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Abstract

We introduce in this paper an algebra of actions specially tailored

to serve as basis of an action-based formalism for writing electronic

contracts. The proposed algebra is based on the work on Kleene al-

gebras but does not consider the Kleene star and introduces a new

constructor for modelling concurrent actions. The algebraic structure

is resource-aware and incorporates special actions called tests. In order

to be in accordance with the intuition behind electronic contracts we

consider new properties of the algebraic structure, in particular a con-

flict relation and a demanding partial order. We also study a canonical

form of the actions which, among other things, helps to naturally de-

fine a notion of action negation. Our action negation is more general

than just negation of atomic actions, but more restricted than the

negation involving the universal relation. A standard interpretation

of the algebra is given in terms of guarded rooted trees with specially

defined operations on them. The algebra is proven to be complete over

the standard interpretation.
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1 Introduction

With the advent of Internet-based development within e-business and e-
government there is an increasing need to define well-founded theories to
guarantee the successful integration and interoperability of inter-organizational
collaborations. It is now widely accepted that in such complex distributed
systems a contract is needed in order to determine what are the responsi-
bilities and rights of the involved participants. Such a contract should also
contain clauses stating what are the penalties in case of contract violations.
Ideally, one would like to guarantee that the contract is contradiction-free
by being able to reason about it, and to ensure that the contract is fulfilled
once enacted. In order to do so the contract should be written in a formal
language amenable to formal analysis.

In [PS07a] we have introduced CL, a formal language for writing con-
tracts, which allows to write (conditional) obligations, permissions and prohi-
bitions of the different contract signatories, based on the so-called ought-to-do
approach. The ought-to-do approach considers the above normative notions
specified over (names of) actions, as for example “The client is obliged to pay
after each delivery”. In CL the above would be written as [d]O(p), where d
is an action representing the delivery, after which O(p) is the obligation of
paying. Actions may be more complex, involving concurrent composition,
non-deterministic choice, negation (a, meaning any action but a), etc. We
have also given a formal semantics of the contract language in a variant of µ-
calculus, but we have left the formalization of the underlying action algebra
underspecified.

In this paper we introduce a new algebraic structure to provide a well-
founded formal basis for the action-based contract language CL. Besides its
use under the above-mentioned context, we believe the algebraic structure
presented here is interesting by itself. Though the algebraic structure we
define is somehow similar to Kleene algebra with tests [Koz97], there are
substantial differences due mainly to our application domain. A first differ-
ence is that we do not include the Kleene star (iteration) as it is not needed
in our context (see [PS07a]). A second difference is that we introduce an op-
erator to model concurrency. The main contributions of the paper are: (1) A
formalization of concurrent actions; (2) The introduction of a different kind
of negation over actions; (3) A restricted notion of resource-awareness; (4)
A standard interpretation of the algebra over specially defined rooted trees;
and (5) A completeness result. Among other, the interpretation using trees
is intended to give in further work a particular semantics for the actions of
the contract language of [PS07a].

The paper is organized as follows. The rest of the Introduction presents
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briefly the CL contract language [PS07a]. In Section 2 we provide some
algebraic background and useful terminology before introducing a first (core)
version of the algebra for concurrent actions. In section 3 we give a standard
interpretation of the algebra terms as rooted trees. The main result of this
section is the completeness of the algebra over rooted trees. In section 4
we extend the algebra with boolean tests whereas in section 5 we introduce
action negation and we discuss a canonical form for our algebra. In Section
6 we introduce the reader to a more formal relation between the present
algebra and the contract language CL.1 In the last section we conclude our
work and give an extensive discussion on related works.

1.1 CL – A Formal Language for Contracts

In this section we recall the contract language CL; for a more detailed pre-
sentation see [PS07a].

Definition 1.1 (Contract Language Syntax). A contract is defined by:

Contract := D ; C
C := φ | CO | CP | CF | C ∧ C | [α]C | 〈α〉C | C U C | © C | �C

CO := O(α) | CO ⊕ CO

CP := P (α) | CP ⊕ CP

CF := F (α) | CF ∨ [α]CF

The syntax of CL closely resembles the syntax of a modal (deontic) logic.
Though this similarity is clearly intentional since we are driven by a logic-
based approach, CL is not a logic. The interpretation of the CL syntax is
given by translating it into an extension of µ-calculus which we call Cµ. In
what follows we provide an intuitive explanation of the CL syntax.

A contract consists of two parts: definitions (D) and clauses (C). We
deliberately let the definitions part underspecified in the syntax above. D
specifies the assertions (or conditions) and the atomic actions present in the
clauses. φ denotes assertions and ranges over boolean expressions including
the usual boolean connectives, and arithmetic comparisons like “the budget
is more than 200$”. We let the atomic actions underspecified, which for our
purposes can be understood as consisting of three parts: the proper action,
the subject performing the action, and the target of (or, the object receiving)
such an action. Note that, in this way, the parties involved in a contract are
encoded in the actions.

1An extensive investigation in this direction is carried out in a follow-up paper [PS08].
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C is the general contract clause. CO, CP , and CF denote respectively obli-
gation, permission, and prohibition clauses. O(·), P (·), and F (·), represents
the obligation, permission or prohibition of performing a given action. ∧
and ⊕ may be thought as the classical conjunction and exclusive disjunction,
which may be used to combine obligations and permissions. For prohibition
CF we have ∨, again with the classical meaning of the corresponding oper-
ator. α is a compound action (i.e., an expression containing one or more
of the following operators: choice “+”; sequence “ ·”; concurrency “&”, and
test “?” —see [PS07b]). Note that syntactically ⊕ cannot appear between
prohibitions.

We borrow from propositional dynamic logic [FL77] the syntax [α]C to
represent that after performing α (if it is possible to do so), C must hold. The
[·] notation allows having a test, where [φ?]C must be understood as φ ⇒ C.
〈α〉C captures the idea that it must exist the possibility of executing α, in
which case C must hold afterwards. Following temporal logic (TL) notation
we have U (until), © (next), and � (always), with intuitive semantics as in
TL [Pnu77]. Thus C1 U C2 states that C1 holds until C2 holds. ©C intuitively
states that C holds in the next moment, usually after something happens, and
�C expresses that C holds in every moment. We can define ♦C (eventually)
for expressing that C holds sometimes in a future moment.

To express CTDs we provide the following notation, Oϕ(α), which is
syntactic sugar for O(α) ∧ [α]ϕ stating the obligation to execute α, and
the reparation ϕ in case the obligation is violated, i.e. whenever α is not
performed. The reparation may be any contract clause which is formed only
of O and F expressions. Similarly, CTP statements Fϕ(α) can be defined
as Fϕ(α) = F (α) ∧ [α]ϕ, where ϕ is the penalty in case the prohibition is
violated. Notice that it is possible to express nested CTDs and CTPs.

In CL we can write conditional obligations, permissions and prohibitions
in two different ways. Just as an example let us consider conditional obliga-
tions. The first kind is represented as [α]O(β), which may be read as “after
performing α, one is obliged to do β”. The second kind is modeled using the
test operator ?: [ϕ?]O(α), representing “If ϕ holds then one is obliged to
perform α”. Similarly for permission and prohibition. For convenience, in
what follows we use the notation φ ⇒ C instead of the CL syntax [φ?]C.
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2 Algebra of Concurrent Actions

2.1 Background

We recall that a Kleene algebra is a structure K = (K,+, ·, 0, 1,∗ ) with
the properties that (K,+, 0) is a commutative monoid with the identity
element 0, and (K, ·, 1) is a monoid with the identity element 1. Moreover,
the operator + is idempotent and thus the structure (K,+, ·, 0, 1) is an
idempotent semiring. The ∗ is an unary operator with the intuition that
a∗ = 1+a+a·a+. . . (e.g. if the elements of K are considered as relations over
a set X, and 1, +, and · are the usual identity relation, relation union, and
relation composition respectively then a∗ is the transitive reflexive closure of
relation a). A nice axiomatization of ∗ was given in [Con71]. In programming
theory it is usual to interpret + as choice, · as sequence and ∗ as iteration.

