary reason for this is that patterns are commonly described in an informal,
although stylized, manner in various pattern catalogs. While such descriptions are of great
value, the ambiguity inherent in them means that different team members of a software
team may have very –or worse, subtly– different interpretations of these descriptions which,

∗Joint work with Jason Hallstrom, Jason Kirschenbaum, Ben Tyler and others
1Interestingly, some of these ideas seem to have been anticipated by the designers of Simula, the original

OO language designed at the University of Oslo.

1
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in turn, can lead to bugs in systems designed using the patterns. The main goal of our
work then is to develop suitable reasoning techniques that software engineers can appeal to
in order to verify that, in their system design, the patterns in question have indeed been
used correctly. In the approach we have adopted, we propose a notation for specifying
precisely, in the form of a pattern contract, the requirements that must be satisfied in using
a given pattern P and the resulting behaviors that a system designed using P will exhibit; a
notation for specifying, in the form of a subcontract, mappings from the system’s components
to the pattern contract’s component showing precisely how P has been specialized or refined
for use in this system; and a set of correctness requirements on the relation between the
pattern contract and the system subcontract. Having a clear specification of the pattern’s
requirements, in the form of the pattern contract, and clear documentation, in the form of
the subcontract, of how the pattern is specialized in the particular system will not only help
the design/implementation team to avoid problems caused by ambiguous descriptions but
also help the maintenance team avoid making changes that might compromise the design
integrity of the system.

But there is also a potential risk in formalizing design patterns. The power of patterns
arises in large part from their flexibility, i.e., from the ability of system designers to tailor
the pattern to the needs of their particular systems. It would seem that formalizing pat-
terns would eliminate, or considerably reduce, this flexibility. As it turns out, however, our
approach, using a pattern contract to specify the requirements that must be satisfied by all
applications of a given pattern and using a subcontract to specify how it is specialized in a
particular application, allows us to preserve all of the pattern’s flexibility. Indeed, it turns
out that the very task of formalizing the pattern, i.e., developing its contract, often enables
us to identify additional dimensions of flexibility that are not included, at least not explicitly,
in standard informal descriptions of the pattern.

In this talk, I will summarize our work to date [4, 3] on developing a reasoning system
for specifying pattern contracts and subcontracts for systems designed using patterns. We
have also proposed [5] development of runtime monitors that can be used to check that
the requirements of the pattern contracts and subcontracts are not violated during system
execution; I will summarize our approach to such runtime monitoring. Finally, I will talk
about our current efforts to extend the reasoning system to deal with complexities that arise
in dealing with patterns in systems that involve complex interconnections, including cyclic
references, among participating objects. Indeed, addressing these problems is essential since
such interconnections are often required by many patterns.
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Abstract In this paper, we present a formal model of a Biomedical
Sensor Network whose sensor nodes are constructed based on the IEEE
802.15.4 ZigBee standard for wireless communication. We have used the
UPPAAL tool to tune and validate the temporal configuration parame-
ters of the network in order to guarantee the desired QoS properties for
a medical application scenario. The case study shows that even though
the main feature of UPPAAL is model checking, it is also a promising
and competitive tool for efficient simulation.

Background

A wireless sensor network is a wireless communication network containing nor-
mally a large number of sensor nodes distributed over a determined area. A
sensor node contains basically two parts: a sensor for data collection and a tran-
sreceiver for wireless communication. The sensor of a node measures data in the
environment with a certain period. Depending on the application, the sensor
node may send the measured data immediately to a specified sink node or when
it reaches a threshold value. Due to the limited size and energy supply, the range
for wireless communication is highly bounded. Thus a message often has to be
forwarded by a number of nodes to reach its destination.

A Biomedical sensor network (BSN) is a small area sensor network containing
a relatively small number e.g. tens to hundreds of sensor nodes depending on
the application. A typical application of BSN is to collect data on humen bodies
e.g. in a hospital or an accident site. Fig. 1 illustrates an application scenario of
BSN, provided by the national hospital of Norway for the EU Credo project [1].
For instance, in a situation when there are many injured persons, or the site
is difficult to access, or the number of available medics at an accident site is
limited, a quickly deployed BSN on the accident victims may be used to collect
and transmit vital data to a centralized server for analysis so that proper and
efficient medical operations can be carried out.

Due to the life-critical application, a BSN has to meet several Quality of
Service (QoS) requirements. In this work, we study five classes of QoS properties
imposed on the BSN in the above application scenario:

– End-to-end delay : This characterises the time from the transmission of a
message at a node to the reception at the sink node.

NWPT'07

Page 11



Figure1. Deployment of biomedical sensor networks at the site of an accident.[1]

– Packet delivery ratio: Packages in a sensor network can get lost easily, be-
cause a node may lose the connection to the sink node occasionally, and also
packages may get corrupted e.g. when two nodes with overlapping ranges are
transmitting simultaneously. To guarantee the service, the successful trans-
mission of packages must be above a certain ratio.

– Network throughput : Some sensor data requires a certain bandwidth. If the
network throughput is too low, the service can not be guaranteed.

– Energy consumption: The energy consumption of a sensor node has to be
low in order to afford a long uptime of the network.

– Service coverage area: In general, this indicates the size of the area in which
sensor data is available. In our scenario, the coverage area is important in
that the sensor data from every injured person should be able to reach the
sink.

The Technical Challenge

One separate sensor node does not have a complex behaviour. But as a BSN
consists of a large number of nodes, the complexity of its behaviour is increas-
ingly higher. For instance, the topology of the described BSN is very dynamic.
The sensor nodes may move, disappear and new nodes may appear from time
to time. Thus this kind network needs a suitable communication protocol to
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guarantee the QoS properties. For this purpose, the IEEE 802.15.41 ZigBee2

standard for wireless communication has been developed. It offers for instance
different modes for communication and algorithms for signal routing if no direct
connection to the sink exists. However, the specification of the standard covers
only the logical behavioir of a sensor node in wireless communication. Temporal
configuration parameters such as the transmission period and standby period of
a node must be determined according to the application and the QoS require-
ments to be satisfied. For example, the application defines how often a given
sensor node should transmit measured data and the necessary bandwidth. The
duration a node spends in its sleeping (i.e. standby) mode or in a mode for
package forwarding can also be carefully set to reduce energy consumption. The
technical challenge is to tune and validate the temporal parameters in a BSN
network to guarantee the desired QoS properties.

Modelling ZigBee-Based Networks

In the literature, the analysis of sensor networks is mainly based on simulation.
There is little work on formal analysis of QoS properties of such networks. The
goal of this is to validate the QoS properties of BSN’s through formal modeling,
simulation and verification with the UPPAAL tool. In particular, we want to
explore the power of the UPPAAL symbolic simulator.

We study a BSN with sensor nodes based on the Chipcon CC240 transre-
ceiver which offers wireless communication according to the IEEE 802.15.4 Zig-
Bee standard. We use timed automata to model the radion control logic of the
Chipcon CC240 transreceivers as described in [3]. The advantage of using timed
automata is that the temporal parameters of the transreceivers can be expressed
natuarlly as clock bounds.

To establish a model of the whole network, we also need to model the topol-
ogy of the network as well as the dynamic changes or reconfigurations of the
network topology. For this purpose, we use a matrix to model the routing ta-
ble provided by the routing layer. The matrix contains the delay for package
transmission from one node to another within the transmision area. A package
transmitted by a node can be spread to the neighbouring nodes according to this
matrix. Nodes that are not connected or in a state that does not allow package
reception are marked with reserved values. Thus the matrix is a representation
of the network topology. The dynamic reconfigurations of the network are mod-
eled by transitions of individual sensor nodes that may update the matrix e.g.
when a node changes its state from idling to sleeping or its position from one
transmission area to another.

1 http://ieee802.org/15/pub/TG4.html
2 http://www.zigbee.org/
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Validating QoS Properties

For networks of moderate size e.g. with tens of nodes, we are able to use the
UPPAAL model checker to check safety properties such as deadlock freeness,
and QoS properties such as network connectivity. Unfortunately, the UPPAAL
querry language is not expressive enough to formalize all the listed QoS prop-
erties even though using testing automata and the annotation technique [2], we
are able to encode a large class of QoS properties.

The main obstacle of using a model checker in this context is the limited
scalability of the technique with respects to the number of nodes in a large
network. This lead us to use the symbolic simulator of UPPAAL. Using meta
variables in UPPAAL, we are able to collect statistical information about the
simulated behaviour of a network. Our experiments show that the symbolic sim-
ulation technique scales very well with the network size. We can easily simulate
a complete network with hundreds of nodes, and validate all the desired QoS
properties of interests in the applciation scenario as listed below:

– End-to-end delay : The simulation may provide the average end-to-end delay
between two nodes. For example, this is useful for the analysis of routing
protocols.

– Packet delivery ratio: This kind of statistical data can be obtained with
UPPAAL meta-variables. For example, we may count the number of packages
sent and received by the sink node, using the meta-variables.

– Network throughput : It is similar to the end-to-end delay. For example, the
elements in the matrix modeling the network topology can be set and in-
terpreted as the bandwidth between two nodes. While for the calculation of
the end-to-end delay the particular values have to be summed up, we need
to calculate the minimum in this case.

– Energy consumption: For each location or mode in which a node can be,
we can count the time it remains there. These times can be mutliplied with
specified factors for the energy consumption in that particular state.

– Service coverage area: As explained, it is enough to validate that each node
can be connected to the sink – at least after a bounded time has past. This
property can also be verified in our model.

Note that simulation can – in contrast to verification – not guarantee that a
QoS requirement is met definitely. However, we may use the technique to validate
and debug the design parameters of a network. In this case study, we have also
experienced that even though the main feature of UPPAAL is model checking,
it is also a promising and competitive tool for efficient simulation.
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Task Scheduling in Rebeca

Mohammad Mahdi Jaghoori · Frank S. de Boer · Marjan
Sirjani

1 Introduction

Rebeca [3] (reactive objects language) is an actor [2] based language with formal semantics, which
can be used at a high level of abstraction for modeling concurrent and distributed reactive systems.
Reactive objects (called rebecs) run in parallel and can communicate by asynchronous message passing.
Rebecs have no explicit receive statement; instead, incoming messages are queued. A rebec has a
message server for each message it can handle. A message sever (also called a method) is defined as a
piece of sequential code, which, among others, may include sending messages.

All rebecs must implement a message server ‘initial’. At creation, a rebec has the ‘initial’ mes-
sage in its queue. At each step, each rebec executes (the message server corresponding to) the message
at the head of the queue and then removes it from queue (i.e., there is no intra-object concurrency).
In this paper, we allow rebecs to define their own scheduling policies (which has been traditionally
FIFO in Rebeca). The scheduling policy of each rebec, upon receiving a message, determines where
in the queue the message should sit; however, it cannot preempt the currently running method.

Task automata [1] is a new approach for modeling real time systems with non-uniformly recurring
computation tasks; where tasks are generated (or triggered) by timed events. Tasks, in this model, are
represented by a triple (b, w, d), where b and w are, respectively, the best-case and worst-case execution
times, and d is the deadline. A task automaton is said to be schedulable if there exists a scheduling
strategy such that all possible sequences of events generated by the automaton are schedulable in the
sense that all associated tasks can be computed within their deadlines. It is shown in [1] that, among
other cases, with a non-preemptive scheduling strategy, the problem of checking schedulability for task
automata is decidable.

In this paper, we add real time constraints to Rebeca and present a compositional approach based
on task automata for schedulability analysis of timed Rebeca models. In this approach, instead of
just best-case and worst-case execution times, the behavior of each task is given (in terms of timed
automata) and used in the schedulability analysis. These timed automata may in turn generate new
tasks. Task automata, as introduced in [1], cannot model tasks generated during the execution of
another task.

2 The Timed Rebeca Model

For each rebec, the message servers are modeled as timed automata, in which actions may include
sending messages, either to the same rebec, called self calls, or to other rebecs. Since message servers
always terminate, every execution of the corresponding automata also stops at a state with no outgoing
transition. The modeler also gives an abstract behavior of the environment for each rebec in terms
of a timed automaton (called the driver automaton). The driver automaton models the (expected)
timings for arrival of messages to the rebec, together with their deadlines. The driver automaton is
similar to task automata in the sense that receiving a message corresponds to generating a new task.
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2

((s, s′), [B1, . . . , Bl])
?m(d)−−−−→
c , X

−H ((u, s′), sched([B1, . . . , Bl], m(d))) [recieve]

if s
?m(d)−−−−→
c , X

−T u

((s, s′), [B1, . . . , Bl])
m(d)−−−→
c , X

−H ((s, u), sched([B1, . . . , Bl], m(d))) [self − call]

if (s′ !m(d)−−−→
c , X

−B1 u) and (m ∈ M)

((s, s′), [B1, . . . , Bl])
!m(d)−−−→
c , X

−H ((s, u), [B1, . . . , Bl]) [send]

if (s′ !m(d)−−−→
c , X

−B1 u) and (m /∈ M)

((s, s′), [B1, . . . , Bl]) →H error [overflow]

if (l = q) and ((s
?m(d)−−−−→
c , X

−T u) or (s′ !m(d)−−−→
c , X

−B1 u and m ∈ M))

((s, s′), [B1, B2, . . . , Bl]) →H ((s, start(B2)), [B2, . . . , Bl]) [context− switch]
if s′ ∈ final(B1)

Fig. 1 Calculating the edges of the behavior automata

A timed automaton is identified by a finite set of locations N (including an initial location n0);
a set of actions Σ; a set of clocks C; location invariants I : N → B(C); and, the set of edges
→⊆ N × B(C) × Σ × 2C × N , where B(C) is the set of all clock constraints. An edge written as
s

a−−−→
c , X

s′ means that action a may change state s to s′ by resetting the clocks in X, if clock

constraints in c hold. In the sequel, assume that the sets of messages handled by different rebecs are
disjoint and their union is M.

Definition 1 A rebec R is formally defined as [(m1 : A1, . . . ,mn : An), T, C], where

– M = {m1, . . . ,mn} ⊆ M is the set of messages handled by R;
– Ai = (Ni,→Ai

, Σ,Ci, Ii, n0i
) is a timed automaton representing the message server handling mi.

– T = (NT ,→T , ΣT , CT , IT , nT ) is a timed automaton modeling the rebec’s environment (the driver).
– C is a set of clocks shared by all Ai and T (called the global clocks).

The action set of Ai is defined to be Σ = {!m|m ∈ M}∪{!m(d)|m ∈M∧d ∈ IN}; and, the action
set of the driver automaton is ΣT = {?m(d)|m ∈ M ∧ d ∈ IN}. Intuitively, the driver automaton is
similar to task automata in the sense that executing an action in the driver (i.e., receiving a message
from another rebec) creates a new task. However, a rebec may send messages to itself (self calls), which
also result in new (internal) tasks being generated. According to the definition of Σ, internal tasks
are not necessarily assigned deadlines. Internal tasks without an explicit deadline (called delegation)
inherit the (remaining) deadline of the task that generates them (parent task).

Delegation implies that the internal task (say t′) is in fact the continuation of the parent task
(say t). Notice that unconstrained loops in delegations result in nonschedulability, because deadline
becomes smaller every time. To bound delegation loops, one can use the global clocks C. A common
scenario for delegation happens when a task t creates an instance of t′ to continue the computation,
after another task (say y) is executed. In such cases, if t′ is scheduled before y is executed, it would
need to create another instance of itself (t′). This results in a loop in calling t′.

As mentioned above, the driver automaton has the same syntax as a task automata, but it models
only the messages sent by other rebecs (does not include internal tasks). Therefore, analyzing the
driver alone is not enough for determining schedulability of the rebec. Instead, schedulability analysis
should be performed on the automaton obtained by executing the abstract behavior of the message
servers as controlled by the driver automaton.

Definition 2 (Behavior Automaton) The behavior automaton for a rebec R (cf. Definition 1) is
a timed automaton H = (SH ,→H , ΣH , CH , IH , sH) where

– SH = error∪
(
NT ×(

⋃
i∈[1..n] Ni)×(M ∪{emp})q

)
, where NT and Ni are the sets of locations of T

and Ai, respectively, and q is a statically computable bound on the length of schedulable queues.
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– ΣH = {!m(d)|m /∈ M} ∪ {?m(d)|m ∈ M} ∪ {m(d)|m ∈ M}, where d ∈ IN denotes the deadline.
– CH = CT ∪

( ⋃
i∈[1..n] Ci

)
∪ C, where Ci and CT are the sets of clocks for Ai and T , respectively.

– For each state u = (sT , s, Q), if s ∈ Ni then IH(u) = IT (sT ) ∧ Ii(s).
– The initial state sH is

(
(nT , start(A1)), [A1]

)
, where nT is the initial location of T ; and, A1 is the

automaton corresponding to the ‘initial’ message server.
– The edges →H are defined with the rules in Figure 1.

In Figure 1, functions start(A) and final(A), respectively, give the initial location of A, and the
set of locations in A with no outgoing transitions. Function sched puts the given message in the
queue based on the scheduling policy of rebec R. Each state of the behavior automaton is written
as ((s, s′), [B1, . . . , Bl]), where B1, . . . , Bl show the automata corresponding to the messages in the
queue (empty queue elements are not written); s shows the current state in the driver; and, s′ shows
the current state in B1. Notice that self calls are modeled as internal actions, while send and receive
operations to/from other rebecs are visible actions. As discussed in the next section, sends and receives
of different rebecs must match.

Assume that bmin is the smallest best-case execution time of the automata Ai representing the
message servers in R; and, dmax is the longest deadline for the tasks that may be triggered on R. In
Definition 2, one can statically compute q = dmax/bmin, as the bound on the length of schedulable
queues. It means that the behavior automaton for each rebec is finite state and computable.

The schedulability analysis can be performed in a way similar to task automata. Schedulability
can be verified by resetting a fresh clock (say xi) whenever a new task (with deadline di) in scheduled
into the queue. From every state, if xi ≥ di for some task in the queue, the behavior automata should
move to the error state. Consequently, the schedulability problem reduces to the reachability of the
error state.

As a timed automaton, the semantics of the behavior automaton can be defined in terms of a timed
transition system. The states of this transition system are pairs (SH , u) where SH is a location of the
behavior automata and u is a clock assignment. Considering the delay transitions, the semantics of
the behavior automaton is related to the semantics of the automata in the definition of a rebec:

((s1, s2), [B1, . . . , Bl], u) δ−→ ((s′1, s
′
2), [B1, . . . , Bl], u + δ) iff

{
(s1, uT ) δ−→ (s′1, uT + δ); and,

(s2, uB) δ−→ (s′2, uB + δ)

where, ((s1, s2), [B1, . . . , Bm]) is a state of the behavior automaton; uT and uB represent the projection
of u on the clocks of T and B1, respectively; and, δ ∈ IR+ is a positive real valued number.

3 Compatibility checking

After performing schedulability analysis for each rebec separately, one should check if the driver
automaton for each rebec correctly models the messages sent to that rebec. Notice that due to the
schedulability of all rebecs, an action ?m(d) implies that m can be finished within d time units.
Therefore, an action !m(d′) (requiring that m should finish within d′ time units) can match ?m(d)
only if d ≤ d′.

To check the compatibility of the driver automata with the definition of the rebecs in the model,
one can compute the synchronous product of the behavior automata of all rebecs. When computing
the synchronous product of these automata, ?m(d) and !m(d′) can synchronize and become an internal
action only if d ≤ d′ (besides matching the timing constraints). The behavior automata of all rebecs
are compatible if every send action can be matched by a corresponding receive.

Before computing the synchronous product, the information in the states of the behavior automata
(the contents of the queue, etc.) can be abstracted away. Different internal actions (of the general form
m(d)) can also be treated as one internal action τ .
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Abstract We present a tool for compositional timing and performance
analysis of real-time systems modeled using timed automata and the
real-time calculus [5]. It is based on an (over-) approximation technique
in which a timed automaton is abstracted as a transducer of abstract
streams described by arrival curves from network calculus [2]. As the
main feature, the tool can be used to check the schedulability of a system
and to estimate the best and worst case response times of its computation
tasks. The tool is available for evaluation at www.timestool.com/cats.

1 Introduction

Real-time systems are often constructed based on a set of real-time tasks. These
tasks may be scheduled and executed according to given release patterns. There
have been a number of methods and tools developed for timing analysis to esti-
mate the worst case (and also the best case) response times of computation tasks
for such systems, e.g., Rate-Monotonic Analysis [4] for periodic tasks, Real-Time
Calculus (RTC) [5] for tasks described using arrival curves [2], and Times [3]
using Timed Automata (TA) [1]. Some of these techniques, e.g., implemented in
Times can deal with systems with complex release patterns, but do not scale
well with system size and complexity; the others are scalable but can not handle
systems with complex structures. Our goal is to take the advantages of these ex-
isting techniques and develop a tool, that is scalable and also capable of handling
complex systems.

We model the architecture of a system using data-flow networks in the style
of the RTC, where the nodes stand for the building blocks or components of
the system and edges for the communication links between the nodes. In the
RTC, nodes represent either tasks or functions on arrival and service curves. To
enhance the expressiveness of the task model, we also allow TA nodes as release
patterns. The essential idea of our analysis technique is to abstract the TA nodes
using arrival curves, which can be done modularly for each node, and to compose
the analysis results in order to perform the system level analysis.

2 The Model

The basic concepts of our model are tasks, task arrival patterns and computa-
tional resources. Tasks are abstractions of programs that execute on a processing
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unit and thus consume computational resources. The parameters of a task are
its best and worst case execution times on a reference processor. A task arrival
pattern describes the moments in time at which tasks are released for execu-
tion. The execution of a task is scheduled on a processing unit according to a
preemptive fixed priority scheduling strategy. The capacity and availability of
a processing unit form the model of a computational resource. We use arrival
curves [5] and TA [1] to model task arrival patterns, and service curves [5] to
model computational resources.

We shall introduce a notion of an abstract stream as a set of non-decreasing
diverging sequences of timestamps ranging over positive reals. Each timestamp
denotes an occurrence of an event. An abstract stream defined by a pair of
upper and lower arrival curves is the greatest abstract stream such that all the
sequences of events of this abstract stream comply with the constraints induced
by the pair of arrival curves as in [5]. A timestamp with a name assigned to it is
called an action. We define a timed trace to be a sequence of actions with non-
decreasing diverging timestamps. A set of timed traces forms a timed language.

A timed language where action names are taken from a bounded (by the
resource capacity) subset of non-negative rational numbers is called an abstract
resource. These numbers represent the amount of computational resources in
reference processor units until the next action. An abstract resource defined
by a pair of upper and lower service curves is the greatest abstract resource
such that all the sequences of actions of this abstract resource comply with the
constraints induced by the pair of service curves as in [5].

The model analysed by the tool is a finite network of nodes interconnected
with links. Nodes may have ports and links are directed edges connecting ports
of the nodes. Each port has three parameters: name, direction (input or output)
and type (event or resource). We distinguish the following types of nodes:

– Task node, a node with a task assigned to it; it has two input ports: release
(an arrival pattern of the task) and demand (computational resource avail-
able for the task execution) and two output ports: finish and rest representing
the pattern of task finishing times and the remaining computational resource
respectively; the ports release and finish are of the event type whereas de-
mand and rest are ports of the resource type,

– Task arrival pattern node, a node with either a pair of upper and lower
arrival curves or a TA assigned to it; in the first case the node has only
one output port and no input ports, and in the second case – the input and
output ports corresponds to the input and output letters of the TA; all the
ports are of the event type,

– Resource node, a node with one output port of the resource type and a
pair of upper and lower service curves assigned to it,

– Function node, a node containing a function of the real-time calculus [6];
the input ports correspond to the parameters of the function and there is
only one output port; all the ports have the same type – event or resource.

The links between the node ports must always connect an output port to an
input port and loops are not allowed. Moreover, it is only possible to connect
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ports of the same type. Intuitively, the links model the control flow and the flow
of computational resources. Task priorities are defined by the order of the task
nodes in the flow of computational resources.

Semantically, every time an event arrives to the release port of a task node,
the task associated with the node is released for execution. During its execution
a task consumes computational resources entering the demand port of a task
node. The task completes its execution after being computed for a period of time
between the best and the worst case times specified in task parameters and issues
an event to the finish port. The resources not used by the task are passed through
to the rest port. Task arrival pattern nodes and resource nodes with assigned pair
of curves generate events triggering task releases and computational resources
respectively. Task arrival pattern nodes with an associated TA transform input
abstract streams into the output abstract streams as follows. First, the input
abstract streams are converted into a timed language. Then, the TA interpreted
as a transducer computes the output timed language. Finally, this language is
approximated by an abstract stream for each output port of the node. Function
nodes transform abstract streams or resources from incoming ports according to
the real-time calculus functions assigned to them.

3 Tool Architecture and Features

The tool implementation (as shown in Fig. 1) consists of two parts: model con-
struction and model analysis. The first part contains internal system model
representation and the editors, which allow to define the topology of a system,
the timed automata assigned to TA nodes, the functions assigned to the RTC
nodes, and pairs of arrival and service curves.

Compositional
Timing
Analysis
Tool

Eclipse
Platform

Eclipse
Frameworks TA Simulator & Verifier

Workspace UI Launch & Debug

EMF GEF

Curve
Transformer

Response Time Analyser
System
Model

TA Editor

CM Editor RTC Toolbox

UPPAAL
Engine

TA
Approximator

Figure1. The architecture of the tool.

The tool computes the best and the worst case response times of every task
for a given task release pattern and a set of computational resources. It does this
by analysing abstract streams and resources appearing on the links of the model
network. Depending on the type of the node the tool assembles an appropriate
operation at the evaluation time. For example, for a TA node an evaluation oper-
ation consists of the encoding of the input abstract streams into TA, computing
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the output of the TA node using Uppaal verification engine, and decoding the
results back into the form of the abstract streams.

The screenshot of the tool is shown in Fig. 2. The tool is implemented as a
set of plugins built on top of the Eclipse Development Platform. The implemen-
tations of the internal models are based on the Eclipse Modeling Framework. A
script language is used for specification of the model together with a dedicated
text editor. The graphical editor assists designers in TA modelling and is built
on top of the Eclipse Graphical Editing Framework. The runtime part of the tool
extends Eclipse Launch&Debug functionality and provides a set of specialized
views for monitoring and interpreting the results. We use Real-Time Calculus
Toolbox [6] to evaluate RTC functions.

Figure2. The screenshot of the tool.
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1 Motivation

How to marry concurrency and object-orientation has been a long-standing issue; see
e.g., [2] for an early discussion of different design choices. Recently, the thread-based
model of concurrency, prominently represented by languages like Java and C# has been
criticized, especially in the context of component-based software development. As the
word indicates, components are (software) artifacts intended for composition, i.e., open
systems, interacting with a surrounding environment. To compare different concurrency
models on a solid mathematical basis, a semantical description of the interface behavior
is needed, and this is what we do in this work. We present an open semantics for a
core of the Creol language [4,7], an object-oriented, concurrent language, featuring in
particular asynchronous method calls and (since recently [5]) future-based concurrency.

Futures and promises A future, very generally, represents a result yet to be computed.
It acts as a proxy for, or reference to, the delayed result from a given sequential piece of
code (e.g., a method or a function body in an object-oriented, resp. a functional setting).
As the client of the delayed result can proceed its own execution until it actually needs
the result, futures provide a natural, lightweight, and (in a functional setting) transparent
mechanism to introduce parallelism into a language. Since its introduction in Multilisp
[6][3], futures have been used in various languages, including Alice ML, E, the ASP-
calculus, Creol, and others more. A promise is a generalization insofar that the reference
to the result on the one hand, and the code responsible to calculate the result on the other,
are not created at the same time; instead, a promise can be created independently and
only later, after possibly passing it around, the promise is bound to the code (one also
says, the promise is fulfilled).

Interface behavior An open program interacts with its environment via message ex-
change. The interface behaviour of such an open program C can be characterized by the
set of all those message sequences (= traces) t, for which there exists an environment
E such that C and E can exchange the messages recorded in t. Thus the interface be-
haviour abstracts away of any concrete environment. However, it only considers such
environments, that are compliant to the language restrictions (syntax, type system, etc.).
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Consequently, interactions do not consist of arbitrary message sequences C
t
=⇒; instead

we consider the behavior C ‖ E
t
=⇒

t̄
Ć ‖ É where E is an arbitrary but realizable envi-

ronment and t̄ complementary to t.
To account for the existentially abstracted environment (“there exists an E s.t. . . . ”),

the open semantics is given in an assumption-commitment way:

∆ ` C : Θ
t
=⇒ ∆́ ` Ć : Θ́

where ∆ contains (as an abstract version of E) the assumptions about the environment,
and dually Θ the commitments of the component. Abstracting away also from C gives a
language characterization by the set of all possible traces between any component and
any environment.

Such a behavioral interface description is relevant and useful for the following rea-
sons. 1) The set of possible traces is more restricted than the one obtained when ignoring
the environments. I.e., when reasoning about the trace-based behavior of a component,
e.g., in compositional verification, with more precise characterization one can carry out
stronger arguments. 2) When using the trace description for black-box testing, one can
describe test cases in terms of the interface traces and then synthesize appropriate test
drivers from it. Clearly, it makes no sense to specify impossible interface behavior, as in
this case one cannot generate a corresponding tester. 3) A representation-independent
behavior of open programs paves the way for a compositional semantics and allows fur-
thermore optimization of components: only if two components show the same external
behavior, one can replace one for the other without changing the interaction with any en-
vironment. 4) The formulation gives insight into the semantical nature of the language,
here, the observable consequences of futures and promises. This helps to compare al-
ternatives, for instance the Creol concurrency model with Java-like threading.

2 Results

We formalize the abstract interface behavior for concurrent object-oriented class-based
languages with futures and promises. The long version of the submission includes the
following results:

Concurrent object calculus with futures and promises We formalize a class-based
concurrent language featuring futures and promises, capturing the core aspects of the
Creol-language. The formalization is given as a typed, imperative object calculus in
the style of [1] resp. one of its concurrent extensions. We present the semantics in a
way that facilitates comparison with Java’s multi-threading concurrency model, i.e.,
the operational semantics is formulated so that the multi-threaded concurrency as (for
instance) in Java and the one based on futures here are represented similarly.

Linear type system for promises Featuring promises, the calculus extends the seman-
tic basis of Creol as given for example in [5] (only futures). Promises can refer to a
computation with code bound to it later. It is important, that the binding is done at most
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once. To guarantee such a write-once policy when passing around promises, we refine
the type system introducing two type constructors

[T ]+− and [T ]+

representing a reference to a promise that can still be written (and read, and with result
type T ), resp. a reference with read-only permission. The write-permission constitutes
a resource which is consumed when the promise is fulfilled. The resource-aware type
system is therefore formulated in a linear manner wrt. the write permissions and resem-
bles in intention the one in [8] for a functional calculus with references. Our work is
more general, in that it tackles the problem in an object-oriented setting (which, how-
ever, conceptually does not pose much complications). It is in addition more general in
that we do not give a type system for a closed system, but for an open component. Also
this aspect of openness is not dealt with in [5]. Additionally, the type system presented
here is simpler as the one in [8], as it avoids the representation of the promise-concept
by so-called handled futures.

Soundness of the abstractions We show soundness of the abstractions, which includes

– subject reduction, i.e., preservation of well-typedness under reduction. Subject re-
duction is not just proven for a closed system (as usual), but for an open program
interacting with its environment. Subject reduction implies

– absence of run-time errors such as “message-not-understood”, again also for open
systems.

– A proof that the characterization of the interface behavior is sound, i.e., all interac-
tion behavior which is possible by an actual, concrete environment is included in
the abstract interface behavior description.

– for promises: absence of write-errors, i.e. the attempt to fulfill a promise twice.
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Total preorders Sorting is one of the most-studied subjects of computer science. So it
seems silly to ask what a sort function is.1 Obviously a sort function is a function that per-
mutes sequences such that the elements are in order. This, however, begs the next question:
What does it mean to be “in order”? An obvious answer is that the output must respect
the ordering relation of a given total order.2 So this suggests the following definition: Given
total order (S,≤S), a sort function is a permutation function sort : S∗ → S∗ such that if
y1 . . . yn = sort(x1 . . . xn) then yi ≤S yi+1 for 1 ≤ i ≤ n. We can quickly see, however,
that expecting the sort function to output according to a total order is too much to expect
of it; for example when sorting tuples “according to their i-th component” as a subrou-
tine in radix-sort, this step permutes the whole tuples (records), but according to a total
order on a particular component (key), not the whole tuple. Expecting keys to be totally
ordered is still too much: If the keys are strings we may want to sort the records accord-
ing to their keys, but ignoring their case. This means that the output may contain both
[”fReD”, 15), (”FrEd”, 18)] and [(”FrEd”, 18), (”fReD”, 15)], even though this is clearly
incompatible with requiring the key domain to be totally ordered. It is the anti-symmetry
requirement of total orders that is too strong. Since reflexivity, transitivity and totality seem
reasonable requirements, we drop antisymmetry:

A total preorder or (here) just order (S,R) is a set S together with a binary relation
R ⊆ S ×S that is reflexive, transitive, and total (∀x, y ∈ S : (x, y) ∈ R∨ (y, x) ∈ R). We say
R is an ordering relation on S and (S,R) is an order on S.

Note that an order (S,R) canonically induces an equivalence relation (S,∼=R): x ∼=R y ⇔
R(x, y) ∧R(y, x).

We can now define a sort function to be a function on an order that permutes its input
such that the output respects the ordering relation:

A function sort : S∗ → S∗ is a sort function for order (S,R) if for all x1 . . . xn ∈ S∗ and
y1 . . . ym = sort(x1 . . . xn) we have: y1 . . . ym is a permutation of x1 . . . xn (and so n = m);
and y1 . . . ym is R-ordered: R(yi, yi+1) for all 1 ≤ i ≤ m.

Comparators Now we know what a sort function is for a given order. But that was not
the question: there was no mention of a given order. So what if somebody hands you a
function and claims it is a sort function—without giving you an order?

An obvious answer is: It has to be a sort function for some order. But then follow-up
questions beg themselves: Is there any order at all? If so, what if there are several? Does it
define an order in some sense? The answer to the first question is trivial: Each permutation
function f : S∗ → S∗ is a sort function for the trivial order (S, S × S), which relates
all elements to each other. It is least informative, however, since it is least discriminative

1The use of function is intended to convey that we are considering the mathematical transformation on
the data, whether executed in-place, out-of-place and independent of data structure representation.

2Since “sorting” in ordinary usage only implies collecting related—equivalent— elements, essentially par-
titioning, a more accurate term would have been “ordering” for “sorting”. See Knuth [Knu98] for a humorous
discussion of this. Note also the use in this sense more accurate usage of sort in multi-sorted alegebra.
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amongst candidate orders for which f is a sort function: all elements of S are equivalent to
each other under ordering relation S × S.

Consider f applied to two arguments: If f [x1, x2] = [x1, x2] we can conclude that x1 ≤ x2

for any ordering relation ≤ consistent with f as a sort function. If f [x1, x2] = [x2, x1] we can
conclude x2 ≤ x1, but we do not know whether or not x1 ≤ x2 holds. Clearly, however, the
unique smallest and thus most informative possible ordering relation ≤min consistent with
f is the one that lets us conclude x1 6≤min x2 whenever f [x1, x2] = [x2, x1] or, equivalently,
x1 ≤min x2 ⇔ f [x1, x2] = [x1, x2], but only if this defines an ordering relation. It turns out
that it does if and only if f as a function of two arguments is permutative, transitive and
idempotent.

A comparator structure (S, comp) is a set S together with a function comp : S×S → S×S
that is permutative: comp(x, y) = (x, y) ∨ comp(x, y) = (y, x); transitive: comp(x, y) =
(x, y)∧ comp(y, z) = (y, z) =⇒ comp(x, z) = (x, z); and idempotent : comp(x, y) = (y, x) =⇒
comp(y, x) = (y, x) for all x, y, z ∈ S. We call comp a comparator (function) on S.

Theorem 1: Consider f : S×S → S×S and define binary relation R on S by R(x1, x2)⇔
f(x1, x2) = (x1, x2). Then R is an ordering relation on S if and only if f is a comparator on
S.

Sort functions A sort function sort : S∗ → S∗ for order (S,R) is stable if R-equivalent
elements occur in the same order in the output as in the input: sort(~x)|[z]∼=R

= ~x|[z]∼=R
for

all z ∈ S and ~x ∈ S∗, where [z]∼=R
denotes the set of R-equivalent S-elements of z.3 Each

order has exactly one stable sort function since stability fixes the order in which equivalent
elements must be output.

Note that stipulating that the ordering relation we are after satisfy x1 ≤ x2 ⇔ f [x1, x2] =
[x1, x2], as we did for comparators, is tantamount to insisting that f be a stable sort function
for that order, at least when applied to two elements. So insisting that one’s proclaimed sort
function is stable (for arbitrary length inputs) is a way of identifying the most informative
order consistent with f . It is easy to see that, if f is a stable sort function for any ordering
relation at all, then that ordering relation is unique. As it turns out, f is a stable sort
function for some order if and only if it is consistently permutative.

Theorem 2: Let f : S∗ → S∗. There exists an ordering relation R on S such that f is a
stable sort function for (S,R) if and only if f is consistently permutative: For each sequence
x1 . . . xn ∈ S∗ there exists permutation π ∈ S|~x| such that

• f(x1 . . . xn) = xπ(1) . . . xπ(n) (permutativity);

• ∀i, j ∈ [1 . . . n] : f(xixj) = xixj ⇔ π−1(i) ≤ω π−1(j) (consistency).

Furthermore, if R exists, it is uniquely determined by f : R(x1, x2)⇔ f [x1, x2] = [x1, x2].
The permutation π in the definition of consistent permutativity can be thought of as

mapping the rank of an (occurrence of an) element—where it occurs in the output of sort—
to its index—where it occurs in the input. The inverse permutation π−1 thus maps the index
of an element occurrence to its rank. Consistency expresses that the relative order of two
elements in the output of sort must always be the same.

Now we know what a sort function is: any consistently permutative function! Finding
such an intrinsic characterization of when a function is a (stable) sort function for some order
is surprisingly tricky. Several plausible candidates turn out to be almost correct, but only
almost [Hen07].

Isomorphisms Theorems 1 and 2 show that the categories of orders, comparator structures
and sort structures are isomorphic where the morphisms are all the set-theoretic functions

3We write ~x|P for the subsequence of ~x made up of all elements from P . Defining stability is notoriously
tricky to do correctly.
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between the underlying sets; that is, the morphisms ignore the structure. The question then
is: Are they isomorphic under some notion of structure-preserving morphisms; and if so,
under which notion?

Loosely speaking, monotonic and order-mapping functions on orders correspond to sort-
preserving functions on sort structures. See Henglein [Hen07].

Observing orders Imagine we want to implement an abstract data type and export a
function that makes an ordering relation ≤ on its element set S observable, but nothing
else.4

The most obvious representation is by exporting a comparison (function), the character-
istic function lte : S × S → Bool of (S,≤): ∀x, y ∈ S : lte(x, y) = true ⇔ x ≤ y. There
are alternatives, however. Theorems 1 and 2 show that an ordering relation can be made
observable (and nothing else about the data type) by exporting a comparator or sort func-
tion. Each of the three possible exported functions defines an order once their respective
intrinsic characteristics are verified, and, given any one, the other ones are parametrically
polymorphically definable [Hen07].

So does it matter, whether comparison, comparator or sort function are implemented
“natively” and subsequently exported? Comparison provides information on the ordering
relation for only two elements at a time. As a well-known corollary, any comparison-based
sorting algorithm requires Ω(n log n) applications of comparison to sort n elements [Knu98,
Section 5.3.1]. The same holds true for comparators. In contrast, distributive sorting al-
gorithms [Knu98, Section 5.2.5] such as radix-sort run in linear time. Interestingly, such
distributive algorithms can be defined and extended generically to arbitrary first-order types
while preserving their linear-time performance [Hen06]. In other words: It is possible to im-
plement a time-efficient sort function for a new data type if we have access to time-efficient
sort functions for the (ordered) types used in its implementation. If instead only comparison
functions (or comparators for that purpose) are available we are back to the comparison-based
sorting bottleneck.

Conclusion Starting with a seemingly innocuous question—What is a sort function?—we
have arrived at a maybe surprising answer: Any consistently permutative function. In doing
so we have flipped the preeminence of orders over sort functions on the head by showing
that it is not necessary to be given a (presentation) of an order to define (what it means
to be) a sort function. Comparisons, comparators and sort functions are parametrically
polymorphically interdefinable. So conceptually and behaviorally they are interchangeable.
From a performance point of view, there is a difference, however, depending on which one
we implement “natively”: Sort functions admit construction of generic distributive sorting
algorithms that are not subject to the comparison-based sorting bottleneck.
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Our thesis is that data refinement and nondeterminacy are intimately related,
and that a strong theory of data refinement can be constructed on a sufficiently rich
theory of nondeterminacy. By sufficiently rich we mean that the theory supports
demonic and angelic nondeterminacy, and that it presents an appropriate algebra
to the programmer. By a strong theory of data refinement we mean primarily that
it is higher-order, but also that it can account for refinement of various language
constructs, with and without state. Data refinement is almost always explained in
the context of a particular language construct, such as function, procedure, block,
module, object, schema, state machine, or some other. The most basic setting for
it, however, is that of data types, and in this context we call it data type refinement.
That is our focus here, i.e. a theory of data higher-order data refinement for func-
tional programming. The theory of nondeterminacy we employ is that described in
[2, 3], but we assume no prior knowledge of it.

A data type provides a collection of related operations for manipulating data,
while isolating users from the data’s representation details. It has three parts: a
signature, which gives the types of its operations, a representation type, which is
the type used to represent the data, and a body, which gives the implementations
of the operations. Operations are typically restricted to being first-order (as in, for
example, all the theories in the survey work [1]), but no such restriction applies here.
Table 1 shows an example of a signature and a data type for handling dictionaries.
The operations include a constant and three second-order functions. In the signature
DictSig, Dict is a place-holder which abstracts the choice of representation type. In
the data type DictDT, Dict is bound to an actual type, in this case the function
type Key→Value. The clause “(DictSig)” in the definition of DictDT declares that
the data type can be accessed only through the signature DictSig — in particular, a
client program which uses DictDT does not know how the type Dict is represented.
The body of the data type is the tuple (empty, lookup, add, remove).

Informally, an S-client is a program component which uses a data type with
signature S; the component only sees the signature. Formally, an S-client is a term
with a place-holder for a data type of signature S. Binding a client to a data type
is called linking. The program that results from linking S-client κ to data type A is
written κwithA; this is a term with the same standing as any regular term.

Data type refinement is a relation between two data types which describes when
one may be safely replaced by the other. The theory of nondeterminacy provides a
refinement relationv between terms, which we use to formulate data type refinement:

Definition: Let A and C be data types of signature S. We say that A

1
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DictSig , {
typeDict;
empty : Dict;
lookup : Dict→Key→Value;
add : Dict→(Key × Value)→Dict;
remove : Dict→Key→Dict

}

DictDT , (DictSig) {
typeDict , Key→Value;
empty , λk′ :Key · none;
lookup d k , d k;
add d (k, v) , λk′ :Key · if k′ = k then v else d k′;
remove d k , λk′ :Key · if k′ = k then none else d k′

}

Table 1: A signature and a data type

is data refined by C, written A v C, iff for all S-client terms κ we have
κwithA v κwith C.

The definition of data refinement is not practically useful because it involves a
quantification over client programs. A client-independent technique for establishing
data refinement is provided by simulation. Informally, a simulation is a correspon-
dence between the representation types of two compatible data types which is pre-
served by their operations. A technique for simulation is called sound if the existence
of a simulation between data types A and C guarantees that A is data refined by C.

Let A and C be data types with common signature S, and let T and U be their
representation types, respectively. Typically, simulation between A and C in its
most general form involves the use of a pair of relations connecting T and U , i.e.
an abstraction relation (from the more concrete type to the more abstract one), and
a concretion relation (operating in the other direction). However, when functions
may be nondeterministic as here, it turns out that simulation between A and C
is fully captured by a single function. We opt to work with abstraction functions
g :U→T (we could equally well have chosen concretion functions). It turns out that
abstraction functions employ only angelic nondeterminacy.

Let bA and bC be the bodies of the data types A and C, respectively. The types of
bA and bC are the instantiations of the signature S at the representation types T and
U respectively; we will write them S T and S U . Typically S T and S U are product
types, with each component of the product being a function type. For example,

DictDTT ≡ T × (T→Key→Value) × (T→(Key × Value)→T ) × (T→Key→T )

The simulation technique works by constructing a function (S g) :S U → ST
and comparing S g bC with bA using term refinement. Our soundness result is the
following:

Theorem: (Soundness) Let A and C be data types of signature S with
bodies bA and bC , respectively. If g is an abstraction function from the

2
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representation type of C to the representation type of A, then:

(bA v S g bC) ⇒ (A v C)

Defining the function S g requires us to be be able to lift functions through type
constructors. For example, lifting functions f0 :T0→U0 and f1 :T1→U1 through a
product type constructor just uses the well-known function product operator to give
f0 × f1 : (T0 × T1)→ (U0 × U1). However, there is no general way to lift f0 and f1

through a function type constructor to give a function f0 → f1 : (T0→T1)→ (U0→
U1). It can be done if the functions have so-called adjoints, but these rarely occur.
This is where again nondeterminacy comes to the rescue: all “reasonable” functions
have adjoints in the presence of nondeterminacy.

Function adjoints are, roughly speaking, approximations to inverses. Let f :T→
U and g :U→T . We call f a left adjoint of g and g a right adjoint of f iff IdT v g◦f
and f ◦ g v IdU . We have shown [4] that nondeterminacy allows us to define two
operators on functions called the L and R operators. Given a function f :T→U , fL

and fR are functions of type U →T and, under appropriate conditions, fL will be
f ’s left adjoint and fR will be f ’s right adjoint. The left-adjoint is sufficient to lift
functions through the function type constructor, as needed for simulations. In fact,
we define f0 → f1 , (λg :T0→T1 · f1 ◦ g ◦ f0

L).
Overall, nondeterminacy occurs in data refinement in three ways: in underspeci-

fication in the definition of data types, in the definition of abstraction functions, and
in the definition of left adjoints. It turns out that a single kind of nondeterminacy
is not sufficient to perform all three roles simultaneously. Rather we require dual
nondeterminacy as described in [2, 3], i.e. one supporting both demonic and angelic
nondeterminacy.

Although the theory above is described for a term language, it is also intended to
serve as a foundation for data refinement in other programming language paradigms.
For example, it is possible to add imperative features to the language and allow data
types with procedures and state.
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Trans�nite Semanti
s in the form of GreatestFixpoint⋆Härmel NestraInstitute of Computer S
ien
e, University of TartuJ. Liivi 2, 50409 Tartu, Estoniaharmel.nestra�ut.eeIt is sometimes useful to imagine program runs as they were able to over-
ome non-termination. A

ording to this view, a 
omputation that falls into anin�nite loop or in�nitely deep re
ursion 
ontinues after 
ompleting the in�nitesub
omputation.One appli
ation of this is in the theory of program sli
ing. Program sli
ing isa program transformation te
hnique where the aim is to omit some statementsfrom a given program in su
h a way that exe
uting the remaining program wouldhandle all variables of our interest exa
tly the same way as the original programdoes. This transformation is used in several bran
hes of software engineering; agood overview of program sli
ing and its appli
ations is given by Binkley andGallagher [1℄.When a loop has no in�uen
e to the values of the interesting variables via data�ow, sli
ing algorithms do not keep it. But if this loop does not terminate thenthe resulting program rea
hes farther in the 
ode than the original program andthus may do assignments to the interesting variables that the original programnever does. In order to treat this as a 
orre
t behaviour, we 
an say that theoriginal program also makes these assignments but after an in�nite number ofsteps.Program semanti
s that follow this view are usually 
alled trans�nite. Theidea of using trans�nite semanti
s in program sli
ing theory was �rst proposedby Cousot [2℄. This approa
h was followed later in the works of Gia
obazzi andMastroeni [4℄ and of us [7,6℄.The word `trans�nite' a
tually fails to 
hara
terize the whole variety of 
om-putation pro
esses that arises in this approa
h. In the 
ase where only iterativeloops 
an be non-terminating, the sequen
e of exe
ution steps is really trans�nitein the sense that the steps 
an be enumerated by ordinals so that their exe
utionorder 
orresponds to the natural order of ordinals. In the 
ase of in�nitely deepre
ursion, su
h an enumeration is impossible. In [6℄, we showed that the sequen
eof steps is more like a fra
tal stru
ture.In our 
urrent work, we express trans�nite semanti
s in terms of greatest�xpoints of monotone operators on 
omplete latti
es of set-valued fun
tions.This serves the following purposes.1. In this framework, we give an exhaustive de�nition of semanti
s of in�nitelydeep re
ursion. We addressed in�nitely deep re
ursion semanti
s also in [6℄
⋆ Partially supported by Estonian S
ien
e Foundation under grant no. 6713.
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but there, the de�nition remained indeterminate in many 
ases. Other workson trans�nite semanti
s do not handle re
ursion, they are limited with trans-�nite iteration.2. In this framework, we des
ribe a large family of semanti
s, in
luding severalvariants of trans�nite semanti
s as well as standard semanti
s, parametri-
ally in a uniform way. The uniform parametri
 representation is somewhatsimilar to that in [6℄. However, the semanti
s spe
i�
ation in [6℄ did notin
lude any order relation, thus �xpoints were spe
i�ed in ad-ho
 mannerswhile monotone operators together with their least and greatest �xpointsprovide a standard framework for semanti
s.3. Expressing semanti
s via greatest (or least) �xpoints of monotone operatorsenables to build Cousot's hierar
hy of these semanti
s (see [2,3,4℄). We havedone some work also in this dire
tion.We prove that the monotone operators whose greatest �xpoints are used asour semanti
s are S
ott-
o
ontinuous. This shows that the semanti
s 
an bea
hieved by iteration whi
h is not trans�nite, even if the semanti
s is trans�nite.In order to a
hieve trans�nite semanti
s in the form of greatest �xpoint, theusual exe
ution tra
es are repla
ed with fra
tional tra
es where steps are enumer-ated by rational numbers from interval [0; 1]. Fra
tional tra
es were introdu
edby us in [6℄.For example, the exe
ution tra
e of the swap program z := x ; (x := y ;

y := z) at initial state (x 7→ 1,y 7→ 2,z 7→ 0) is
0 7→ (x 7→ 1,y 7→ 2,z 7→ 0),
1
2
7→ (x 7→ 1,y 7→ 2,z 7→ 1),

3
4
7→ (x 7→ 2,y 7→ 2,z 7→ 1),

1 7→ (x 7→ 2,y 7→ 1,z 7→ 1).The assignments z := x, x := y and y := z are run within intervals [0; 1
2
],

[ 1
2
; 3

4
] and [ 3

4
; 1], respe
tively. This is so independently of the initial state.Even if the three assignments were repla
ed with arbitrary three statements

S1, S2, S3 and exe
uted at any state, the same intervals would be reserved forthe three statements. For example, if S1 = S2 = while true do skip and
S3 = x := 0 then the exe
ution tra
e of statement S1 ; (S2 ; S3) is depi
tedin the following �gure; it su�
es to indi
ate only the rationals o

urring in thetra
e sin
e the state does not 
hange ex
ept probably at point 1 where the valueof x 
hanges to 0 whatever it was before:

0 1Roughly, the reason why the usual tra
es are not satisfying for expressingtrans�nite semanti
s as a greatest �xpoint is that the greatest �xpoint would
ontain too many tra
es. Besides the desired tra
es, the semanti
s of an in�niteloop would 
ontain all tra
es having a desired tra
e as a pre�x. Using fra
tional
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tra
es solves this problem as the tra
es grow into depth rather than into length,the whole interval [0; 1] is always distributed between the statements of a pro-gram and no spa
e is left for garbage.Another possibility is to use trees instead of tra
es by a

ommodating theapproa
h of Glesner [5℄ to the trans�nite 
ase. A
tually, tree semanti
s and fra
-tional tra
e semanti
s have very mu
h in 
ommon. Fra
tional tra
es share bothtree and tra
e properties: they re�e
t the dedu
tion tree stru
ture while keep-ing the exe
ution order evident. Fra
tional tra
es form an intermediate 
ategorybetween trees and usual tra
es.Our parametri
 framework in
ludes both fra
tional tra
e semanti
s and treesemanti
s. Most of the results are obtained simultaneously for both.In our approa
h, the semanti
s are not a priori deterministi
. This is pre-sumably not a big drawba
k sin
e non-determinism is always introdu
ed afternon-termination.Referen
es1. Binkley, D. W., Gallagher, K. B.: Program Sli
ing. Advan
es in Computers 43(1996) 1�502. Cousot, P.: Constru
tive Design of a Hierar
hy of Semanti
s of a Transition Systemby Abstra
t Interpretation. Ele
troni
 Notes in Theoreti
al Computer S
ien
e 6(1997) 25 pp.3. Cousot, P.: Constru
tive Design of a Hierar
hy of Semanti
s of a Transition Systemby Abstra
t Interpretation. Theoreti
al Computer S
ien
e 277 (2002) 47�1034. Gia
obazzi, R., Mastroeni, I.: Non-Standard Semanti
s for Program Sli
ing.Higher-Order Symboli
 Computation 16 (2003) 297�3395. Glesner, S.: A Proof Cal
ulus for Natural Semanti
s Based on Greatest Fixed PointSemanti
s. Ele
troni
 Notes in Theoreti
al Computer S
ien
e 132 (2005) 75�936. Nestra, H.: Fra
tional Semanti
s. In Johnson, M., Vene, V. (eds.): Pro
eedings ofAMAST 2006. Le
ture Notes in Computer S
ien
e 4019 (2006) 278�2927. Nestra, H.: Iteratively De�ned Trans�nite Tra
e Semanti
s and Program Sli
ingwith respe
t to Them. PhD thesis, University of Tartu (2006) 119 pp.
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Abstract

We define a security concept ‘probabilistic opacity’ in a probabilistic

timed process algebra framework. A process is opaque with respect to

a given property over its traces (represented by predicate φ) if an ob-

server (represented by an observational function) cannot decide whether

the property has been satisfied. In general, opacity is undecidable even

for finite state systems so we express both the security predicate and

the observation function by means of finite state processes. The result-

ing security properties can be used for specifications and verifications of

concurrent systems.

Keywords: probabilistic timed process algebras, timing attacks, opac-

ity, information flow, security

Several formulations of a notion of system security can be found in the
literature. Many of them are based on a concept of non-interference (see [9])
which assumes the absence of any information flow between private and public
systems activities. More precisely, systems are considered to be secure if from
observations of their public activities no information about private activities
can be deduced. This approach has found many reformulations. To the most
powerful ones belong a concept opacity. With its help many other security
properties can be expressed (see [1]) and it can be formulated for different
formalisms, computational models and nature or “quality” of observations.

Timing attacks have a particular position among attacks against systems
security. They represent a powerful tool for “breaking” “unbreakable” systems,
algorithms, protocols, etc. For example, by carefully measuring the amount of
time required to perform private key operations, attackers may be able to find
fixed Diffie-Hellman exponents, factor RSA keys, and break other cryptosystems
(see [13]). This idea was developed in [3] where a timing attack against smart
card implementation of RSA was conducted. In [11], a timing attack on the RC5
block encryption algorithm, in [14] the one against the popular SSH protocol
and in [4] the one against web privacy are described.

∗Work supported by the grant VEGA 1/3105/06 and APVV-20-P04805.
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In the literature several papers on formalizations of timing attacks can be
found. Papers [6, 7, 8] express attacks in a framework of (timed) process alge-
bras. In all these papers system actions are divided into private and public ones
and the security property expresses there is not an interference between them.
More precisely, in [6, 7] it is required that on a level of system traces which
do not contain internal actions one cannot distinguish between system which
cannot perform private actions and system which can perform them but all of
them are reduced to internal actions. In paper [8] a concept of public channels
is elaborated. In the above mentioned papers also a slightly different approach
to system security is presented - the system behaviour must be invariant with
respect to composition with an attacker which can perform only private actions
([6], [7]) or with an attacker which can see only public communications ([8]).

The opacity property is based on a concept of observation functions and on
a concept of predicates over system traces. It is similar to the concept of Non-
information flow (NIF) (see [10]) but it allows more general observation functions
(obs) in which an observation of an particular action might depend on context
of its appearance. In the case of the static observation function each action
is observed independently on its context. In case of the dynamic observation
function an observation of an action may depend on the previous ones, in case of
the orwellian and m-orwellian observation function an observation of an action
depends on the all and m previous actions in the trace, respectively. The static
observation function is the special case of m-orwellian one for m = 1. Opacity is
defined for arbitrary predicate φ over traces (Tr(P )) of system actions. Roughly
speaking, the observer cannot deduce validity of φ if there are two traces w,w′

∈

Tr(P ) such that φ(w),¬φ(w′) and the traces cannot be distinguished by the
observer i.e. obs(w) = obs(w′). Formally:

A predicate φ over Tr(P ) is opaque w.r.t. the observation function obs

if for every trace w, w ∈ Tr(P ) such that φ(w) holds, there exists a trace
w′, w′

∈ Tr(P ) such that ¬φ(w′) holds and obs(w) = obs(w′).
Clearly, opacity can capture more sofisticated security properties then just

an execution of some private action as it is done in [6, 7, 8] . Moreover, since
many of timing attacks described in the literature are based on observations of
“internal” actions opacity can work also with this information what is not the
case of the above mentioned papers. In this way we can consider timing attacks
which could not be taken into account otherwise.

Generality of opacity brings some disadvantages. The opacity property is
undecidable even for finite state systems. Hence we restrict the power of obser-
vation functions and predicates over traces by expressing them by (finite state)
process algebra processes. Moreover since many attacks are based on statistical
analyzes of system behaviour (see [13, 3, 11, 14]) instead of just “one single
observation” or both observation function and predicate over traces might have
probabilistic nature. Hence to obtain probabilistic opacity we will exploit prob-
abilistic timed process algebra (in style of [12]) for process specifications as well
as for specifications of observation functions and the predicates. With their help
probabilistic version of opacity can be be formulated in terms of trace inclusion
and so that it becomes decidable for finite state processes. Moreover some other
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useful properties for it can be proved so that the resulting security properties
can be used for specifications and verifications of concurrent systems.
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Real-time systems, which have strict timing require-
ments, have emerged as an enabling technology for several
important application domains such as air traffic control,
telecommunications, and medicine, to name a few. Such
systems are becoming increasingly pervasive, and hence
rigorous methods and techniques to ensure their correct
functioning are of utmost importance. Timed Automata
(TA) [1] have been extensively studied as a formalism for
modelling real-time systems. TA extendω-automata by
augmenting them with “clock” variables based on a dense-
time model, which quantitatively captures the behaviour of
the system with time. TA model-checkers such as UPPAAL
[2, 3] and KRONOS [4] are now available and have been
successfully used in industrial case studies such as [5].

The TA model provides for the behavioural description
of real-time systems in terms ofnon-determinism, by hav-
ing transition-guardsandlocation-invariantsthat the clock
values need to satisy. It however may be desirable to quanti-
tatively express the relativelikelihoodof the system exhibit-
ing certain behaviour, which is particularly relevant while
considering properties such as fault-tolerance.

Probabilistic Timed Automata (PTA) [6, 7] are an exten-
sion of TA that model real-time systems in terms of dis-
crete probability distributions annotating the transitions be-
tween locations, thereby expressing bothnon-deterministic
and probabilisticbehaviour. This model is then used to
check system requirements expressed in PTCTL (Proba-
bilistic Timed Computation Tree Logic), which is an exten-
sion of TCTL to deal with probability. The model-checking
is based on a notion ofregion equivalencesimilar to that for
usual TA. As with TA, the number of regions in this case is
exponential in the number of clocks, rendering region-based
model-checking of PTA impractical [6].

[6] therefore considers the narrower class ofprobabilitic
real-time reachability properties, which can still express a
number of useful system requirements, and presents an effi-
cient symbolic algorithm for model-checking such proper-
ties against systems modelled as PTA. This algorithm is an
adaptation of the standardzone-basedalgorithm used in TA
model-checkers such as UPPAAL, and is fully-forward.1

1[7] presents a symbolic algorithm for PTA that entails a combination
of forward and backward analyses, for the exact verificationof the larger

The probability of time-bounded reachability thus com-
puted is however not exact, but rather an upper bound on
the true probability of reachability. This technique is partic-
ularly useful in the verification ofinvarianceor safetyprop-
erties (where we are interested in the probability of reach-
ing an “unsafe” target state) and has been applied to case-
studies such as the bounded re-transmission protocol [6].

Given a PTA and a (bad) target state (location-zone pair)
(l, B), the forward symbolic algorithm in [6] essentially
computes the maximum probability (w.r.t all possible res-
olutions of the non-deterministic choices in the PTA’s un-
derlying probabilistic timed structure) with which the tar-
get state could be reached, or equivalently, the minimum
probabilityp with which the target state could be avoided,
i.e., p = minprob(Reach ∩ (l, B) = ∅). This analy-
sis entails the computation of the setReach of (symbolic)
states reachable with non-zero probability (performed by a
fully forward state-space exploration analogous to that in
TA model-checkers such as UPPAAL) in the form of azone-
graph, which is in fact aMarkov Decision Process. This is
then followed by the computation of the minimum proba-
bility p of target-avoidance by solving a system of linear
in-equations obtained from the zone-graph, using standard
techniques of linear-programming.

However, the existing analysis techniques for PTA con-
sider an idealized behaviour of the clocks, in the sense that
they are assumed to befully synchronous, unlike in prac-
tice, where the clocks could actuallydrift. The effect of
such imprecisions, modelled by a parameterε > 0, has
been studied for TA [8, 9], where it has been shown that
a state that is un-reachable for perfect clocks, might actu-
ally be reachable for the slightestε > 0 drift in the clocks.
This leads to the definition of “robust” reachability for TA,
where a state is considered to berobustly reachableiff it is
reachable forevery(i.e, even the slightest)ε > 0 drift in
the clocks. Conversely, a (bad) state is considered not to be
robustly reachable (and the TA is therefore “robustly safe”)
if it could be entirely avoided for a certain (small enough)
ε > 0 drift.

In this paper, we consider PTA with drifting clocks that

class of properties expressible in PTCTL, which is not considered in this
paper.
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could occur in practice. Such imprecisions play an adver-
sarial role enhancing the non-deterministic behaviour of
the system. We present a symbolic analysis technique that is
“robust” w.r.t such imprecisions. In particular, we propose
an extension to the zone-based fully forward algorithm for
PTA [6] in order to deal with the effects of infinitesimal
clock-drift. Our robustness notion is weaker than the classi-
cal definition for TA [8, 9], in the sense that the robustness
margin (in case of a certification of robust safety) could po-
tentially decrease with the iteration depth.

Given a PTA with clock-drift parameterized byε > 0,
with slopes in the range[ 1

1+ε
, 1 + ε], we wish to compute

q = minprob(∀i ∈ N ∃εi > 0 : Reachεi

i
∩ (l, B) = ∅).

Here,q is the minimum probability of avoiding the target
state(l, B) while considering drifting clocks, such that at
any given iteration depthi, there exists a strictly positive
value of the perturbationεi, for which the corresponding
perturbed reach-setReachεi

i
at that iteration depth entirely

avoids(l, B).
We conjecture that the computation ofq above may

be performed by simply replacing the time-successor of
a zone by a form of zone-enlargement, called its “drift-
neighbourhood”, in the fully-forward zone-based algorithm
of [6]. This results in an enlarged zone-graph consisting
of states that are reachable with non-zero probability under
the smallest clock-drift, and is obtained from the standard
(i.e., non-robust) zone-graph by widening allclosed differ-
enceconstraints defining the zones by 1, to the next higher
openconstraints.2 The computation of the minimum prob-
ability q of “robustly” avoiding the target state may then
be performed by solving a system of linear in-equations
as in the computation ofp for the non-robust case, with
q ≤ p always. Furthermore, the difference between the
minimal probabilitiesp andq may be computed from the
strict-inequalitiesof the zone-graph. This provides for a
precise quantification of the change in the system behaviour
owing to the additional non-determinism imposed by drift-
ing clocks.

This paper thus attempts to address the interplay ofro-
bustness(w.r.t drifting clocks) andrandomness(w.r.t tran-
sition probabilities) in the quantitative analysis of real-time
systems. We are presently working on the correctness proof
of our algorithm, by induction over the iteration depth. Fol-
lowing this, we intend to implement our algorithm in a prac-
tical PTA model-checker, with applications to case-studies
such as the bounded re-transmission protocol and the IPv4
Zeroconf protocol [10].
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A probabilisti
 semanti
 paradigm for
omponent-based se
urity risk analysisGyrd Brændeland1,2 and Ketil Stølen1,2

1 Department of Informati
s, University of Oslo, Norway
2 SINTEF, NorwayAbstra
t. We propose a probabilisti
 semanti
 paradigm for 
omponent-based se
urity risk analysis. By se
urity risk, we mean behaviour that
onstitutes a risk with regard to ICT se
urity aspe
ts, su
h as 
on�den-tiality, integrity and availability. The purpose of this work is to investi-gate the nature of se
urity risk in the setting of 
omponent-based systemdevelopment. A better understanding of se
urity risk at the level of 
om-ponents fa
ilitates the predi
tion of risks related to introdu
ing a new
omponent into a system. The semanti
 paradigm provides a �rst steptowards integrating se
urity risk analysis into 
omponent-based systemdevelopment.1 Introdu
tionThe �exibility of 
omponent-oriented software systems enabled by 
omponentte
hnologies su
h as Sun's Enterprise Java Beans (EJB), Mi
rosoft's .NET orthe Open Sour
e Gateway initiative (OSGi) gives rise to new types of se
urity
on
erns. In parti
ular the question of how a system owner 
an know whether totrust a new 
omponent to be deployed into a system. A solution to this problemrequires integrating the pro
ess of se
urity risk analysis in the early stages of
omponent-based system development. The purpose of se
urity risk analysis isto de
ide upon the ne
essary level of asset prote
tion against se
urity risks, su
has a 
on�dentiality or integrity brea
h. Unfortunately, the pro
esses of systemdevelopment and se
urity risk analysis are often 
arried out independently withlittle mutual intera
tion. The result is expensive redesigns and unsatisfa
toryse
urity solutions. To fa
ilitate a tighter integration we need a better under-standing of se
urity risk at the level of 
omponents. But knowing the se
urityrisks of a single 
omponent is not enough, sin
e two 
omponents 
an a�e
t therisk level of ea
h other. We therefore need a strategy for predi
ting system levelrisks that may be 
aused by introdu
ing a new 
omponent. A better understand-ing of se
urity risk at the level of 
omponents is a prerequisite for 
ompositionalse
urity level estimation.Our 
ontribution is a novel semanti
 paradigm 
apturing: probabilisti
 be-haviour; the 
omposition of basi
 probabilisti
 
omponents into 
omposite 
om-ponents; and the notion of se
urity risk as known from asset-oriented se
urityrisk analysis. In the following abstra
t we explain the intuition behind the ex-tended semanti
 model. The full details in
luding formal de�nitions 
an be foundelsewhere [1℄.
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2 Ba
kgroundWe build our semanti
 paradigm on top of the tra
e semanti
s of STAIRS [2, 3℄.A tra
e is a sequen
e of events, representing a 
omponent run. There are twokinds of events: transmission and 
onsumption of a message, where a message isa triple (s , re, tr) 
onsisting of a signal s , a transmitter lifeline tr and a re
eiverlifeline re. Ea
h event has a timestamp, whi
h is a rational number.3 Representing probabilisti
 
omponentsA risk is the probability that an event will harm an asset with a given impa
t. Inorder to speak of 
omponent risks there need to be un
ertainty in the 
omponentbehaviour. Exposed to a threat the 
omponent su�ers an unwanted in
ident, orresists is, with a 
ertain probability. Hen
e, we represent 
omponents with riskbehaviour as probabilisti
 
omponents.3.1 Closed 
omponentsA 
losed 
omponent has no external interfa
es, i.e., it does not intera
t with theenvironment. Any 
losed 
omponent I 
an be represented by a probability spa
e
(DI ,FI , fI ) where FI is the 
one-σ-�eld of DI and fI is the probability measureon FI [5, 4℄. The 
one-σ-�eld is the smallest σ-�eld generated from the set of
ones we obtain from any �nite pre�x of a tra
e in DI . We let D̃I denote the setof �nite pre�xes of the tra
es in DI . The 
one of a �nite tra
e t ∈ D̃I is the setof all tra
es in DI with t as a pre�x.3.2 Open 
omponentsA 
omponent that is not 
losed is open. The probability of tra
es of open 
ompo-nents depends on the probability of external behaviour. Su
h 
omponents 
annotbe represented dire
tly as probability spa
es. In order to represent open 
om-ponents in general, we adopt a rea
tive 
ommuni
ation model using re
ordingmedia to store in
oming messages.We represent an open 
omponent by a parameterized probability spa
e, whi
his a triple of fun
tions (DA(h),FA(h), fA(h)) that ea
h takes a 
ommuni
ationhistory as parameter and returns a set of tra
es DA(h), the 
one-σ-�eld FA(h)of DA(h) and the probability measure for fA(h). A given instan
e of a re
ordingmedium gives rise to one probability spa
e with regard to an open 
omponent.It 
hara
terises the probabilisti
 behaviour of the 
omponent with respe
t toan environment whose behaviour is 
aptured by the instan
e of the re
ordingmedium.Let I be a 
losed 
omposite 
omponent 
onsisting of two distin
t open basi

omponents A and B that intera
t via re
ording media. Then we 
an 
omputethe probability of the behaviour of I from the probabilities of the behaviours ofA and B [1℄.
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4 Extending the model to 
apture se
urity riskIn a tra
e based semanti
s an information se
urity in
ident is an event thatredu
es the value of one or more 
omponent assets. An asset is a spe
ial kind of
omponent that has a value. A threat s
enario is a sequen
e of events that endswith an information se
urity in
ident. A threat is a 
omponent that may initiatea threat s
enario through intera
ting with another 
omponent. Risk is the prob-ability of an event that redu
es the value of an asset. The risk value of a risk isa fun
tion of its probability, impa
t and a�e
ted asset. A prote
tion requirementis a fun
tion that for all assets yields an upper bound for the a

eptable riskvalue. We say that a 
omponent I satis�es prote
tion requirements for all assetsif all risks of I satisfy the a

eptan
e level for all assets.In the extended semanti
 model 
losed and open 
omponents are both �ve-tuples, where the �rst three elements are the same as for 
losed and open proba-bilisti
 
omponents, respe
tively, and the last two are a set of 
omponent assetsAI and an impa
t fun
tion ivI that yields the impa
t value for all events withregard to all assets aj ∈ AI .For open 
omponents a given instan
e of a re
ording medium 
hara
terisesthe probabilisti
 behaviour of the 
omponent with respe
t to a threat. In orderto obtain the risks of an open 
omponent A with regard to a 
ertain threat T welook at the 
omposition of A and T . In the 
ase where we have a set of threatsT1, . . . ,Tn we 
ombine all threats into one 
omposite 
omponent.The full details of the extended semanti
 model 
an be found in [1℄.5 Con
lusionWe have outlined a semanti
 paradigm that 
aptures probabilisti
 
omponentbehaviour. Using re
ording media to resolve mutual dependen
ies between openintera
ting 
omponents we have shown 
ompositionality of probabilisti
 
ompo-nents [1℄. Extending the semanti
 paradigm with se
urity risk related aspe
ts we
an formally represent risk behaviour of 
omponents. The formal representationof se
urity risk analysis results at the 
omponent-level fa
ilitates integration ofse
urity risk analysis into all steps of the development pro
ess, from requirementsspe
i�
ation to implementation.Referen
es[1℄ G. Brændeland and K. Stølen. A formal foundation for integrating se
urity analysisinto a 
omponent-based development pro
ess. Te
hni
al Report 363, University ofOslo, Department of Informati
s, 2007.[2℄ Ø. Haugen, K. E. Husa, R. K. Runde, and K. Stølen. Stairs towards formal designwith sequen
e diagrams. Software and System Modeling, 4(4):355�357, 2005.[3℄ A. Refsdal, K. E. Husa, and K. Stølen. Spe
i�
ation and re�nement of soft real-time requirements using sequen
e diagrams. In FORMATS, volume 3829 of Le
tureNotes in Computer S
ien
e, pages 32�48. Springer, 2005.
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[4℄ A. Refsdal, R. K. Runde, and K. Stølen. Relating 
omputer systems to sequen
e di-agrams with underspe
i�
ation, inherent nondeterminism and probabilisti
 
hoi
e.Part 1. Te
hni
al Report 346, University of Oslo, Department of Informati
s, 2007.[5℄ R. Segala. Modeling and Veri�
ation of Randomized Distributed Real-Time Sys-tems. PhD thesis, Laboratory for Computer S
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hnology, 1995.
NWPT'07

Page 43



A Hardware Independent Parallel Programming Model
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Abstract

Programming a highly parallel machine or chip can be formulated as finding an embedding
of the computation’s data dependency into the underlying hardware architecture. With the
data dependency pattern of a computation extracted as a separate entity in a programming
language, one has a powerful tool to code parallel programs.