(K,+, 0) being a commutative monoid means that the following should
hold:

x+ (y + z) = (x+ y) + z (1)

x+ y = y + x (2)

0 + x = x+ 0 = x (3)

Equations (1), (2), and (3) define respectively the associativity, the com-
mutativity, and the identity element properties of the commutative monoid.

The + is defined to respect the following idempotent equivalence:

x+ x = x (4)

For the monoid (K, ·, 1) we do not have commutativity; i.e. we have as
axioms only the following:

x · (y · z) = (x · y) · z (5)

1 · x = x · 1 = x (6)

We note that 0 is an annihilator of · operator:

0 · x = x · 0 = 0 (7)

Moreover, · is defined to be distributive over + both on the left and on
the right:
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x · (y + z) = x · y + x · z (8)

(x+ y) · z = x · z + y · z (9)

The two monoid structures above with the properties that we have seen
given by axioms (7), (8), and (9) form a structure (K,+, ·, 0, 1) which is
called a semiring. A semiring is called idempotent if the + operator respects
the idempotence equivalence (4). A Kleene algebra with tests is a rather
more complex structure D = (K,B) where K is a Kleene algebra and B is
a classical Boolean algebra. The elements of the Boolean algebra are called
test and are included in the set of elements of the Kleene algebra K.

2.2 The algebraic structure CA

We start by defining an algebraic structure CA = (A,Σ) which is the basis
of the algebra of concurrent actions and tests CAT = (CA,B) presented in
this section. CA defines the concurrent actions, and the Boolean algebra B
of Section 4 defines the tests.

The algebraic structure CA is defined by a carrier set of elements (called
compound actions, or just actions) denoted A and by the signature Σ =
{+, ·,&, 0, 1,AB} which gives the action operators and the basic actions.
More precisely CA is a family of algebras indexed by the finite set of basic
(atomic) actions AB. The non-constant functions of Σ are: + for choice
of two actions, · for sequence of actions (or concatenation), and & for
concurrent composition of two actions. Each of the operators +, ·, and &
takes two actions and generates another action of A. The special elements
0 and 1 are constant function symbols. The set AB ∪ {0, 1} is called the
generator set of the algebra. The basic actions of AB have the property that
cannot be generated from other actions of A.

To be more precise about the syntactic structure of the actions of A we
set the rules for constructing actions. The operators +, ·, and & are some-
times called constructors because they are used to construct all the actions
of A as we see in Definition 2.1. This defines the term algebra TCA(AB) pa-
rameterized by the set of basic actions AB which is free in the corresponding
class of algebras over the generators of AB ∪ {0, 1}. We will just use TCA
whenever AB is understood by context.

Definition 2.1 (action terms).

1. any basic action a of AB is an action of A;
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(1) α + (β + γ) = (α + β) + γ
(2) α + β = β + α
(3) α + 0 = 0 + α = α
(4) α + α = α
(5) α · (β · γ) = (α · β) · γ
(6) α · 1 = 1 · α = α
(7) α · 0 = 0 · α = 0

(8) α · (β + γ) = α · β + α · γ
(9) (α + β) · γ = α · γ + β · γ

(10) α&(β&γ) = (α&β)&γ
(11) α&β = β&α
(12) α&1 = 1&α = α
(13) α&0 = 0&α = 0

(14) α&(β + γ) = α&β + α&γ
(15) (α+ β)&γ = α&γ + β&γ
(16) α&(α′ · β) = α(1)&α′(1) · . . . · α(n)&α′(n) · β

where l(α) = l(α′) = n

Table 1: Axioms of CA

2. 0 and 1 are actions of A;

3. if α, β ∈ A then α&β, α · β, and α + β are actions of A;

4. nothing else is an action of A.

Throughout this paper we denote by a, b, c, . . . elements of AB (basic
actions) and by α, β, γ, . . . elements of A (compound actions). When the
difference between basic and compound actions is not important we just call
them generically actions. For brevity we often drop the sequence operator
and instead of α · β we write αβ. To avoid unnecessary parentheses we use
the following precedence over the constructors: & > · > +.

To have a complete algebraic theory we include the two special elements 0

and 1 which are the neutral elements for +, respectively for · and & operators.
We call action 1 the skip action. In Table 1 we collect the axioms that define
the structure CA.

The properties of the operators + and · are defined by the axioms (1)-(9)
of Table 1. Axioms (1)-(4) define + to be associative, commutative, with
neutral element 0, and idempotent. Axioms (5)-(7) define · to be associa-
tive, with neutral element 1, and with annihilator 0. The element 0 is an
annihilator for the sequence operator both on the left and right side. We
call the two equations fail late (for α · 0 = 0) and fail soon (for 0 · α = 0).
Axioms (8)-(9) give the distributivity of · over +; property which we exploit
more in Section 5 when we define a canonical form of actions. Because the
+ operator is idempotent (α + α = α) all these axioms give the algebraic
structure of an idempotent semiring (A,+, ·, 0, 1).

The third constructor & is intended to model true concurrency. At this
point we give an informal intuition of the elements (actions) of A: we con-
sider that the actions are performed by somebody (being that a person, a
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program, or an agent). We talk about “performing“ and one should not think
of processes executing actions and operational semantics; we do not discuss
such semantics in this paper. With this non-algebraic intuition of actions we
can elaborate on the purpose of &, which models the fact that two actions
are performed in a truly concurrent fashion. We call concurrent actions and
denote by A& the subset of elements of A generated using only & constructor
(e.g. a, a&a, a&b ∈ A& and a + b, a&b+ c, a · b 6∈ A&).

Axioms (10)-(13) give the properties of & to be associative, commutative,
with neutral element 1, and annihilator 0 which make the algebraic structure
(A,&, 1) commutative monoid with element 0 as annihilator for &. Axioms
(10) and (11) basically say that the syntactic ordering of actions in a con-
current action does not matter (the same as for choice +). Axioms (14) and
(15) define the distributivity of & over +. From axioms (10)-(15) together
with the fact that (A,+, 0) is a commutative monoid we may conclude that
(A,+,&, 0, 1) is a commutative and idempotent semiring.

Note that throughout this section we use well known notions like strings,
sets, or multisets in association with our actions just for presentation pur-
poses only. All definitions or explanations (e.g. Definition 2.3) using these
classical notions can be given in a purely syntactical manner.

For axiom (16) we need some preliminary notions introduced in the fol-
lowing. We consider that basic actions are instantaneous with regard to their
execution time and we introduce the notion of length of an action.

Definition 2.2 (action length).
The length of an action α is defined (inductively) as a function l : A → N

which takes as argument an action and returns a natural number.

1. l(1) = l(0) = 0

2. l(a) = 1 for any basic action a of AB,

3. l(α&β) = l(α + β) = max(l(α), l(β)),

4. l(α · β) = l(α) + l(β).

max : N × N → N is the standard function returning the maximum
value of the two arguments. For the special actions 0 and 1 the length is 0.
The intuition of the length function is that it counts the number of actions
in a sequence of actions given by the · constructor. From this perspective
we view the compound actions as strings where the elements of the string
are separated by the sequence constructor. We say that α(n) identifies the
action on position n in the string of actions α. The position 0 < n ≤ l(α) is
a strictly positive integer less than or equal to the length of the action. For
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n = 0, α(0) = 1 returns the implicit skip action, which is natural because
every action α can have as starting action 1, i.e. α = 1 ·α. For example, for
action α = (a+ b) · c we have l(α) = 2, α(1) = a + b and α(2) = c.

Specific to our application domain we consider it is natural to relate &
and · as follows. The equation is based on some properties of the actions
lengths.

if l(α)= l(α′)=n then α&(α′ · β) = α(1)&α′(1) · . . . · α(n)&α′(n) · β (16)

A similar equation can be given for the corresponding action (α′ ·β)&α with
the sequence on the left side of the concurrency constructor. Note that 1 is
ignored in the equation above because 1 can be removed from a sequence as
it is the identity element for · operator; e.g. an action a&(1 · b) is equivalent
to a&b. More precisely the function α(·) ignores 1’s; e.g. for α = a ·1 ·1 ·a&b
then α(2) = a&b.