Today’s computational devices are rapidly evolving into massively parallel systems. Multi-core
processors, e.g. the Cell processor and graphics processor units featuring 128 on-chip processors
are all invented to explore parallelism at its most. The appearance of these new devices set
new directions in computer science research, since the different hardware architectures come with
different, new programming models, which makes the writing of portable, efficient parallel code
difficult.

We want to develop an experimental unified programming model, based on the theory of Data
Dependency Algebras and its embeddings, which aims to overcome these difficulties.

A general theory for describing the data dependency graph of a computation and its embedding
into a hardware’s space-time graph was introduced in [2]. In [1] this basic idea was taken a step
further in the constructive recursive (CR) approach, where the computation is separated from its
dependencies, allowing both to be programmed and manipulated independently of each other.

The dependency structure of a computation is defined as a separate data type – the Data
Dependency Algebra (DDA), and the algorithm for solving a problem is given by a recursive
function on this DDA.

The run-time parallel distribution and global communication pattern of a hardware layout,
whether a parallel computer, a highly parallel graphics processor unit (GPU), a many-core CPU or
a chip, is also defined by a separate data type, a space-time DDA. The embedding of a computation
into the underlying hardware then becomes a task of finding an efficient mapping of the DDA of
the computation into the space-time DDA of the hardware layout. This allows full control of the
computation and explicit handling of the global interconnection network at a very high abstraction
level.

A prototype compiler based on the CR aproach, called Saphire, was built to provide a simple
way to generate parallel code from high level DDA descriptions for high performance computing
architectures [4].

The flexibility offered by the CR framework seems to meet the need raised by current hardware
programming issues. We would therefore like to extend this approach and show how it works for
hardware.

Our model proposes to use DDA abstractions for describing parallel computations, hardware
layouts or programming models, and embeddings. Once the dependency pattern of a computation
is extracted and the recursive functions solving a problem are defined, they remain unchanged
irrespectively of the available hardware resource. The underlying hardware architecture and the
embedding of the compution into this can be also specified on a high-absraction level. Taking this
into consideration, a suitably enhanced Saphire compiler will then be capable of producing parallel
code for the different hardware architectures, without reinventing the problem solving code.
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Figure 1: Bitonic sort DDA for 23 inputs and the underlying hardware communication layout: the
hypercube space-time DDA of dimension 3 in 7 time-steps

The case-study of this presentation illustrates this idea. We extract the DDA of a non-trivial
parallel computation, such as the bitonic sorting network, and define the computations as recursive
functions on this DDA, expressed in Saphire terminology, and sketch its embeddings into the space-
time layout descriptions of two different parallel architectures, the hypercube and a GPU.

The DDA of the bitonic sort can be seen as a combination of several reversed butterfly de-
pendency graphs of different height, each subbutterfly corresponding to a bitonic merge, as seen
in Fig. 1. Bitonic sorting is defined then as min/Max functions on the points of the graph.
The figure also shows a straightforward embedding of this DDA into the underlying space-time
communication layout (grey) of a hypercube.

An embedding consists of three functions, EP which defines how DDA points map into hard-
ware space and time coordinates, ER which defines how a request branch at a DDA point is
translated into an incoming communication channel, and ES which defines how a supply branch
at a DDA point is translated into an outgoing communication channel. The embedding controls
the utilisation of the available hardware resource.

When embedding the bitonic sort DDA into a GPU (Fig. 2), we consider NVIDIA’s CUDA
programming model [3] developed for general purpose computations. Here the GPU is considered
as a coprocessor to the main CPU, capable of handling a huge number of threads, which are
downloaded by the host onto the GPU in the form of a kernel. We can model CUDA as a special
space-time architecture, where communication between threads in successive time-steps can be
explicitely defined on a high abstraction level.

The present Saphire compiler is capable of producing parallel code from DDAs using the MPI
message passing library. We are planning to enhance this prototype compiler to generate parallel
code for other architectures as well, e.g., for CUDA. This will also allow us to easily test the
efficiency of different embeddings, since they can be reformulated on a high abstraction level, and
Saphire generates the parallel code.

We believe DDA abstractions can also be streched to tackle some aspects of FPGA program-
ming, and it also seems promising to take a step further towards low-level hardware and investigate
possible ways of combining DDAs with circuit designs.
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Figure 2: Bitonic sort DDA for 24 inputs, embedded into NVIDIA’s CUDA programming model,
executed by 4 kernel invocations, each consisting of 4 blocks of threads.
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Analysis of Arithmetical Congruences on
Low-Level Code

Stefan Bygde
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Abstract. Abstract Interpretation is a well known formal framework for
abstracting programming language semantics. It provides a systematic
way of building static analyses which can be used for optimisation and
debugging purposes. Different semantic properties can be captured by
so-called abstract domains which then easily can be combined in various
ways to yield more precise analyses. The most known abstract domain
is probably the one of intervals. An analysis using the interval domain
yields bindings of each integer-valued program variable to an interval
at each program point. The interval is the smallest interval that con-
tains the set of integers possible for that particular variable to assume
at that program point during execution. Abstract interpretation can be
used in many contexts, such as in debugging, program transformation,
correctness proving, Worst Case Execution Time analysis etc.
In 1989 Philippe Granger introduced a static analysis of arithmetical
congruences. The analysis is formulated as an abstract interpretation
computing the smallest (wrt. inclusion) congruence (residue) class that
includes the set of possible values that that variable may assume during
execution. The result of the analysis is a binding of each integer-valued
variable at each program point to a congruence class (e.g. {x ∈ Z | x ≡
2 mod 3}). Applications for this analysis include automatic vectorisation,
pointer analysis (for determining pointer strides) and loop-bound anal-
ysis (for detecting loops with non-unit strides). However, in the original
presentation, the analysis is not well suited to use on realistic low-level
code. By low-level code we mean either compiled and linked object code
where high-level constructions has been replaced with target-specific as-
sembly code, or code in a higher-level language written in a fashion
close to the hardware. A good example of low-level code is code writ-
ten for embedded systems which often is using advantages of the target
hardware and/or using a lot of bit-level operations. Code for embedded
systems is an increasingly important target for analysis, since it is of-
ten safety-critical. The reason that the congruence domain in its original
presentation is not suitable for low-level code is mainly due to the three
following properties of low-level code: A) Bit-level operations are com-
monly used in low-level code. Programs that contain bit-operations are
not supported in the original presentation. For any computation of an
expression which contain operations that has not been defined in the
analysis, it has to assume that nothing is known about the result and
assign the result to the largest congruence class (equal to Z). This can
potentially lead to very imprecise analysis results. B) The interpretation
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of the values of integer-valued variables is not obvious (e.g. they can be
signed or unsigned), the original presentation assumes that values has
unambiguous representations. C) The value-domain is limited by its rep-
resentation (integers are often represented by a fixed number of bits). In
Grangers presentation integer-valued variables are assumed to take val-
ues in the infinite set of integers. Our contribution is to extend the theory
of the analysis of arithmetical congruences to be able to handle low-level
or assembly code, still in the framework of abstract interpretation.
This paper provides accurate definitions to the abstract bit-operations
AND,NOT,XOR, left- and right shifting and truncation for the congru-
ence domain in order to make the domain support these operations.
We provide definitions for the operations together with proofs of their
correctness. In these definitions care has been taken to the finite, fixed
representation of integers as well as their sometimes ambiguous interpre-
tations as signed or unsigned. With these definitions, congruence analysis
can efficiently be performed on low-level code. The paper illustrates the
usefulness of the new analysis by an example which shows that variables
keep important parity information after executing a XOR-swap.
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Hardware Modelling Language and Verification of Design Properties

Aske Brekling, Michael R. Hansen and Jan Madsen, IMM, DTU

As the complexity of chips grows, the methodology to build chips has to evolve. Today, chips are
largely synthesized from high-level architectural descriptions that hide low-level details.

The majority of hardware designs are done using the most common hardware description
languages, VHDL [5] or Verilog [10]. Both languages support high-level architectural descriptions,
but allow hardware designers to incorporate low-level details in order to optimize for a particular
hardware technology and directly synthesize using a restricted subset of the languages. However,
chips may also be synthesized from software based models in much the same way as compilers
produce executable code. Examples of such languages are Esterel, Lustre and Signal, see e.g. [3].

We have chosen to base our language for hardware models on Gezel [9]. It depends on rea-
sonably few, simple and clean concepts, and it strikes a balance between software and hardware
concerns that we believe suits the needs for a modern top-down approach to hardware design.

We give a semantics domain that can be used for hardware design languages like Gezel. With
this semantics, we believe that a new Gezel-like language could be defined where the syntax reflects
the semantics in a direct manner. We also show how the semantics can be used in connection with
verification by relating the semantical domain to timed-automata [1]. We have experimented with
verification of some examples, e.g. the Simplified Data Encryption Standard (SDES) Algorithm [8],
using the UPPAAL system [2, 6].

An Introduction to Gezel

Gezel is a high-level hardware description language. It comes with an interpreter as well as a
translator with VHDL as its target language. The interpreter provides means for simulation and
debugging. The language does not have a formal semantics, and there is no tool for verification
of Gezel specifications.

A Gezel specification specifies a number of components and their interconnections. A com-
ponent in Gezel is made up of a datapath (dp) providing a number of actions, called signal flow
graphs (sfg), and a controller expressed as a finite state machine (fsm) where one or more actions
may be executed in each state transition. This model is called a finite state machine with datapath
(FSMD). Figure 1 shows the structure of a FSMD, and Figure 2 shows the pattern for essential
parts of a Gezel specification.

Overview and Build-up of the Semantics

The semantics provides definitions for modules. Modules are the building block for systems, and
the concept is defined to facilitate hierarchical constructions. We provide three different terms for
modules: basic module, composition of modules and top-level module.

A basic module is defined as a datapath and a controller. The controller is a finite state machine
and the datapath consists of input- and output ports, signals, registers and a set of actions. An
action is a single assignment program where registers, output ports and signals can be assigned
a value. Composition of modules are basically modules composed in parallel (basic- or already
composed modules) using single assignment programs to connect their ports. The top-level module
basically describes the system as the module at the highest level in the hierarchical structure.

Verification of Specifications

Experiments with verification of specifications have been conducted using the MONA tool [7],
UPPAAL [2, 6] and NuSMV [4]; so far the greatest results have been in using UPPAAL.

Each module in the semantics can be modelled in UPPAAL as a timed automata. Parallel
composition of modules are simply parallel composition of timed automata in UPPAAL. The

1
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control input

control output

data input

data output

command

status

FSM Datapath

Gezel-component

control computation

Figure 1: The FSMD model

(Datapath:

dp Name0(port list ) {
local register and signal declarations
sfg name1 { (non-branching) actions }
sfg name2 { (non-branching) actions }
...

}

+
Control: ) ... + Composition:

fsm controller_name (Name0) {
initial state declaration
auxiliary state declarations
@state0 transition0

@state1 transition1

...

}

system id {
Name0(n0,0,n0,1,... );

Name1(n1,0,n1,1,... );

...

}

Composition in terms of nets
(implicitly introduced ni,j)

Figure 2: Pattern for a Gezel program

greatest challenge in modelling the semantics in UPPAAL comes from assuring the correct sequence
of execution of the single assignment programs. This is done by keeping track of which input ports
and signals have been defined and assigning new values for output ports, signals and registers when
all values required for the assignment have been defined.

Verifying properties of a system in UPPAAL is conducted using the UPPAAL requirement
specification language. So far, functional properties, such as correct output, of systems as well as
some structural properties, such as upper limit on clock cycles and register updates, have been
expressed, and such verifications on examples have been explored.

2
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Verification Results

We have conducted examples of verification on three high-level hardware designs. The three
examples are specifications of two different greatest common divisor (gcd) algorithms (gcd1 and
gcd2) and a specification of a SDES algorithm. Verification guarantees properties of the underlying
algorithm, e.g. correct output for any given input, as well as other properties such as upper limits
on the number of clock cycles for the algorithm to stabilize with a given input and upper limits
on the number of register updates, to serve as an indicator of energy consumption.

The difference between the underlying gcd algorithms of the two specifications are that gcd1
uses simple subtraction to calculate the result, whereas gcd2 makes use of shift operations to make
more efficient calculations.

For the gcd examples it was verified that both the specifications gave the correct 8-bit output
given any two 8-bit inputs. This was done by testing the output against the result of an imperative
implementation of a proven gcd algorithm implemented in a UPPAAL function for all possible
combinations of inputs. Furthermore, it was verified that gcd1 calculated the greatest common
divisor in maximally 511 clock cycles and 261 register changes, whereas gcd2 maximally used 26
clock cycles and 25 register changes in order to calculate the result. So as expected gcd2 was more
efficient (i.e. used less clock cycles and register changes).

For the SDES example it was verified that for all combinations of 8-bit plaintexts and 10-bit
keys, encryption followed by decryption gave the original plaintext. However, it was also verified
that not all combinations of plaintexts and keys gave a different chiphertext than the original
plaintext. This of course is a property of the underlying algorithm.

Each of the aforementioned Gezel specifications was verified in less than 25 minutes on a SUN
Fire 3800 with 1.2GHz CPUs running Solaris 10. Until now, nothing in particular has been done
to speed up the verification process.

Presented Topics

The focus of this talk will be on the ideas and concepts of a new hardware modelling language
where the semantics is reflected in the syntax in a direct manner and specifying where Gezel
fails to reflect the semantics. Also, making automated processes for steps from specification to
verification of properties, using the semantics as a basis, will be given.
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1 Introduction

Whereas object-orientation is established as a major paradigm for software de-
velopment, testing methods specifically targeted towards object-oriented, class-
based languages are less common. We propose a formal testing framework for
object-oriented programs, based on the observable trace semantics of class com-
ponents, i.e., for black-box testing. In particular, we propose a test specification
language which allows to describe the behavior of the component under test in
terms of the expected interaction traces between the component and the tester.
The specification language is tailor-made for object-oriented thread-based pro-
gramming languages like Java and C#, e.g., in that it reflects the nested call
and return structure of thread-based interactions at the interface. From a given
trace specification, a testing environment is synthesized such that component
and environment represent an executable closed program.

The design of the specification language is a careful balance between two
goals: using programming constructs in the style of the target language helps
the programmer to specify the interaction without having to learn a completely
new specification notation. On the other hand, additional expressions in the spec-
ification language which are usually not provided by the target language itself
allow to specify the desired trace behavior in a concise, abstract way, hiding the
intricacies of the required synchonization code at the lower-level programming
language.

2 Test Driver Generation

Target Language We aim at a testing framework with a formal basis for test-
ing software components written in object-oriented languages with synchronous
message passing like Java or C#. A typed concurrent object calculus, based on
impς introduced in [1] (see also [3]), and a corresponding open operational se-
mantics for components[2] serve as a formal common ground for these languages.
A component of the calculus consists of threads and classes. The semantics is
given in two stages. The component-internal steps are defined without reference
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to the environment. The external steps, in contrast, describe the component-
environment interactions, i.e., interactions between the component and its envi-
ronment. They are formalized by a labeled transition system, where the label of
a transition represents the actual interaction.

Interface behavior A component-environment interaction is either a method
call or a method return. A method call occurs at the interface if the callee is
part of the component and the caller resides in the environment or vice versa.
We call the first kind of method calls incoming and the latter outgoing method
calls. An incoming method call results in an outgoing return (in case the method
returns). The dual holds for outgoing calls.

The interface behavior of a component can be described by its set of interface
traces. An interface, or interaction, trace of a component is the syntactical repre-
sentation of a sequence of component-environment interactions that occur when
executing the operational semantics. They are expressed by the corresponding
sequence of transition labels.

Specification Language We propose a specification language for describing
the desired interface behavior of a component. The language is designed under
consideration of the following aspects:

– The behavior is formalized on the basis of interface traces. To this end,
the language provides interactions statements for incoming and outgoing
method calls and returns, which can be concatenated to describe an expected
sequence of component-environment interactions.

– To allow specifications which correspond to possibly infinite sets of traces we
add language constructs like variable declarations, conditionals, and tail re-
cursion. To ease the use of the specification language for software developers,
these language constructs are the same as in the target language.

– Certainly, there exist sequences of interactions that cannot be realized by
any component. For instance, an incoming return cannot occur before the
corresponding outgoing method call. The grammar and the type system of
the specification language filters out most of these faulty specifications.

We give a semantics for the specification language which is similar to the
semantics of the target language. However, the labeled transition system is dif-
ferent in that the possible incoming interactions are confined by the incoming
interaction statements in the specification. Moreover, an important consequence
of the above mentioned design decision is that we can specify a sequence of inter-
action statements of different threads such that the same order in the resulting
trace is ensured.

Transformation We propose a transformation algorithm which generates tar-
get language code from a test specification for the methods of the tester classes.
Basically, we had to tackle three main problems:
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– To provide code which checks whether the component realizes an expected
trace, we have to determine the possible orders of execution of interaction
statements in the specification. We do this, by analyzing the possible control
flow of the given specification.

– The tester should drive and observe the test, so that the component-tester
interactions are realized in the specified order. However, our underlying the-
ory shows that there always exist re-orderings which cannot be avoided but
which are observable equal to the original order anyway[4]. We use a syn-
chronization mechanism that ensures an order which is observable equal to
the specified one.

– Unfortunately, we cannot identify all unrealizable specifications, statically.
However, we can detect at runtime if in a certain situation the tester expects
an impossible behavior of the component. In these cases, the tester stops the
execution and reports a faulty specification.

3 Results

Specification language for a concurrent object calculus We formalize
a specification language for object-oriented class-based concurrent components
which specifies a component’s behavior based on its interface trace and which,
at the same time, has a similar look-and-feel as the target language. Moreover,
we propose a transformation algorithm which synthesizes a tester program from
a given specification, such that the tester and the component under test form
an executable closed program.

Soundness of the transformation Our full research program also includes
proofing soundness of the transformation in a later stage. This comprises

– preservation of well-typedness i.e., from a given well-typed specification, the
transformation yields a well-typed tester program in the target language.

– satisfaction i.e., the traces accepted by the tester satisfy the specification.
– detection of faulty specifications i.e., irrealizable specifications are detected

either statically or at run-time.
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Extended abstract

On-the-fly testing is widely considered to be the most appropriate technique
for model-based testing of an implementation under test (IUT) modelled using
nondeterministic models [7, 8]. We use the term on-the-fly to describe a test gen-
eration and execution algorithm that computes successive stimuli incrementally
at runtime, directed by the test purpose and the observed outputs of the IUT.

The state-space explosion problem experienced by many offline test gener-
ation methods is reduced by the on-the-fly techniques because only a limited
part of the state-space needs to be kept track of at any point in time. On the
other hand, exhaustive planning is difficult on-the-fly due to the limitations of
the available computational resources at the time of test execution.

The simplest approach to the selection of test stimuli is to apply the so
called random walk strategy where no test sequence has an advantage over the
others. It is inefficient because it is based on the random exploration of the
state space and leads to test cases that are unreasonably long and nevertheless
may leave the test purpose unachieved. To overcome this deficiency additional
heuristics are applied for guiding the exploration of the state space [4, 9]. The
other extreme of guiding is exhaustive planning by solving constraint systems at
each step. For instance, the witness trace generated by model checking provides
possibly optimal selection of the next test stimulus. The critical issue in the
case of explicit state model checking algorithms is the size and complexity of
the model leading to the explosion of the state space specially in cases such as
”combination lock” or deep loops in the model [2].

In this paper we propose a balance between the tradeoffs of using a simple
heuristic and the exhaustive planning methods for on-the-fly testing. We apply
the principles of reactive planning to the problem of test planning under uncer-
tainty. Reactive planning operates in a timely fashion and hence can cope with
highly dynamic and unpredictable environments [10]. Just one subsequent input

? Full version of the paper has been accepted to the Conference of Automated Software
Engineering, November 5-9, 2007, Atlanta, Georgia, USA.
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is computed at every step, based on the current context. Instead of producing a
complete test plan with branches (test tree), a set of decision rules is produced.
We construct these rules by offline analysis based on the given IUT model and
the test purpose.

The key assumption is that the IUT model is presented as an output observ-
able nondeterministic state machine [5, 6] either in the form of an FSM or an
EFSM in which all transition paths are feasible [1, 3]. From the IUT model we
synthesise a reactive planning tester that is able to generate test inputs on-the-
fly depending on the observed reactions of the IUT and the test purpose without
having a preset test tree generated in advance. The proposed approach leads to
a tester that directs the IUT efficiently towards the user-defined test purpose
during test execution.

A test purpose is a specific objective or a property of the IUT that the tester
is set out to test. We focus on test purposes that can be defined as a set of traps
associated with the transitions of the IUT model [2]. The goal of the tester is
to generate a test sequence so that all traps are visited at least once during the
test.

We synthesise the tester as an EFSM where the rules for online planning
derived during the tester synthesis are encoded into the transition guards of the
EFSM. At each step only the rules associated with the outgoing transitions of
the current state of the EFSM are evaluated to select the next transition with
the highest gain. Thus, the number of rules that need to be evaluated at each
step is relatively small.

The decision rules are constructed taking into account the reachability of all
trap-equipped transitions from a given state and the length of the paths to them.
Also, the current value (visited or not) of each trap is taken into account. The
decision rules are derived by performing reachability analysis from the current
state to all trap-equipped transitions by constructing the shortest path trees.
The gain functions that are the terms of the decision rules are derived from the
shortest path trees by simple rewrite rules.

The resulting tester drives the IUT from one state to the next by generating
inputs and by observing the outputs of the IUT. When generating the next
input the tester takes into account which traps have been visited in the model
before. The execution of the decision rules at the time of the test execution is
significantly faster than finding the efficient test path by state space exploration
algorithms but nevertheless leads to the test sequence that is lengthwise close to
optimal.

In the context of our examples, the reactive planning tester is more efficient
at runtime than random choice and anti-ant algorithms. The planning feature of
the reactive planner results in significantly shorter average test sequence lengths.
The reactive planner outperforms the anti-ant algorithms in cases where more
directed search is presumed, i.e. the test purpose covers the model partially.

The next step in evaluating the applicability of the reactive planning tester
on further case studies requires an implementation of tool support that is part of
the future work. In this work we made the assumption that all transition paths
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in the EFSM are feasible but future work involves removing the feasible paths
assumption.
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Frank S. de Boer1, and Immo Grabe2

1 CWI, Amsterdam, The Netherlands
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1 Introduction

Concurrent object-oriented programming languages are hard to analyse and ver-
ify, as the interleaving of activities leads to numerous different executions of the
same program. We address a typical source of errors in such programs namely
deadlocks. In a well known paper Coffman et al.[2] gave four necessary criteria
for the occurrence of a deadlock (here adapted to an object-oriented setting):

mutual exclusion An object provides exclusive access to its internal state.
hold and wait While waiting to get the lock of one object a thread can hold

the locks of other objects.
no preemption Threads cannot be forced to release exclusive access to an

object.
circular waiting A circular chain of threads each waiting to get a lock the next

thread in the chain holds.

To avoid deadlocks we have to identify program code which can lead to such
a situation. In the presence of concurrency a mechanism for mutual exclusion
is indispensable. The mechanisms for waiting and for preemption are language
specific. Circular waiting, however, is program specific and thereby amenable
to validation. We use program analysis techniques, in particular interprocedural
analysis, to address the problem of deadlocks. For an introduction to program
analysis see [3].

This paper deals with Java programs. The Java language provides a mecha-
nism for mutual exclusion by locks of objects [1]. Code is declared to be accessed
exclusively — using the lock mechanism — by the keyword synchronized. A
thread that has gained access to synchronized code keeps the lock until the code
is completed, and cannot be forced from the outside to release the lock. This
explains the need to analyse whether a program is vulnerable to circular waiting,
i.e., deadlocks.
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2 Deadlock Detection Algorithm

We consider a Java program consisting of a finite number of classes, objects, and
threads. We give several levels of abstractions to get a finite-state representation
of the call-chains of the threads. We can exploit this representation by model
checking to detect possible deadlocks. Our model is an overapproximation of the
program which can lead to false negatives, i.e., deadlocks reachable only in the
model and not in the program. We give a notion of refinement to reduce the
likelihood of those false negatives.

We introduce for the sake of this paper so called method automata and thread
automata. As a first step we abstract from the data and the object instances by
construction of method automata representing the calling behaviour of the meth-
ods. Then we take those method automata to construct automata describing
the behaviour of a single thread. By model checking deadlock freedom of these
thread automata, we get the desired property or a counterexample representing
an execution leading to a deadlock.

Method Automaton By giving a finite automaton for each method describ-
ing the calling behaviour of that method, we abstract from the concrete object
instances and the internal steps of a method. An execution of a thread can be
modelled as a push-down automaton moving through the method-automata. We
assume the nodes of the method automata to be disjoint. By this we can relate
every step of the push-down automaton to a particular method automaton in a
particular class.

Call-Chain Automaton We characterize balanced call-chains by a context-
free-language. We construct the call-chain automata from the method automata
by stepwise extension. Initially the automaton consist only of the starting node
gradually all reachable nodes are included. The nodes of the call-chain automaton
represent either a call or a return and are labelled by tokens of our language.
By this we can generalize the reachability problem to a context-free-language
reachability problem following a formalism presented by Reps in [4]. We do not
count the number of recursive calls in a run but allow an arbitrary number. By
this abstraction we get rid of the obligation to maintain a history, e.g., a stack.
On the other hand this introduces a source of imprecision.

Deadlock Detection To detect a deadlock we annotate the call-chain automata
states with the set of locks the thread may own in this state. Without counting,
there are situations where it is only possible to say that a lock may be held by a
thread, not that the thread actually holds it. These sets can be derived from the
call-chain automaton. Using the labelling of the call-chain automaton we derive
the involved class from the method automata. A deadlock occurs if the circular
waiting situation described above can evolve. We verify this by model checking
deadlock freedom of the call-chain automata.
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Refinement A counterexample to the deadlock freedom property is a path
in the model leading to a deadlock. In general such a deadlock need not be a
deadlock of the program. If we have found such a false negative we have to refine
our model. We can do this by refining to more precise method automata by
taking into account from which method they are called and reconstruction of
the thread automata. These more refined thread automata can be constructed
in the same way as in the initial case.

3 Results

We use an automata representation of the program to derive the automata rep-
resentation of its behaviour. The chosen abstractions are sound.

Lemma 1 (Soundness of abstraction). The abstraction is sound, i.e.:

[[t ]]trace ⊆ [[Athread ]]trace

where t is a thread of the program and Athread is the call-chain automaton of t.

Our representation of the program behaviour is an overapproximation of the
program behaviour. Proving a safety property of our model implies that the
property also holds for the program.

Theorem 1 (Soundness of the algorithm). The algorithm is sound, i.e.:

DLF (Athread) = true ⇒ @ e ∈ [[P ]]exec .deadlock(e),

where DLF is a predicate stating deadlock freedom and e is an execution of
program P.

We have given a finite program abstraction that is feasible for model checking.
A notion of refinement is developed that allows us to scale the precision of our
abstraction to the level needed for the verification. Using these techniques, we
can prove the absence of deadlocks for a Java program.
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The process algebra Csp [4, 11, 15, 1] provides a well-established, theoretically
thoroughly studied, and in industry often applied formalism for the modelling
and verification of concurrent systems. Csp has been successfully applied in areas
as varied as distributed databases, parallel algorithms, train control systems [3],
fault-tolerant systems [2], and security protocols [15].

Fixing one syntax, Csp offers different semantical models, each of which is
dedicated to special verification tasks. The traces model T , e.g., covers safety
properties. Liveness properties can be studied in more elaborate models. Dead-
lock analysis, e.g., is best carried out in the stable-failures model F , the failures-
divergences model N allows for livelock analysis. The analysis of fairness prop-
erties requires models based on infinite traces, see [11, 1] for further details.

Recently, the Csp realm of models has been extended by the newly designed
stable-revivals model R [13]. On the practical side, the model R is appropriate
to study responsiveness [12], which is a significant property in the context of
component-based system design. From a theoretical point of view, the model R
turns out to be fully abstract with respect to detecting when some system of
processes can fail to make progress despite one or more of them having unfinished
business with other(s). However, this comes at the price that certain algebraic
properties fail to hold in the new model, among them the law u−2-distributivity
(P 2 Q) u R = (P u R) 2 (Q u R) is the most prominent example.

Csp-Prover [5, 8, 6, 7] is an interactive theorem prover for Csp based on Is-
abelle/HOL [10]. With its theorem proving approach Csp-Prover complements
the established model checker FDR [9] as a proof tool for Csp. Csp-Prover is
generic in the various Csp models, currently, it fully supports the traces model
T and the stable-failures model F .

Csp-Prover provides a deep encoding of Csp, and, consequently, also allows
for meta theorems on the semantics implemented. Mistakes found, e.g., in the
typing of the semantical functions of the predecessor of the model N [17, 16], or
in the algebraic laws for the model F [6] demonstrates that, soon, presentations
of similar models and axiom schemes will only be ‘complete’ once they have been
accompanied by mechanised theorem proving [14].

In this paper, we report on an ongoing project of encoding the model R
in Csp-Prover, see Figure 1. Csp-Prover provides a large re-usable part, e.g.,
theories on CMS and CPO, which provide techniques for dealing with recursive
process definitions, or the Csp syntax. On top of this re-usable part, each Csp
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model needs to be defined individually with its domain, its semantical functions,
and its proof infrastructure, where – thanks to the close relation between the
Csp models – sharing and re-use is possible. Encoding a Csp model includes
two major parts, namely specifying the model and proving properties about this
specification. Due to Isabelle’s concept of conservative extensions, these two
parts are often intertwined.

On the specification side, we first need to encode the domain of the model R.
Mathematically, this domain is a powerset reduced to ‘healthy’ elements. The
notion of healthiness arises in a natural way, when the domain is interpreted
as the collection of possible process observations. In Isabelle/HOL, we mirror
this construction with a type definition. Already in this context, Isabelle/HOL
requires the proof of properties, namely, that the newly defined types are non-
empty.

The next step is to specify the refinement order, under which R forms a com-
plete lattice. Here, we declare our domain to be an instance of the Isabelle/HOL
type class ‘order’. To this end we have to discharge the proof obligation that the
inverse refinement order of R is a partial order. We also prove that the inverse
refinement order forms a pointed cpo: this result allows us to re-use Csp-Prover’s
theory on CPO. As the model R is currently only defined in the CPO approach,
we refrain from linking our domain to Csp-Prover’s theory on CMS.

Next comes the specification of the semantical functions which map the Csp
syntax to the domain. In Isabelle/HOL, these definitions come with proof obli-
gations. Given, for example, healthy denotations of two processes P and Q , we
have to prove that the denotation of the external choice (P 2 Q) between P and
Q is healthy as well. While Roscoe regards it in [13] as ‘mechanical calculation’
that all operators preserve R’s healthiness conditions, these proofs turn out to
be a real challenge in Isabelle/HOL.

The final step in order to instantiate Csp-Prover with the model R is to
prove that all Csp operators are continuous w.r.t. the inverse refinement order.
Given this continuity result, the semantics of recursive process definitions in Csp
is defined via Tarski’s fixed point theorem, which also offers proof support in the
form of fixed point induction.

The proof infrastructure for the model R is based on the encoding described
above. It consists of a collection of algebraic laws, which have been proven to be
correct w.r.t. the encoding, as well as of a collection of tactics combining these
laws.

Our instantiation of Csp-Prover with the modelR as laid out in this abstract
is nearly complete: there are open continuity proofs, and more proof infrastruc-
ture needs to be developed.
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Fig. 1. Model R in Csp-Prover
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1. Introduction
The array programming paradigm adopts arrays as the fundamen-
tal data structures of computation. Such arrays may be vectors,
matrices, tensors, or objects of even higher dimension. In partic-
ular, arrays may also be scalar values such as the integers which
form the important special case of arrays without any axes. Ar-
ray operations work on entire arrays instead of just single ele-
ments. This makes array programs highly expressive and intro-
duces data-parallelism in a natural way. Hence, array programs
lend themselves well for parallel execution on parallel computers
such as recent multi-core processors (Sutter 2005; Grelck 2005).
Prominent examples of array languages are APL (Iverson 1962),
J (Iverson 1995), MATLAB (Moler et al. 1987), and, more recently,
SAC (Grelck and Scholz 2006).

A powerful concept found in array programming languages
is shape-generic programming: algorithms may be specified for
arrays of arbitrary size and even an arbitrary number of axes. For
example, array addition works for scalars as well as for vectors
and matrices. However, this flexibility introduces some non-trivial
constraints between function arguments: Uniform array operations
such as element-wise addition require both their arguments to have
exactly the same number of axes and the same size. The situation
is even more complicated for operations like array selection: The
length of the selection vector (a vector of indices) must equal the
number of array axes and the values of said indices must range
within the array bounds.

Interpreted array languages like APL, J, and MATLAB come
with a large number of built-in operations. Each operation performs
dynamic consistency checks on the structural properties of its argu-
ments. In contrast, SAC is a compiled language aimed at providing
utmost computing speed. Clearly, in this setting dynamic checks
are undesirable since their repeated execution is costly in terms
of run-time overhead. Moreover, uncertainty about whether or not
program constraints are met hampers program optimization, lead-
ing to poor performance characteristics. Finally, run-time checks do
not provide any confidence in program correctness since a program
may run correctly for a long time before showing any erroneous

[Copyright notice will appear here once ’preprint’ option is removed.]

behavior. For all these reasons, it is desirable to statically verify the
various program constraints by means of formal methods.

Type systems are light-weight formal methods for program
verification. A program that has been shown to be well-typed at
compile-time is guaranteed not to exhibit certain undesired behav-
ior at run-time. The amount of program errors ruled out by a type
system depends on both the programming language to be checked
and the expressive power of its types. A language is called type-
safe if its operational semantics ensures that well-typedness is pre-
served by the reduction rules and that the evaluation of well-typed
programs never gets into an undefined state in which no further
reduction rule applies (Pierce 2002).

In this paper, we present a special type system for static verifica-
tion of array programs. The system uses families of array types that
do not only reflect the type of an array’s elements but also contain
an expression describing its shape. For specific arrays such as shape
vectors, singleton types are employed to capture a vector’s value in
its type. The type system is based on a novel variant of dependent
types: Vectors of integers are used to index into the family of array
types. These vectors are themselves indexed from a sort family us-
ing an integer. Like in other approaches using indexed types such
as DML (Xi and Pfenning 1999), type checking then proceeds by
checking constraints on the index expressions, which is decidable.
However, dealing with index vectors requires machinery beyond
classical theorem provers for presburger arithmetic. To illustrate
the approach, we introduce the nucleus of a programming language
that allows for the convenient specification of higher-order shape-
generic functional array programs. We aim at providing full type-
safety, i.e. that all well-typed array programs will yield a value. In
short: Dependently typed array programs don’t go wrong!

2. A Foundation for Type-Safe Array
Programming

The appropriate abstraction for treating the various kinds of arrays
uniformly are true multidimensional arrays. As shown in Fig. 1,
each array is characterized by its rank denoting the number of axes,
and its shape vector describing the extent of each axis. Since the
shape vector contains a natural number for each axis, the rank is
implicitly encoded. The elements contained in an array are repre-
sented as a potentially empty sequence of quarks called the data
vector. Quarks are the standard values of functional programming
languages: constants, function values, and tuples (omitted in this
abstract), but here they cannot exist without arrays. Together, the
shape vector and the data vector form a unique representation of
arrays. As shown in Fig. 2, array terms and quarks are defined mu-
tually recursive.

1 2007/9/2
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Array Rank Shape vector
1 0 [][

1 2 3
]

1 [3][
1 2 3
4 5 6

]
2 [2 3]

4 5 6

1 2 3

10 11 12

7 8 9

3 [2 2 3]

Figure 1. Multidimensional arrays are characterized by their rank
and shape vector.

For example, a 2 × 2 matrix of integers may be represented
as 〈(2, 2), (1, 2, 3, 4) : int〉. Further examples are shown in Fig. 3.
The type annotation describes the type of the quarks in the data vec-
tor. This is necessary to determine the type of the entire array if it
does not contain any quarks. Resembling the relationship between
quarks and array terms, there are quark types and array types. The
array types of a given quark type form a type family in which we
select specific types using a type index vector representing the array
shape. The type of our above example would thus be [int|(2, 2)].
Purely for reasons of readability, we may freely abbreviate the types
of scalar arrays by writing Q instead of [Q|()].

Using the abstraction quark λx. e, we can define arrays of func-
tions such as the identity function on scalar integers. Corresponding
to the abstraction quark, there is also a quark type T → T repre-
senting function types. Since all array elements must have the same
type, the type of the variable in the abstraction is unnecessary:

〈(), (λx. x) : int→ int〉 : [int→ int|()].
Only scalar arrays of functions like the example above may be ap-
plied to an argument. We define β-reduction on arrays by syntacti-
cal substitution whose definition omitted in this abstract. Note that
the following reduction does not take the type of the function argu-
ment into account:

〈(), (λx. t1) : A → B〉 t2 → [x 7→ t2]t1.