Let us take a look at the properties of + and & of being respectively
idempotent and not idempotent; for + we have α + α = α, but for & the
equation does not hold. If we take compound actions constructed only with
+ then because of the idempotence we do not find the same basic action
twice in the compound action. For example, action a + a + b is the same
as a + b after we apply the idempotence equation. From this point of view
we consider that the basic actions of an additive compound action (i.e. a
compound action generated only with +) form a set included in AB.

On the other hand, we want to have a resource-aware algebra similarly
to what has been done for linear logic [Gir87]. For this we do not allow the
idempotence property for the & operator (a&a 6= a). As an example, if a
represents the action of paying 100$ then paying 200$ would be represented as
a&a. Note that we can represent only discrete quantities with this approach.
Therefore, for concurrent actions of A& we may have any number of duplicate
atomic actions in its composition; i.e. a&a&b and a&b are different therefore,
the basic actions of a concurrent action α form a multiset over AB.

We recall here that the notion of a multiset M over a set A is a function
M : A→ N, where intuitively M(a) is the number of copies of element a ∈ A.
Informally, a multiset is a set where the number of occurrences of an element
does matter.

Pratt [Pra86] introduces the concept of partially ordered multisets (or
pomsets) to model truly concurrent processes; i.e. processes which are se-
quences of events denoting actions. Pratt’s theory reasons about complex
systems and (time) ordering of the actions of processes, which is too power-
ful for our purpose. We do not want to model entire processes that are truly
concurrent, and we do not need true concurrency over time periods because

10



we do not have any notion of time in our model. For now we only want to
model atomic actions executing in a truly concurrent fashion.

Note that for our purpose the approach of considering the concurrent
actions as multisets over the basic actions is in the spirit of Pratt’s theory.
A pomset intuitively states that if two events labelled by some actions are
related by the partial order of the pomset then the events are not concurrent,
but are executed in the sequence given by their ordering. On the other hand,
any events that are not related by the partial order are considered truly
concurrent. We recall that a multiset is equivalent to a pomset with the
empty order as the partial order. The empty order intuitively means that
no event is related to another, which in the theory of pomsets means that
all the events of the multiset are executed concurrently. Note that in the
same theory of pomsets a set is also a pomset with the empty order (and an
additional condition of injective labelling). The reason for which we consider
multisets and not just sets is that we want to model concurrent execution of
several copies of the same action.

With the view of concurrent actions as multisets over AB we can define
a strict partial order over concurrent actions with the help of inclusion of
multisets. We recall that M ⊂ N iff ∀a ∈ A we have M(a) ≤ N(a) and
∃a ∈ A such that M(a) < N(a), which says that M is included in N if and
only if we can remove from N each element of M and not get the empty
multiset.

Definition 2.3 (demanding relation).
We define the relation <& as:

α <& β
def
= Mα ⊂Mβ (17)

where α and β are concurrent actions of A&, and Mα denotes the multiset
associated to α.

We call <& the demanding relation with the intuition that β is more
demanding than α. We consider the action 1 as the empty multiset, with
the intuition that skiping means not doing any action. Note that the least
demanding action is 1. On the other hand, if we do not consider 1 then
we have the basic actions of AB as the least demanding actions; the basic
actions are not related to each other by <&.

Proposition 2.1. The relation <& is a strict partial order over A&.

Proof: It is easy to prove that <& is a strict partial order:

1. ireflexivity: ∄α s.t. α <& α because Mα 6⊂ Mα as ∀a ∈ α, Mα(a) ≤
Mα(a) so the second part of the definition of ⊂ is not respected;
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2. transitivity: if α <& β then Mα ⊂ Mβ, and if β <& γ then Mβ ⊂ Mγ .
By the transitivity of the inclusion relation of multisets we get our
result of transitivity;

3. antisymmetry: ∀α 6= β if α <& β then Mα ⊂ Mβ which means that
Mβ 6⊂ Mα so β 6<& α. Note that antisymmetry is not required as it
follows from ireflexivity and transitivity.

2

For a better intuitive understanding take the following examples: 1 <& a,
a <& a&b, a&b <& a&c&b, a 6<& b, a 6<& a, and a 6<& b&c.

By now we have defined the demanding relation only on concurrent com-
pound actions (i.e. for actions of the form α = a1& . . .&an). In order to
extend <& to the whole carrier set A we need to extend the definition with
multisets for the & to some more complex definitions for · and +.

As we have seen the length function considers actions as strings. Hence-
forth we consider actions as strings of multisets. As an example, take the
concurrent compound actions α, β, and γ with the associated multisets Mα,
Mβ , and Mγ , respectively, then the action α · β · γ has associated the follow-
ing string of multisets 〈MαMβMγ〉. With this representation one can give
several ways of extending the <& to the sequence actions; we take the most
natural one: two sequence actions α1 · . . . ·αn and β1 · . . . ·βm are comparable
by the <& order iff their associated strings of multisets 〈Mα1

. . .Mαn
〉 and

〈Mβ1
. . .Mβm

〉 can be compared as follows:

Without loss of generality, consider n ≤ m with n,m ∈ N then

1. if ∃1 ≤ i ≤ n s.t. ∀j ≤ i Mαj
6⊂Mβj

and Mβj
6⊂Mαj

and

(a) Mαi
⊂Mβi

then α1 · . . . · αn <& β1 · . . . · βm;

(b) Mβi
⊂ Mαi

then β1 · . . . · βm <& α1 · . . . · αn;

2. if ∀i ≤ n, Mαi
6⊂ Mβi

and Mβi
6⊂Mαi

then α1 · . . . · αn 6<& β1 · . . . · βm and β1 · . . . · βm 6<& α1 · . . . · αn.

In the definition and explanations above we have used the associated
multisets Mα1

. . .Mβm
to give a better intuition for the notions. In a strictly

mathematical exposition we would use the actions α1 . . . βm instead of the
multisets and instead of the comparison using mutiset inclusion Mα1

⊂ Mβ1

we would use the demanding relation itself; like Mα1
<& Mβ1

.
Intuitively for sequence actions the <& order starts to compare from left

to right each element of the sequence and it stops at the first comparable
(by <& on concurrent actions) pair and returns the corresponding result.
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Consider the following examples: a · b <& a · b&c; a · b&c <& b · a&b&c;
a · a&b 6<& b · a&c. Moreover, because 1 <& a, ∀a ∈ AB and 1 can be
appended to any action without changing it then α <& α ·β as α ·1 <& α ·β
enters under the case 1. above.

As we have seen, we can associate sets to choice actions. Let us consider
first the choice only of concurrent actions then for an action α = α1+ . . .+αn

with αi = a1& . . .&am we associate a set of multisets {Mα1
, . . . ,Mαn

}α where
the superscript is the name of the action α. We first give the extension of <&

to this kind of compound actions. Take two actions constructed as above,
α = α1 + . . . + αn and β = β1 + . . . + βm and with their associated sets of
multisets {Mα1

, . . . ,Mαn
}α and {Mβ1

, . . . ,Mβm
}β. We say that α <& β iff

there exists a function f : {. . .}β → {. . .}α defined on the set of multisets
given by action β with the results in the set of multisets given by α such that
f(Mβi

) = Mαj
iff Mαj

⊂Mβi
. Otherwise we say that α 6<& β.

For more complex choice actions where we have sequence of actions in-
stead of just concurrent actions the definition is similar just that we do not
have sets of multisets, but sets of strings of multisets and instead of using in
the definition of the function f the inclusion of multisets we use ≤& defined
for strings of multisets. We denote by ≤& the relation <& ∪ =; i.e. α ≤& β
iff either α <& β or α = β.

We prove in Proposition 5.2 that the demanding relation <& is a strict
partial order over all the actions of CA as defined above. We do the proof
after we define a notion of canonical form for the actions in Section 5 as
it simplifies the presentation of the proof. The proof is also based on the
following proposition.

SEE ABOUT THIS PROPOSITION IF WE NEED IT OR IS A CLAS-
SICAL RESULT

We can now give the following result.

Theorem 2.2. The operators &, ·, and + are monotonic with respect to the
demanding relation; i.e. for the relation <& and for any actions α, β, and
γ we have:

if α <& β then α&γ <& β&γ

if α <& β then α · γ <& β · γ and γ · α <& γ · β

if α <& β then α + γ <& β + γ

Proof: The actions α, β, and γ can be any compound action of CA.
Therefore, the proof should take into account all the forms of an action. A
much simpler and clear proof can be given after we define the canonical form
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of an action in Section 5. We only take here a few simple cases to illustrate
the proof procedure. The other cases are treated similarly.

Case 1 (operator &).
Let us take first a simple example: if a <& a&b then a&c <& a&b&c.
For this case we consider only concurrent compound actions. For the

actions α, β, and γ we have associated the multisets Mα, Mβ , and Mγ . Note
that the operator & relates to the union of multisets; i.e. for action α&γ
we have associated the multiset Mα ∪Mγ . It is now simple to see that if
α <& β then Mα ⊂ Mβ which implies Mα ∪ Mγ ⊂ Mβ ∪Mγ which gives
α&γ <& β&γ.

Case 2 (operator ·).
An example is: for a <& a&b we want a · c <& a&b · c (recall that we have

the precedence &, >, · to avoid using parenthesis).
For this case we consider that the actions are sequences of concurrent

actions. The actions α, β, and γ have associated the strings of multisets
〈Mα1

. . .Mαn
〉, 〈Mβ1

. . .Mβm
〉, and 〈Mγ1

. . .Mγk
〉. Sequence of two actions α ·

γ is concatenation of the corresponding strings of multisets 〈Mα1
. . .Mαn

Mγ1
. . .Mγk

〉.
We have that α <& β which by definition means that ∃i ≤ n such that ∀j ≤ i
Mαj

6⊂ Mβj
and Mβj

6⊂ Mαj
and Mαi

⊂Mβi
. These facts hold also after con-

catenation of strings of multisets; i.e. for strings 〈Mα1
. . .Mαn

Mγ1
. . .Mγk

〉
and 〈Mβ1

. . .Mβm
Mγ1

. . .Mγk
〉. We have thus the definition satisfied for the

sequence actions, i.e. α · γ <& β · γ.
The second implication is similar as the concatenation of strigs of multi-

sets is now 〈Mγ1
. . .Mγk

Mα1
. . .Mαn

〉 and 〈Mγ1
. . .Mγk

Mβ1
. . .Mβm

〉. Because
the first part of the strings is the same (coming from γ) these are incompa-
rable by <& which means that the comparison continues as for the actions α
and β. Therefore we have the proof.

Case 3 (operator +).
An example is: if a <& a&b we have a+ c <& a&b+ c.
For this case we take choice of concurrent actions. The actions α, β, and

γ have associated the sets of multisets {Mα1
, . . . ,Mαn

}α, {Mβ1
, . . . ,Mβm

}β,
and {Mγ1

, . . . ,Mγk
}γ. The choice + on actions relates to the union of sets of

multisets. For example, for action α+ γ we have the set {Mα1
, . . . ,Mαn

}α ∪
{Mγ1

, . . . ,Mγk
}γ = {Mα1

, . . . ,Mαn
,Mγ1

, . . . ,Mγk
}. By the hypothesis we

have α <& β which by the definition means that there exists a function
f : {Mβ1

, . . . ,Mβm
} → {Mα1

, . . . ,Mαn
} such that ∀1 ≤ i ≤ m ∃1 ≤ j ≤ n

such that Mαj
⊆Mβi

.
To prove that α+γ <& β+γ we have to find a function f ′ : {}β+γ → {}α+γ

such that f ′(Mβ+γj
) = Mα+γi

means that Mα+γi
⊆Mβ+γj

. We define f ′ as an
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extension of f where f ′(Mβj
) = f(Mβj

) and f ′(Mγj
) = Mγj

. The definition
of f ′ respects the definition and thus we have that α+ γ <& β + γ.

For choice of sequence actions the proof is similar just that it takes ≤&

instead of the inclusion of multisets. 2

Because + is idempotent we can still define as in Kleene algebra a partial
order ≥ on the elements of A. We call it the preference relation. That
is: α ≥ β means that action α has higher preference over action β. The
preference relation is defined as:

α ≥ β
def
⇐⇒ α+ β = α (18)

An intuition for this is that whenever one has to choose among the two
actions α and β one always chooses α, the most preferable action (i.e. α+β =
α). Note that 0 is the least preferable action because 0 + α = α; so 0 is
never preferred over another action different than itself.

For the preference relation to be a partial order we prove that the following
properties hold:

1. reflexivity: for all α we have α ≥ α;

Proof: The proof is immediate from the idempotence property of +.

α ≥ α
def
⇐⇒ α + α = α which is true from axiom (4). 2

2. transitivity: for all α, β, γ if α ≥ β and β ≥ γ then α ≥ γ;

Proof: From α ≥ β and β ≥ γ we have to prove α+ γ = α. We have
from the first inequality α + β = α then α + β + γ = α + γ from the
associativity of +. Together with β+γ = β from the second inequality
we get α + β = α + γ. Using again the first inequality we get that
α = α + γ which is what we wanted. 2

3. antisymmetry: for all α, β, if α ≥ β and β ≥ α then α = β (α and β
are the same element).

Proof: From the first inequality we have by definition that α+β = α.
By commutativity of + we get that β + α = α which by the second
inequality we get β + α = β, and thus α = β. 2

Note that the three operators are monotonic with respect to the partial
order ≥. For example for any actions α, β, and γ, for + operator this means
that: if α ≥ β then α + γ ≥ β + γ. This is easily proven [Con71].

We consider a relation over the set of basic actions AB which we call
conflict relation and denote by #C . The intuition of the conflict relation
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is that if two actions are in conflict then the actions cannot be executed
concurrently. This relation is defined in terms of the & operator and says
that two actions that are in conflict, when executed concurrently yield the
special action 0. The converse relation of #C is the compatibility relation
which we denote by ∼C. The intuition of the compatibility relation is that if
two actions are compatible then the actions can be executed concurrently.

Definition 2.4 (conflict and compatibility relations).
The conflict relation is defined as:

a#C b
def
⇐⇒ a&b = 0 (19)

The compatibility relation is defined as:

a ∼C b
def
⇐⇒ a&b 6= 0, where a, b 6= 0 (20)

Proposition 2.3. The following standard properties of the conflict and com-
patibility relations for basic actions hold:

1. reflexivity of ∼C: a ∼C a. Any basic action is compatible with itself;

Proof: if a 6= 0 then a&a 6= 0 then, by definition a ∼C a. 2

2. symmetry of #C or ∼C: if a#C b then b#C a, and if a ∼C b then
b ∼C a. There is no order on the actions that are in conflict or com-
patible.

Proof: The proof follows immediately from the symmetry of &. For
a#C b then a&b = 0 which means that b&a = 0 which is b#C a. 2

Remark: There is NO transitivity of #C or ∼C : In general, if a#C b
and b#C c, not necessarily a#C c. This is natural as action b may be in
conflict with both a and c but still a ∼C c. Moreover, because ∼C is reflexive
it means that #C is not reflexive (by the fact that the two relations are dual
concepts). Note also that the reflexivity of ∼C2 extends to all compound
actions.

The definition of the conflict and compatibility relations extend to all
actions of A by extending #C and ∼C to the +, ·, and & operators.

Proposition 2.4 (extension of #C to compound actions).

1. α#C β ⇒ α#C γ, ∀γ a concurrent action (i.e. constructed from basic
actions only with &) s.t. β <& γ.
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Proof: α#C β
def
⇒ α&β = 0 which ∀β ′ α&β&β ′ = 0&β ′ = 0 which

means that α#C β&β ′, i.e. α#C γ and β <& γ = β&β ′.