Finally, the index abstraction quark λ′x. t serves to abstract a
type index out of a term. Its type is the dependent function quark
type Πx : I. T. The index variables may then be used to form
index terms. However, like in other approaches using indexed types
like DML (Xi and Pfenning 1999), the grammar of these index
expressions is limited to retain decidability. The application of
dependent functions t ′i substitutes the index term i into both the
types and terms of t:

〈(), (λ′x. t) : Πx :I. T 〉 ′i → [x 7→ i]t.

I ::= nat | natvec(i) | {I in ..i} Index sorts
i ::= x | c | i+i | ci | (c∗) | i~+i Index terms

| i++i | take(i, i) | drop(i, i)

T ::= [Q|i] | num(i) | numvec(i) Array types
Q ::= int | T → T | Πx :I. T Quark types

t ::= 〈(c∗), (q∗) : Q〉 | t t | t ′i Array terms
| gen x < t with t | t[t]

q ::= c | λx. e | λ′x. e Quarks

v ::= 〈(c∗), (q∗) : Q〉 Array values

Figure 2. A simplified syntax for typed array programs

Array Array expression
1 〈(), (1) : int〉[

1 2 3
]

〈(3), (1, 2, 3) : int〉[
1 2 3
4 5 6

]
〈(2, 3), (1, 2, 3, 4, 5, 6) : int〉

4 5 6

1 2 3

10 11 12

7 8 9

〈(2, 2, 3), (1, .., 12) : int〉

Figure 3. Arrays represented as array expressions.

Using dependent function types, we may, for the first time in the
history of array programming, give an accurate type to the shape-
generic addition operation for integer arrays of arbitrary but equal
rank and shape:

add : Πr :nat. Πs :natvec(r). [int|s] → [int|s] → [int|s].

The two layers of index abstraction are typical for shape-generic
array programs: we first abstract out the rank r to select the sort of
the shape vector s from the sort family of index vectors. Then, the
second Π type abstracts out the shape s which is used to index the
array types.

The definition of the shape-generic array addition extends an
addition operation + for integer scalars to arbitrary arrays using a
gen expression. To simplify the notation, we use a supercombinator
notation that is equivalent to a nesting of scalar function definitions.

add ′d ′s a b = gen x < shape a with a[x] + b[x].

The expression gen x < s with e is a simplified variant of the
WITH-loop, the versatile array comprehension used in SAC. It takes
a new identifier x, a non-negative vector of integers s, and a scalar-
valued expression e that may contain x as a free variable. The
expression evaluates to an array of shape s in which the element at
index iv is computed by substituting x in e with iv. In the example,
we use the built-in function shape to determine the shape of the
result array based on the shape of the arguments. We may not
simply use the index identifier s here because indices will not be
evaluated at run-time. The selection operation a[iv] takes an array
a and a vector iv whose length equals the rank of a and whose
value denotes a valid position within a.

Even for this simple example, verification requires many con-
straints between array ranks, shapes, and values to be checked:

1. gen requires shape a to have rank one,

2. gen demands the value of shape a to be non-negative,

3. a[x] requires x to have rank one,

4. a[x] requires the length of x to match the rank of a,

5. a[x] requires a value of x between ~0 and shape a,

6. b[x] similar,

7. + demands rank zero arguments,

8. gen expects a[x] + b[x] to have rank zero,

9. to meet the specification, the result must have the same shape
as a.

The array type [Q|i] contains information about an array’s
shape, but not about its value. To capture the value of integer
arrays, we use two families of singleton types. The members of
num(i) and numvec(i) are integer scalars and integer vectors, re-
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spectively. For example, numvec((2, 3)) is the type of the value
〈(2), (2, 3) : int〉. Every num(x) is also a [int|()] and every
numvec(i) is also a [int|(l)] where l denotes the sort index of the
index vector i. In this context, shape maps array types to singleton
types, e.g. in the example add, shape a gives a numvec(s) because
a is of type [int|s].

Singleton types are employed whenever a value must be as-
serted to lie within a specific range. For example, the selection vec-
tor in the selection must be of type numvec to assert the selection
is in-bounds. Furthermore, in an expression gen x < s with e, s
must be a numvec(s′) such that the compiler can verify the new
array is not meant to have negative extent. During type checking of
e, x is then regarded as a numvec(x′) where x′ is an index vector
ranging between ~0 and s′.

By merely classifying shape a and x as numvec, we have
already found a proof for the constraints 1 and 3 in the above
list. However, in general the constraints must be verified using a
theorem prover for formulas in presburger vector arithmetic, an
extension of presburger arithmetic to vectors of integers having
arbitrary length. For example, constraint 2 requires to verify the
following formula:

∀d. d ≥ 0 =⇒ ∀sd. s ≥∧ 0d ⇒ s ≥∧ 0d.

In this formula, sd means that s is an arbitrary vector of length d.
0d creates a vector of zeros of length d. Finally, ≥∧ denotes the
conjunctive extension of the relation symbol ≥, meaning a ≥∧ b if
∀i.ai ≥ bi. The other constraints encountered in add are resolved
similarly.

A more complex example illustrating further type checking
challenges is the generalized selection gsel. It serves to select not
just a particular array element, but an entire subarray. For example,
an individual row may be selected from a matrix by accessing the
matrix with a selection vector of length one whose value must index
within the rows of the matrix. For selection vectors of length zero,
gsel acts as the identity function, whereas for full-length selection
vectors it behaves like the regular selection.

gsel : Πd :nat. Πs :natvec(d).
Πl :{nat in ..d+1}. Πi :{natvec(l) in ..take(l, s)}.
[int|s] → numvec(i) → [int|drop(l, s)]

gsel ′d ′s ′l ′i a v = gen x < drop(length v, shape a)
with a[v++x]

Using four index abstractions, the type of gsel concisely de-
scribes the constraints between the shape of the array and the length
and value of the selection vector. The subset notation {I in ..i}
allows to specify a strict upper bound on the value of type indices.
The implementation exemplifies the three essential structural oper-
ations on vectors: the concatenation a++b appends vector b to vector
a. take(i, v) yields a new vector by selecting the first i elements
from v, whereas drop(i, v) discards those elements.

Due to their significance for shape-generic array programming,
take, drop and ++ exist as built-in functions and as index terms.
This means that the theorem prover must be able to verify con-
straints containing these three structural operations. As an example,
we present the formula that must be verified in order to show that
the selection a[v++x] is valid:
∀d. ∀l. d ≥ 0 ∧ l ≥ 0 ∧ l < d + 1 =⇒
∀sd. ∀il. ∀xd−l. s ≥∧ 0d ∧ i ≥∧ 0l ∧ i <∧ take(l, s)∧
x ≥∧ 0d−l ∧ x <∧ drop(l, s) ⇒ i++x ≥∧ 0d ∧ i++x <∧ s.

3. Conclusion
In this abstract, we have illustrated key ideas of a new system for
type-safe array programming. By introducing quarks as a represen-
tation of array content, we achieved that every value in the lan-
guage is an array. To gain type-safety, the system employs a new

restricted variant of dependent types to express constraints between
array ranks, shapes, and values. Type checking is then carried out
by verifying properties in presburger vector arithmetic, an exten-
sion of conventional presburger arithmetic to integer vectors of ar-
bitrary length.

Due to the space limitations of this abstract, we omitted some
features of the language as well as its operational semantics, the
typing rules and a proof of type-safety. In particular, the system
presented contains no tuples or dependent pairs. These are essential
for representing arrays of arrays and will also be discussed in a full
article.

In the future we would like to extend the system towards poly-
morphic array programming to allow for more programming conve-
nience. Similar to the work done by Xi (Xi and Pfenning 1999), we
intend to allow type arguments to be automatically reconstructed if
omitted.
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In recent years secure information flow has attracted a great deal of in-
terest, spurred on by the spreading of mobile devices and nomadic computa-
tion, and has been studied in some depth for both programming languages and
process calculi. In this paper we shall speak of the “language-based approach”
when referring to programming languages and of the “process-algebraic ap-
proach” when referring to process calculi.

The language-based approach is concerned with the avoidance of secret in-
formation leakage or corruption through the execution of programs, i.e. with
the security properties of confidentiality and integrity. The property of con-
fidentiality, which appears to be the most studied, is usually formalised via
the notion of non-interference, meaning that secret inputs should not have an
effect on public outputs, since this could allow -in principle- a public user to
reconstruct sensitive information. Non-interference may be achieved in vari-
ous ways: via program analysis, type systems, semantics equivalencies, etc.
In most cases the languages are equipped with a type system or some other
tool to enforce the compliance of programs to the desired security property.

In the process-algebraic approach the focus is on the notion of external ob-
server, who ideally has nothing to do with the specification and implementa-
tion of a given system, and should not be able to infer any secret by interacting
with it. The process-algebraic approach is concerned with secret events not
being revealed while processes communicate, i.e. actions that involve sensitive
or confidential data should have no effect on public actions.

In process algebra, many non-interference properties are formalised in a
way similar to programming languages, i.e. program analysis, type systems,
semantics equivalencies. In the last few years a variety of properties have been
proposed for process calculi, mostly based on trace equivalence or bisimula-
tion, ranging from the simple property of Non-deducibility on Composition to
more complicated ones (see [3] for a review). Methods for static detection of
insecure processes have not been largely studied for process calculi. In [6,7]
type systems which characterise a non-inference property have been proposed
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for the π-calculus. More sophisticated type systems have been extensively
studied in [8,9] for variants of the π-calculus, which combine the control of
security with other correctness concerns. More recently, Crafa and Rossi pro-
posed in [2] a simple security type system for the π-calculus, which consists
essentially of a simplification of that used by Hennessy [7], ensuring the ab-
sence of explicit information flows. All those type systems include specific
analysis on the values passed on a channel.

Pottier [11] proposed a very simple view on non-interference via a type
system for the π-calculus which does not involve any extra typing information
on the values passed over channels. The great appeal of this type system is
its simplicity in characterising non-interference only; in fact, Pottier calls this
system ’simple’, and we will use his terminology in this work. The limitation
of Pottier’s work, with respect to the ’simple type system’ is the lack of a
robust semantic notion of non-interference. In this work we will address this
issue specifically. The notion of Persistent Non-deducibility on Composition
developed for CCS [5,4] has shown to be quite natural, also because it pre-
serves the notion of non-interference of the language-based approach and in
the process-algebraic approach [5]. Our work aims to show that the ‘simple
type system’ can be adapted to standard CCS and that it characterises the
semantic notion of Persistent Non-deducibility on Composition. This means
that any typeable process is persistently deducible on composition. However,
there exist processes that are considered secure according the notion of per-
sistence, yet they are not typeable. Therefore, the set of typeable processes
according to Pottier’s type system is strictly smaller than the class of processes
included in Persistent Non-deducibility on Composition relation.

In process algebraic approach, differently from language based security, no
distinction is made between input events and output events, neither at the level
of semantics definitions of security not at the level of type systems. In this work
we aim to address this issue in the framework of a simple type system: that
is to define a notion of non-interference which matches closely the one in the
language-based approach. The basic idea is to view channels as information
carriers, so that emitting a secret on an output channel can be considered safe,
while inputting a secret may lead to some kind of leakage. Thus, we modify the
‘simple type system’ so that the notion of non-interference matches closely that
of programming languages. That is to view channels as information carriers
rather than as “events”, so that the process ah(x). bl〈e〉, which emits on a
low channel a value received on a high channel, is considered insecure, while
ah〈v〉. bl〈v〉, which emits successively a value v on a high channel and on a low
channel, is considered secure. The second example would not be be typeable in
the ‘simple type system’ nor would it be considered secure with the standard
semantic notions of non-interference.

We consider CCS here instead of the π-calculus because we wish to focus
on the specific issues of non-interference in the simplest model possible. It
is clear that our work could be easily extended to the π-calculus, with little
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extra effort.
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The precision of many program analyses improves if certain properties about the
analyzed program are known. Examples of such properties arealiasing information
and nil pointer freeness. For instance, recently proposed information flow analyses use
an integrated alias analysis to improve their precision. Inthese cases, the alias analysis
is built in, and cannot easily be replaced, something which makes the resulting analyses
hard to modify or extend.

In this work we present a method for parameterizing program analyses with rela-
tional information about the program execution.

The method is based on a definition of a general format for carrying the information
— the abstract environment mappings and the accompanying semantic demand the
solution — and probing the information — theexpression views.

The definition of solutions and expression views is programming language depen-
dent; once they are fixed for a given language they provide a sound base of relation
information about the program execution.

To exemplify the use of the method, we show how it can be applied to a standard
type system for the language to strengthen it to satisfy a modified progress property
without changing the underlying semantics. Furthermore, we show how the same pa-
rameterization could be used to form a transformation of this language into a total
variant of it, in order to establish progress for the original program.

By using the same parameterization to achieve the same thingusing two different
base analyses — the type system and the transformation – we are able to compare the
two approaches. Once a clean interface to the additional information has been defined,
the direct approach of parameterizing the type system seemsto be beneficial over the
transformation approach, given that the correctness of thetransformation has to be
established.

The result of parameterizing an analysis is an analysis thattakes a number of deci-
sion procedures for the parameterized views and becomes a family of analyses indexed
over the corresponding abstract environment mappings. Thebenefit of this method
over, e.g. fusing the analysis into the type system, is that we can easily instantiate
it with the result of different analyses; all that needs to bedone is forming decision
procedures for the parameterized views.
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The method presents an easy and elegant way of increasing theprecision of many
program analyses — type systems being our main example. Furthermore, the modular-
ity of the approach extends to the proof of correctness. The analysis is proved correct
w.r.t. properties assumed of the generic format. Each instantiation is proved to sat-
isfy those properties; in this direction, we show how the results of a class of abstract
interpretations can be used to instantiate the parameterized analyses.

All proofs of this work with the exception of the proofs of thetransformation have
been formalized in the theorem prover Coq; in particular, wehave formalized all details
specific to the important technical development of the paper.
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Introduction In a previous work of ours, we have argued that type systems are a compact
and useful way of describing dataflow analyses [2, 6]. There are several benefits to them: type
systems can explain analyses and optimizations well, they can be used for transformation of
functional correctness proofs as soundness of the optimization is straightforward by structural
induction on type derivations.

In this work in progress, we investigate the type-systematic approach further, and look at
partial redundancy elimination, an optimization which is interesting in several aspects. Firstly,
it is a highly non-trivial optimization, which performs code motion, i.e. changes the structure of
the code. It is also important to show the optimality of the algorithm since it is not immediately
obvious that the optimization does not reduce the runtime performance of a program due to
code motion.

Partial redundancy elimination (PRE) is a widely used compiler optimization that eliminates
computations that are redundant on some but not necessarily all paths in a program. As a
consequence, it performs both code motion and global common subexpression elimination.

This optimization is notoriously tricky to perform and has been extensively studied since it
was invented by Morel and Renvoise [4]. There is no single canonical algorithm for performing
the optimization. Instead, there is a plethora of subtly different ones. The most straightforward
algorithms by Xue and Knoop [3] and Paleri et al. [5] consist of four dataflow analyses.

In this paper, we look at a simplified version of PRE, which is more conservative in the sense
that it does not eliminate all computations possible, but is more easily presentable, consisting
of two dataflow analysis. All techniques we use here are also applicable for the full version of
PRE.

The language we consider is While. To simplify presentation, we consider expressions to
be either variables, constants or expressions with a single operator. PRE seeks to avoid re-
evaluations of operator expressions.

Type system for Simple PRE The algorithm comprises of two dataflow analyses, a back-
ward anticipability analysis and a forward partial availability analysis which uses the results of
the anticipability analysis. The anticipability analysis computes for each program point which
expressions will be evaluated on all paths before any of their operands are modified. The partial
availability analysis tells which expressions have already been evaluated on some paths at a
program point where that expression was anticipable, and later not modified. This means that
the partial availability analysis depends on the anticipability analysis. There are two possible
optimizations for assignments. If we know that an expression is anticipable after an assignment,
it means that the expression will definitely be evaluated later on in the program, so a new vari-
able can be introduced, to carry the result of the evaluation. If we know that an expression is
partially available at an assignment, we can assume it has already been computed and replace
the expression with the new variable holding its value. If neither case holds, we leave the assign-
ment unchanged. To make a partially available expression fully available, we must perform code
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a 6∈ e a 6∈ d ∨ x ∈ FV (a)

x := a : d\{a′ | x ∈ FV (a′)} ∪ {a}, e −→ d, e ∪ {a}\{a′ | x ∈ FV (a′)} ∩ d ↪→ x := a
:=1pre

a 6∈ e a ∈ d x 6∈ FV (a)

x := a : d\{a′ | x ∈ FV (a′)} ∪ {a}, e −→ d, e ∪ {a}\{a′ | x ∈ FV (a′)} ∩ d ↪→ nv(a) := a; x := nv(a)

:=2pre

a ∈ e

x := a : d\{a′ | x ∈ FV (a′)} ∪ {a}, e −→ d, e ∪ {a}\{a′ | x ∈ FV (a′)} ∩ d ↪→ x := nv(a)

:=3pre

skip : d, e −→ d, e ↪→ skip
skippre

s0 : d, e −→ d′′, e′′ ↪→ s′
0 s1 : d′′, e′′ −→ d′, e′ ↪→ s′

1

s0; s1 : d, e −→ d′, e′ ↪→ s′
0; s′

1

comppre

st : d′, e −→ d, e′ ↪→ st
′

sf : d′, e −→ d, e′ ↪→ s′
f

if b then st else sf : d′, e −→ d, e′ ↪→ if b then s′
t else s′

f

ifpre

st : d, e −→ d, e ↪→ s′
t

while b do st : d, e −→ d, e ↪→ while b do s′
t

whilepre

d, e ≤ d0, e0 s : d0, e0 −→ d′
0, e′

0 ↪→ s′ d′
0, e′

0 ≤ d′, e′

s : d, e −→ d′, e′ ↪→ ∀a ∈ e0\e.nv(a) = a; s′; ∀a ∈ e′\e′
0.nv(a) = a

conseqpre

Figure 1: Type system for latest analysis

motion, i.e. move evaluations of expressions to program points at which they are not partially
available, but are partially available at the successor points.

We now present the two analyses as type systems. A type is a pair (d, e) ∈ (℘(AExp) ×
℘(AExp)) satisfying the constraint e ⊆ d, where d is an anticipability type, and e is an partial
availability type. Subtyping ≤ is set inclusion, i.e. ⊆. Typing judgements are of the form
s : d′, e −→ d, e′, stating that if expressions in d are anticipable at the end of the program s,
then the expressions in d′ are anticipable in the beginning of the program and moreover, if the
expressions in e are partially available in the beginning of the program, then the expressions in
e′ are partially available in the end of the program.

The type system is given in Figure 1 (ignore for now the gray boxes, which represent the
optimization component of the type system). Anticipability is a backwards analysis, while
partial availability a forward one. This is reflected in the type system, where a modified d holds
in the pretype, while a modified e holds in the posttype for an assignment. The rest of the rules
are standard.

The optimization component of the type system is colored gray in Figure 1. The introduction
of new variables happens in two places, before assignments (if the necessary conditions are met)
and at subtyping. An already computed value is used if an expression is partially available (rule
:=3pre). If it is not available, but is anticipable, and the assignment does not change the value
of the expression, then the result is recorded in a new variable (rule :=2pre). Code motion is
performed by the the subtyping rule, which introduces new variable definitions when there is
weakening or strengthening of types (this typically happens at the beginning of loops and at the
end of conditional branches). The auxiliary function nv is used for generating a fresh variable
from an expression.

Soundness (in the sense of preservation of semantics) of the optimized program can be shown
using the relational method [1], by showing that the original and optimize program simulate each
other wrt. to the equality relation ∼ on states, which is parameterized by the typing judgement
that was the basis of the optimization.

Let σ ∼e σ′ denote that two states σ and σ′ agree on e ⊆ AExp in the following sense:
(∀x ∈ Var.σ(x) = σ′(x)) ∧ (∀a ∈ e.JaKσ = σ′(nv(a))). We have the following correctness
theorem.

Theorem 1 (Correctness of simple PRE) If s : d′, e −→ d, e′ ↪→ s∗ and σ ∼e σ∗, then
— σ �s�σ′ implies the existence of σ′∗ such that σ′ ∼e′ σ′∗ and σ∗ �s∗�σ′∗,
— σ∗ �s∗�σ′∗ implies the existence of σ′ such that σ′ ∼e′ σ′∗ and σ �s�σ′.
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The proof is by induction on the structure of the typing derivation.
It is possible to show more than just preservation of semantics using the relational method.

One can also show that the optimization is actually an improvement in the sense that the number
of evaluations of an expression on any given program path cannot increase. This means that no
new computations can be introduced which are not used later on in the program. This is not
obvious, since code motion might introduce unneeded evaluations.

To show this property, there must be a way to count the expression uses. This can be done
via a simple instrumented semantics, which counts the number of evaluations of every expression.
The semantic judgement is of the form (σ, r) �s� (σ′, r′), where σ and σ′ are usual states, and
r and r′ are mappings from expressions to values, which show how many times a particular
expression has been evaluated. The corresponding equivalence relation between the states is the
following. Let (σ, r) ∼e (σ′, r′) denote that two states (σ, r) and (σ′, r′) agree on e ⊆ AExp
in the following sense: (∀x ∈ Var.σ(x) = σ′(x)) ∧ (∀a ∈ e.JaKσ = σ′(nv(a))). Furthermore
∀a 6∈ e.r′(a) ≤ r(a) and ∀a ∈ e.r′(a) ≤ r′(a) + 1.

Here, partial availability types serve as an “amortization” mechanism. The intuitive mean-
ing of an expression being in the type of a program point is that there will be a use of this
expression somewhere in the future, where this expression will be replaced with a variable al-
ready holding its value. Thus it is possible that a computation path of an optimized program
has one more evaluation of the expression before this point than the corresponding computation
path of the original program due to an application of subsumption. This does not break the
improvement argument, since the type increase at the subsumption point contains a promise
that this evaluation will be taken advantage of (“amortized”) in the future.

Theorem 2 (Improvement property of simple PRE) If s : d′, e −→ d, e′ ↪→ s∗ and σ ∼e

σ∗, then
— (σ, r) �s� (σ′, r′) implies the existence of (σ′∗, r

′
∗) such that (σ′, r′) ∼e′ (σ′∗, r

′
∗) and (σ∗, r∗) �s∗� (σ′∗, r

′
∗),

— (σ∗, r∗) �s∗� (σ′∗, r
′
∗) implies the existence of (σ′, r′) such that (σ′, r′) ∼e′ (σ′∗, r

′
∗) and (σ, r) �s� (σ′, r′).

Again, proof is by induction on the structure of the type derivation.
To prove that an optimization is really optimal in the sense of achieving the best possible

improvement (which simple PRE really is not), we would have to fix what kind of modifications of
a given program we consider as possible transformation candidates (they should keep the control
structure and only hoist and remove expression evaluations, they should not take advantage of
the real semantics of expressions etc.). The argument would have to compare the optimization
to other semantics-preserving transformation candidates.

Conclusion We have shown that the type-systematic approach to dataflow analyses scales
up to complicated analyses such as partial redundancy elimination. Furthermore, using this
approach, it is possible to prove properties beyond soundness, like optimality results. Soundness
of the optimization makes it possible to transform a program’s proof along the program guided
by its analysis type derivation. While we have presented it on a simpler form of PRE, the same
technique is applicable for full PRE.

Acknowledgement This work was supported by the Estonian Science Foundation grant no.
6940, the Estonian Doctoral School in ICT, the EU FP6 IST integrated project MOBIUS.
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Information security [4] has a challenge to address: en-
abling information flow controls with expressive informa-
tion release (or declassification) policies [4, 7, 5]. In a sce-
nario of systems that operate on data with different sensitiv-
ity levels, the goal is to provide security assurance via re-
stricting the information flow within the system. However,
allowing no flow whatsoever from secret (high) inputs to
public (low) outputs (as prescribed by noninterference [3])
is too restrictive because many systems deliberately declas-
sify information from high to low.

Characterizing and enforcing declassification policies is
the focus of an active area of research [5]. However, exist-
ing approaches tend to address selected aspects of informa-
tion release, exposing the other aspects for possible attacks.
It is striking that these approaches fall into two mostly sep-
arate categories: revelation-based (as in information pur-
chase, aggregate computation, moves in a game, etc.) and
encryption-based declassification (as in sending encrypted
secrets over an untrusted network, storing passwords, etc.).
It is essential that declassification policies support a combi-
nation of these categories: for example, a possibility to re-
lease the result of encryption should not be abused to release
cleartext through the same declassification mechanism.

This paper introduces gradual release, a policy that uni-
fies declassification, encryption, and key release policies.
As we explain below, the latter is not only a useful fea-
ture, but also a vital component for connecting revelation-
based and encryption-based declassification. We model an
attacker’s knowledge by the sets of possible secret inputs
as functions of publicly observable outputs. The essence of
gradual release is that this knowledge must remain constant
between releases. Gradual release turns out to be a powerful

foundation for release policies, which we demonstrate by
formally connecting revelation-based and encryption-based
declassification.

When it comes to handling encryption, there is a demand
for expressing rich policies beyond declassification at the
point of encryption. To this end, a desirable ingredient in
declassification policies is reasoning about released keys.
In bit commitment, premature revelation of the bit should
be prevented by not releasing the secret key until neces-
sary. In a media distribution scenario—when large media
is distributed in encrypted form, and the key is supplied on
the date of media release—early key release should be pre-
vented. In addition, key release policies are important for
mental poker [6, 2, 1] (for playing poker without a trusted
third party), where the participants reveal their keys for each
other at the end of the game, in order to prove that they were
not cheating during the game. In this protocol too, it should
not be possible to release secret keys prematurely or encrypt
with a key that has already been released.

Gradual release allows for reasoning about newly gener-
ated and released keys. In fact, this combination turns out to
be crucial for connecting revelation-based and encryption-
based declassification. We show that gradual release for
revelation-based declassification can be represented by a
rewardingly simple encryption-based declassification: de-
classifying an expression corresponds to encrypting the ex-
pression with a fresh key and immediately releasing the key.

As a result, gradual release is, to the best of our knowl-
edge, the first framework to unify revelation-based and
encryption-based declassification policies. Furthermore, we
show that gradual release can be provably enforced by se-
curity types and effects.
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A Framework for Formal Reasoning aboutDistributed Webs of Trust(Work in progress)Fredrik Degerlund1,2), Mats Neovius1,2) and Kaisa Sere2)

1)Turku Centre for Computer S
ien
e (TUCS)
2)Åbo Akademi UniversityJoukahainengatan 3-5FIN-20520 Åbo, Finland{Fredrik.Degerlund, Mats.Neovius, Kaisa.Sere}�abo.�1 Ba
kground 
on
eptsFormal methods have emerged as a means of reasoning about 
omputer pro-grams in a mathemati
al-logi
al manner. One of the major bran
hes is stepwisere�nement, in whi
h an abstra
t spe
i�
ation is gradually turned into a 
on-
rete program while using spe
i�
 rules to prove ea
h transformation step. TheA
tion Systems formalism [1℄ is a well-studied example of su
h a 
orre
t-by-
onstru
tion approa
h. Having its roots in Dijkstra's guarded 
ommand lan-guage [5℄ and the re�nement 
al
ulus [2℄, it is based on a �rm theoreti
al foun-dation. The formalism is suitable for development of parallel programs, andit has gradually been adapted to further usage s
enarios su
h as 
ontext-awaresystems [7, 8℄.Even though traditional formal methods 
an be su

essfully used to provethat a pie
e of software does behave 
orre
tly from a mathemati
al point ofview, there is no guarantee that individual human beings behave as expe
tedby their peers. To solve this problem of partially so
ial nature, the 
on
ept oftrust has emerged as a 
ornerstone in so
ial 
omputing s
enarios. Trust is a
entral 
on
ept in a
tivities involving human input and a
tion. Su
h servi
esare, however, often developed without the use of mathemati
ally rigorous formalmethods. In a general purpose spe
i�
ation language su
h as the A
tion Systemsformalism, trust s
enarios 
an in theory be des
ribed and dealt with. However,this is in pra
ti
e 
umbersome, sin
e trust relationships 
an be 
omplex, andthe developer would have to take a stand on how to represent trust, how it isupdated, how trust-related 
riteria are handled et
.
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To over
ome these issues, Degerlund and Sere [3, 4℄ have proposed a domain-spe
i�
 extension the A
tion Systems formalism, providing developers withme
hanisms to express and reason about trust. These me
hanisms involve aspe
ial 
oordination language allowing the developer to separate trust-relatedfun
tionality from the rest of the system, and, thus, deal with the two issues sep-arately. Me
hanisms for providing trust as well as requiring a 
ertain amount oftrust are supported by the language. Trust values are expressed as triples 
on-sisting of belief, disbelief and ignoran
e values as suggested by Jøsang, and trust
omputations are typi
ally, but not ne
essarily, performed by using Jøsang'ssubje
tive logi
 [6℄. The language 
an be translated into traditional a
tion sys-tems, i.e., no new expressibility is provided. Instead, the fo
us lies entirely onproviding 
onvenient 
onstru
ts fa
ilitating the work of the system developer.2 Towards distributed webs of trustIn our 
urrent resear
h, we revise and extend the trust 
oordination languageproposed by Degerlund and Sere. In their original work, entities (or agents)were 
onsidered omnis
ient with respe
t to the parti
ipants in the system andtheir trust values in other entities. This approa
h may 
onstitute a bottlene
kas to the s
alability of the model. In pra
ti
e, it is also not always reasonable toexpe
t ea
h entity to know everybody else's trust values for all other entities. Inour revised framework, we enable reasoning about distributed webs of trust bymimi
king the me
hanisms of friendship and trust in traditional, non-
omputerimplemented so
ial s
enarios. Distin
t entities may have their private, or lo
al,relationships to other entities, without everybody in the network knowing aboutthe existen
e thereof, nor the spe
i�
 trust values involved. We also no longerassume that all entities are known from the beginning and remain in the networkduring operation. Instead, new entities may dynami
ally appear, as well as leaveunexpe
tedly.From a te
hni
al point of view, we move away from a model where ea
hnode performing a trust 
omputation requires a

ess to the data of a trust re-lation graph 
overing the whole system. Instead, we allow for fully distributed
omputation of trust values, in whi
h ea
h node only needs a

ess to trust dataregarding its portion of the 
omputation. Sharing of partial results betweennodes is possible and ne
essary, in 
ontrast to the original model in whi
h ea
htrust 
omputation is performed by a single node in one step. To a
hieve dynami
handling of entities, ea
h entity maintains its own set of known peers, as wellas a set of trust values related to those entities. We also no longer assume thattrust is represented as trust triples, but allow for appli
ation spe
i�
 de
isionsregarding the matter. This enables the use of alternative means of expressingtrust, as well as for the use of trust fusion algorithms that operate on otherstru
tures than trust triples. The separation of trust from the rest of the fun
-tionality is preserved in our model, as well as developed further, allowing for
omponentization.
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3 Con
lusionsInformation te
hnology is rapidly developing towards pervasive and ubiquitousappli
ations assisting us in making our everyday de
isions. As su
h, they needto be reliable. Te
hni
al reliability 
an already be a
hieved by traditional for-mal methods, but modelling human intera
tion demands new perspe
tives. Weare developing a 
oordination language for use within the A
tion Systems for-malism in order to mimi
 human per
eption of trust. This language allows for
omponentization by separating trust, as well as for reasoning about trust in afully distributed manner. We believe that this will dramati
ally extend the ap-pli
able areas for mathemati
ally veri�ed appli
ations, and that it will make us
omfortable relying on mi
ropro
essors making 
riti
al de
isions in our favour.Referen
es[1℄ R.J.R. Ba
k and R. Kurki-Suonio. De
entralization of pro
ess nets with 
en-tralized 
ontrol. In PODC '83: Pro
. of the se
ond annual ACM symposiumon Prin
iples of distributed 
omputing, pages 131�142, New York, NY, USA,1983. ACM Press.[2℄ R.J.R. Ba
k and J. von Wright. Re�nement Cal
ulus: A Systemati
 Intro-du
tion. Springer-Verlag New York, 1998.[3℄ F. Degerlund and K. Sere. A framework for in
orporating trust into thea
tion systems formalism (work in progress). In L. A
eto and Anna Ingólfs-dóttir, editors, Pro
. for the 18th Nordi
 Workshop on Programming Theory(NWPT'06), Reykjavík, I
eland, O
tober 2006. Reykjavík University. Ab-stra
t.[4℄ F. Degerlund and K. Sere. A framework for in
orporating trust into for-mal systems development. In Pro
. of the 4th International Colloquium onTheoreti
al Aspe
ts of Computing (ICTAC 2007). Springer, 2007. To appear.[5℄ E. Dijkstra. A Dis
ipline of Programming. Prenti
e Hall International, 1976.[6℄ A. Jøsang. Arti�
ial reasoning with subje
tive logi
. In Pro
. of the 2ndAustralian Workshop on Commonsense Reasoning, 1997.[7℄ M. Neovius, K. Sere, L. Yan, and M. Satpathy. A formal model of 
ontext-awareness and 
ontext-dependen
y. In SEFN '06: Pro
. of the FourthIEEE International Conferen
e on Software Engineering and Formal Meth-ods, pages 177�185, Washington, DC, USA, 2006. IEEE Computer So
iety.[8℄ L. Yan and K. Sere. A formalism for 
ontext-aware mobile 
omputing. In IS-PDC '04: Pro
. of the Third International Symposium on Parallel and Dis-tributed Computing/Third International Workshop on Algorithms, Modelsand Tools for Parallel Computing on Heterogeneous Networks, pages 14�21,Washington, DC, USA, 2004. IEEE Computer So
iety.
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Controlling timing channels in multithreaded programs

Alejandro Russo
Department of Computer Science and Engineering

Chalmers University of Technology
412 96 Göteborg, Sweden

Information-flow analysis studies whether an attacker can obtain confidential information by observing how the input of
a system affect its output. Information can be disclosed by different mechanisms or channels. This presentation follows the
line of language-based information-flow security [SM03]. Information-flow analysis is typically performed by static program
analysis. As a consequence, it is possible to guarantee end-to-end securities, as confidentiality, by just analyzing the whole
code of a given system.

Confidentiality policies could be precisely characterized by using program semantics. Moreover, they can be provably
enforced by traditional mechanisms as type systems. Noninterference is a well known end-to-end property of programs
that expresses the freeness of flows from more secret security levels to less secret ones. In other words, a variation in the
confidential input of a program does not produce any variation of its public outputs. The attacker model defines what the
attacker can observe about the execution of programs. For the noninterference property, the attacker can only inspect the
public input and output states.

Language-based information-flow techniques deal with mechanisms used by programming languages to convey informa-
tion. These mechanisms include assignments and branching instructions. Confidentiality of data can be preserved if programs
are free of illegal explicit and implict flows [DD77]. On one hand, explicit flows can leak information by assigning confi-
dential values to public variables. For instance, the program l := h leaks the secret value of h by assigning it directly to the
public variable l. Implicit flows, on the other hand, can use control constructs in the language to leak information. As an
example, the program if h > 0 then l := 1 else l := 2 leaks if h > 0 or not by using the construct if− then− else.
Even though there is no direct assignment of secret values to public variables, the final value of l depends on the secret value
h.

Besides explicit and implicit flows, programming languages can present other mechanisms to leak information that were
not originally designed for that purpose. These kind of mechanism are referred as covert channels[Lam73]. For example, the
execution time of a program, memory consumption, and concurrency features can be used to leak confidential information.
This presentation describes techniques to deal with covert channels introduced by some concurrent features. More precisely,
it proposes remedies for leaks produced by exploiting scheduler properties through the timing behavior of threads in order
to modify how the public variables are updated. This covert channel is called internal timing covert channel [VS99] and is
the main focus of the talk. The presentation is based on the work done in [Rus07] and consists on four parts that are briefly
described as follows.

Securing Interaction between Threads and the Scheduler

Existing approaches to specifying and enforcing information-flow security often present non-standard semantics, lack of
compositionality, inability to handle dynamic threads, scheduler dependence, and efficiency overhead for code that results
from security-enforcing transformations. Particularly, Volpano and Smith propose a special primitive called protect in
order to remove internal timing leaks. By definition, protect(c) takes one atomic step in the semantics with the effect of
executing c until termination. Internal timing leaks are removed if every computation that branches on secrets is wrapped
by protect() commands. However, implementing protect imposes a major challenge. We suggest a remedy for some
of the described shortcomings and a framework that allows the implementation of a generalized version of protect. More
precisely, it introduces a novel treatment of the interaction between threads and the scheduler. A permissive noninterference-
like security specification and a security type system that provably enforces this specification are obtained as a result of such
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interaction. The type system guarantees security for a wide class of schedulers and provides a flexible treatment of dynamic
thread creation. The proposed techniques relies on the modification of the scheduler in the run-time environment. This part
is based on a paper accepted to the 19th IEEE Computer Security Foundations Workshop [RS06a].