Ex.: a#C b then a#C b&b and a#C b&c. 2

2. α#C β and α#C γ then α#C β + γ.

Proof: α#C β ⇒ α&β = 0 and α#C γ ⇒ α&γ = 0. From these we

have that (α&β) + (α&γ) = 0 + 0 = 0
(14)
⇒ α&(β + γ) = 0 which by

definition means that α#C β + γ.

Ex.: a#C b and a#C c then a#C b+ c. 2

3. α#C β ⇒ α#C β · γ, ∀γ ∈ A.

Proof: α#C β ⇒ α&β = 0 which means that (α&β) · γ = 0. On the

other hand α&(β · γ)
(16)
= (α&β) · γ = 0 which by definition α#C β · γ.

Ex.: a#C b then a#C b · c. 2

Proposition 2.5 (extension of ∼C to compound actions).

1. α ∼C α · γ , ∀γ 6= 0.

Proof: By reflexivity of ∼C we have that α ∼C α ⇒ α&α 6= 0

which (because γ 6= 0) means that (α&α) · γ 6= 0. On the other hand

α&(α · γ)
(16)
= (α&α) · γ 6= 0 and thus α ∼C α · γ.

Ex.: a ∼C a · b. 2

2. α ∼C β ⇒ α ∼C β · γ , ∀γ 6= 0.

Proof: α ∼C β ⇒ α&β 6= 0 which means (because γ 6= 0) that

(α&β) · γ 6= 0. More, α&(β · γ)
(16)
= (α&β) · γ 6= 0 and thus α ∼C β · γ.

Ex.: a ∼C b then a ∼C b · c. 2

3. α ∼C β ⇒ α ∼C α + β and β ∼C α + β.

Proof: We prove only the first part as the second implication is sim-
ilar. α ∼C β ⇒ α&β 6= 0 which means that (α&β) + (α&α) 6= 0 as it
does not matter what is the second argument of the + as long as the
first argument is different from 0. From (14) we get α&(β + α) 6= 0

which by definition is α ∼C α + β. 2
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4. α ∼C β ⇒ α ∼C α&β and β ∼C α&β.

Proof: α ∼C β ⇒ α&β 6= 0 together with reflexivity of ∼C we have
α&β&α 6= 0 which by definition α ∼C α&β.

Ex.: a ∼C b then a ∼C a&b ∼C b. 2

3 Standard Interpretation using Trees

We give the standard interpretation of the actions of A by defining a homo-
morphism ICA which takes any action of the CA algebra into a corresponding
rooted tree and preserves the structure of the actions given by the construc-
tors. Before this, we define what are rooted trees and the operations we
consider over them.

3.1 Rooted trees

In this section we give the definition of rooted trees and give several operations
over rooted trees.

Definition 3.1 (rooted tree). A rooted tree is an acyclic connected graph
(N , E) with a designated node r called root node. N is the set of nodes and
E is the set of edges (where an edge is a pair of nodes (n,m)).

An alternative definition of trees comes from ordered sets theory: a rooted
tree is a partially ordered set (N , <) of nodes such that for each node n ∈ N
all the nodes m ∈ N less than n with respect to the order < (i.e. m < n) are
well-ordered2 by the relation <, and there is only one least element r called
the root node. In this definition the nodes m are called the ancestor nodes of
node n, and their property of being well-ordered gives the intuitive property
of nodes in a tree (except the root node) to have one and only one parent3

node. Because of the partial order on the nodes of the tree we consider that
we have directed edges (i.e. the tree is a special directed graph), with the
direction of the edges going from the root node to the higher nodes with
respect to the partial order. Note that there cannot be two edges (n,m) and
(m,n) in the same tree. All nodes {m | (n,m)} are called the descendents (or
children) nodes of n. The siblings of a node m are all the nodes which have

2The well-ordering of the set N = {m |m < n} with respect to the partial order <

means that the partial order < transforms into a total order on N and for each subset
S ⊂ N there exists a least element with respect to the total order.

3A node m is the parent of node n iff m < n and ∄k ∈ N s.t. m < k and k < n.
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Figure 1: Examples of finite rooted trees with labeled edges.

common parent with m; i.e. sibl(m) = {m′ | (n,m), (n,m′) ∈ E}. Note that
the root node has no siblings.

We consider rooted trees with labeled edges; i.e. each edge (n,m) has
associated a label α. We denote the labeled directed edges of the tree with
(n, α,m) and the tree with (N , E,A). The labels α are multisets of basic
labels of A; e.g. α1 = {a, b} or α2 = {a, a}, or α2 = {a} with a, b ∈ A. For
the sake of notation we use a instead of the singleton set {a}. Comparing two
labels α and β for equality means comparing the two associated multisets.
We denote by τ the special empty label that is the empty multiset. When
the label is not important (i.e. can be any label) we may use the notation
(n,m) instead of (n, α,m) ∀α ∈ A.

We restrict our presentation to finite rooted trees. This means that there
is no infinite chain of nodes r < n1 < n2 . . . (or equivalently, there is no
infinite path in the directed graph starting from the root node). Such chains
are called branches of the tree. The final nodes on each branch are called
leaf nodes. The height of a tree T denoted h(T ) is the number of edges in
the longest branch of the tree that are not labelled by τ .

Definition 3.2 (Tree isomorphism). Two trees T1 = (N1, E1,A1) and T2 =
(N2, E2,A2) are isomorphic, denoted T1

.
= T2, iff A1 = A2 (the labels are the

same), and there is a bijective function rn : N1 → N2 s.t. rn(root1) = root2
and ∀(n, α,m) ∈ E1 then (rn(n), α, rn(m)) ∈ E2.

Equivalently, we say that the relation
.
= denotes the equality modulo re-

naming of the nodes between two rooted trees. Besides modulo renaming of
the nodes the relation

.
= is based on the usual equality on rooted trees where

for example the branches of a tree are not ordered.
Examples of rooted trees with labeled edges are given in Figure 1:
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i. ({r}, ∅, ∅) - the tree with only one node the root, and no edges;

ii. ({r, n}, {(r, α, n)}, {α}) - the tree with only one edge;

iii. ({r, n,m}, {(r, α, n), (r, β,m)}, {α, β}) - the tree with two edges coming
from the root r;

iv. ({r, n,m}, {(r, α, n), (n, α,m)}, {α, β}) - the tree with only one path of
two edges;

v. ({r, n}, {(r, τ, n)}, {τ}) - the tree with only one edge labeled by the
empty label τ .

In the following we define some operations on rooted trees. We consider
the classical notion of subtree. The first operation is the join of two trees
and we denote it by ∪. Take two trees T1 = (N1, E1,A1) with root r1 and
T2 = (N2, E2,A2) with root r2 as in Figure 2. Note that the two sets of
nodes are disjoint (thus also the sets of edges are disjoint), where the two
sets of labels may have elements in common. Joining T1 and T2 consists in
the following steps:

1. join the two root nodes r1 and r2 into a single root node (call it r12);

2. make the union of the two sets of nodes N12 = N1 \ {r1} ∪N2 \ {r2} ∪
{r12}, and the union of the two label sets A12 = A1 ∪A2;

3. add to the empty set of edges E12 the edges on the first level of the two
trees, i.e. E12 = {(r12, n) | (r1, n) ∈ E1} ∪ {(r12, m) | (r2, m) ∈ E2};

4. for each two edges in E12 labeled with the same label ((r12, α, n) and
(r12, α,m)) keep only one edge in E12 and do the same joining operation
for the subtrees with roots n respectively m (in the case when one of
the subtrees has only the root node n and the other has several edges
then consider the tree with only one root node as the expanded tree
with only one edge (n, τ, n′ :W )). For all other single edges (r12, k) just
add to E12 all the edges of the subtrees with the root node k.

Note that the height of the new tree is the maximum of the heights of the
two joined trees: if we have h(T1) and h(T2) then h(T12) = max(h(T1), h(T2)).