Security for Multithreaded Programs under Cooperative Scheduling

In some scenarios, the modification of the run-time environment might not be an acceptable requirement. In this light, we
present a transformation that eliminates the need for protect under cooperative scheduling. In fact, no additional interac-
tions, besides yielding control to a thread, are needed in order to avoid internal timing leaks. Variations in the transformation
can enforce both termination-insensitive and termination-sensitive security specifications in a language with dynamic thread
creation. This part is based on a paper accepted to the Andrei Ershov International Conference on Perspectives of System
Informatics [RS06b].

Closing Internal Timing Channels by Transformation

For those scenarios where the scheduler is preemptive and behaves as round robin, we present a transformation that closes the
internal timing channel for multithreaded programs. The transformation is based on spawning dedicated threads, whenever
computations may affect secrets, and carefully synchronizing them. Moreover, the transformation only rejects programs that
have symptoms of illegal flows inherent from sequential settings. This part is based on a paper accepted to the 11th Annual
Asian Computing Science Conference [RHNS06].

A Library for Secure Multi-threaded Information Flow in Haskell

Recently, Li and Zdancewic have proposed an approach to provide information-flow security via a library rather than produc-
ing a new language from the scratch. They show how to implement such a library in Haskell. We propose an extension of Li
and Zdancewic’s library that provides information-flow security for multithreaded programs. The extension provides refer-
ence manipulation, a run-time mechanism to close internal timing leaks, and a flexible treatment of dynamic thread creation.
In order to provide such features, the library combines some ideas presented in the previous parts together with some other
ones taken from literature: type system with effects, singleton types, projection functions, cooperative round-robin sched-
ulers, and type classes in Haskell. Moreover, an online-shopping case study has been implemented in order to evaluate the
proposed techniques. The case study reveals that exploiting concurrency to leak secrets is feasible and dangerous in practice
and shows how the library can help to avoid internal timing leaks. Up to the publication date, this is the first implemented
tool to guarantee information-flow security in concurrent programs and the first implementation of a case study that involves
concurrency and information-flow policies. This part is based on a paper accepted to the 20th IEEE Computer Security
Foundations Symposium [TRH07].

References

[DD77] D. E. Denning and P. J. Denning. Certification of programs for secure information flow. Comm. of the ACM,
20(7):504–513, July 1977.

[Lam73] B. W. Lampson. A note on the confinement problem. Comm. of the ACM, 16(10):613–615, October 1973.

[RHNS06] A. Russo, J. Hughes, D. Naumann, and A. Sabelfeld. Closing internal timing channels by transformation. In
Proc. Annual Asian Computing Science Conference, LNCS, December 2006.

[RS06a] A. Russo and A. Sabelfeld. Securing interaction between threads and the scheduler. In Proc. IEEE Computer
Security Foundations Workshop, pages 177–189, July 2006.

[RS06b] A. Russo and A. Sabelfeld. Security for multithreaded programs under cooperative scheduling. In Proc. Andrei
Ershov International Conference on Perspectives of System Informatics, LNCS. Springer-Verlag, June 2006.

[Rus07] A. Russo. Controlling timing channels in multithreaded programs. Licentiate Thesis, Chalmers University of
Technology, Gothenburg, May 2007.

2

NWPT'07

Page 82



[SM03] A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE J. Selected Areas in Communi-
cations, 21(1):5–19, January 2003.

[TRH07] T. Tsai, A. Russo, and J. Hughes. A library for secure multi-threaded information flow in haskell. In Proc. IEEE
Computer Security Foundations Symposium, July 2007.

[VS99] D. Volpano and G. Smith. Probabilistic noninterference in a concurrent language. J. Computer Security, 7(2–
3):231–253, November 1999.

3

NWPT'07

Page 83



UML state machines: Fairness Conditions specify
the Event Pool ∗

Harald Fecher†, Heiko Schmidt‡and Jens Schönborn§

Abstract

The communication between different instances of UML state machines is handled by using underlying
event pools but the UML standard leaves the behavior completely unspecified. Thus, in general, liveness
properties cannot be verified. We give semantics of Streett fairness constraints for the event pool and
present an algorithm that turns a set of fairness constraints into an abstract event pool. Since common
fairness suffers from the drawback that the time until something good happens may be unbounded the
presented algorithm allows the modeler to specify such a bound. The resulting abstract event pool can
be further refined, justified by an example where a priority scheme on events is introduced.

1 Introduction

The communication between different instances (objects) of UML state machines is handled by using under-
lying event pools: An object (caller) can call a method of another object (callee), thereby sending an event
to the callee. This event is first received by an implicit, usually not modeled event pool of the callee. At a
later point in time, the event is provided by the callee’s event pool to the callee’s state machine and then,
triggers transitions or is discarded otherwise. The UML standard [4] leaves the behavior of the event pool
completely unspecified. This flexible treatment has the disadvantage that, in general, liveness properties
cannot be verified. Therefore, the modeler should be provided with a facility to restrict the event pool’s
behavior. We propose adding Streett fairness constraints [3] to the state machine. This allows the modeler
to specify fairness constraints without modeling the event pool of the state machine, thereby following the
philosophy of the UML standard that the event pool should be left as unspecified as possible. Furthermore,
as stated in [1, 2], liveness is robust (independent of the granularity of transitions) and simple (abstraction
of complicated time bounds), but it suffers from the drawback that the time until something good happens
may be unbounded. Thus the modeler should be enabled to specify a bound for the maximum of time until
something good must happen.

Example 1 A model of a pedestrian crossing on a road controlled by a traffic light is depicted on the left of
Figure 1. This model ensures mutual exclusion for the use of the road, but not liveness, i.e., that a request
for green light will be serviced eventually. Fairness constraints are needed to avoid possible starvation, and
for practical application, this fairness should be bounded.

Contribution. In order to enable reasoning with liveness properties, we extend UML state machines by
fairness constraints for the underlying event pools. We give semantics of unbounded (common) and bounded
Streett fairness constraints for the event pool, which is not straightforward, since a non-empty event pool
must always provide an event. We present an algorithm that turns a set of fairness constraints into an
abstract event pool satisfying the fairness constraints by its structure. As a consequence, traces rejected by
the fairness constraints no longer occur in the composition of event pool and state machine. The abstract
event pool is modeled using a simplified variant of state machines with a straightforward semantics in terms
of labeled transition systems. We argue, by means of an example where a priority scheme on the events is
added, that this is feasible, because thereby the event pool can be refined later in the modeling process.
∗This work is in part financially supported by the DFG project FE 942/1-1.
†hfecher@doc.ic.ac.uk
‡hsc@informatik.uni-kiel.de
§jes@informatik.uni-kiel.de
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Figure 1: Left: A state machine model of a pedestrian crossing on a road controlled by a traffic light.
Pedestrians request green light using a button triggering an event p, an inductor generates events
c for cars. The states P and C represent green light for pedestrians resp. cars. These events are
sent from the environment via the event pool to the state machine. Right: An abstract model
of an event pool guaranteeing fairness between the events p, c in the sense that they cannot be
neglected more than l1-, resp. l2-, times.

2 State machine and event pool with fairness

Fairness constraints on the state machines specify constraints on the event pool. For the definition of
the event pool, we use a variant of state machines in order to enhance readability for software engineers.
The semantics of this state machine variant is straightforward. Events sent to the state machine are first
immediately received (input enabledness) by the event pool (?e) and will later be sent (provided) to the
state machine (!e) via handshake communication. The sender of the event e needs to synchronize with ?e of
the event pool and the directive !e of the event pool needs to synchronize with a transition having event e
as label, or if no such transition exists, the event is discarded.

2.1 Bounded and unbounded fairness.

We generalize the common notion of fairness, expressed by Streett fairness constraints, such that also finite
fairness constraints can be expressed, similar to [1, 2]. A set of fairness constraints of the form (E,F, l),
where E and F are sets of events and l ∈ N ∪ {∞}, specifies that at most l events from F may be sent to
the state machine, before sending an event from E is required, provided such an action exists in the event
pool. A trace t of the event pool, being a sequence of symbols ?e (receive) and !e (send), is accepted by a
set of fairness constraints if for each fairness constraint (E,F, l) and for each index k in the trace there are
no events from E currently stored in the event pool (i.e., the prefix of t until index k contains equally many
occurrences of ?e and !e) or there is no immediately preceding subtrace with more than l occurrences of F
send actions (!f with f ∈ F ) without any occurrence of E send actions (!e with e ∈ E).

Note that bounded fairness specifications can introduce deadlock: Consider the fairness specifications
{({e1}, {e2, e3}, 1), ({e3}, {e1, e2}, 1)} and the situation, where !e2 has been dispatched and there are occur-
rences of all events in the event pool. The first tuple requires !e1 to appear before a possible !e3, whereas
the second tuple requires !e3 to appear before a possible !e1.

The bound of a fairness constraint can be decreased via refinement. When unbounded fairness constraints
are used, i.e. the bounds equal ∞, the resulting event pool is not yet concrete, and therefore the bound has
to be decreased via refinement. A concrete event pool will provide, if not empty, exactly one event.

2.2 Transformation

We present the algorithm for generating the event pool from a given set of fairness constraints in Figure
2. The algorithm is divided into two parts: in the first loop on the set of events the basic I/O behavior is
modeled and in the second loop on the set of fairness constraints the behavior is further restricted.

Example 2 In Example 1, pedestrians’ requests should not starve cars’ requests and vice versa. This is
specified by the fairness constraints {({c}, {p}, l1), ({p}, {c}, l2)} with reasonable values of l1, l2 which yields
an event pool as depicted on the right of Figure 1.
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Define one state s, source and target of all transitions

1. For every event e of the state machine

a) Define a counter ce for the number of oc-
currences of e in the event pool

b) Define a transition for receiving e labeled
?e[]ce + +;

c) Define a transition for sending e labeled
!e[ce > 0]ce −−;

2. For every fairness constraint Ai = (Ei, Fi, li)

a) Define limit counter ci

b) For every e ∈ Fi, add to the transition for
sending e

i. Guard ... ∧ (ci < li ∨
∧

e′∈Ei
ce′ = 0)

ii. Action ...; ci + +;
c) For every e ∈ Ei add action ci := 0; to the

transition for sending e

Figure 2: The algorithm for generating an abstract event pool from a given set of fairness constraints.

3 Adding priority via refinement

In this section we present an example which shows the feasibility of our approach since it admits further
refinement, such as defining priority on events.

We have shown how (bounded) fairness can be realized in the event pool. However, it is also often useful to
model priority on events. This can contradict existing fairness constraints, and to solve this, we give fairness
constraints higher priority than priority specifications, i.e., a non-prioritized event is handled, in case this is
required by a fairness constraint.

Example 3 We extend the state machine from Example 1 as follows: An emergency state is added, which is
requested by an approaching ambulance and turns all lights turn red. This emergency request (e) has higher
priority than pedestrians’ and cars’ requests, being handled as soon as it appears. The state machine and
its resulting event pool are presented in Figure 3. Here, priority is translated into a hierarchical nesting of
state machine states, utilizing the fact that in UML transitions with sources of inner states have priority
over transitions with sources of outer states.
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!p[cp>0∧(c1<l1∨cc=0)] c1++;cp−−;c2:=0;
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?p [] cp++; ?? ?c [] cc++;__

!c[cc>0∧(c2<l2∨cp=0)] c2++;cc−−;c1:=0;

??!e[ce>0] ce−−;
// ?e [] ce++;__

Figure 3: Left: Prioritized pedestrian crossing. A high-priority event e switches into an emergency mode
that turns all lights red, issued, e.g., by an ambulance. Right: The resulting abstract event pool.
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Visualising program transformations in a stepwise manner 
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1. Introduction 

For designing and developing complex, correct and reliable systems formal methods are the most 
beneficial approach. However, a formal methodology could be difficult for industry practitioners due to 
its mathematical notation. Hence it needs to be supported by more approachable platform, which would 
give guidance both for industry and research world representatives. The Unified Modelling Language 
(UML) with its semi-formal notation gives the intuitive image of the system and is commonly used within 
the industry. In the stepwise development of our system we combine UML with the formal methods 
approach and refinement patterns.  

For a formal top-down approach we use the Event B formalism [11] and associated proof tool to 
develop the system and prove its correctness. Event-B is based on Action Systems [5] as well as the B 
Method [1]. It is related to B Action Systems [15] for developing distributed systems in B. With the 
Event-B formalism we have tool support for proving the correctness of the development. In order to 
translate UML models into Event B, the UML-B tool [13] is used. UML-B is a specialisation of UML 
that defines a formal modelling notation combining UML and B.  

The first phase of the design approach is to state the goals that the system needs to satisfy. Afterwards 
the functional requirements of the system are specified using natural language and illustrated by various 
UML diagrams, such as statechart diagrams that depict the behaviour of the system. The system is built 
up gradually in small steps using superposition refinement [4, 10]. We strongly rely on patterns in the 
refinement process, since these are the cornerstones for creating reusable and robust software [3, 8]. 
UML diagrams and corresponding Event B code are developed for each step simultaneously. To get a 
better overview of the design process, we benefit from the progress diagrams [12] that illustrate only the 
refinement-affected parts of the system. These diagrams are based on well-known and widely-used UML 
statechart diagrams. In our previous research we introduced progress diagrams, which were illustrated by 
a case study. Here we focus on exploring refinement patterns in view of progress diagrams, as their 
combination supports constructing large software systems in an incremental and layered fashion. 
Moreover, this combination facilitates to master the complexity of the project and to reason about the 
properties of the system.  

2. UML, Event-B and refinement patterns. 

We use the Unified Modelling Language™ (UML) [6], as a way of modelling not only the architecture of 
a system, but also its behaviour and data structure. UML provides a graphical interface and 
documentation for every stage of the (formal) development process. We focus on the statechart diagram, 
as it shows the possible states of the object and the transitions between them.  

In order to be able to reason formally about the abstract specification, we translate it to the formal 
language Event-B [11]. An Event-B specification consists of a model and its context that depict the 
dynamic and the static part of the specification, respectively. They are both identified by unique names. 
The context contains the sets and constants of the model with their properties and is accessed by the 
model through the SEES relationship [1]. The dynamic model, on the other hand, defines the state 
variables, as well as the operations on these. In order to be able to ensure the correctness of the system, 
the abstract model should be consistent and feasible [11]. Each transition of a statechart diagram is 
translated to an event in Event-B. The feasibility and the consistency of the specification are then proved 
using the Event-B prover tool [2]. 

It is convenient not to handle all the implementation issues at the same time, but to introduce details of 
the system to the specification in a stepwise manner. Stepwise refinement of a specification is supported 
by the Event-B formalism. In the refinement process an abstract specification A is transformed into a 
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more concrete and deterministic system C that preserves the functionality of A. We use the superposition 
refinement technique [4, 10, 15], where we add new functionality, i.e., new variables and substitutions on 
these, to a specification in a way that preserves the old behaviour. 

In order to guide the refinement process and make it more controllable, refinement patterns [15] are 
used. In this paper we are focusing on data refinement and event refinement. The example of the former is 
shown in the statechart diagram in Fig 1b (splitting states into substates), while examples of the latter are 
given in Fig 1c (adding new transitions to use refined states) and Fig 1d (separating existing transitions), 
when the abstract specification is as in Fig. 1a. Furthermore, we can also consider a pattern for adding the 
same behaviour to several states (orthogonal regions [14]) as a type of data and event refinement. The 
pattern types are illustrated in more detail with progress diagrams [12] to give an abstraction and 
graphically-descriptive view documenting the applied patterns in each step. 
1a) 

 

1b)  

 
1c) 

 

1d) 

 

Fig. 1. Refinement patterns 

3. Modelling refinement steps – progress diagrams 

In most cases it is difficult to get an overview of the refinement process, since the size of the system 
grows during the development. Although refinement patterns help the designers and developers to refine 
the system, we combine them with the idea of progress diagrams [12]. The progress diagram is a table 
that is divided into a description part and a diagram part. The tabular part briefly describes the features 
and design patterns in the system of the current development step. It also depicts how states and 
transitions (initiated, refined or anticipated) are refined, as well as new variables that are added with 
respect to these features. The diagram part gives a supplementary view of the current refinement step and 
is in fact a fragment of the statechart diagram. Hence, with the progress diagrams we give a more detailed 
documentation of the refinement patterns and visualise the refinement step, showing the most important 
features and changes. Our approach results in a clear and legible graphical view of the system.  

In order to illustrate the idea of progress diagrams in combination with refinement patterns, we use the 
abstract system (shown in Fig.1a) consisting of two states (st1 and st2) and two transitions (tr1 and tr2). 
We refine it in one step to the concrete system shown in Fig.1c, where the state (st1) is partitioned into 
substates (st1a and st1b) and the anticipating transition trNew is added between the new substates. The 
progress diagram of this sample refinement step is depicted in Fig.2. Here we also assume that a new 
variable yy is added to the refined system, as illustrated in the rightmost column of the progress diagram. 

 
Description States Ref. States Transitions Ref. Transitions New Var. 

1
st
 refinement step: 

• creating hierarchical substates (in state st1) – data ref. 

• adding new transition concerning the substates (trNew) – 
event ref. 

st1 
st1a 

st1b 
- trNew yy 

 

 

Fig. 2. Example of a progress diagram 

     

NWPT'07

Page 88



4. Conclusion  

This paper presents a compact approach to documentation of the stepwise system development focusing 
on the design patterns. Formal methods and verification techniques are used to ensure that a development 
is correct. Our approach uses the B Method as a formal framework and allows us to address modelling at 
different levels of abstraction. The use of progress diagrams during the incremental construction of large 
software systems provides legible and accessible documentation, whereas the refinement patterns 
facilitate the (complex) development process. We benefit from the progress diagrams, as we concentrate 
only on the refined part of the system. The combination of descriptive and visual approaches enables us to 
focus on the details we are most interested in. Furthermore, it helps to better understand the refinement 
steps and patterns used in the development, giving a clear overview of the development. 

Design patterns in UML and B have been studied previously. Chan et al. [7] work on identifying 
patterns at the specification level, while we are interested in refinement patterns. The refinement approach 
on design patterns was presented by Ilič et al. [9]. They focused on using design patterns for integrating 
requirements into the system models via model transformation. This was done with strong support of the 
Model Driven Architecture methodology, which we do not consider in this paper. Instead we provide an 
overview of the development from the patterns. 

Our approach is not only helpful for the developers, but also for those that later will try to reuse the 
exploited features of the system. A clear and compact form of progress diagrams in combination with 
refinement patterns is appropriate both for industry developers and researchers. Since progress diagrams 
do not involve any mathematical notation, they are useful for presenting the development steps to non-
formal methods colleagues.  

As future work tool support will be designed to generate a full refinement chain automatically from the 
initial specification and a series of progress diagrams in a stepwise manner. Although progress diagrams 
already appear to be a viable graphical view of the system development, further experimentation on 
complex case studies is envisaged leading to possible enhancements of the progress diagrams. 

References 

[1] J.R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge University Press, 1996. 
[2] J.R. Abrial, S. Hallerstede, F. Metha, C. Metayer and L. Voisin. Specification of Basic Tools and Platform, 

RODIN Deliverable 3.3 (D10), http://rodin.cs.ncl.ac.uk/deliverables/rodinD10.pdf, 2005 
[3] J. Arlow and I. Neustadt. Enterprise Patterns and MDA: Building Better Software with Archetype Patterns and 

UML. Addison-Wesley, 2004.  
[4] R.J.R. Back and R. Kurki-Suonio. Decentralization of process nets with centralized control. In: Proc. of the 2nd 

ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, pp. 131-142, 1983. 
[5] R.J.R. Back and K. Sere. From modular systems to action systems. Software - Concepts and Tools, 13, pp. 26-

39, 1996. 
[6] G. Booch, I. Jacobson, and J. Rumbaugh. The Unified Modeling Language - a Reference Manual. Addison-

Wesley, 1998. 
[7] E. Chan, K. Robinson and B. Welch. Patterns for B: Bridging Formal and Informal Development. In Proc. of 7th 

International Conference of B Users (B2007): Formal Specification and Development in B,  LNCS 4355, pp. 
125-139, 2007. Springer. 

[8] E. Gamma, R. Helm, R. Johnson and J. Vlissides. Design Patterns. Elements of Reusable Object-Oriented 

Software. Addison-Wesley Professional Computing Series, 1995.  
[9] D. Ilič and E. Troubitsyna. A Formal Model Driven Approach to Requirements Engineering. TUCS Technical 

Report No 667, Åbo Akademi University, Finland, February 2005.  
[10] S.M. Katz. A superimposition control construct for distributed systems. ACM Transactions on Programming 

Languages and Systems, 15(2):337-356, April 1993. 
[11] C. Metayer, J.R. Abrial and L. Voisin. Event-B Language, RODIN Deliverable 3.2 (D7), 

http://rodin.cs.ncl.ac.uk/deliverables/D7.pdf (May 2005) 
[12] M. Pląska, M. Waldén, C. Snook. Documenting the Progress of the System Development, In Proc. of Workshop 

on Methods, Models and Tools for Fault Tolerance, Oxford, UK, July 2007. 
[13] C. Snook and M. Butler. U2B - a tool for translating UML-B models into B. In UML-B Specification for Proven 

Embedded Systems Design, chapter 5. Springer, 2004. 
[14] C. Snook and M. Waldén. Refinement of Statemachines using Event B semantics. In Proc. of 7th International 

Conference of B Users (B2007): Formal Specification and Development in B, Besançon, France, LNCS 4355, 
January 2007, pp. 171-185. Springer. 

[15] M. Waldén and K. Sere. Reasoning About Action Systems Using the B-Method. Formal Methods in Systems 

Design 13(5-35), 1998. Kluwer Academic Publishers. 

NWPT'07

Page 89



Refinement, Compliance and Adherence of Policies in

the Setting of UML Interactions

Bjørnar Solhaug1,2 and Ketil Stølen2,3

1Dep. of Information Science and Media Studies, University of Bergen
2SINTEF ICT 3Dep. of Informatics, University of Oslo

Email: {bjors,kst}@sintef.no

Abstract. The UML is the de facto standard for information system specifica-
tion, but offers little support for policy specification. We introduce extensions
to the sequence diagram notation suitable for expressing policy rules. A for-
mal semantics is defined which gives a precise meaning to the specifications and
allows the formalization of the notions of refinement and compliance of poli-
cies. The relation between a policy and systems for which the policy applies is
formalized, defining what it means for a system to adhere to the policy.

1 Problem Characterization

Policy frameworks are increasingly being used for the management of information
systems, and there exists a number of languages that have been developed for the
purpose of policy specification and analysis. UML [4] is the de facto standard for
the modeling and specification of information systems, but offers little support for
the description of policies. To what extent can policies be expressed in UML, and
in what way should policies be related to ordinary UML system documentation?

We define a policy as a set of rules governing the choices in the behavior of a sys-
tem [5], where the rules are classified into permissions, obligations and prohibitions.
This classification is based on deontic logic [3], and is found in several approaches
to policy specification as well as in standards issued by ISO/IEC and ITU-T [2].

A policy refers to system behavior, so UML diagrams for specifying dynamic as-
pects of systems are natural candidates for policy specification. UML 2.0 sequence
diagrams describe system behavior by showing how messages are sent between en-
tities. We have chosen to focus on these since most of the dynamic UML diagrams
can be expressed in terms of such interactions. This means that our results for
sequence diagrams generalize to several other dynamic UML diagrams. The se-
quence diagram notation is, however, not a policy specification language [6]. A
foundational task is therefore to introduce constructs to the syntax customized for
expressing deontic constraints. A formal semantics should be provided to ensure a
precise interpretation, and to pave the way for formal methods and analyses.

The process of developing a policy specification should be supported by a formal
notion of refinement. Refinement means to add information to a specification,

1
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bringing it closer to an implementation. The relation between a policy specification,
which can be at any level of abstraction, and a policy implementation should be
formally captured by a compliance relation. Compliance with a specification means
that the implementation is correct, and with a formal compliance relation, this can
be formally verified.

A core issue with respect to policy specification and analysis is to understand the
relation between a policy specification and a system for which the policy applies.
We specify systems with ordinary UML sequence diagrams where the semantics
is the denotational trace semantics of STAIRS [1]. A formal adherence relation
precisely defines what policy adherence of system to policy means.

2 Approach

We extend the sequence diagram notation with constructs for deontic rules. The
extension is modest and conservative so that people that use the UML can easily
understand and use the extended language. We define a formal semantics for the
policy notation that builds on the STAIRS semantics for sequence diagrams. The
interpretation of the deontic constraints is captured by defining a relation between
the Kripke semantics of deontic logic [3] and the STAIRS trace semantics.

Given our language and formal semantics for policy specification, we define the
notions of policy refinement and policy compliance. For policy specifications PA

and PC , PA →r PC denotes that the more concrete specification PC is a refinement
of the more abstract specification PA. This is illustrated at the left hand side of
Figure 1. The refinement relation is transitive, supporting a stepwise, incremental
specification process by allowing any number of refinement steps between PA and
PC . The refinement relation also supports compositional refinement, allowing a
modular specification process.

A policy specification documents the requirements to the policy that eventually
will be implemented. We also formalize a compliance relation ’→c’, where P →c PI

denotes that the implementation PI complies with the specification P . This is
illustrated at the bottom left in Figure 1. The compliance relation is defined such
that if PA →r PC and PC →c PI , then PA →c PI .

An important part in our development of a policy specification language is to
formalize the relation between a policy specification and a UML sequence diagram
specification of the system for which the policy applies. What does it mean that a
system specification adheres to a policy, and how is this verified?

The relation between the policy specification and the system specification is the
adherence relation ’→a’ depicted horizontally in Figure 1 . By formally defining
this relation, adherence to a policy is precisely defined and can be formally veri-
fied. Moreover, the refinement and compliance relations for the policy and system
specifications can be utilized in both development and analysis by ensuring that
adherence results propagate downwards through refinement and compliance.

The system specifications are depicted to the right in Figure 1 with the STAIRS

2
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Figure 1: Formal relations

relations of refinement ’→r′ ’ and compliance ’→c′ ’. Invariance of adherence through
refinement and compliance is expressed by the following definition:

PA →a SA

def

⇐⇒ (∀PI : ∀SI : PA →c PI ∧ SA →c′ SI ⇒ PI →a SI)

This means that if policy adherence is established at an abstract level, refinement
of policy specification and system specification independently will ensure adherence
at the concrete level. The dashed, diagonal relations of Figure 1, for example, illus-
trates persistency of policy adherence through system refinement and compliance.

Policy specification with UML has not been much investigated despite the broad
use of UML and the increased interest in policies. By some quite modest extensions
of the syntax, accompanied by a formal semantics, useful methods can be developed
for the support of specification and analysis. Policy specification using UML is
highly interesting also because it facilitates the formalization and analysis of the
relation between a policy and a system when the latter is documented in UML.
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ABSTRACT
Software developers increasingly recognize the need for portable,
scalable and distributed applications which are reliable, se-
cure and run at high performance. These applications are
also required to be produced both faster and at a lower
cost. An approach to achieve this is the Object Manage-
ment Group’s Model Driven Architecture which involves au-
tomatic development processes and model management in
addition to executable models. This makes the importance
of formal modeling languages more recognizable since the
automatization of processes requires formal models. How-
ever, current modeling languages are either semi-formal, am-
biguous, or both, therefore, a generic framework for for-
mal, diagrammatic software specification is inevitable. In
this presentation, Generalized Sketches will be introduced
as a generic framework for the specification of modeling lan-
guages and transformations between them. Then an exam-
ple will be presented to show how Generalized Sketches may
be used in Model Driven Architecture.

Introduction and Motivation
Evidently, formalization of modeling languages and transfor-
mations between them is an important step in Model Driven
Architecture (MDA) [7]. In contrast to the traditional soft-
ware development processes where models are used only for
documentation purposes, in MDA, models are considered
first-class citizens. In MDA, building applications is started
by the construction of abstract, platform-independent mod-
els (PIM) of system properties and behavior. These models
are automatically transformed into one or more platform-
specific models (PSM) which are used by code-generators to
generate application code [6]. The transformation processes
are specified by transformation definition languages and are
executed by transformation tools. The involvement of these
tools in the development processes requires that the mod-
els and the transformations between them should be defined
formally. This implies the necessity of techniques which can
be used to specify formal models and formal transformation
definitions.

In addition, using formal modeling techniques provides
mechanisms for model de-composition and integration; mech-
anisms for verification of correctness, consistency and va-
lidity of models and transformation definitions; as well as
mechanisms for reasoning about models and transforma-
tions. Thus the basis for executable models will be a step
nearer accomplishment.

Related Work
Currently, the Unified Modeling Language (UML) is the
most used diagrammatic modeling language in software en-
gineering. A huge effort is done by the Object Manage-
ment Group (OMG) to formalize UML. This effort has re-
sulted in special languages such as the Meta Object Fa-
cility (MOF) [9], which can be used to specify all other
OMG languages; and the Queries, Views and Transforma-
tions (QVT) language which is used to specify transforma-
tions between MOF-compliant languages [8]. The QVT’s ap-
proach of transformation requires that modeling languages
are MOF-compliant in order to enable model transforma-
tion and integration. This approach might solve some of the
problems concerning model definition and transformation,
however, it is not the optimal solution for the problem be-
cause of the continuous development of modeling languages
that are not necessarily MOF-compliant. In fact, MOF only
provides the syntax for modeling languages, hence the se-
mantics is still needed to be formalized.

Another language which is used for definition of transfor-
mations is the ATLAS Transformation Language (ATL) [5].
ATL is currently available as an open source project under
the Eclipse Modeling subproject. The ATL framework con-
sists of a transformation language (ATL), a virtual machine,
and an IDE for writing transformation definitions. ATL is
a hybrid language –both declarative and imperative. The
declarative style is used to specify rules for matching source
and target patterns. During application of the rules, a tar-
get pattern will be created in the target model whenever a
source pattern is found. ATL presumes that the source and
target languages are well-formed without providing mecha-
nisms to check the well-formedness of the languages. ATL
defines the semantics of transformation rules, however, this
semantics is not graph-based.

Goals and Approaches
The purpose of our research is to investigate and apply the
potentials of Category Theory (CT) and the ideas which
propose Generalized Sketches (GS) as a mathematical for-
malism for formalization of modeling languages [4, 3, 2] and
their transformations [10]. GS is a graph-based specifica-
tion format which borrows its main ideas from both first or-
der logic and categorical logic [2]. GS provides mechanisms
for specification and manipulation of models in an abstract,
generic and formal way.

In GS, a modeling language L is represented by a meta-
sketch SL which in turn is based on a diagrammatic sig-
nature ΣL. A ΣL-sketch can be seen as an instance of SL,
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L−models correspond to visualizations of ΣL−sketches, and
model transformations correspond to sketch operations. ΣL
is a collection of diagrammatic predicate symbols, and, each
predicate symbol corresponds to a constraint or construct
which can be set by L. ΣL−sketches are categorical struc-
tures which consist of nodes, arrows and diagrams which are
marked with predicate labels from ΣL. By having a graph-
based logic in which the arrow-thinking style is provided,
the relationship between the syntax and the semantics of di-
agrams in ΣL−sketches is made formal and more compact.

Heterogenous model transformations can be formalized in

the following way. For the Language L
′
, we can define the

signature ΣL′ and the meta-sketch SL′ . The transformation

between constructs of L and L
′

can now be specified formally
as a sketch operation which is given by a sketch morphism
φ : SL → SL′ (Figure 1). Then a ΣL−sketch, IL, which
is an instance of the meta-sketch SL can be transformed
to a ΣL′−sketch, IL′ , by applying the sketch operation as
shown in the figure and explained in the example below. The
commutativity requirement of the diagram in the figure is to
assure that the transformation is correct. For homogenous
model transformation, we use the same procedure for ΣL =
ΣL′ .

SL
φ // SL′

IL
φ∗

//

ι1

OO

[=]

IL′

ι2

OO

Figure 1: Generic Model Transformation

Example
A simplified meta-sketch, SPIM , of a subset of a PIM lan-
guage is shown in Figure 2. The figure explains the relations
between classes and attributes. In this language, attributes
must have exactly one kind of visibility: public, private or
protected. This constraint is given by the total mapping,
attrV isibility, and the curly braces including the possible
visibility types, {pub, prv, prt}. Associations are omitted
for briefness, and operations are not part of this PIM lan-
guage.

Figure 2: SPIM , the meta-sketch of a PIM language

In Table 1, some constraints (or predicates) from ΣPIM
with their semantics in terms of sets and mappings are shown.
Predicates can be combined to set the necessary constraints,

name arity visualization semantic

”node” • A set

[cover] • // • A −f−I B ∀b ∈ B : ∃a ∈
A | f(a) = b

[total] • // • A • f // B ∀a ∈ A : ∃b ∈
B | f(a) = b

[partial] • // • A ◦ f // B ∃a ∈ A | @b ∈
B | f(a) = b

[multivalued] • // • A f // // B ∀a ∈ A | a ∈
Dom(f) : f(a) ⊆
P(B)

Table 1: Signatures ΣPIM and ΣPSM

e.g. the mapping between Class and Attribute in SPIM is
marked with two predicates: [cover], meaning that all at-
tributes must exist as a field in some class, and [multivalued],
meaning that each class may have 0...* attributes.

Figure 3 shows a simplified meta-sketch, SPSM , of a sub-
set of a PSM language. Operations are part of this PSM
language. There is a semantic overlap between the signa-
tures of the PIM and the PSM languages, therefore, there is
no need for a signature mapping. In most cases, especially
when very different languages are concerned, a signature
mapping is necessary to make the alignment of the two lan-
guages possible. A signature mapping is given by a signature
morphism which is a mapping between predicate labels such
that the shape graphs of the predicate labels are preserved.

Figure 3: SPSM , the meta-sketch of a PSM language

In Figure 4, we show a very simple transformation defini-
tion as it is defined by the GS formalism. This transforma-
tion is often used in the transformation of PIMs to PSMs,
where a low level model –including operations– is generated
from the high level model. For each public attribute attr
from the PIM, we will generate a private attribute and two
public operations –a getter and a setter– to access attr. In
the transformation, we declare that for any match of the
diagram SRC in the source model, the diagram TRG will
be generated in the target model. This transformation can
be specified diagrammatically and, we can put any kind of
formal constraints on the transformation and its source and
target models.

Examples of constraints which must be defined for this
transformation are:

• getterOp; returnType = attr; attrType, stating that
the return type of the getter of each attribute must be
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Figure 4: Transformation definition.

the same as the type of the attribute.

• setterOp; param; paramType = attr; attrType, stat-
ing that the type of the parameter of the setter of each
attribute must be the same as the type of the attribute.

• getterOp; op1Name = ”get”+attr; attrName, stating
that the name of the getter of each attribute must be
the same as the name of the attribute prefixed by ”get”.

• setterOp; op2Name = ”set”+attr; attrName, stating
that the name of the setter of each attribute must be
the same as the name of the attribute prefixed by ”set”.

Concluding Remarks
The example shows how a transformation between two mod-
eling languages (which are specified in GS) is defined. That
kind transformation may be achieved also by using ATL or
QVT. However, in GS, this process is both diagrammatic,
allowing us to define the transformation visually; formal, al-
lowing us to compose transformations and verify easily that
the target model is an instance of the target metamodel; as
well as language-independent, the transformation can be ap-
plied to the metamodel of any source language which has an
occurrence of SRC, and any target language in which TRG
can be expressed.

Currently, the focus of our research is on accomplishing
the theories of GS and the design of tools for the application
of these theories. Our tools will be implemented as plugins
to Eclipse and will be proposed as a subproject of the Eclipse
Modeling project [1]. The tools will be intended for three
groups of users.

• Those who are interested in formalization of languages
by designing diagrammatic signatures for those lan-
guages.

• Those who are interested in comparison and alignment
of languages by definition of transformations between
those languages.