The second operation is the concatenation of two trees and we denote
it by .̂ Take the two trees T1 and T2 as before. The picture in Figure 3
illustrates this operation. To concatenate T1 with T2 follow the steps:

1. take the resulting tree T12 to be T1 for start. That means that N12 =
N1, E12 = E1, and A12 = A1.
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Figure 3: Concatenation of two rooted trees.

2. replace each of the leaf nodes of T12 with the whole tree T2. This means:

(a) replace each edge (n,m) with node m a leaf node of T12 with
(n, r2);

(b) remove each leaf node from N12;

(c) add all the nodes of T2 to N12 renaming them such that each node
in N12 has a different name;

(d) add all the edges of E2 to E12 with the nodes names changed
accordingly to step 2c.

After the concatenation operation the new tree T12 has the hight equal
to the sum of the heights of the two trees: h(T12) = h(T1) + h(T2).

A third operation over our rooted trees is the concurrent join which we
denote by ‖. Concurrent joining involves also manipulating labels (basically
union and comparison of multisets). The procedure of concurrently joining
two trees T1 and T2 taken as before consists in the following steps:
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Figure 4: Example of concurrent join of two rooted trees.

1. join the two root nodes r1 and r2 into a single root node and call it r12;

2. take the edges on the first level of each tree {(r12, α1, n1) | (r1, α1, n1) ∈
E1} and {(r12, α2, n2) | (r2, α2, n2) ∈ E2} and combine them as follows:

(a) combine the labels αi two by two.4 Each new label α′ = α1 ∪ α2

is the multiset union of the two component labels.

(b) add a new edge (r12, α
′, m) to E12 and the new node m to N12;

(c) for each two edges (r12, α1, n1) and (r12, α2, n2) of the old edge sets
combined as in step (a) continue recursively to concurrently join
the two subtrees with the roots in the nodes n1 and n2 and put
the root of the new tree in the new node m created in step 2b.

(d) for each two new edges (r12, α
′, m1) and (r12, α

′′, m2) of E12, if
α′ = α′′ then unify the two edges into one and make the join of
the two new trees with roots in m1 and m2 created in step (c).

The height of the new tree is the maximum of the heights of the two
combined trees. This is because none of the steps (a)-(c) do not add to the
height of the new tree, and also the join in step (d) preserves the height. An
example of concurrent joining of two trees is given in Figure 4.

In the ‖ operation we use the union of two labels which is the union of
the two associated multisets. Note that the empty label τ "vanishes" when
is joined with another label because τ is the empty multiset and ∅ ∪ {. . .} =
{. . .}. We sometimes abuse the notation and instead of the union of two labels
α ∪ β (as they are considered multisets of basic labels) we just write {α, β}.
Moreover, the τ label is often omitted so we consider {τ, α, β} = {α, β}.

4As in a cartesian product of two sets.
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For our purpose of giving a standard interpretation for CA in Section 3.2
we need to be able to interpret the special actions 1 and 0, and therefore
we make our rooted trees more particular. Each tree has two kinds of nodes
that we distinguish by colors: the normal nodes (we have seen until now) are
called white nodes and the new kind of special nodes are called black nodes.
The black nodes are treated different (as we see below) and are found seldom
in a tree. Note that the operations on trees must preserve the colors of the
nodes. We sometimes use the notation n : B and n : W to denote the fact
that node n is black or white respectively. The exact use of black nodes will
become clear in Section 3.2.

Let us denote by RT the set of rooted trees. All the rooted trees in
this set are created from a set of minimal trees using the operations join,
concatenation, and concurrent join that we have defined in this section. The
set of minimal rooted trees is denoted by RT B and contains the trees formed
only of one root node, and the trees with only one edge labeled with a basic
label of A or τ . Thus the number of basic trees is |RT B| = |A| + 2.

We give a normalization technique called pruning a tree which refers
mostly to the empty label τ and to the black nodes.

Definition 3.3 (pruned tree). A pruned tree is a rooted tree obtained from
any rooted tree with black and white nodes and τ edges by applying the four
steps of the procedure below in that specific order.

1. contract all the τ labels on each path as follows:

(a) for sets {τ, α, . . .} the τ "vanishes", i.e. we write the label {α, . . .};

(b) for all edges (m, τ, n :W ) labelled with τ s.t. n is not a leaf node
with siblings, remove the edge (and combine the two nodes of the
endge into one) unless 1c;

(c) if the tree has only one edge (r, τ, n :W ) then do nothing;

2. for each black node n:

(a) first remove the subtree with root n;

(b) afterwards label the edge (m,α, n) with τ , where α is an arbitrary
label;

3. for each edge (m, τ, n) with n a black node do either of:

(a) if ∄(m,α, n′) a different edge with an arbitrary label α then remove
the one edge before m, i.e. remove (k, β,m);
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(b) if ∃(m,α, n′) a different edge with an arbitrary label α then remove
(m, τ, n);

4. repeat step 3 as long as possible.

The above procedure refers mostly to the empty label τ and to the black
nodes. Consider the set RT pruned ∈ RT a subset of rooted trees which
contains only pruned rooted trees obtained by application of this procedure
which we denote by the function Prune : RT → RT pruned. Consider each

tree to be pruned. After performing one of the operations ∪, ,̂ or ‖ the new
tree may no longer be pruned, therefore we need to perform the pruning of
the new tree every time.

The height function h defined earlier is applied to pruned trees and has
one special case for the tree with only one edge labeled with τ ; for these trees
(with a white or black node) it returns the height 0.

Proposition 3.1 (Characterization of pruned trees).

1. Any pruned tree either contains no black nodes, or it is the tree with
only one edge (r, τ, n : B) labeled with τ and ending in a black node.

2. A pruned tree has no label α which contains τ unless α = τ and it labels
an edge (n, τ,m :W ) and m is a leaf node with siblings or it is the tree
with only one edge (r, τ, n).

Proof: We prove the first part of the proposition.
The proof follows the steps in Definition 3.3 which deal with black nodes;

i.e. steps 2, 3, and 4. The proof shows that these steps are suficient to
eliminate all the black nodes in the trees. Step 2 is applied once in two
stages by checking each node in the tree: in the first stage (corresponding to
step 2a) all the branches of the tree which contain a black node are trimmed
such that the black node is the last node in the branch. The second stage
(corresponding to step 2b) takes care that there is no transition which ends
in a black node and is labeled with a compound action (i.e. every edge ending
in a black node is labeled with τ).

Step 3 is applied several times until the stopping condition is satisfied.
The repeted application of step 3 is assured by step 4. The application of step
3 basically tries exhaustively to remove black nodes. The efective removing of
the black nodes is done in step 3b. Step 3a shortens any branch containing
a black node such that to reach a condition when to apply step 3b. The
stopping condition is:

• Either there is no black node remained and thus the first statement of
the first part of the proposition is satisfied.
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• or there exists a black node n of an edge (m, τ, n) and there is no other
edge (m,α, n′) (i.e. no adjacent edge, thus step 3b cannot be applied)
and also there is no edge (r, α,m) (i.e. no edge before , thus step 3a
cannot be applied); and thus the second statement of the first part of
the proposition is now satisfied.

The proof of the second part of the proposition is based on arguments we
just made for the proof of the first part.

The τ labels are removed in stepf 1 almost completely. Step 1a does
not distinguish between black and white nodes thus there remains no label
α containing τ . There remain only edges labeled by only τ . Step 1b then
removes from these remaining edges all the ones which are labeled with a
white node. The step ignores only two kinds of edges: first is the case when
the tree is only a single edge, i.e. condition in 1c, and thus we have proven
the second part of the proposition. The second case is given by the condition
in step 1b and all the τ -labelled edges which end in a leaf node that has
siblings are not removed. But this is the first part of the statement in part
two of the proposition and thus we finish the proof.