• Those who are interested in using the signatures and
transformations to define domain-specific models and
then transform them to models in other modeling or
programming languages, i.e. automatic code-generation.
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Abstract

There have been quite a number of proposals for behavioural equivalences
for concurrent processes, and many of them are presented in van Glabbeek’s
linear time-branching time spectrum, where in particular an axiomatization
for each one of these semantics is provided. Recently we have been able of
presenting also a coinductive characterization of these semantics by means of
bisimulations up-to, which give us the possibility to apply coinductive tech-
nique to their study. The most important property of these two approaches
is their generality: once we have captured the essence of many different se-
mantics in the same way we are able to get quite general results, which can
be proved once for all, covering not only the semantics that have just been
considered, but any other that could be defined in those frameworks having
some quite general properties that are the only ones used when proving our
results. We illustrate these asserts by means of a new and quite interesting
result by Aceto, Fokkink and Ingolfsdottir, where they prove how to get for
free an axiomatization of the equivalence induced by a behaviour preorder
coarser than the ready simulation from that of the given preorder. We have
got much simpler and shorter proofs of the main results in their paper that
besides are valid not only for the semantics in the spectrum that they need to
consider one by one, but for any other semantics fulfilling the quite general
and simple properties that we need in our general proofs.

1 Short Extended Abstract

Most of the most popular semantics for concurrent processes appear in van Glabbeek´s
ltbt. In its famous paper [1] all of them are characterized by means of adequate
testing scenarios, that generate not only an equivalence relation between processes,
but even more importantly, a natural preorder relation that has this equivalence
relation as kernel. Bisimulation semantics is the strongest of the semantics in the
spectrum, and it is proved to be much finer than simulation equivalence, since
bisimulation having a pure coinductive definition is much stronger than mutual
simulation. Ready simulation semantics appears as a nice compromise between
them, and it has been proved that it is the strongest semantics having a large
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collection of desirable properties. In particular, all the semantics in the spectrum
that are weaker than it can be finitely axiomatizable, and this is true both for the
equivalences and the preorders that define them. Besides, we have recently proved
that also both admit coinductive characterizations based on either bisimulations
up-to [2] or I-simulations up-to [3]. These two kind of characterizations have as
main property that of providing uniform definitions instead of the quite different
notions that are needed to define the extensional models of each of the semantics,
take for instance traces, refusals, ready sets or the quite complex models for all the
simulation semantics. It is true that in some cases these explicit models allow to
foresee some interesting properties, that are either satisfied by a class of semantics,
or even by any reasonable semantics, but if one needs to consider one by one all
these models to get the corresponding formal proof of these results then things can
become quite boring, and even a bit frustrating since one does not finally know
which are the fundamental properties that justify the results.

Quite recently Aceto, Fokkink and Ingolfsdottir have given to us in [4] the
perfect example to support our claims. They have showed how to get an axioma-
tization for the semantic equivalence defined by a given preorder from that of this
one, thus showing a natural connection between both. But even if the construction
seem to be quite general their proof is based in several results they only know how
to prove considering the corresponding extensional semantics one by one. More in
detail, they use the concept of cover equation in order to get a kind of basis for
the sound equations under an axiomatization. The restriction to cover equations
allows a (relatively) general proof for the central Theorem 1 in their paper, by
means of proof induction. In order to prove that cover equations are indeed suf-
ficient to prove the desired completeness of the defined axiomatization their main
needed technical result is their Lemma 3, that says that whenever an inequation
t + x ≤ u + x is sound, then the inequation t ≤ x is too. The proof of this lemma
for the ten different semantics in the spectrum weaker than ready simulation takes
up to twenty five pages of lengthy reasonings that are based on the extensional
definitions of the semantics. Instead, our coinductive characterization of behaviour
preorders coarser than the ready simulation preorder by means of simulations up-
to the equivalences defined by them, allows us to get a general proof which extends
for lees than half a page. Moreover by means of the study of these coinductive
characterizations we have set into the light some very simple properties of reason-
able semantics such as initials preserving and action factorised, which are the only
ones we need in our proofs as hypothesis, and of course are satisfied by all the
semantics in the spectrum.

But the algebraic characterizations of the semantics have also proved to be
very useful when we studied the details of the rest of the proof of their Theorem
1. There the application of an inequational axiom in the derivation of any sound
inequation can be made under an arbitrary context C, and this generates an struc-
tural induction on the form of the context. This is a natural descendent induction
where the involved context is simplified by removing its root, and then the induc-
tion hypothesis is applied. The problem is that under the root of the context there
are several sons, but its hole is only contained in one of them, and the rest of the
sons have to be adequately taken into account. This is why in the original proof
the cover equations were considered, because thanks to their simplicity the desired
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result could be proved surrounding those technical difficulties. We tried to use the
algebraic characterization of the semantics to get a new simpler proof of the theo-
rem, and we found that the key idea was to reverse that structural induction, what
means to enlarge the hole of the context to reduce the depth at which it appears.
This is made by including into the hole the node over it and all its descendants.
This produces a more elegant proof which avoids the necessity to restrict ourselves
to cover equations, and whose main fundamental fact is a closure property of the
simple contextual axiom t ≤ u =⇒ b(t + x) ≤ b(u + x) that generates the axiom
b(t + x) + b(u + x) ≈ b(u + x), that Aceto et al. cleverly discovered as the key to
construct the axiomatization of the equivalence induced by a behaviour preorder
starting from the axiomatization of this preorder.

Let us conclude that the combination of the different characterizations of the
semantics has proved to be very useful to get general proofs of their properties. Our
new coinductive characterization of behaviour preorders and equivalences by means
of (bi)simulations up-to has proved to be much more powerful than its simplicity
made to suspect. At the same time their well known algebraic characterizations
have found new applications thanks to a global study of the subject. This is why
we advocate for the continuation of the study of all these topics that will serve us
to get a much better knowledge of the complex structure relating all the proposed
semantics for processes and their general properties.
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Designing a usable language for total functional programming based on structured (co)recursion
is remarkably difficult. It amounts to designing a term calculus for a type language with in-
ductive (least fixpoint) and coinductive (greatest fixedpoint) types that is satisfactory both
metatheoretically and practically.

The straightforward option is to support (co)iteration or primitive (co)recursion in their basic
forms. Term calculi with the corresponding constructs have an immediate semantic basis in the
initial algebra (final coalgebra) semantics of (co)inductive types. Unfortunately, this option is
impractical.

Alternatively, one might support general-recursor like combinators subject to syntactic con-
ditions controlling the marshalling of recursive call arguments (the collection of corecursive call
results), so-called guardedness conditions [6]. This approach is considerably more convenient for
the programmer, but leads to a cumbersome and error-prone metatheory.

An approach combining the benefits of the basic structured recursion combinators and gen-
eral recursor like combinators governed by syntactic conditions is so-called type-based termina-
tion, based on structured (co)recursors à la N. P. Mendler [8, 5, 10, 13, 7, 2, 1]. The general-
recursor like behavior of such combinators is controlled by restrictive types employing universal
quantification. The semantics combines initial algebras (final coalgebras) with (variants of) the
Yoneda lemma and recursion schemes from comonads.

Common to both the approach of syntactic conditions and the Mendler-style approach is the
issue of choosing how far to go: which structured (co)recursion scheme should be supported as
primitive?

We argue that one possible canonical choice is given by a calculus of “circular proofs”. In-
spired by circular sequent calculi for classical predicate and modal logics with inductive and
coinductive definitions [12, 11, 3], we look at an intuitionistic propositional sequent calculus
where a proof is a rational derivation tree with every path satisfying a natural progress con-
dition, cf. [4, 9]. An equivalent formulation is a higher-order sequent calculus where proof
rules are higher-order but proofs are wellfounded. The progress condition can be stated either
as a syntactic condition or à la Mendler. The (co)recursion scheme of circular proofs is an
interesting form of lazily simultaneous (co)recursion: primitive (co)recursion with subsidiary si-
multaneous primitive (co)recursions on structurally smaller arguments. This scheme is of greater
direct expressivity than the standard guarded by destructors (constructors) (co)recursion and
Mendler-style course-of-value (co)recursion usually employed in the guarded and Mendler-style
approaches.
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1 Introduction

Service Oriented Architecture (SOA) is a way of reorganizing series of previously operational
software applications and support infrastructure into an interconnected set of services, each
accessible through standard interfaces and messaging protocols. Once all the elements of an
enterprise architecture are in place, existing and future applications can access these services
as necessary. This architectural approach is particularly applicable when multiple applications
running on varied technologies and platforms need to communicate with each other. It promotes
services that are distributed, heterogeneous, autonomous and open in nature. In this way,
enterprises can mix and match services to perform business transactions with less programming
effort.

In recent times, Service Oriented Architecture is being employed in developing service based
applications. While this is a welcome idea by a versed majority of developers and vendors in the
software industry, a lot of issues are yet to be resolved. For instance, collaboration presumes
a minimum level of mutual trust and where ever trust is not considered sufficient, contracts
become the alternative mechanism to reduce risks. Therefore, the possibility has arisen to have
a detailed contract specification and of course verification for these service contracts in order
to ensure a more reliable and dependable application. Two different web services from two
different platforms or from two different organizations should be able to inter-operate based on
the agreed contract.

Techniques and tools to handle service contracts or that support analysis, verification and
validation is important. There should be a possibility to represent service contracts whether for
intra/inter-organizational applications that allows the use of existing analysis and verification
verification techniques. Our goal is to formulate a formal representation for the functional
aspects of service contracts. Further, we investigate how to analyze and verify this service
contracts with emphasis on compositionality and compatibility.

2 Service Contracts

A contract is a specification of the way a consumer of a service will interact with the service
provider. A service contract specify a set of preconditions, post-conditions, quality of service
levels for non-functional aspects. Contract is also a runtime dependency between the provider
and the consumer. Contracts for web services including its specification and verification is of
paramount importance in today’s enterprise applications because of the high risks involved in
using untrusted services from unknown providers. Since the provider of the service and the
client that requests the service do not know each other in advance, the issue of trust cannot
be guaranteed. Therefore, forming contracts becomes a way to manage the risks that comes
with the interaction among these inter-organizational services. Service contracts may specify
different aspects of a service. There are two major groups of these aspects.
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• Non-functional Service contracts include descriptions of non-functional QoS (Quality of
Service) requirements such as availability, accessibility, integrity, performance, reliability,
security, among others. Most of these non-functional aspects are being investigated or
covered by some standards [2, 1, 5]. Further, several works on formal approach employ
Deontic logic as found in [8, 3, 4].

• Functional Service contracts should also include a description of functional requirements.
An earlier treatment of contracts in an object-oriented paradigm is Design by Contract
[6]. Here, the functional specification is achieved through assertions; which consists of
preconditions, post-conditions and invariants.

We note that these functional specifications are important in order to express what a client
should do to make a service request and what the provider will do in return. These functional
aspects serve as a starting point for analysis and verification.

2.1 Representation of Functional Service Contracts (FSC)

In order to discuss about the compositionality and compatibility of service contracts, a formal
representation of a functional service contract is needed.

FSC is a pair SI : SP (1)

SI is the set of service operations (SO) while SP are a set of sequences of operation names.
Note that names occurring in sequences of SP are included in SI

Service Operations A service operation is a tuple:

SO = 〈preSO, postSO〉 (2)

preSO : a precondition of the service is a logical expression which must be satisfied before
the service can be called.

postSO : postcondition is logical expression describing the effect/result of the invocation of
the service. Thus, the service guarantees that it will satisfy postcondition if the precondition
is true when called.

We define a function sops that retrieves all the service operations of a given service interface
as:

sops : SI → SO (3)

Service Protocols We use a notation similar to regular expressions to describe the sequence
of service operation calls in FSC. For instance, in a trading system, (details not given due
to space constraints) startSale() should be called first, followed by some number of alternating
calls to enterItem() and scanItem() and finishSale should be called last.

salsProt1: (startSale()({enterItem()|scanItem()})+); finishSale()

3 Compatibility and Compositionality

We consider compatibility and compositionality as steps in the analysis, and verification of
service contracts. A service contract is compatible (operationally) if it is able to work with a
given service. It focuses on the alignment of internal activities of participants with their contract
obligations. Service Contract SC1 and SC2 each having all its SO satisfied are compatible
when SC1 is at least as capable as SC2 and when SC1 can substitute SC2. We consider
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this definition as a variant of refinement. Thus service contracts are compatible if there is a
refinement relation between them. Note that SC1 ∪ SC2 ⊆ sops(SI).

The notion of refinement here is based on an ordering relation ⊒ on service contracts;
SC1 ⊒ SC2. SC1 is a refinement of SC2 if SC1 can replace SC2 in any service. That is SC1

satisfies at least the same set of service operations as SC2. The refinement relation is reflexive
and transitive. We employ the use of theorem proving to support the reasoning about service
contracts in this context. One proof obligation is that refinement relation holds. We use the
notion of parallel composition which allows new service contracts to be made from two (or
more) service contracts to reason about the compositionality.

Semantics Given two functional service contracts FSC1 and FSC2, their parallel compo-
sition, FSC1 ‖ FSC2 is given structural operational semantics (or small step semantics from
[7]) with the restriction that the sequences protocols are not altered. When composing service
contracts, if each service satisfies (is compatible with) its service contracts, then the entire
composite service contracts is satisfied. For instance, the resulting composite service contracts
involves the execution of both FSC1 and FSC2 but the execution can be interleaved.

The functional aspects of service contracts (preconditions, post conditions and service pro-
tocols) are an integral part of the overall service contracts. Its formal specification enables a
rigorous analysis and verification. Existing techniques for reasoning such as theorem proving
can be employed to reason about compatibility of service contracts.
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1 Introduction

As mobile devices become increasingly popular, the problem of secure mobile application development gains
importance. Mobile devices contain personal information, which users wish to protect. They also provide
access to costly functionality, such as GSM services and GPRS connections. It is necessary to provide
controlled access to the sensitive resources through fine-grained, at times application specific, constraints on
execution.

A security policy specifies the set of acceptable executions and can thus be used to define how and under
what conditions a sensitive resource can be accessed. For instance, a user policy may limit the number of
SMSs that are sent by an application per hour in order to prevent spamming. A program adheres to a policy if
all its executions are acceptable by the policy. Several techniques exist to ensure that an application complies
to a policy. Static verification techniques analyze the program code in order to construct a mathematical
proof that no execution of the program can violate the policy. Though such an analysis provides full
assurance, due to the complexity of the problem, static verification is most often unfeasible in the resource-
critical environment of the mobile device. Runtime monitoring, on the other hand, observes the behavior of
a target program at runtime and terminates it if it does not respect the policy. Monitoring can effectively
enforce many practically useful security policies [8]. However, it creates performance overhead since each
security relevant action of the program should be detected and checked against the policy.

Our framework combines static with dynamic techniques in order to enforce security policies on mobile
devices in the most effective way. It is similar to the model-carrying code approach [9], in that security
specifications can be enforced at the three stages of the application lifecycle: the development, installation
and runtime phases.

Development Phase: We associate with the application a contract [2], a piece of data that describes its
security-relevant behavior. In the development phase, the contract is a specification of the intended security-
relevant behavior of the application by the producer. The compliance of the application to the contract
can be checked using static verification. The analysis can be performed by the producer or a trusted third
party, which then signs the application and the contract by its private key. This analysis is performed by
powerful machines rather than the mobile devices, and can make use of knowledge available to the developer
(e.g. program specifications, annotations derived from the source code). Instead of signing with a private
key, proof-carrying code techniques [7] can be used to convey assurance in program-contract compliance. If
contract compliance can not be statically verified, then an execution monitor can be inlined in the program
at this stage so that compliance is ensured at runtime [4, 3].

Installation Phase: Before the program is installed on the device, a formal check is needed to show that
the security-relevant behavior of the application given by the contract is acceptable by the user policy; we call
this process contract-policy matching. In the case where the contract does not match to the policy, adherence
to policy can be enforced by inserting a monitor to the environment of the program in the installation phase.

Runtime: At runtime, the behavior of an application may be checked against a policy by monitoring.
The main contribution of this paper is the language ConSpec (Contract Specification Language), which

can be used for specifying both user policies and application contracts in a framework such as the one
described above. ConSpec aims for a balance of language expressiveness and tractability of the various tasks
identified in the framework. For example, the problem of matching a contract against a policy reduces to
the language containment problem for such automata, if policies and contracts are captured with automata
on infinite strings. The complexity of this task (see e.g. [5, 6]) severely restricts the expressive power of the
language. We provide a semantics for ConSpec and we briefly explain how the design of ConSpec renders
possible the formal treatment of several of the activities in the framework mentioned above.
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2 ConSpec Language

ConSpec is strongly inspired by the policy specification language PSLang, which was developed by Erlingsson
and Schneider [3] for runtime monitoring. PSLang policies consist of a set of variable declarations representing
the security state, followed by a list of security relevant events, where each event is accompanied by a piece
of Java-like code that specifies how the security state variables should be updated in case the event is
encountered in the current state. PSLang trades the formalisation of the monitor to the simplicity of
inlining it. While a PSLang policy text is intended to encode a security automaton, a formal semantics for
PSLang is not provided. Such a task is not trivial due to the power of the programming language constructs
that can be used in the updates. Furthermore, contract-policy matching would be undecidable when such
an expressive language is used. ConSpec is a more restricted language than PSLang: the domains of the
security state variables are finite and we have used a guarded-command language for the updates where the
guards are side-effect free and commands do not contain loops. The simplicity of the language then allows
for a comparatively simple and elegant semantics. ConSpec has the additional scope construct for expressing
security requirements on different levels. Case studies show that this feature is necessary for expressing many
interesting real-life policies [10]. ConSpec is expressive enough to write policies on multiple executions of
the same application, and on executions of all applications of a system, in addition to policies on a single
execution of the application and on lifetimes of objects of a certain class.

Assume that the method Open of the class File is used to create files (when the argument mode has the
value “CreateNew”) or open files (when the argument mode has the value “Open”) for reading or writing.
Similarly, the method Open of the class Connection opens a connection and the method AskConnect asks
the user for permission to open a connection. The policy ”Application must, after accessing an existing file,
get approval from the user before opening a connection” is expressed in ConSpec as follows:

SCOPE Session

SECURITY STATE
bool accessed = false;
bool permission = false;

BEFORE File.Open(string path, string mode, string access)

PERFORM
mode.equals("CreateNew") -> { skip; }

mode.equals("Open") -> { accessed = true; }

BEFORE Connection.Open(string type, string address)
PERFORM

!accessed -> { permission = false; }
accessed && permission -> { permission = false; }

AFTER string answer = GUI.AskConnect()
PERFORM

answer.equals("Yes") -> { permission = true; }

We begin by specifying that the policy applies to each single execution of an application. Scope declaration
is followed by the security state declaration: the security state of the example policy is represented by
the boolean variables accessed and permission, which are both false initially to mark, respectively, that
no file has been accessed and that no permissions are granted when the program begins executing. The
example policy contains three event clauses that state the conditions for and effect of the security relevant
actions: call to the method File.Open, call to the method Connection.Open and return from the method
GUI.AskConnect. The types of the method arguments are specified along with representative names, which
have the event clause as their scope. The modifiers BEFORE and AFTER mark whether the call of or the
normal return from the method specified in the event clause is security relevant (exceptional returns can
be specified by the modifier EXCEPTIONAL). Whatever the execution history, whenever the application
calls the method File.Open, it should be creating a new file (the first guard) or it should be opening an
existing file (the second guard). In order to decide if the application is allowed to open a connection, history
of existing file accesses and user permissions should be consulted. If the current history contains an access
to an existing file (that is if accessed is true), then an attempt to open the connection is allowed only if
the security state variable permission is true. The only way this variable has the value true at a certain
point in the execution is, if the last execution of the method GUI.AskConnect has returned “Yes”. Notice
that the policy does not allow the same permit to be used for several connections since permission is set
to false before each connection. If neither of these conditions hold for the current call, that is if an existing
file has been accessed but no permission for connection was granted, then it is a violating call as none of the
guards are satisfied.

For such a language, an elegant semantics can be given in terms of security automata [8].
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3 ConSpec in Use

Current work focuses on the formal treatment of the following tasks related with policy enforcement, based
on ConSpec semantics:

Matching One way to match a ConSpec contract against a ConSpec policy is to check that the
language of the contract automaton is included in the language of the policy automaton. Since the domains
of the security state variables are bounded, the extracted automata have finitely many states and standard
methods for checking language inclusion for automata can be facilitated for contract-policy matching (see
for instance [1]).

Monitoring Given a program and a ConSpec policy with scope Session, the concept of monitoring
can be formalized by defining the co-execution of the corresponding ConSpec automaton with the program.
Such co-executions are a subset of the set of interleavings of the individual executions of the program and the
automaton. Co-executions satisfy the following condition: when the execution of the program component is
projected to its security relevant action executions, each before action is immediately preceded by a transition
of the automaton for the same action; dually, each after action is immediately followed by a corresponding
automaton transition. It is simple, then, to show that the program component of the co-execution adheres to
the given policy, as the co-execution includes an accepting trace of the automaton for the program execution.

Monitor Inlining Inlining a ConSpec policy with scope Session can be performed similar to inlining
a PSLang policy (see [3] for details). The correctness of such a monitor inlining scheme can be proven by
setting up a bisimulation relation between the states of the inlined program and the states of the co-execution
of the original program with the ConSpec automaton (induced by the policy). If the party responsible for
the inlining is not trusted, the proof-carrying code approach can be used. An annotation scheme can be
devised that produces annotations for a given policy, so that if the annotations are valid for a program,
then the program adheres to the policy. The inlining party can use certain information about the inlining
(e.g. the variables used to represent the security state) to prove the verification conditions resulting from
annotating the program with this scheme. A proof can then be shipped to the consumer which enables the
correctness of the inlining to be verified on the mobile device, based on the same scheme.

4 Conclusion

In this paper, we present the language ConSpec, which can be used for specifying both policies and contracts
in various security enforcement related tasks of the application lifecycle. We provide a formal semantics for
the language which enables formal proofs to be constructed for these taks. Currently, we are formalizing
enforcement techniques using ConSpec for sequential programs as summarized in Section 3. As future work,
we aim to extend our approach to applications where multiple threads can perform security-relevant actions.
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discussions.
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Introduction
Contract-orientation prescribes the definition of precise checkable interfaces - or services - for software components. The
agreement of contracts between clients and service providers is traditionally enforced using runtime monitoring techniques.
In the recent years, static verification techniques were developed to assist contract-oriented development. Static verification
allows to reduce the overhead caused by the monitoring logic at runtime. Moreover, and most importantly, inconsistencies in
contract specifications can be found earlier in the development cycle.

The goal of the Tamago platform we overview in this paper is to provide a comprehensive set of tools to assist in contract-
oriented component software development. It provides a specification language similar to an interface description language
extended with observable properties, first-order logic assertions (preconditions, postconditions and invariants) and descriptions
of interface behaviors [3, 8, 10] based on finite-state automata with conditional transitions. A set of static analysis tools are
proposed to detect contract inconsistencies at the specification level, and also provides a support for automated testing of
implementations.

A contract compiler is proposed that currently targets the Java programming language. The generated monitoring logic
adopts a flexible contained-based architecture that can be attached dynamically to components implementing the business
logic. It also supports various percolation patterns.

Specification language for contracts
To illustrate the Tamago specification language, we give a possible definition of a contract for the traditional bank account
example as follow:

service BankAccount {
property readonly double balance init 0;

property constant int id;
invariant balance ≥ 0 fail ”negative balance”;

method void credit(double amount) {
pre amount > 0 fail ”amount must be strictly positive”;
post balance = balance@pre + amount

}

method void withdraw(double amount) {
pre amount ≤ balance fail ”not enough money”;
post balance = balance@pre - amount

}

behavior {
init navail;
states{

state navail { allow credit; }
state avail { allow credit,withdraw; }

}
transitions {

transition from empty to notempty with credit;
transition from notempty to empty with withdraw

when balance = 0;
}

} // end behavior
} // end service

The first part of the specification is self-explaining and resembles traditional software contracts. The notion of observable
properties is important for contracts defined on interfaces rather than implementations. The second part of the contract
describes a simple automaton with two states: navail and avail. Any account starts with a balance of 0 and is thus not
available for withdrawal. As soon as a credit is performed, both operations becomes available. The converse transition is
through method withdraw only when the balance is zero. Beyond such service-level contracts, the language also supports
component-level contracts (with require/provide clauses), assembly contracts (architecture of interconnected components) as
well as contracts for composite components (components with an inner architecture of sub-components). It also supports
behavioral subtyping that leverage reuse of specifications as well as their underlying implementations through object-oriented
inheritance.

Contract Analysis
Our main design objective is to offer a good compromise between expressiveness and tractability. To illustrate the second
point, we develop a set of tools to analyze contract specifications at design time.
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Structural analysis. The first tool performs a structural analysis of the contracts. Beyond type checking, the tool use finite-
state automata techniques to detect inconsistencies such as unreachable states in interface behaviors. It supports service
subtyping and composition. The algorithm we employ is a simplified variant of the synchronization of parallel automata [11],
only without the calculation of synchronized transitions and corresponding optimizations (see Algorithm 1(a)). It starts with
the merging of all the initials states of the provided services in a unique start state (initState). For each such merged states,
the traversal of the product automaton works as follows. First, if the state to traverse is marked, then the corresponding
branch stops here. Otherwise, the state is marked and for all the transitions starting from one of the members of the current
state we compute the next merged state (nstate). We then add the resulting abstract transition to the product automaton
(add). Finally, we reiterate the traversal on the next state until all the abstract states and transitions have been taken into
account. Since we go through all the abstract transitions, the algorithm also detects the set of unreachable states (unmarked).

Abstract interpretation. The second static analysis we perform tries to uncover inconsistencies in the dynamics of the service
and component specifications. The purpose of the algorithm is to simulate their concrete behaviors. It takes the product
automaton generated by the structural analysis tool and tries to “find” its concrete states and transitions. The algorithm (see
Algorithm 1(b)) starts with the domains of values of the observables properties in the initial state of the product automaton,
forming the initial context of the interpretation (initContext). These domains may be of course unknown at first (or infinite,
e.g. arbitrary strings which we also interpret as unknown). The algorithm then use depth-first search to animate the context
(animate). For each animated state, we compare the current context with its previously known context (loadContext). If no
change is observed then we found a fixed point and stop the process for this branch. If the context is new, we associate it
to the current sate (saveContext). Then, for each (abstract) transition, we try to evaluate its firing condition as well as the
precondition (and invariant) for the corresponding functionality (eval). If we are able to falsify these conditions, then the
transition may not be fired, which we report as an inconsistency. The (concrete) states from this transition are also reported
unreachable. If the conditions are true, we advance to the next state silently. The last case is if the evaluation is only partial,
then we assume the transition enabled and fire it but we report the indecision as a warning. The most important step is with
the postcondition (and invariant) that we first try to falsify/satisfy (and abort if it is false), but also analyze to find conditions
of the form prop = expr. We take such equality as a definition and record it as an effect if we are able to evaluate expr to
a finite domain. The process extends to finite domains comparisons through the use of a simple CSP solver (solveContext1).
We reiterate the process on the further transitions with the new set of constraints on properties. Because the dynamics of a
service may be infinite, the actual implementation ultimately relies on a maximal depth parameter to enforce a global fixed
point.

function mergeBehaviors(Bs):
result ⇐ emptyBehavior()
initState ⇐ {q0 ∈ B | B ∈ Bs}
traversal(result,initState,Bs)
return result

function traversal(result,state,Bs):
if isMark(state) then

return // fixed point
else

mark(state)
end if

for all {s1

f

c
��s2 | s1 ∈ state} ∈ Bs

nstate ⇐ (state \ {s1}) ∪ {s2}
add(result,state

f

c
��nstate)

traversal(result,nstate,Bs)
end for
(a) Generation of the product automaton

function interpret(B def
= {q0, Q, T }):

ctx ⇐ initContext(B)
animate(ctx,q0)

function animate(ctx,state):
old ⇐ loadContext(state)
if old=ctx then

return // fixed point
else

saveContext(state,ctx)
end if

for all state
{p}f{q}

c
�� nstate ∈ T

if ¬eval(ctx,p∧c∧Inv) then
error // Unreachable

end if
nctx ⇐ solveContext(ctx,q∧Inv) // Inv invariant
animate(nctx,nstate)

end for
(b) Abstract Interpreter

Figure 1: Used Algorithms

Automated testing. The abstract interpretation of the service and component specifications corresponds to a form of sys-
tematic and automated testing of the specifications. We also use the output - a partial evaluation of the concrete automaton
- to generate a testing infrastructure. The difference with the abstract interpretation is that here the transitions are tested
not only from the point of view of the contract itself but also from the point of view of the environment, i.e. we can test for
external arguments given by users. Moreover, it is not the contract that we test but the actual implementation(s). There is in
fact almost nothing new from an algorithmic point of view here: a simple depth-first search is performed again. We give more
details about the actual implementation of the algorithm. One difference with abstract interpretation is that for each (partial)
concrete transition, the precondition is used as a unit test for the corresponding functionality, and the postcondition serves
as an oracle, following [4]. An interesting fact is that the precondition (plus invariant and firing condition for a transition)
allows to reflect on the (inbounds) testing coverage for the considered functionality/transition. The negation also gives the

1The algorithm we use is similar to a CSP solver without forward checking because we are not looking for a specific solution
for the constraints.
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outbounds test. The boundary tests should also be inferred when possible, but this is left for a future work.

The problem with the CSP technique we employ is that it does not apply directly on complex user-defined types. For this
we use a notion of builder that wraps arbitrary types to comparable and finite domain types (e.g. integer intervals). Also,
the builders are used to generate data sets for testing purposes. We illustrate the use of builders with the following example.
Suppose a constraint (e.g. a precondition) stating str.size() > 3 where str is a platform-dependent string object. The first step
is to generate a constraint corresponding to this statement, which will be of kind X > C where X is a CSP variable and C an
integer constant. For the variable str, the algorithm asks to the builder for arbitrary strings (i.e. StringBuilder) to generate a
CSP variable X of integer type corresponding to the method size(). Of course, a builder needs to know the semantics of the
objects it wraps. Given the constraints, the domain of X is updated with 3 as a lower bound. Most interestingly, the current
implementation of the builder for strings is able to interpret the automaton of all strings of minimum size 3 and thus generate
a word for the variable str that satisfies the initial constraint.

Contract compilation
The main objective of the contract compiler is to generate the monitoring logic that enforces the behavioral contracts at
runtime, only for the remaining constraints after the static analyzes. A non-trivial aspect of code generators for contract
assertion checking in presence of behavioral subtyping is that of percolation patterns [9, 12]. Many approaches follow the Eiffel
percolation pattern, which builds assertions by OR-ing preconditions and AND-ing postconditions [5, 7, 9]. In general, what
must be effectively allowed “at most” is the weakening of preconditions and/or strengthening of postconditions [6]. The Eiffel
percolation remains consistent with these, but denotes rather weak constraints as we may “safely” contradict the parents’
preconditions at the specification level. In fact, there is not a single best solution for the percolation problem, as explained in
[9] and various algorithms have been proposed in the literature: exact pre/post, exact pre, exact post, plug-in (Eiffel approach
[7]), weak plug-in or guarded plug-in, relaxed plug-in, etc. Indeed, the choice of a specific percolation algorithm may depends
on the context of use. For example, in a secure environment a restricting percolator may be preferable whereas a general
plug-in system may benefit from more relaxed assertions. Another important role of the verification code is to safely decide
the correct responsibilities in case of contract violation. In fact, the selected percolation pattern interferes with this detection
issues, since the responsibility for violation may vary depending on the chosen policy. To allow for the maximum flexibility in
percolation patterns, Tamago adopts a container-based architecture to support the choice of the specific percolator to use at
deployment time. The advantage is that the service implementors are allowed to offer a panel of available percolators, which
are then selected by either the providers or the clients at deployment time depending on their specific context of use. The
architecture also allows the dynamic and hierarchical composition of containers so that other extra-functional aspects can be
integrated in the process (e.g. containers for security, QoS monitoring, etc.).

Ongoing work
The Tamago platform is now a functional prototype implemented in Java that has been experimented in a graduate course
on software components and design by contract. Beyond the pedagogical interest of the framework, we started a project to
adapt the model to existing and largely deployed OSGi component model [1]. A particular interest is to extend the OSGi
service discovery protocol with contract-based queries, which would enable semantic match-making.

The analysis algorithms and testing tools correspond to a recent addition in the framework. The tools already allow thorough
investigations of the service semantics. However, we would like to extend the algorithms, most notably by enabling the
verification of the logical property, using an automatic theorem prover. The LeanTap algorithm [2] is currently being adapted
to the platform. An important step that we initiated recently was to go deeper into the formalization of the contract model.
Our objective is to establish correctness proofs for the verification algorithms. Note however that these tools are more about
giving hints about possible inconsistencies/incompletenesses in the specifications that about proving them (in)correct.
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1. Introduction 

We assume that business-to-business (B2B) interactions between trading partners are being 
regulated by electronic contracts. The business scenario that motivated our research is depicted in 
the figure below. The buyer and the seller represent two autonomous organizations (trading 
partners) who have chosen to conduct business by means of exchanging messages over Internet 
communication channels. To interact, the buyer and the seller need to expose to each other, part of 
their business interfaces, in the figure, these interfaces are represented by the public business 
processB and public business processS, respectively. To preserve their autonomy, the buyer and the 
seller conceal behind their public business processes those aspects of their business that they do 
not wish to disclose; in the figure, this is represented by the private business processB and private 
business processS. 
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The B2B interactions between the buyer and the seller can be regarded as the execution of a 
global (cross-organizational) business process composed out of public business processB and 
public business processS. Typically, a cross organizational business process can be  constructed 
out of a set of small conversations (joint activities or dialogs) such as issue a purchase order,  
send invoice, cancel purchaser order, etc. We highlight some technical issues involved in 
ensuring that an execution of a cross-organizational business process is compliant with the 
corresponding electronic contract. 
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2. Contract Representation  

The electronic representation of terms and conditions of the contract should be such that it can be 
utilized at design time by partners for validating their public processes and at run time for 
monitoring/mediating business interactions between trading partners, ensuring that these indeed 
correspond to meeting the rights and obligations that each interacting entity has promised to 
honour.  

It is not well understood yet what formal language or languages should be used for contract 
description. To start with, such a language should be expressive enough to capture the 
permissions, obligations and prohibitions together with their time and order of execution 
constrains stipulated in the contract.  Secondly, the language should produce a model that is 
simple enough to reason (perhaps by means of existing model-checking tools) about the logical 
consistency of the interaction; this requirement suggests that the formal notation should abstract 
away irrelevant implementation details. Finally and in direct conflict with the previous 
requirement, the language should produce a notation that can be mapped by the programmer into 
existing middleware technology and e-business standards such as RosettaNet, ebXML, CORBA, 
J2EE, Web services etc. From this observation it seems very unlikely that a single contract 
description language is enough; several equivalent descriptions of the contract might be needed 
with different level of abstractions. Considering our personal research experience we are planning 
to focus our efforts on the lowest two, perhaps three, levels [1]. The interest in implementation-
independent contract notations is that they become declarative as their level of abstraction 
increases; this is a feature that we would like to explore as it is relevant in adaptable contractual 
business interactions. We believe that in practice, long term business interactions are likely to 
experience changes to adapt to new market conditions. On this basis, we speculate that the 
permissions, obligations and prohibitions stipulated in the original conventional contract should be 
split into two sets: those that stipulate the core business operations and are not expected to change 
and those that stipulate the complimentary business operations and are very likely to experience 
changes (within or outside the scope of the contract) during the contract life time. We suspect that 
the static set should be described in an implementation oriented notation and hard coded in an 
imperative language; on the other hand, the changeable set should be described in a declarative 
notation, so that it can be read, understood and changed by non-technical people such as business 
managers, as needed at run-time. In the literature, this approach is known as policy-driven or rule-
driven and is a promising research avenue that needs exploring. 

3. Process coordination  

Naturally, business process executions at each partner must be coordinated at run-time to 
ensure that partners are performing mutually consistent actions. Distributed coordination 
mechanisms are attractive in B2B settings where all the partners are autonomous entities. A 
primitive B2B conversation typically involves exchange of one or more electronic business 
documents (e.g., a purchase order, shipping notification, invoice notification, etc.) and has various 
QoS constraints (timing, security, message validation, etc.). RosettaNet Partner Interface 
Processes (PIPs) are a good example of such conversations. The QoS constraints are expected to 
be met despite encountering software and hardware related problems (e.g., clock skews, 
unpredictable transmission delays, message loss, corrupted messages, node crashes, etc.). A 
failure to deliver a valid message within its time constraint could cause mutually conflicting views 
of an interaction (one party regarding it as timely whilst the other party regarding it as untimely). 
A conflict can also arise if a sent message is delivered but not taken up for processing due to some 
message validity condition not being met at the receiver (the sender assumes that the message is 
being processed whereas the receiver has rejected it).  
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In a loosely coupled system, it could take a long time before such inconsistencies are 
detected. Subsequent recovery actions - frequently requiring compensation - may turn out to be 
quite costly. It is best to deal with this problem at the source rather than at business process level 
by ensuring that interacting parties get a mutually consistent view on how a given interaction 
completed. The sender needs a timely assurance that the sent document will be processed by the 
receiver, and the receiver needs the assurance that if it accepts the document for processing, the 
sender is informed of the acceptance in a timely manner; in all other cases, the interaction returns 
failure exceptions to both the parties. Whereas existing middleware solutions have concentrated 
on providing generic client-centric communication primitives (such as RPCs), in the world of 
loosely coupled peer-to peer entities, we speculate that we need messaging abstractions with bi-
lateral (multi-lateral) consistency guarantees. This is a challenging problem to solve, since we 
need to provide consistency without unduly compromising loose coupling. Encapsulating a 
business conversation within a single atomic transaction would not be considered practical as it 
would introduce tight coupling. Instead we need some form of a state synchronisation protocol 
that can be executed to reach an agreed outcome. Some ideas on how this could be achieved are 
presented in [2,3] where distributed as well as centralised synchronisation approaches are 
discussed. 