There are stil the step 2b which might introduce τ labels. But all these
edges are removed in step 3 unless the second condition of the first part of
this proposition is satisfied; i.e. the tree remains with only a single edge
(r, τ, n : B). Nevertheless we are respecting the second statement of the
second part of the proposition and thus we finish the proof. 2

3.2 Standard interpretation of CA over rooted trees

In this section we give a standard interpretation of the elements of the algebra
CA and of the algebraic operators using the rooted trees and the operations
defined in Section 3.1. For this we construct a map ICA which takes every
action of CA into a rooted tree and preserves the structure imposed by the
constructors. This means that ICA is the homomorphic extension of ĪCA :
AB ∪ {0, 1} → RT which is the map over the generators of CA.

1. The definition of ĪCA(a) for basic actions a ∈ AB returns a basic rooted
tree Ta = ({r, n}, {(r, a, n)}, {a}) with only one edge labeled with a and
with n : W a white node.

2. For the special actions 1 and 0 we have respectively the trees:

(a) ĪCA(1) = ({r, n}, {(r, τ, n)}, {τ}) with n : W

(b) ĪCA(0) = ({r, n}, {(r, τ, n)}, {τ}) with n : B
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Informally the skip action 1 means not performing any action and its
interpretation as an edge with an empty set of labels goes well with the
intuition. The fail action 0 is interpreted as taking the path into a black
node.

We now extend ĪCA from basic actions to compound actions of A using
induction, and obtain a homomorphism ICA : CA → RT .

3. ICA(α + β) = ICA(α) ∪ ICA(β);

4. ICA(α · β) = ICA(α)̂ ICA(β);

5. ICA(α&β) = ICA(α)||ICA(β).

We still need to take care of the conflict relation #C of the algebra with
respect to the concurrency operator &; i.e. we need to interpret the fact that
a&b = 0 if a#C b. It is easy to define the same compatibility relation over
the basic actions of the algebra for the labels of the rooted trees. With this
definition we enforce each label of an edge of the form (m, {α, β}, n) with
α#C β and n : W to be replaced by the τ label and n : B becomes a black
node.

Note that the length of an action of CA corresponds to the height of
the interpretation of the action as a rooted tree. Because we always prune
the trees (and work only with pruned trees) we consider the function ÎCA :
CA → RT pruned which is defined as ÎCA = Prune ◦ ICA. Note that ÎCA is
not a homomorphism and can be proven by giving a counter example to the
requirement ÎCA(α + β) = ÎCA(α) ∪ ÎCA(β).5 This means that the function
Prune is not homomorphic which means that after composing two pruned
rooted trees the function Prune has to be applied again. On the other hand
Lemmas 3.2, 3.3, and 3.7 give other useful properties of the Prune function.

Lemma 3.2. If Prune(T1) = Prune(T2) and T ′
1 and T ′

2 are subtrees of
respectively T1 and T2 s.t. there is the same path from rT1

to rT ′
1

and from
rT2

to rT ′
2

which contains no black node, then Prune(T ′
1) = Prune(T ′

2).

Proof: We do not have a complete formal proof of this result but we
strongly believe in its validity and thus we conjecture it here. 2

Lemma 3.3. The function Prune preserves the substitution property of the
equality = on guarded trees.

Take [op] ∈ {∪, ,̂ ‖} then
if Prune(T1) = Prune(T ′

1) and Prune(T2) = Prune(T ′
2) then

Prune(T1[op]T2) = Prune(T ′
1[op]T

′
2).

5The counterexample is ÎCA(a + 0) 6= ÎCA(a) ∪ ÎCA(0).
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Proof: The proof considers three cases, one for each operator over the
rooted trees. In each case it will analyze the behavior of each step in the
Prune function of Definition 3.3.

Case 1 (for ∪). We need to prove that Prune(T1∪T2) = Prune(T ′
1∪T

′
2).

We need first to take a careful look at the operator ∪. It is clear that the
operator does not change the labels of the edges of the old trees. Moreover,
the ∪ operator just takes the sets of edges on each level of the two trees and
puts them together acting only in the case when two edges are the same (are
labelled the same). When there are two edges labeled the same we have one
special case when one of the subtrees is just a single node. In this case the
∪ operation adds one edge labeled with tau and ending in a white node to
the second tree on the first level.

We now use the proof principle reductio ad absurdum to finish the rest
of the proof for this case. Therefore we try to prove the negation of the
conclusion and get a contradiction. We consider that Prune(T1 ∪ T2) 6=
Prune(T ′

1 ∪ T ′
2) and thus ∃(n, α,m) with m : W an edge which makes one

pruned tree different from the other. Without loss of generality consider
(n, α,m) ∈ Prune(T1 ∪ T2). The special case when m : B is a black node is
treated later. Also the second spacial case when α = τ is treated later.

We then investigate the Prune function to note that step 1a takes each
label of each edge and removes the τ and this operation may be done on
parts of the tree, thus applying step 1a of Prune first to T1 and then to T2

is the same as applying step 1a of Prune directly to T1 ∪ T2. All other steps
of the Prune function do not deal with edges labeled by α 6= τ and ending
in a white node. The other steps of Prune will be subject of investigation
later when we treat the special cases mentioned before.

The discussion above about step 1 of Prune and the behavior of ∪ sug-
gests that the edge should have come from one of the initial (unpruned) trees
and thus either (n, α ∪ τ ∗, m) ∈ T1 or (n, α ∪ τ ∗, m) ∈ T2 where by α ∪ τ ∗

we mean that the initial label could have had, or not, a τ inside (which was
removed by the Prune). Note that the special case of ∪ does not matter
here as the edge we consider now is labeled by α 6= τ .

Without loss of generality consider (n, α ∪ τ ∗, m) ∈ T1. Thus, we apply
Prune(T1) = T̂1 and Prune(T ′

1) = T̂1, which means that (n, α,m) ∈ T̂1, and
thus we conclude that (n, α ∪ τ ∗, m) ∈ T ′

1. Moreover, the edge (n, α ∪ τ ∗, m)
will still be in the join T ′

1 ∪ T ′
2 of the two trees. Because m : W is a white

node by Prune(T ′
1∪T

′
2) the edge (n, α,m) will still be in the resulting pruned

tree. This is a contradiction with the initial (wrong) assumption and thus
the original conclusion of the case is true.
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Figure 5: Example for the special case of the tree T1 ∪ T2 which is pruned
into T0.

The rest of the proof treats the special cases of the pruned trees which
are given in Proposition 3.1. We treat now the case when the edge that
makes one pruned tree different from the other is (r, τ, n : B). From the
first statement of the Proposition 3.1 we know that by applying Prune all
the black nodes are removed with the exception when the remaining tree
has only a single edge (therefore, is the tree representing 0). The special
case mentioned before is when after pruning (without loos of generality)
Prune(T1 ∪ T2) = ({r, n}, {(r, τ, n :B)}, {τ}) = T0. By analyzing the Prune
function it is clear that the only way to obtain such a pruned tree is if the
original T1 ∪T2 has a black node on each path (as the black nodes propagate
upwards, and the only way for a black node to dissapear is when it has
siblings which are white nodes, which is not the case here). Looking at the
definition of ∪ it is clear that each of the T1 and T2 also have on each path a
black node (the special case of ∪ mentioned before clearly does not influence
this observation). Therefore Prune(T1) = Prune(T2) = T0 = Prune(T ′

1) =
Prune(T ′

2). Therefore each tree T ′
1 and T ′

2 has a black node on every path
and thus Prune(T ′

1 ∪ T
′
2) = T0 which is a contradiction and thus the case is

finished. This discussion is pictured in Figure 5.
The las case that we need to treat is when the edge that makes the

two pruned trees different is when the edge is labeled by τ . By the second
statement of the Proposition 3.1 we know that this edge is of two types:

1. Either the edge is the only edge of the tree, and thus Prune(T1∪T2) =
({r, n}, {(r, τ, n : W )}, {τ}) = T1. After a cloose look at the Prune
procedure and the ∪ operation it is clear the Prune(T ′

1 ∪ T ′
2) = T1
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which is a contradiction and thus the case is proven.

2. On the other hand the edge can be a terminal edge which has other
adjacent edges.

Case 2 (for ̂ ). We need to prove that Prune(T1̂ T2) = Prune(T ′
1 T̂

′
2).