We believe that the issue here is all about the execution of business processes with state 
notification to guarantee the observance of safety properties. The problem has practical relevance 
and can be reduced to the task of finding a set of synchronisation constraints that guarantee that a 
given list of safety properties in never violated. A more challenging problem is to present the 
business partners with a minimal set (which is not necessarily unique) of synchronisation 
constraints that satisfy the requirements. The problem can be also presented as follows: given the 
specification of a business process whose execution results in the violation of one or more safety 
properties, find the minimal synchronisation constraints to be introduced into the specification to 
remedy the problem. 

Acknowledgements 

This work is funded in part by UK Engineering and Physical Sciences Research Council 
(EPSRC), Platform Grant No. EP/D037743/1, “Networked Computing in Inter-organisation 
Settings”  

References 
 
[1] Carlos Molina-Jimenez, Santosh Shrivastava and John Warne, “A Method for Specifying 
Contract Mediated Interactions”, In Proc. of the IEEE International Enterprise Distributed Object 
Computing Conference (EDOC 2005), Sep. 2005, Enschede, The Netherlands, pp. 106-115. 
[2] Carlos Molina-Jimenez, Santosh Shrivastava, “Maintaining Consistency Between Loosely 
Coupled Services in the Presence of Timing Constraints and Validation Errors”, Proc. the 4th 
IEEE European Conf. on Web Services (ECOWS’06), Dec. 2006, Zurich, pp. 148-157. 
[3] Carlos Molina-Jimenez, Santosh Shrivastava and Nick Cook, “Implementing Business 
Conversations with Consistency Guarantees Using Message-oriented Middleware”, To appear in 
Proc. of the IEEE International Enterprise Distributed Object Computing Conference (EDOC 
2007), Oct. 2007, Annapolis, Maryland U.S. 
 

FLACOS'07

Page 115



Transforming Web Services Choreographies with Priorities and

Time Constraints Into Prioritized-Time Petri Nets
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Abstract. A Web Service is a self-describing, self-contained modular application that can be pub-

lished, located, and invoked over a network, e.g. the Internet. Web Services composition provides

a way to obtain value-added services by combining several Web Services. Then, the composition

of Web Services is suitable to support enterprise application integration. WS-CDL (Web Services

Choreography Description Language) is a W3C candidate recommendation for the description

of peer-to-peer collaborations for the participants in a Web Services composition. In this paper

we focus our attention on the timed aspects of WS-CDL, as well as in the collaborations that

require some kind of priorization. Then, our goal is to provide a WS-CDL definition of prioritized

collaborations and a semantics for them by means of timed Petri nets.

1 Introduction

Web Services Choreography and Orchestration specifications are aimed at the composition of interop-
erable collaborations between any type of party regardless of the supporting platform or programming
model used by the implementation of the hosting environment.

In this paper we focus our attention on the Choreography layer, and specifically our intention is the
description of timed and prioritized interactions. Then, we use a prioritized-timed model of Petri nets
to capture the main elements of WS-CDL, thus providing a formal framework to precisely describe the
behaviour of the parties involved in a choreography. The motivation is therefore twofold, on the one
hand we obtain a graphical representation of this behaviour in terms of prioritized-timed Petri nets,
which can be very helpful for the software designer in order to have a complete view of the Composed
Web Service and the interactions that take place among the different participants. But Petri nets are
also a formal tool, they allow to describe not only a static vision of a system, but its dynamic behaviour
too. Then, we can use the Petri net representation to validate and verify the Composed Web Service.

In the literature we can find some related works, Yang Hongli et. al. [9] have also made a translation
of WS-CDL into a formal model, in that case a small language (CDL), for which they provide a formal
semantics. R. Hamadi and B. Benatallah [2] have proposed a Petri net-based algebra to model Web
Services Control flows, thus constructions like sequence, choice, iteration, parallelism, discriminator,
selection and refinement are considered in that paper, but they do not consider timed or prioritized
interactions. Another Petri net representation of Web Services composition can be found in [3], in this
case the starting point are descriptions written in BPEL4WS [1] and they are translated into a particular
class of Petri nets called workflow modules . There is also another work that translates BPEL4WS into
Petri nets [6]. We have found a timed Petri net representation of Web Services Flows in [5], in this case
just the flow of messages and methods are considered, and the starting point is WSDL (Web Service
Description Language) [7].

2 WS-CDL with priorities

WS-CDL has a choice construct, which allows us to choose among some different activities. Actually,
when some of them are possible, it is assumed that the selection criteria are non-observable. Then,

⋆ Supported by the spanish government (cofinanced by FEDER founds) with the project TIN2006-15578-C02-
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what we are proposing is that in some cases these criteria could be observable or known by the parties,
i.e., they can be aware of the level of priority of interactions. Accordingly, we propose an extension of
WS-CDL with priorities. Priorities are associated with interactions, as natural numbers, with the usual
interpretation, the greater the number, the greater priority for the corresponding activity in the system.
Therefore, we introduce the priority attribute in interaction activities, in order to indicate the priority
level of the corresponding interaction. The interpretation of this attribute is the natural one, in case of
conflict only the most prioritary interactions are allowed.

3 Prioritized-Time Petri Nets

The specific model of timed-prioritized Petri net that we consider for the translation is a prioritized
extension of Merlin’s nets [4, 8]. Due to the lack of space we omit a complete description of Merlin’s
nets, we just provide a brief description of the specific model that we consider.

In this model transitions are assigned both a time interval and a static priority. The time interval
restricts the instants at which a transition is allowed to be fired1, whereas the priority is used to
resolve conflicts. Then, priorities are only used in case of conflict, when at a given marking two or more
transitions are simultaneously enabled, then only the most prioritary one is allowed to be fired at that
moment.

When a transition becomes enabled, a local clock associated with it is set, then the transition can
fire when its clock has a value in the time interval associated with the transition. Furthermore, no time
may elapse when a local clock has reached its latest firing time. The firing of a transition takes no time
to complete, so they are immediate. It can also be the case for the fired transition to become enabled
again at the new marking, in that case its local clock is reset.

We restrict our attention to a particular class of PTPNs, for which no transition will be enabled
more that once at a time, i.e., it will never be the case that two or more instances of the same transition
are enabled at a certain instant. With this restriction we avoid the semantic problems that appear in
Merlin’s nets when multiple enablings of transitions is allowed (see [8]).

4 PTPN Semantics for WS-CDL with Priorities

In this section we provide a PTPN semantics for a subset of WS-CDL with priorities. In the PTPN
representation we will label each transition with the roletypes that are involved in its execution, but
notice that it can also be the case that no specific RoleType is involved in the execution of a transition,
in that case we will omit this information in the graphical representation of the PTPN. The obtained
PTPNs will be 1-safe, which means that for every reachable marking we will have at most one token
on every place. Furthermore, all of the generated PTPNs will have one initial place2, which activates
the PTPN when it is marked, and two exit places, which do not have any postconditions and cannot
be marked simultaneously. These exit places correspond to the correct or erroneous termination of the
system represented by the PTPN.

The translation is defined compositionally, so for each WS-CDL element a corresponding PTPN
is provided. However, in some cases no translation is needed, because some elements are not relevant
or their information is in fact integrated or used in other WS-CDL elements. Thus, elements like
RoleTypes, RelationShipTypes, Participants and Channels are not translated. The same occurs with
InformationTypes and Variables in general, although we allow time variables that are used to delay the
execution of a workunit or to fix its execution at a certain instant. These variables can be used under
some restrictions, with the goal to delay the execution.

For some WS-CDL elements the translation is simple, so we omit it. This is the case of choreogra-
phies, some basic activities (Assign, Silent and Noaction ) and the Sequence and Parallel ordering
structures. The more interesting cases are interaction activities, workunits and the Choice ordering

1 Earliest and Latest Firing Time, with respect to the enabling time.
2 This does not mean that this is the only initially marked place.
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structure. Interaction activities may have associated both a time-out attribute and a priority attribute.
The PTPN representation in this case is simple, the time-out is used to establish the time interval of
the transition representing the interaction, and its priority is taken from the priority attribute.

Workunits are translated differently depending on their type. We may have workunits with time
guards (using time variables) and general workunits. Fig. 1.a illustrates the translation for the general
case (repetitive and guarded workunit), whereas Fig. 1.b illustrates the translation for workunits that
are used to delay the execution.
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Fig. 1. Workunit Translation

Finally, the translation for the Choice ordering structure requires again a distinction of cases. The
point is that we may have (general) repetitive-guarded workunits as alternatives, and we must discard
them when their guards are evaluated to false. Then, the translation is defined depending on the
arguments of the choice. The most interesting case is that of a general guarded and repetitive workunit
as alternative, for which observe that the choice is not resolved by evaluating the guard, but executing
the first action in the activities inside the workunit. Unfortunately, due to the lack of space we cannot
include the figures illustrating the choice translation.
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Abstract. In this paper we introduce a tool called Web Service Translation tool, WST for short,

which we are developing to support a model-driven methodology, intended to the analysis, design,

implementation, validation and verification of Web Services with time restrictions, called Correct-

WS methodology. This methodology works by making several translations, from phase to phase

in the life cycle. An important feature of this methodology is that at each phase the system is

represented by XML models. Then, we use XSL Transformations (XSLT), which is a language for

transforming XML documents.
The purpose of these translations is to obtain Web Services description models with Timed Au-

tomata for validating and verifying Web Services with time restrictions. For that, we use UPPAAL

tool, which is used to simulate and analyse the behavior of Real-Time Systems described by Timed

Automata.

1 Introduction

In some cases time restrictions are considered in the description of Web Services. Thus, not only the
correct functioning of the system, but also the times required to perform some actions or to react to
some possible events are of importance. Therefore, we deal, in this work, with real-time systems, for
which some actions must be made in a bounded period of time. But notice that the order of these
times can be greater than what is usually seen in classical real-time applications. Traditionally, real-
time is associated with time restrictions in the order of seconds, milliseconds or even smaller (in some
cases nanoseconds). But in Web Services the time restrictions are usually linked with transactions, for
which the times considered can be in the order of minutes, hours or even days. These are still real-time
systems, as we have a timeliness restriction for a transaction to be completed or canceled, or for a
system to provide an answer to a query. For instance, we can think of a failure for a bank to receive a
large electronic funds transfer on time, which may result in huge financial losses or we could consider a
Seat Reservation System, in which the reservations are maintained for a limited period of time (several
days).

The motivation of this paper is focused on the following points:

– It is difficult for non-XML expert to implement Web Services systems using WS languages, such as
WS-CDL [1] and WS-BPEL [2], which are based in XML.

– Although there are several middleware platforms that support Web Services development, there is
a lack of a solid methodological base for this.

Thus, the main goal of this work is the development of a tool, which allows us to fulfill these different
motivation points.

2 Web Services Translation tool

In this section we describe the tool that we are developing to support the Correct-WS methodology
[3]. This tool is called Web Service Translation tool, WST, and by means of it, we will be able to

⋆ Supported by the spanish government (cofinanced by FEDER founds) with the project TIN2006-15578-C02-
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Fig. 1. Translation process in the current WST

perform the translations indicated in Fig. 1. This tool uses XSLT [4], XML Stylesheets Language for
Transformation.

Web Services Translation tool (WST) is an integrated environment for translating RT-UML doc-
uments into WS-CDL specifications, RT-UML documents into Timed Automata [5], WS-CDL spec-
ifications into Timed Automata and it will also cover these relationships with WS-BPEL instead of
WS-CDL. We can see in Fig. 2 the parts that are currently under development and the parts in which
we are currently working. It is still in a Beta-state of development, in the sense that much effort must be
still dedicated to cover all the indicated goals. Currently, the WST tool covers the phases corresponding
to WS-CDL, which are shown in Fig. 2.
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Fig. 2. Translation process for WS-CDL documents

WST applies XSL Stylesheets to an initial XML document to obtain another XML document, for
instance we create XSL Stylesheets in order to translate an initial WS-CDL document into another
XML document representing the Timed Automata system.

The first step in the translation process consists in designing a RT-UML sequence diagram to model
the system. Currently, the design part of WST tool is under development, for this reason we are using a
UML modeling tool for that purpose, specifically the Enterprise Architect [6], which allows us to design
the RT-UML diagram and then to export it in a XMI document. Once we have designed the RT-UML
diagram by using Enterprise Architect tool, we can open it in WST, and also the corresponding XMI
in order to run the process translation on it.

Figure 3 shows the interface for the Web Service Translation tool once we have opened a RT-UML
diagram. As you can see, WST has a menu, in the upper part, which currently consists of the following
elements:
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Fig. 3. A RT-UML Diagram in WST tool

– File menu: It consists of the submenus, which open and save WS-CDL or XMI documents, and
allow to close WST tool.

– Timed Automata menu: It saves the generated timed automata file.
– WS-CDL menu: It allows to save the generated WS-CDL document. Once we have obtained the

WS-CDL document from the corresponding RT-UML diagram, we can save it in a file, in order to
use it later.

– Help menu: At present it shows general information about WST and a help guide.

The translations are easily obtained, for instance, once you have selected the translation to Timed
Automata you just need to do the following:

1. Firstly, opening the WS-CDL document. Once the file is opened, it can be visualized in the left
hand-side window in the main interface of WST.

2. After that, clicking on the Transform button.
3. Once the translation is made, the result is shown in the right window of the WST tool.
4. Finally, the resulting XML UPPAAL [7] document must be saved, in order to use it with the

UPPAAL tool.

As explained above, the obtained document as a result of the translation can be directly used with
the UPPAAL tool in order to validate the obtained system and verify the properties of interest.
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The Web Service Description Language (wsdl) [7] provides a standardised technology
for describing the interface exposed by a service. Such a description includes the service
location, the format (or schema) of the exchanged messages, the transfer mechanism to
be used (i.e. soap-rpc, or others), and the contract. In wsdl, contracts are basically
limited to one-way (asynchronous) and request/response (synchronous) interactions. The
Web Service Conversation Language (wscl) [2] extends wsdl contracts by allowing
the description of arbitrary, possibly cyclic sequences of exchanged messages between
communicating parties. Other languages, such as the Abstract Web Service Business
Execution Language (ws-bpel) [1], provide even more detailed descriptions by defining
the subprocess structure, fault handlers, etc. While the latter descriptions are much too
concrete to be used as contracts, they can be approximated and compared in terms of
contracts that capture the external, observable behaviour of a service.

Documents describing contracts can be published in repositories so that Web services
can be searched and queried. These two basic operations assume the existence of some
notion of contract equivalence to perform service discovery in the same way as, say, type
isomorphisms are used to perform library searches. The lack of a formal characterisation
of contracts only permits excessively demanding notions of equivalence such as syntactical
equality. In fact, it makes perfect sense to further relax the equivalence into a subcontract
preorder (denoted by � in this paper), so that Web services exposing “larger” contracts
can be safely returned as results of queries for Web services with “smaller” contracts.

In this work we develop a formal theory that precisely defines what “larger” and
“smaller” mean, and which safety properties we wish to be preserved. Along the lines
of [5] we describe contracts by a simple ccs-like syntax consisting of just three con-
structors: prefixing, denoted by a dot, and two infix choice operators + representing the
external choice (the interacting part decides which one of alternative conversations to
carry on); ⊕ representing the internal choice (the choice is not left to the interacting
part). Thus α.σ is the contract of services that perform an action α and then implement
the contract σ, σ ⊕ τ is the contract of services that may decide to implement either σ

or τ , while σ + τ is the contract of services that according to their client’s choice, will
implement either σ or τ .

Following ccs notation, actions are either write or read actions, the former being
topped by a bar, and one being the co-action of the other. Actions can either represent
operations or message types. As a matter of facts, contracts are behavioural types of
processes that do not manifest internal moves and the parallel structure.

∗A very preliminary version of this work was presented on January 20, 2007, Nice, France, at PLAN-

X 2007, the 5th ACM SIGPLAN Workshop on Programming Language Technologies for XML.
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Contracts are then to be used to ensure that interactions between clients and services
will always succeed. Intuitively, this happens if whenever a service offers some set of
actions, the client either synchronises with one of them (that is, it performs the corre-
sponding co-action) or it terminates. The service contract will then allow us to determine
the set of clients that comply with it, that is that will successfully terminate any session
of interaction with the service.

Of course the client will probably be satisfied to interact with services that offer more
than what the searched contract specifies. Intuitively we want to define an order relation
on contracts σ � τ such that every client complying with services implementing σ will
also comply with services of contract τ . In particular, we would like the � preorder
to enjoy some basic properties. The first one is that it should be safe to replace (the
service exposing) a contract with a “more deterministic” one. For instance, we expect
a ⊕ b.c � a, since every client that terminates with a service that may offer either a or
b.c will also terminate with a service that systematically offers a. The second desirable
property is that it should be safe to replace (the service exposing) a contract with another
one that offers more capabilities. For instance, we expect a � a + b.d since a client that
terminates with services that implement a will also terminate with services that leave
the client the choice between a and b.d. If taken together, these two examples show the
main problem of this intuition: it is easy to see that a client that complies with a ⊕ b.c

does not necessarily comply with a + b.d: if client and service synchronise on b, then the
client will try to write on c while the service expects to read from d. Therefore, under
this interpretation, � looks as not being transitive:

a ⊕ b.c � a ∧ a � a + b.d �=⇒ a ⊕ b.c � a + b.d .

The problem can be solved by resorting to the theory of explicit coercions [3, 6]. The
flawed assumption of the approach described so far, which is the one proposed in [5], is
that services are used carelessly “as they are”. Note indeed that what we are doing here
is to use a service of “type” a + b.d where a service of type a ⊕ b.c is expected. The
knowledgeable reader will have recognised that we are using � as an inverse subtyping
relation for services. If we denote by :> the subtyping relation for services, then a ⊕
b.c :> a + b.d and so what we implicitly did is to apply subsumption [4] and consider
that a service that has type a + b.d has also type a ⊕ b.c. The problem is not that
� (or, equivalently, :>) is not transitive. It rather resides in the use of subsumption,
since this corresponds to the use of implicit coercions. Coercions have many distinct
characterisations in the literature, but they all share the same underlying intuition that
coercions are functions that embed objects of a smaller type into a larger type “without
adding new computation” [6]. For instance it is well known that for record types one
has {a:s} :> {a:s; b:t}. This is so because the coercion function c = λx{a:s;b:t}.{a = x.a}
embeds values of the smaller type into the larger one. In order to use a term of type
{a:s; b:t} where one of type {a:s} is expected we first have to embed it in the right type
by the coercion function c above, which erases (masks/shields) the b field so that it
cannot interfere with the computation. Most programming languages do not require the
programmer to write coercions, either because they do not have any actual effect (as in
the case of the function c since the type system already ensures that the b field will never
be used) or because they are inserted by the compiler (as when converting an integer
into the corresponding float). In this case we speak of implicit coercions. However some
programming languages (e.g. OCaml) resort to explicit coercions because they have a
visible effect and, for instance, they cannot be inferred by the compiler.

Coercions for contracts have an observable effect, therefore we develop their meta-
theory in term of explicit coercions. However, coercions can be inferred so they can be
kept implicit in the language and automatically computed at static time. Coming back
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to our example, the embedding of a service of type a into a⊕ b.c is the identity, since we
do not have to mask/shield any action of a service of the former type in order to use it
in a context where a service of the latter type is expected. On the contrary, to embed
a service of type a + b.d into a we have to mask (at least) the b action of the service.
So in order to use it in a context that expects a a service we apply to it a filter that
will block all b messages. Transitivity being a logical cut, the coercion from a + b.d to
a ⊕ b.c is the composition of the two coercions, that is the filter that blocks b messages.
So if we have a client that complies with a ⊕ b.c, then it can be used with a service that
implements a + b.d by applying to this service the filter that blocks its b messages. This
filter will make the previous problematic synchronisation on b impossible, so the client
can do nothing but terminate.

Filters thus reconcile two requirements that were hitherto incompatible: On the one
hand we wish to replace an old service by a new service that offers more choices (that
is width subtyping, e.g. σ :> σ + τ) and/or longer interaction patterns (that is depth
subtyping, e.g. a :> a.σ) and/or is more deterministic (e.g. σ ⊕ τ :> σ). On the other
hand we want clients of the old service to seamlessly work with the new one.

Two observations to conclude this brief overview. First, the fact that we apply filters
to services rather than to clients is just a presentational convenience: the same effect as
applying to a service a filter that blocks some actions can be obtained by applying to the
client the filter that blocks the corresponding co-actions. Second, filters must be more
fine grained in blocking actions than restriction operators as defined for ccs or the π-
calculus. These are “permanent” blocks, while filters are required to be able to modulate
blocks along the computation. For instance the filter that embeds (a.(a + b)) + b.c into
a.b must block b only at the first step of the interaction and a only at the second step of
the interaction.
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Abstract. The concept of delegation is central to an understanding
of the interactions between agents in cooperative agent problem-solving
contexts. In fact, the concept of delegation offers a means for studying the
formal connections between mixed-initiative problem-solving, adjustable
autonomy and cooperative agent goal achievement. In this paper, we
present an exploratory study of the delegation concept grounded in the
context of a relatively complex multi-platform Unmanned Aerial Vehicle
(UAV) catastrophe assistance scenario, where UAVs must cooperatively
scan a geographic region for injured persons. We first present the sce-
nario as a case study, showing how it is instantiated with actual UAV
platforms and what a real mission implies in terms of pragmatics. We
then take a step back and present a formal theory of delegation based
on the use of 2APL and KARO. We then return to the scenario and use
the new theory of delegation to formally specify many of the commu-
nicative interactions related to delegation used in achieving the goal of
cooperative UAV scanning. The development of theory and its empirical
evaluation is integrated from the start in order to ensure that the gap
between this evolving theory of delegation and its actual use remains
closely synchronized as the research progresses. The results presented
here may be considered a first iteration of the theory and ideas.
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1 Security-by-Contract (S×C)[3]

The paradigm of pervasive services [1] envisions a nomadic user traversing a variety
of environments and seamlessly and constantly receiving services from other portables,
handhelds, embedded or wearable computers. When traversing environments the no-
madic user does not only invoke services according a web-service-like fashion (either
in push or pull mode) but also download new applications that are able to exploit its
computational power in order to make a better use of the unexpected services avail-
able in the environment. These pervasive client downloads will appear because service
providers will try to exploit the computational power of the nomadic devices to make
a better use of the services available in the environment. To address the challenges of
this paradigm we propose the notion of security-by-contract (S×C), as in programming-
by-contract, based on the notion of a mobile contract that a pervasive download carries
with itself. It describes the relevant security features of the application and the relevant
security interactions with its nomadic host.

S×C Framework. The framework of S×C is shaped by four stake-holders: mobile
operator, service provider or developer, mobile user and third party security service
providers. Application developers are responsible to provide a contract, i.e. a formal,
complete and correct specification of the behavior of an application for what concerns
relevant security actions (Virtual Machine (VM) API Calls, Operating System Calls).
Each “application” consists of four components: executable code, run-time level con-
tract, proof of compliance, and application credentials. By signing the code the de-
veloper binds the code with the stated claims on its security-relevant behavior thus
providing a semantics to digital signatures. An example of a contract is “After Personal
Information Management (PIM) was opened no connections are allowed”.

Users and mobile phone operators are interested in that any software deployed on
their platform is secure by declaring security policy. A policy is a formal complete spec-
ification of the acceptable behavior of applications to be executed on the platform for
what concerns relevant security actions (Virtual Machine API Calls, Operating System
Calls). An example of policy is “After PIM was accessed only secure connections can
be opened i.e. url starts with ”https://” “.

A contract should be negotiated and enforced during development, at time of deliv-
ery and loading, and during execution of the application code by the mobile platform.
Fig. 1 shows the phases of the S×C life-cycle. S×C security architecture (Fig. 2) has two
goals: supporting the application and service life cycle by guaranteeing the security of
the channel between parties as well as authenticity of the parties and non-repudiation
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Fig. 1. Application/Service Life-Cycle

Fig. 2. S×C Architecture

of communication actions for charging and billing, and enabling trust relationships be-
tween stakeholders, i.e. authenticity and integrity of exchanged data elements.

2 Automata Modulo Theory (AMT ) [4]

We solved the problem of matching the security claims of the code with the security
desires of the platform of S×C in [2] with only a meta-level algorithm showing how we
can combine policies at different levels of details.The actual mathematical structure and
algorithm to do the matching is specified in [4]. The key idea is based on the introduc-
tion of the concept of Automata Modulo Theory (AMT ). AMT enables us to define
very expressive and customizable policies as a model for security-by-contract as in [2]
and model-carrying code [6] by capturing the infinite transitions into finite transitions
labeled as expressions in defined theories.

To represent a security behavior, provided by the contract and desired by the policy,
a system can be represented as an automaton where transitions corresponds to the in-
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voked methods as in the works on model-carrying code [6]. In this case, the operation
of contract matching is a language inclusion problem.
AMT Theory. The theory of AMT is a combination of the theory of Büchi Au-

tomata (BA) with the Satisfiability Modulo Theories (SMT) problem. SMT problem
pushes the envelope of formal verification based on effective SAT solvers. In contrast
to classical security automata we prefer to use BA because besides safety properties,
there are also some liveness properties which have to be verified. An example of live-
ness is “The application uses all the permissions it requests”.

Definition 1 (Automaton Modulo Theory (AMT )). A tupleAT = 〈E,S, q0, ∆T , F 〉
where E is a set of formulae in the language of the theory T , S is a finite set of states,
q0 ∈ S is the initial state, ∆T : S ×E → 2S is labeled transition function, and F ⊆ S
is a set of accepting states.

AMT operations for intersection and complementation require that the theory is
closed under intersection and complementation (union is similar to the standard one).
We consider only the complementation of deterministic AMT , because in our appli-
cation domain all security policies are naturally deterministic (as the platform owner
should have a clear idea on what to allow or disallow) (further details in [4]).

On-the-Fly State Model Checking with Decision Procedure. We are interested
in finding counterexamples faster and we combine algorithm based on Nested DFS [5]
with decision procedure for SMT. The algorithm takes as input the midlet’s claim and
the mobile platform’s policy as AMT and then starts a DFS procedure over the initial
state. When a suspect state which is an accepting state inAMT is reached we have two
cases. First, when a suspect state contains an error state of complemented policy then
we report a security policy violation without further ado. Second, when a suspect state
which is an accepting state in AMT does not contain an error state of complemented
policy we start a new DFS from the suspect state to determine whether it is in a cycle,
in other words it is reachable from itself. If it is, then we report availability violation.

Theorem 1. Let the theory T be decidable with an oracle for the SMT problem in the
complexity class C then:

1. The non-emptiness problem for AMT T is decidable in LIN − TIMEC .
2. The non-emptiness problem for AMT T is NLOG− SPACEC .
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Abstract

In our presentation, we �rstly introduce the audience to the particular domain we are addressing,

namely investment banking �nancial problems. After a quick presentation of the typical problems

encountered by this industry when manipulating complex �nancial contracts, we show the practical

bene�ts of a clearly de�ned operational semantics. We then give some intuition for understanding the

problem of pricing complex contracts, a fundamental problem in this industry. We show that even

if many di�erent pricing models appear in the �nance theory literature, a uni�ed approach is indeed

possible, and can be interpreted as a denotational semantics of our contract description language.

Our company, LexiFi, has developed an industrial solution around these ideas, mostly implemented

as an application around a core library implemented in OCaml. We will present some typical usage

examples, showing the combined use of LexiFi's pricing compiler and contract management engine.

We emphasize the importance of some implementation details (for instance run-time code generation

and partial evaluation) to achieve good run-time e�ciency.

We present some user experience and discuss typical pitfalls to avoid. We also want to discuss with

the audience future research and development directions for manipulating contracts.
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Contracts When entrepreneurs enter contractual relationships with a large num-
ber of other parties, each with possible variations on standard contracts, they are
confronted with the interconnected problems of specifying contracts, monitoring
their execution for performance1, analyzing their ramifications for planning, pricing
and other purposes prior to and during execution, and integrating this information
with accounting, workflow management, supply chain management, production
planning, tax reporting, decision support etc.

Andersen, Elsborg, Henglein, Simonsen and Stefansen [AEH+06] define a typed
language for compositional contract specification:2

c ::= Success | Failure | f(~a) | transmit(A1, A2, R, T | P ). c
| c1 + c2 | c1 ‖ c2 | c1; c2

Success denotes the trivial or (successfully) completed contract: it carries no obli-
gations on anybody. Failure denotes the inconsistent or failed contract; it signifies
breach of contract or a contract that is impossible to fulfill. For a Boolean predicate
P the contract expression transmit(A1, A2, R, T | P ). c represents a contract where
the commitment transmit(A1, A2, R, T | P ) must be satisfied first. The commit-
ment must be matched by a transmit event e = transmit(v1, v2, r, t) of resource r
from agent v1 to agent v2 at time t such that P (v1, v2, r, t) holds. After matching,
the residual contract is c in which A1, A2, R, T are bound to v1, v2, r, t, respec-
tively. Note that A1, A2, R, T are binding variable occurrences whose scope is P
and c. In this fashion the subsequent contractual obligations expressed by c may
depend on the actual values in event e; such as a payment being due 8 days after
delivery of the goods. The contract combinators · + ·, · ‖ · and ·; · compose sub-
contracts according to contract composition patterns: by alternation, concurrently,
and sequentially, respectively. A (contract) context is a finite set of named contract
template declarations of the form f( ~X) = c. By using the contract instantiation (or
contract application) construct f(~a) contract templates may be (mutually) recur-
sive, which, in particular, captures repetition of subcontracts. Contract template
definitions occur only at top level.

The language operates at two levels: the base level of (primitive commitments
requiring the occurrence of) economic events such as transfer of resources between
economic agents, reflecting the basic ontological concepts of the REA accounting

1Performance in contract lingo refers to compliance with the promises (contractual commit-
ments) stipulated in a contract; nonperformance is also termed breach of contract.

2The types are elided here.
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model [McC82]; and the compositional level of contract combinators. In commercial
contracts only transfers of resources (goods, service, money) are included. Produc-
tion events could be included, too, however. Indeed, with the compositional level
being parametric in the base language, any kind of event types could be included
in the base language, also outside the realm of economic events.

A contract-based event-driven architecture An event-driven architecture
(EDA) [EDA06], is, loosely speaking, a software architecture that is organized
around (data representing) events that drive system/component state transitions
which in turn may generate events and other observable outputs.

We are presently working on developing a contract-based EDA for enterprise
resource planning (ERP) systems [Wik]. Its high-level architecture is depicted
in Figure 1. In this architecture, contracts such as standard or customized sales
agreements, leases, etc. can be installed (entered) dynamically. Installed contracts
are then matched against incoming events; after matching an event a contract
is converted into an explicit representation—again as a contract—of the residual
obligations.

Being data (residual) contracts have additional uses beyond monitoring their
execution. They can be inspected, audited, analyzed and changed in response to
failures to perform. Standard or customized report functions can be installed that
at any point in time can be applied to the log of registered events alone (ex-post
reports such as payments received) or, more interestingly, to both the log and the
current contract states. An example of such an ex-ante analysis could be inventory
restocking required to fulfil future demand based on both currently open orders
and previously expedited orders. A basic ex-ante analysis for extracting deadline-
ordered task lists has been described for the commercial contracts of Andersen
et al [AEH+06]. Peyton-Jones and Eber [JE03] have demonstrated sophisticated
compositional pricing analysis for financial contracts. The key point here is that
such analyses are defined once and for all for all definable contracts in an expressive
language, not just a fixed finite set of given contract templates. Consequently, a
custom contract not used before is automatically covered and does not require
development of specialized analysis software.
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Contracts can be thought of as declarative formal (behavioral, temporal) in-
terface specifications in the spirit of software design by contract [Mey97], without
any requirement for modeling real-world contracts. As such a contract functions
as a behaviorial type for the process that generates the (expected) events. In ERP
systems most basic processes that generate events such as order entry and financial
bookkeeping are not automated, but performed by humans. Since a contract is
an explicit representation of what events are expected (allowed) to happen next,
contracts specifications can be used to automatically derive a user interface that
prompts and guides the user through contract execution, guaranteeing that all and
only relevant user interface options are provided at any given point during execu-
tion.

For an automated (executable) process that generates events contract resid-
uation provides run-time verification. Conceivably, with both process code and
contract specification in hand it should principally be possible to prove statically
that a process always complies with its contract. This is bound to require a rather
drastic limitation of expressive power of the base language to achieve practical an-
alyzability while retaining sufficient expressiveness and generality for the intended
domain-specific applications, however. Where such a “soft spot” is—and whether
it exists at all—remains to be seen for now.

Acknowledgements The above reflects ongoing work within the 3d generation Enter-
prise Resource Planning Systems Project (3gERP.org), a collaboration between Copen-
hagen Business School, University of Copenhagen and Microsoft Development Center
Copenhagen made possible by a grant by the Danish National Advanced Technology
Foundation.

The section on contracts is excerpted from Andersen, Elsborg, Henglein, Jakobsen,
Stefansen [AEH+06]; Figure is from Larsen, Simonsen, Stefansen [LSS07]; both with
permission by the authors.
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We describe the main elements of a project we have recently started on the
formal representation of contracts and the business processes within which they
are enacted, outlining the motivation, technical objectives, and preliminary work
completed so far. Our aim is to integrate and then build upon three separate
strands of previous work.

(1) the use of the event calculus for tracking the evolving state of a contract as
it is enacted [5]. The contract state consists of the obligations, permissions, and
powers (‘capacities’, ‘competences’) of the contracting parties and the values
of various other state variables. The system monitors a stream of recorded
event occurrences and maintains the current state of the contract as well as
giving access to all past states if required, for instance for auditing purposes.
We use a Java implementation of the event calculus with an XML encoding
of contract terms and event occurrences. The system has been applied to a
range of examples, mostly concerning Service Level Agreements in the context
of Utility Computing.

(2) executable specifications of ‘open agent societies’ [1, 2]. Although not di-
rectly targeted at the representation of contracts and business processes, this
work shares many of the essential features. The specification of an ‘open agent
society’ consists of four components: first, the possible behaviours, causal rela-
tions, and physical capabilities of the member agents; second, constitutive norms
defining institutional concepts and relations (such as, in a contract setting, ‘des-
ignated carrier’, ‘mode of delivery’, ‘supervising engineer’, and so on) and spec-
ifying the powers (‘capacities’, ‘competences’) of agents to create new instances
of institutional relations or to effect changes; third, permissions, prohibitions
and obligations of the agents; and fourth, sanctions, enforcement policies, and
recovery procedures that deal with the performance of forbidden actions and
non-compliance with obligations. We have used both the event calculus and
the action language C+ [6] to execute such specifications. An advantage of the
event calculus is that it is easily and efficiently implemented for certain compu-
tational tasks, specifically computing states from recorded event narratives, and
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enables the full power of logic programming to be used for the specification of
time-independent auxiliary concepts. An advantage of the C+ language, which
intuitively resembles the event calculus in many respects, is that it can be given
an explicit semantics in terms of labelled transition systems. It thereby provides
a bridge to a wide range of existing tools and techniques, such as model checkers
in particular. We also have an extended form of C+ specifically designed for rep-
resenting institutional and normative concepts [10, 3]. This language extends la-
belled transition systems with features to distinguish between compliant (ideal,
acceptable, permitted, legal) and non-compliant (sub-ideal, unacceptable, for-
bidden, illegal) states and behaviours. Normative system properties expressed
in temporal logics such as CTL can then be verified by means of standard model
checking techniques (specifically the model checker NuSMV).

(3) symbolic model checking techniques for the verification of normative and
temporal epistemic properties of multi-agent systems [8]. This strand of work is
based on an extended form of the ‘interpreted systems’ framework [4] used for
analysing epistemic properties in multi-agent systems and distributed computer
systems. ‘Deontic interpreted systems’ [9] add a means of analysing epistemic
system properties when components of the system fail to function according to
their specification. We are exploring the application of these techniques to the
formal modelling of web services. The model checking of web service behaviour
has remained limited to verifying simple termination, safety, and liveness prop-
erties. When viewed as a multi-agent system, however, the system composition
can be analysed by considering additional properties which capture the knowl-
edge acquired by services during their interactions. We believe that the speci-
fication and verification of these epistemic properties will facilitate greatly the
analysis of a number of properties of the system, including Service Level Agree-
ments and contracts which define the allowed (acceptable, legal) behaviours of
the parties in the composition. A small example is presented in [7]. We use a
specialised system description language (ISPL) paired with a symbolic model
checker (MCMAS) optimised for the verification of temporal epistemic proper-
ties [8]. This formalism can be seen as adding to the formalisms described in (2)
above the concepts of an agent’s local state and its local protocol/behaviour.

Our aim is to integrate these three strands of work. We want to support
both (1) run-time monitoring of contract execution and implementation of the
enabling infrastructure (e.g., web services), and (2) off-line (design-time) verifi-
cation of contract and system properties.

For illustration we will present (in simplified form) one of the examples we
are using to drive the development. It concerns a contract for the production
and phased delivery of a complex artefact comprising several components (in
the actual example, a large software product commissioned and specified by the
client). The contract specifies an agreed schedule of monitoring and progress
report points, delivery milestones for the various phases of the project, and
mechanisms allowing the client to request changes to the specification. These
changes can be minor modifications, or major revisions such as cancellation of
a complete sub-component.

The emphasis in the example (as in many other examples of contracts) is
not so much on obligations and sanctions, which are relevant but comparatively
peripheral, but rather on detailing the terms under which the delivered product
is to be regarded as meeting its specification, and the powers and procedures
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by means of which changes to the specification are requested, approved, and
effected. The example can be further elaborated by adding details of how re-
quests are passed to an appropriately empowered agent for approval (resembling
examples often used in the literature on web service composition), or by con-
sidering the case where the supplier sub-contracts part of the construction to
one or more other parties, with a similar structure of reporting, delivery, and
change request points in the sub-contract.

We will present a stylised version of the example and sketch some of the
options for its formal representation.
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1 Introduction

In this extended abstract, we sketch the concepts of runtime verification, monitor-oriented programming, and monitor-
based runtime reflection and discuss their similarities and differences. Runtime verification is mainly concerned with
monitoring a (correctness) property at runtime, i.e. when executing a system. Monitor-oriented programming aims
at a programming methodology that allows for the execution of code whenever monitors observe a violation of
a given correctness property. Runtime reflection is an architecture pattern that is applicable for systems in which
monitors are enriched with a diagnosis and reconfiguration phase. We briefly discuss their possible use in contract
enforcement.

2 Runtime verification

Runtime verification [5] deals with checking whether an execution of a system under scrutiny satisfies or violates
a given correctness property. It aims to be a lightweight verification technique complementing techniques such as
model checking [4] and common testing techniques [2].

As in some model checking approaches, in runtime verification, a correctness property ϕ is usually formulated in
some linear temporal logic, such as LTL [6], and automatically translated into a monitor. Such a monitor is then used
to check the current execution of a system or a (finite set of) recorded execution(s) for satisfaction of the property
ϕ. In the previous case, we speak of online monitoring while in the latter we speak of offline monitoring.

As runtime verification does not consider each possible execution of a system, but just a given subset, it shares
similarities with testing, which is also usually not complete. While runtime verification shares also many similarities
with model checking, there are important differences:

– While in model checking, all executions of a given system are examined to answer whether they satisfy a given
correctness property ϕ, which corresponds to the language inclusion problem, runtime verification answers
whether a single execution satisfies ϕ, which is called the word problem. For most logical frameworks, the word
problem is far lower complexity than the inclusion problem.

– While model checking, especially when considering LTL, considers infinite traces, runtime verification deals
with finite executions—as executions have necessarily to be finite.

– While in model checking a complete model is given allowing to consider arbitrary positions of a trace, runtime
verification, especially when dealing with online monitoring, considers finite executions of increasing size. For
this, a monitor should be designed to consider executions in an incremental fashion.

These differences make it necessary to adapt the concepts developed in model checking to be applicable in
runtime verification. For example, the second item asks for coming up with a semantics for LTL on finite traces [1].

Furthermore, from an application point of view, it is important to know that, as only observed executions are
checked, runtime verification is applicable for black box systems for which no system model is at hand, in contrast
to model checking.

In contrast to Monitor-oriented programming and Runtime Reflection, runtime verification typically does not
interfere with the system under scrutiny. Thus, when a violation has been observed, it typically does not influence
the program’s execution.

3 Monitor-oriented programming

Monitoring-Oriented Programming (MOP) [3], proposed by Feng and Rosu, is a software development methodology,
in which the developer specifies desired properties using a variety of (freely definable) specification formalisms,
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along with code to execute when properties are violated or validated. The MOP framework automatically generates
monitors from the specified properties and then integrates them together with the user-defined code into the original
system. Thus, it extends ideas from runtime verification by means for reacting on detected violations (or validations)
of properties to check. This allows the development of reflective software systems: A software system can monitor
its own execution and the subsequent execution is influenced by the code a monitor might execute–again influencing
the behavior of the monitor etc.

4 Runtime Reflection

Monitor-based runtime reflection or short runtime reflection (RR) is an architecture pattern for the development
of reliable systems. The main idea is that a monitoring layer is enriched with a diagnosis layer and a subsequent
mitigation layer. We first show the pattern with respect to information flow in a conceptual manner, before presenting
a realization for a distributed system.

The layered view The architecture consists of four layers as shown in Figure 1, whose role will be sketched in the
subsequent paragraphs.

Fig. 1. An application and the layers of the
runtime reflection framework.

Logging—Recording of system events. The role of the logging layer is
to observe system events and to provide them in a suitable format for
the monitoring layer. Typically, the logging layer is realized by adding
code annotations within the system to build. However, separated stand-
alone loggers, logging for example network traffic, also can realize this
layer as well. While the goal of a logger is to provide information on
the current run to a monitor, it must not assume (much) on the proper-
ties to be monitored.

Monitoring—Failure detection. The monitoring layer consists of a
number of monitors (complying to the logger interface of the logging
layer) which observe the stream of system events provided by the log-
ging layer. Its task is to detect the presence of failures in the system
without actually affecting its behavior. It is typically implemented via
automatically generated monitors which—each locally with respect
to a certain subsystem or system’s component—monitor often safety
properties. A typical example is the exclusion of certain critical system
states, e. g., one always wants to ensure that ¬(critical1 ∧ critical2)
holds. If a violation of a safety property is detected in some part of the system, the generated monitors will respond
with an alarm signal for subsequent diagnosis.

Diagnosis—Failure identification. We deliberately separate the identification of symptoms from the detection of
failures in terms of a dedicated diagnosis system. The diagnosis layer collects the verdicts of the distributed monitors
and deduces an explanation for the current system state.

For this purpose, the diagnosis layer infers a (minimal) set of system components, which must be assumed faulty
in order to explain the currently observed system state. The procedure is solely based upon the results of the monitors
and general information on the system. Thus, the diagnostic layer is not directly communicating with the application.

Mitigation—Failure isolation. The results of the system’s diagnosis are then used in order to isolate the failure, if
possible. However, depending on the diagnosis and the occurred failure, it may not always be possible to re-establish
a determined system behavior. Hence, in some situations, e. g., occurrence of fatal errors, a recovery system may
merely be able to store detailed diagnosis information for off-line treatment.

The distributed-system view So far, we merely discussed the tier-structure of our architecture, while we did mostly
ignore the distributed nature of it. However, the distribution is oriented towards the layering of the framework: the
logging layer and the monitoring layer consist both of a number of different software components, which are dis-
tributed throughout the system under scrutiny. Each local monitor computes a verdict on the locally observed event
stream and provides this verdict for further, subsequent diagnosis regarding the system’s general status. The diag-
nosis and mitigation layers, in contrast to logging and monitoring, are realized in terms of centralized components,
which collect the information of the monitors in order to compute and react upon a global system view.
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Fig. 2. Distributed monitoring & diagnosis.

For instance, consider Figure 2, where we
show an example application consisting of four
distributed components, C1, . . . , C4. To monitor
the overall system behavior of this application,
we employ four dedicated monitoring applica-
tions, M1, . . . , M4, to the system. Each monitor
Mi is then locally observing the output of a sin-
gle component, Ci, and computes its verdict on
the correctness of the observed output stream so
far. These distributed verdicts are then transmit-
ted back to the central diagnosis component for
further treatment via the application’s communi-
cation infrastructure which, depending on the na-
ture of the system, may be a physical bus system
or merely remote procedure calls, for instance.

4.1 MOP versus RR

RR differs from monitor-oriented programming in two dimensions. First, MOP aims at a programming methodology,
while RR should be understood as an architecture pattern. This implies that MOP support has to be tight to a
programming language, for example Java resulting in jMOP, while in RR, a program’s structure should highlight
that it follows the RR pattern. The second difference of RR in comparison to MOP is that RR introduces a diagnosis
layer not found in MOP.1

5 Runtime Reflection and Contract Enforcement

According to [7], a contract is a document which engages several parties in a transaction and stipulates their obli-
gations, rights, and prohibitions, as well as penalties in case of contract violation. Contract enforcement terms the
problem of monitoring contract fulfillment as well as enforcing the penalty, when a contract violation has been
observed. Thus, contract enforcement apparently matches runtime reflection: While monitoring contract fulfillment
provides suitable properties to verify at runtime, the enforcement of penalties asks for mitigation. However, a detailed
study in this direction has to be done.
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Static analysis is a powerful tool to establish various properties of programs. The
analysis is often directed by the call graph of the programs (e.g [3]) and thus is not
well suited to open object-oriented systems, or sometimes consider that when a method
is called, all its parameter escape to any control (e.g. [1]). In this work in progress,
we introduce the notion of contract as a support to openness and extensibility: we
propose an analysis computing the contract of a method relying on contracts of methods
used by it, and respecting the requirements of the methods using it. Thus the analysis
is compositional and the properties of composed code can be deduced from contract
composition.

We give two examples of applications in the context of open object-oriented systems
and dynamic loading of applications: one for a distributed Wcet computation method
for small embedded systems and one for computation of information flows in Java pro-
grams. These examples allow us to present two types of contracts: the contracts that
are introduced by the designer of the system, and the contracts that are automatically
computed by the analysis with regard to the first ones.

1 General idea

Static analysis of programs has been used for a long time to deduce and prove properties
of systems. In this work, we are interested in static analysis of open object oriented
systems supporting dynamic class loading, typically Java programs. The openness of
the systems combined with subclassing and overriding leads to classical problems when
coming to analysis: it is not possible to rely on any call graph or on any calling context
when analyzing a piece of code. We here consider two opposed worlds: static analysis
and dynamically evolving systems. Thus, we aim at computing properties of a system,
based on a static description, which does not always correspond to the system that
will be executed. This can be a disadvantage when the analysis is used for example for
optimization purposes and this is not acceptable when it is used for example for security
properties.

Thus, we propose an analysis, which uses the notion of contract to describe the
minimal behaviour that a piece of code guaranties relying on the contracts of the pieces
it uses. As we focus on object-oriented languages, the natural grain of the analysis is the
method. Thus, we propose to add to each method signature a contract that describes
it behaviour regarding to the property we are analyzing and to analyze each method
with respect to the contracts of the called methods. This contract is i) produced by the
static analysis, ii) used by static analysis.
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The analysis of a single method can be done in a very classical way, but instead of
unfolding and analyzing the called methods, we use the contract of the called methods.
Contracts of other methods can be obtained in several ways depending on various factors:
– Other methods have already been analyzed and their contract has been computed

by the analysis, their are available in some repository,
– Some methods have not been analyzed. Then:

• The user can provide a contract, either because the method cannot been ana-
lyzed, e.g. for native methods in Java, or because the method is not available,
e.g. when considering mobile code,

• In some cases, the analysis itself can compute the contract that the called method
must respect.

The last case is the most automatic one, since the analysis itself can specify the required
contract, but it mainly depends on the nature of contracts: this is possible in the example
of Section 2, since contracts have mainly the form of equations on integers. Contracts
of Section 3 are more complex and still need user interactions when the code is not
available.

2 Application to WCET computation

In real-time systems, the prediction of the worst case execution time (Wcet) of a
program comes twofold. First, find and express the timing behavior in the worst case of
a code unit (i.e. intra-method analysis). Second, combine these properties to find out the
end-to-end timing behavior of a composition of code units (i.e. inter-method analysis).
We aim to establish that an open system can continue to respect strict deadlines if a
new method overriding one of the existing methods is loaded.

void A(){

if (exp)

statement;

else

B();

}

Fig. 1. Example 1

When a method A contains an open call site B (i.e. Open call
sites are the one whose sets of target methods resolved statically
may not contain all methods invoked at runtime), the idea is
that the static analysis generates a contract that describes the
constraints the target methods must respect.

Consider the example of Figure 1. Computing the Wcet of
the method A, which contains a simple alternative construct leads
to Equation 1, where W denotes the Wcet. Then, the Wcet of
method B is the maximum of all the Wcet of the methods overriding B (B’ overrides B
is denoted B’ ⊑ B), this leads to Equation 2. The contract the method A must respect
says that its Wcet is less than the deadline defined by the specifications of the system
(see Equation 3). This imposes constraints on the Wcet of any new method overriding
B and willing to be executed on the system as described by Equation 4.

W (A) = W (if) + W (exp) + Max(W (statement), W (B)) (1)

= W (if) + W (exp) + Max(W (statement), Max
B’⊑B

(W (B’))) (2)

deadline ≥ W (A) (3)

≥ W (if) + W (exp) + Max(W (statement), Max
B’⊑B

(W (B’)) (4)

Then the contract Y ≥ W (B) where Y = deadline − W (if) − W (exp) is added to
the contract repository.

Each time a method that is B or that overrides B is loaded, its Wcet must satisfy the
contracts otherwise it is rejected. When a method depends on several open calls, its con-
tract depends on several variables. When one of the methods is loaded and accepted by
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the system, contracts are updated progressively while respecting the end-to-end dead-
line, thus becoming more and more restrictive. In this way, methods that are loaded
on the system must respect the contracts of the repository and can add contracts for
forthcoming methods.

3 Application to information flow

String passwd;

boolean login(String s){

if(s.equals(passwd))

return true;

return false;

}

Fig. 2. Example 2

In the constantly evolving computer systems, security
becomes a critical factor. One of the main concerns
of current security issues is the flow of private data in
Java programs; the private data must satisfy a secu-
rity policy (e.g. must be accessible only to authorized
users throughout the control flow of the program). A
number of works of information flow use static anal-
ysis. They are mostly dedicated to close world: they
analyze a system and track illicit flows. These concerns are also (and maybe more) im-
portant in modern ubiquitous systems where systems support multiple applications and
mobile code, provided by various issuers.

Then, the desired security policy can be defined as a contract. For some methods,
contracts can be defined by the user or deducted by the analysis starting from the
predefine contracts. In an open world, the untrusted code loaded in an already existing
system must meet the desired security requirements of the code already loaded. This
must be the case for newly loaded methods but also for methods overriding already
loaded methods: overriding cannot be a way to bypass the security controls. Thus, we
need to define an order on contracts and to accept new applications/code if their contract
is stronger than the requirements of the existing system.

In [2], we have defined a framework, which ensures that security policies are meet
for an open system even when new applications are loaded. Let us consider the example
in Figure 2. The security policy of the application states that the field passwd is private
and some user who can observe the behaviour of the program must not deduct it. The
contract of the method login says that there exists a flow from passwd to s and to
the return value. This information can be confronted with the requirements of users
of login. Moreover, as passwd is used with the open site equals, we must know its
contract. For the moment, the analysis takes the contract of equals in the repository
and uses it. In the future, we aim at being able to compute the contract required for
the missing code as in the case of Wcet. The general framework is the same but
the expression of security contracts and flows between data is more complex than the
expression of deadlines.
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1. Challenges in Component Specification

The underlying motivation for parametric contracts for

software components stems from a rather general question:

How to specify a component, given the fact that most prop-

erties of a component depend on the component’s deploy-

ment environment.

Before discussing this question, we will give a short def-

inition of the entities we have in mind when using the term

”software component”.

A software component is a contractually specified

building block for software which can be read-

ily used. Readily used firstly means the compo-

nent can be used without that the software archi-

tect or system deployer (as users of the compo-

nent) having to understand the component’s in-

ternals. Secondly, the use of a component is re-

stricted to three different actions: (a) component

composition with other components to form com-

posite components, (b) component deployment

on resources such as virtual machines, applica-

tion servers or containers and (c) component use

during run-time, i.e., calling component services.

By this, it becomes clear that classes are not components,

as use by inheritance needs a thorough understanding of

the internals of the superclass when overwriting inherited

methods. When using models we do not have this prob-

lem of inheritance, but the lack of the explicit specification

of the external dependencies of a module also requires the

consideration of their internals before use. As components

are a new entity (compared to other software encapsulation

mechanisms, such as classes or modules), we are interested

in meta-modelling them. Here we have to face the chal-

lenge that component properties are not constant, but de-

pend heavily on four influencing factors:

The implementation: For obvious reasons the implemen-

tation of a component influences its functional and

extra-functional properties. Of course, the implemen-

tation can be described in a more abstract specification.

The external services called: Extra-functional properties

of a component depend on such properties of external

components. But also the provision of functional prop-

erties (e.g., whether an implemented service can actu-

ally be offered) depends on the presence of external

services. (If one of several external services that are

required is missing, the component cannot offer all its

implemented services, but possibly a non-empty sub-

set of them.)

The execution environment: In particular the extra-

functional properties of the component execution

system influence directly the extra-functional prop-

erties of the component services (as the speed and

any failure of the execution system directly influences

the component). In modern enterprise systems, the

execution environment is a stack of rather complex

systems, including hardware, the operating systems

(with virtualisation mechanisms on various levels),

possibly a virtual machine and a component container

in an application server.

The usage profile: The frequency and parameters of ser-

vice calls to a component also influence their extra-

functional properties. As an example a download of a

kilobyte is faster than the download of a megabyte.

Any meaningful component meta model which is con-

cerned with the description of extra-functional properties

has to take all these factors as explicit parameters of the

component properties into account. For the specification of

the functional properties, the usage profile can be neglected.

In any case, for a reasoning mechanism on the properties

of component-based systems, it is important to have com-

ponent meta models that are parameterised over the above

mentioned influence factors. This allows to compose the

actual component models isomorphically to the component

composition (i.e., the architecture of a component-based

system). By the specification of the system architecture,

the parameters are filled and the actual properties of the sin-

gle components and the composed components (namely the

system) can be computed. In the area of extra-functional

properties, this computation is called ”prediction”.

Due to this role of components, we claim that the compo-

nentisation of software also brings advances when system-

atically predicting extra-functional properties (such as reli-

ability or performance) of software systems in contrast to

the current view, where primarily software components are

seen as a means to software reuse. As a consequence, one

of the major motivations of software architectures, the aim

to reason explicitly with extra-functional properties during

software-design, may benefit a lot from focusing on compo-
nent based software architectures.

FLACOS'07

Page 142



2. Contractual Use of Components

Much of the confusion about the term ”contractual use”

of a component comes from the double meaning of the term

”use” of a component. The ”use” of a component refers (as

discussed above) refers to different usage-times:

1. the usage of a component during run-time. This is,

calling services of the component.

2. the usage of a component during composition time

or deployment. This is, placing a component in a

new reuse-context, as it happens when architecting, in-

stalling or reconfiguring systems.

Depending on the above case, contracts play a different

role. Before actually defining contracts for components, we

briefly review the design-by-contract principle from an ab-

stract point of view. According to [3, p. 342] a contract

between the client and the supplier consists of two obliga-

tions:

• The client has to satisfy the precondition of the sup-

plier.

• The supplier has to fulfil its postcondition, if the pre-

condition was met be the client.

Each of the above obligations can be seen as a benefit for

the other party. (The client can count on the postcondition

if the precondition was fulfiled, while the supplier can count

on the precondition). Putting it in one sentence:

If the client fulfils the precondition of the sup-

plier, the supplier will fulfil its postcondition.

How can we translate this principle to software compo-

nents? We can consider the user of a component as the

client, and the component as the supplier of services. It

is important to note that each service of the component may

have a contractual specification (i.e., its pre- and postcon-

dition), but these service-contracts (or a collection of these

contracts) are not the contract of the component, as we will

discuss in the following. To formulate contracts for compo-

nents, we also have to identify the pre- and postconditions

and the user of a component. But what is a precondition,

postcondition and user, depends on the case of use as listed

above (run-time or composition-time). Let us first consider

the component’s use at run-time. The use of a component

at run-time is calling its services. Hence, the user of a com-

ponent C are all components connected to C’s provides in-

terface(s).

The precondition for that kind of use is the precondition

of the service, likewise the postcondition is the postcondi-

tion of the service. Actually, this shows that this kind of use

of a component is in no way different as using a method.

Therefore, the authors do consider this case as the use of a

component service, but not as the use of a component. Like-

wise, the contract to be fulfilled here from client and sup-

plier is a method contract as described by Meyer already

1992. There is nothing component specific in this kind of

contracts!

The other case of component usage (usage at composi-

tion time) is the actual important case when talking about

the contractual use of components. This is the case when

architecting systems out of components or deploying com-

ponents within existing systems for reconfiguration. Again,

in this case a component C is acting as a supplier, and the

environment as a client. The component C offers services

to the environment (i.e., the components connected to C’s

provides interface(s)). According to the above discussion of

contracts, these offered services are the postcondition of the

component, because it specifies what the client can expect

from a working component. Also according to the Mey-

ers above mentioned description of contracts, the precon-

dition specifies the component C expects from its environ-

ment in order to enable C to offer its services (as stated in

its postcondition). Hence, the precondition of a component

is stated in its requires-interfaces.

Analogously to the above single sentence formulation of

a contract, we can state:

If the user of a component fulfils the components’

required interface (offers the right environment)

the component will offer its services as described

in the provided interface.

Note that checking the satisfaction of a requires interface in-

cludes checking whether the contracts of required services

(the service contracts specified in the requires-interface(s))

are sub-contracts of the service contracts stated in the pro-

vides interfaces of the required components. The notion of

a subcontract is described in [3, p. 573] like contravariant

typing for methods: A contract c′ is a subcontract of con-

tract c, if (a) the precondition of c′ is weaker than or equal

to the precondition of c and (b) the postcondition of c′ is

stronger than or equal to the postcondition of c.

The interfaces involved by contract checking be-

long to separate components and are connected

by bindings. Checking contractual use of com-

ponents are interoperability checks and therefore

have a boolean result.

Hence, when architecting systems (i.e., introducing new

components), we have to check the bindings of their

requires-interfaces to the used environmental provides-

interfaces. When replacing a component with a newer one,

we not only have to check their contract (i.e., the bindings

of their requires-interfaces to the used components, as men-

tioned above), but also the contracts of the using environ-

mental components (i.e., the bindings from the provides-

interfaces), because one has to ensure that by a replacement

non of the existing local contracts have been broken.

There is a range of formalisms used for specifying pre-

and postconditions, defining a range of interface models for

components (see for extensive discussions and various mod-

els, e.g., [2, 6]).

Another degree of freedom in the abstract principle of

design-by-contract is the time of their deployment. Com-

ponent contracts as discussed here describe the deployment

of components at composition-time. This stresses the im-

portance of contracts which are statically checkable. When

a system is architected or reconfigured, one is aware of the

possibility of introducing errors. Therefore, the direct feed-

back about the success of introducing (or replacing) a com-

ponent into a system is very helpful in practice because it
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can assure the absence of composition errors. Opposed to

that run-time checks can only show the presence of com-

position errors when detecting a contract violation. This is

particularly bad, because the person using the system and

triggering the error is most commonly not the person re-

configuring or architecting the system who may find it hard

to trace back the reconfiguration step which introduced the

error.

3. Parametric Contracts

We have seen that the enforcement of contractual use

of software components is equivalent to interoperability

checks between interfaces. An interoperability check has

a boolean outcome: Either there are interoperability errors

detected, or not. In practice this is not sufficient for two

reasons: Firstly, in particular in bottom-up reuse scenarios

(where components are created before and independently

from system architectures) a component rarely fits directly

in a new reuse context, because for a component developer

it is hard to foresee all possible reuse contexts of a compo-

nent in advance (i.e., during design-time).

Secondly, there is a broad consensus on that extra-

functional properties (such as performance or reliability

metrics) of components need to be specified for compo-

nents. However, as with the different unforeseeable reuse

scenarios above, the component developer cannot foresee

all the possible extra-functional properties of the environ-

ment. But to make a specification of the extra-functional

properties of the component, the component developer has

to make strong assumptions on the properties of the exe-

cution environment. Coming back to our discussion about

component contracts, this means that in practice one single

pre- and postcondition of a component will not be sufficient:

1. the precondition of a component is not satisfied by a

specific environment while the component itself would

be able to provide a meaningful subset of its function-

ality.

2. a weaker postcondition of a component is sufficient in

a specific reuse context (i.e., not the full functionality

of a component will be used). Due to that, the compo-

nent itself will require less functionality at its requires-

interface(s), i.e., will be satisfied by a weaker precon-

dition.

Hence, what we need are not static pre- and postconditions,

but parametric contracts [4]. In case 1 a parametric contract

computes the postcondition in dependency on the strongest

precondition guaranteed by a specific reuse context (hence

the postcondition is parametric with the precondition). In

case 2 the parametric contract computes the precondition

in dependency on the postcondition (which acts as a pa-

rameter of the precondition). For components this means

that provides- and requires-interfaces are not fixed, but a

provides-interface is computed in dependency on the actual

functionality a component receives at its requires-interface

and a requires-interface is computed in dependency on the

functionality actually requested from a component in a spe-

cific reuse context. Hence, opposed to classical contracts,

one can say:

Parametric contracts link the provides- and

requires-interface(s) of the same component.

They have a range of possible results (i.e., new

interfaces).

Interoperability is a special case now: if a component is

interoperable with its environment, its provides-interface

will not change. If the interoperability check fails, a new

provides-interface will be computed.

4. Conclusion

This paper discussed contractual usage of software com-

ponents and argued for requires-interfaces as precondition

of components and provides-interfaces as postcondition.

Parametric contracts describe the relation between pre- and

post-conditions. By this, the external influences given by

properties of the external services (as the parameter ”pre-

condition”) are taken into account in the computation of the

post-condition (i.e., the provides interfaces). The Palladio

Component Model (PCM)[1] is a component meta model

which is based on parametric contracts and, as the first of

its kind, models all above mentioned influence factors on

components as explicit parameters. It is well documented

and freely available under

http://sdqweb.ipd.uni-karlsruhe.de/
wiki/Palladio Component Model

Please note that sections 2 and 3 are revised passages from

[5].
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Task Scheduling in Rebeca
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1 Introduction

Rebeca [3] (reactive objects language) is an actor [2] based language with formal semantics, which
can be used at a high level of abstraction for modeling concurrent and distributed reactive systems.
Reactive objects (called rebecs) run in parallel and can communicate by asynchronous message passing.
Rebecs have no explicit receive statement; instead, incoming messages are queued. A rebec has a
message server for each message it can handle. A message sever (also called a method) is defined as a
piece of sequential code, which, among others, may include sending messages.

All rebecs must implement a message server ‘initial’. At creation, a rebec has the ‘initial’ mes-
sage in its queue. At each step, each rebec executes (the message server corresponding to) the message
at the head of the queue and then removes it from queue (i.e., there is no intra-object concurrency).
In this paper, we allow rebecs to define their own scheduling policies (which has been traditionally
FIFO in Rebeca). The scheduling policy of each rebec, upon receiving a message, determines where
in the queue the message should sit; however, it cannot preempt the currently running method.

Task automata [1] is a new approach for modeling real time systems with non-uniformly recurring
computation tasks; where tasks are generated (or triggered) by timed events. Tasks, in this model, are
represented by a triple (b, w, d), where b and w are, respectively, the best-case and worst-case execution
times, and d is the deadline. A task automaton is said to be schedulable if there exists a scheduling
strategy such that all possible sequences of events generated by the automaton are schedulable in the
sense that all associated tasks can be computed within their deadlines. It is shown in [1] that, among
other cases, with a non-preemptive scheduling strategy, the problem of checking schedulability for task
automata is decidable.

In this paper, we add real time constraints to Rebeca and present a compositional approach based
on task automata for schedulability analysis of timed Rebeca models. In this approach, instead of
just best-case and worst-case execution times, the behavior of each task is given (in terms of timed
automata) and used in the schedulability analysis. These timed automata may in turn generate new
tasks. Task automata, as introduced in [1], cannot model tasks generated during the execution of
another task.

2 The Timed Rebeca Model

For each rebec, the message servers are modeled as timed automata, in which actions may include
sending messages, either to the same rebec, called self calls, or to other rebecs. Since message servers
always terminate, every execution of the corresponding automata also stops at a state with no outgoing
transition. The modeler also gives an abstract behavior of the environment for each rebec in terms
of a timed automaton (called the driver automaton). The driver automaton models the (expected)
timings for arrival of messages to the rebec, together with their deadlines. The driver automaton is
similar to task automata in the sense that receiving a message corresponds to generating a new task.
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((s, s′), [B1, . . . , Bl])
?m(d)−−−−→
c , X

−H ((u, s′), sched([B1, . . . , Bl], m(d))) [recieve]

if s
?m(d)−−−−→
c , X

−T u

((s, s′), [B1, . . . , Bl])
m(d)−−−→
c , X

−H ((s, u), sched([B1, . . . , Bl], m(d))) [self − call]

if (s′ !m(d)−−−→
c , X

−B1 u) and (m ∈ M)

((s, s′), [B1, . . . , Bl])
!m(d)−−−→
c , X

−H ((s, u), [B1, . . . , Bl]) [send]

if (s′ !m(d)−−−→
c , X

−B1 u) and (m /∈ M)

((s, s′), [B1, . . . , Bl]) →H error [overflow]

if (l = q) and ((s
?m(d)−−−−→
c , X

−T u) or (s′ !m(d)−−−→
c , X

−B1 u and m ∈ M))

((s, s′), [B1, B2, . . . , Bl]) →H ((s, start(B2)), [B2, . . . , Bl]) [context− switch]
if s′ ∈ final(B1)

Fig. 1 Calculating the edges of the behavior automata

A timed automaton is identified by a finite set of locations N (including an initial location n0);
a set of actions Σ; a set of clocks C; location invariants I : N → B(C); and, the set of edges
→⊆ N × B(C) × Σ × 2C × N , where B(C) is the set of all clock constraints. An edge written as
s

a−−−→
c , X

s′ means that action a may change state s to s′ by resetting the clocks in X, if clock

constraints in c hold. In the sequel, assume that the sets of messages handled by different rebecs are
disjoint and their union is M.

Definition 1 A rebec R is formally defined as [(m1 : A1, . . . ,mn : An), T, C], where

– M = {m1, . . . ,mn} ⊆ M is the set of messages handled by R;
– Ai = (Ni,→Ai

, Σ,Ci, Ii, n0i
) is a timed automaton representing the message server handling mi.

– T = (NT ,→T , ΣT , CT , IT , nT ) is a timed automaton modeling the rebec’s environment (the driver).
– C is a set of clocks shared by all Ai and T (called the global clocks).

The action set of Ai is defined to be Σ = {!m|m ∈ M}∪{!m(d)|m ∈M∧d ∈ IN}; and, the action
set of the driver automaton is ΣT = {?m(d)|m ∈ M ∧ d ∈ IN}. Intuitively, the driver automaton is
similar to task automata in the sense that executing an action in the driver (i.e., receiving a message
from another rebec) creates a new task. However, a rebec may send messages to itself (self calls), which
also result in new (internal) tasks being generated. According to the definition of Σ, internal tasks
are not necessarily assigned deadlines. Internal tasks without an explicit deadline (called delegation)
inherit the (remaining) deadline of the task that generates them (parent task).

Delegation implies that the internal task (say t′) is in fact the continuation of the parent task
(say t). Notice that unconstrained loops in delegations result in nonschedulability, because deadline
becomes smaller every time. To bound delegation loops, one can use the global clocks C. A common
scenario for delegation happens when a task t creates an instance of t′ to continue the computation,
after another task (say y) is executed. In such cases, if t′ is scheduled before y is executed, it would
need to create another instance of itself (t′). This results in a loop in calling t′.

As mentioned above, the driver automaton has the same syntax as a task automata, but it models
only the messages sent by other rebecs (does not include internal tasks). Therefore, analyzing the
driver alone is not enough for determining schedulability of the rebec. Instead, schedulability analysis
should be performed on the automaton obtained by executing the abstract behavior of the message
servers as controlled by the driver automaton.

Definition 2 (Behavior Automaton) The behavior automaton for a rebec R (cf. Definition 1) is
a timed automaton H = (SH ,→H , ΣH , CH , IH , sH) where

– SH = error∪
(
NT ×(

⋃
i∈[1..n] Ni)×(M ∪{emp})q

)
, where NT and Ni are the sets of locations of T

and Ai, respectively, and q is a statically computable bound on the length of schedulable queues.
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– ΣH = {!m(d)|m /∈ M} ∪ {?m(d)|m ∈ M} ∪ {m(d)|m ∈ M}, where d ∈ IN denotes the deadline.
– CH = CT ∪

( ⋃
i∈[1..n] Ci

)
∪ C, where Ci and CT are the sets of clocks for Ai and T , respectively.

– For each state u = (sT , s, Q), if s ∈ Ni then IH(u) = IT (sT ) ∧ Ii(s).
– The initial state sH is

(
(nT , start(A1)), [A1]

)
, where nT is the initial location of T ; and, A1 is the

automaton corresponding to the ‘initial’ message server.
– The edges →H are defined with the rules in Figure 1.

In Figure 1, functions start(A) and final(A), respectively, give the initial location of A, and the
set of locations in A with no outgoing transitions. Function sched puts the given message in the
queue based on the scheduling policy of rebec R. Each state of the behavior automaton is written
as ((s, s′), [B1, . . . , Bl]), where B1, . . . , Bl show the automata corresponding to the messages in the
queue (empty queue elements are not written); s shows the current state in the driver; and, s′ shows
the current state in B1. Notice that self calls are modeled as internal actions, while send and receive
operations to/from other rebecs are visible actions. As discussed in the next section, sends and receives
of different rebecs must match.

Assume that bmin is the smallest best-case execution time of the automata Ai representing the
message servers in R; and, dmax is the longest deadline for the tasks that may be triggered on R. In
Definition 2, one can statically compute q = dmax/bmin, as the bound on the length of schedulable
queues. It means that the behavior automaton for each rebec is finite state and computable.

The schedulability analysis can be performed in a way similar to task automata. Schedulability
can be verified by resetting a fresh clock (say xi) whenever a new task (with deadline di) in scheduled
into the queue. From every state, if xi ≥ di for some task in the queue, the behavior automata should
move to the error state. Consequently, the schedulability problem reduces to the reachability of the
error state.

As a timed automaton, the semantics of the behavior automaton can be defined in terms of a timed
transition system. The states of this transition system are pairs (SH , u) where SH is a location of the
behavior automata and u is a clock assignment. Considering the delay transitions, the semantics of
the behavior automaton is related to the semantics of the automata in the definition of a rebec:

((s1, s2), [B1, . . . , Bl], u) δ−→ ((s′1, s
′
2), [B1, . . . , Bl], u + δ) iff

{
(s1, uT ) δ−→ (s′1, uT + δ); and,

(s2, uB) δ−→ (s′2, uB + δ)

where, ((s1, s2), [B1, . . . , Bm]) is a state of the behavior automaton; uT and uB represent the projection
of u on the clocks of T and B1, respectively; and, δ ∈ IR+ is a positive real valued number.

3 Compatibility checking

After performing schedulability analysis for each rebec separately, one should check if the driver
automaton for each rebec correctly models the messages sent to that rebec. Notice that due to the
schedulability of all rebecs, an action ?m(d) implies that m can be finished within d time units.
Therefore, an action !m(d′) (requiring that m should finish within d′ time units) can match ?m(d)
only if d ≤ d′.

To check the compatibility of the driver automata with the definition of the rebecs in the model,
one can compute the synchronous product of the behavior automata of all rebecs. When computing
the synchronous product of these automata, ?m(d) and !m(d′) can synchronize and become an internal
action only if d ≤ d′ (besides matching the timing constraints). The behavior automata of all rebecs
are compatible if every send action can be matched by a corresponding receive.

Before computing the synchronous product, the information in the states of the behavior automata
(the contents of the queue, etc.) can be abstracted away. Different internal actions (of the general form
m(d)) can also be treated as one internal action τ .
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