We first look at the behavior of ̂ which just appends the second tree to
each leaf of the first tree. We again analyze the behavior of Prune w.r.t. ̂

operator.
Note that applying Prune to T1̂ T2 behaves as applying first Prune to the

second tree T2 and then applying Prune to the first tree so that to obtain in
both cases (i.e. Prune(T1̂ T2) and Prune(T ′

1 T̂
′
2)) the same pruned tree. We

still need to be careful to one thing. For each black node (cf. step 2) we have
to remove the subtree. In this case we take a look at the first trees T1 and T ′

1

which may have at the leafs different black nodes. Anyway, because we have
the same pruned tree T̂1 which by Proposition 3.1 has no black nodes then
we do not care which subtrees (corresponding to the different black nodes in
the different trees T1 and T ′

1) from the big concatenated trees are removed,
as in the end we ramain with the same leafs for the upper part of the trees.
The only remaining problem is when the pruned upper trees are the basic
tree with one edge labeled by τ and ending in a black node. In this case the
pruning of the whole big trees will end up in the same basic tree with one
edge labeled by τ and ending in a black node (which models the action 0).

Case 3 (for ‖). We need to prove that Prune(T1 ‖ T2) = Prune(T ′
1 ‖ T

′
2)

in the hypothesis that Prune(T1) = Prune(T ′
1) and Prune(T2) = Prune(T ′

2).
Note that ‖ operator manipulates the labels of the trees adding to the new
tree new compound labels to the edges. This makes the investigation of this
case more dificult. Note more, that the ‖ operator is applied in stages on
each level of the trees. Therefore we consider first the behavior of Prune on
each level w.r.t. ‖ operator.

A fact is that after pruning of the small trees (T1, T
′
1, T2, T

′
2) their respec-

tive first levels will contain exactly the same edges with the same labels (i.e.
T1 with T ′

1, and T2 with T ′
2). A first question is: Knowing the fact above, is it

the case that after pruning the big trees (i.e. T1 ‖ T2 and T ′
1 ‖ T

′
2) we obtain

at each level inductively the same edges labeled with the same compound
labels?

We prove the question by reductio ad absurdum: suppose in one of the
big trees there is one edge different (i.e. which does not appear in the other
tree at the same level). Take edge (r, α, n) ∈ T1 ‖ T2. Note also that after
pruning there is no compound label which contains the τ . This fact is easily
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Figure 6: Example for Lemma 3.3.

proven by looking at Definition 3.3. Therefore, α does not contain τ and is
the result of union of two compound labels αT1

and αT2
of the same level

in the two trees. The labels αT1
and αT2

are also sets of basic actions and
do not contain τ . Note that Prune does not add new basic actions to the
labels of the trees, nor does it remove basic actions from the compound
labels6. Therefore, αT1

∪ τ ∗ must have been a label of T1 which because
Prune(T1) = Prune(T ′

1) it means that αT1
must be also a label of T ′

1 at the
same level. The same argument is valid for αT2

which must be a label of T ′
2

at the same level. Therefore, in the compound tree T ′
1 ‖ T ′

2 there must be
at the same level a label formed just of αT1

, αT2
and possibly τ (which after

pruning is removed). This is in contradiction with our supposition that there
is no label α at the same level in the pruned tree of T ′

1 ‖ T
′
2.

We want to analyze one more delicate case when at one level there is an
edge labeled just with τ and it ends in a black node (the most simple case
is pictured in Figure 6). One may say that this edge would insert in the
big trees new and different edges labeled with τ ∪ αTi

where αTi
is a label

of an edge in the other tree. This is true, but such an edge ends in a black
node and is subject to the sequence of steps 2a, 2b, and 3b from the Prune
function which removes the edge in the pruned tree.

This concludes the proof of the third case and of the lemma. 2

Lemma 3.3 suggests the following result.

Corollary 3.4. ∀α, α′, β, β ′ ∈ CA if ÎCA(α) = ÎCA(α′) and ÎCA(β) = ÎCA(β ′)
then ÎCA(α[op]β) = ÎCA(α′[op]β ′) where [op] ∈ {+, ·,&}.

Theorem 3.5 (Completeness of CA over RT ).
For any two actions α and β of A then α = β is a theorem of CA iff the

corresponding trees ÎCA(α) and ÎCA(β) are isomorphic.

6The removing is done only in the special steps and it removes labels all together with
the edge.
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Note: logicians would call the forward implication the soundness and the
backword implication the completeness.

Proof: The forward implication (⇒) can be rewritten as:
CA ⊢ α = β ⇒ ÎCA(α)

.
= ÎCA(β).

We use induction on the derivation and prove as base case that the im-
plication holds for the axioms of CA. The rooted trees in the theorem are
only pruned trees. Thus, after the standard interpretation generates a tree,
then the tree is pruned.

We consider the usual basic rules of equational reasoning which are re-
flexivity, symmetry, transitivity, and substitution.

We have as basis step of the induction the axioms of Table 1 and we take
a case for each axiom.

For the next four cases related to axioms (1)-(4) we are looking at the ∪
operator on rooted trees. The main behavior of ∪ is that for each level of the
tree it combines any two edges with the same label and proceeds the same
for the subsequent levels. So, if we may regard the edges of one level of a
tree as a set of edges one can easily see that ∪ makes the union of the edges.7

We know that union for sets is associative, commutative and idempotent.

Case 1 (axiom (1)). Let α = α1 + (α2 + α3) and β = (α1 + α2) + α3.
Because ICA is homomorphic then ICA(α) = ICA(α1)∪(ICA(α2)∪ICA(α3)) and
ICA(β) = (ICA(α1) ∪ ICA(α2)) ∪ ICA(α3). Following the discussion above, for
ICA(α) the ∪ operator, for each level of the trees first identifies the common
edges of ICA(α2) and ICA(α3) and combines them and afterwards combines
the remaining edges with the common ones of ICA(α1) and proceeds to the
next levels. This behavior results in the same edges for the ICA(β) where
first the common edges of ICA(α1) and ICA(α2) are identified, which are part
of the edges identified in the second combination for the ICA(α) before. In
the next step ∪ combines the edges also common to ICA(α3).

Case 2 (axiom (2)). For commutativity it is simple as ∪ has also a
commutative behavior and also think of the discussion before.

Case 3 (axiom (3)). Form commutativity it is simple to see the first
equality α+0 = 0+α. The second equality α+0 = α is treated at the level of
Prune function. Note that the tree ICA(0) is the tree with one edge labeled
with τ and ending in a black node. For this the combination ICA(α)∪ ICA(0)
gives the tree in Figure 7ii. which when applying the Prune function it is
applied the step 3b which removes the newly added edge corresponding to
ICA(0) thus resulting in the same pruned tree and so ÎCA(α + 0) = ÎCA(α).

7Where remember that for sets the union keeps only one copy of each element.
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Figure 7: Example for Case 3.

Case 4 (axiom (4)). For the idempotence it is simple to see that when
joining the tree ICA(α1) with itself we obtain the same tree as all the edges
of one of the trees are removed as being equal with the edges of the first tree.

Case 5 (axiom (5)). This case for α · (β ·γ) = (α ·β) ·γ is simple and we
leave it to the reader. Basically it does not matter in which order the trees
are joined one to the end of the other.

Case 6 (axiom (6)). This case is also treated at the level of the Prune
function by the step 1b of the Definition 3.3 which removes the edges labeled
with τ and ending in a white node. This would correspond to the tree ICA(1).
Thus we have ÎCA(α · 1) = ÎCA(α).

Case 7 (axiom (7)). This case is proven at the level of Prune function
by considering steps 2–3a. The rest of the proof is pictured in Figure 8.

For the part 0 · α = 0 we have to concatenate trees ICA(0) and ICA(α)
into the tree in Figure 8i. The function Prune applies step 2a which removes
the subtree starting in a black node and we obtain the tree T0 and thus
ÎCA(0 · α) = ÎCA(0).

For the part α · 0 = 0 we concatenate to the tree ICA(α) the tree ICA(0),
which means that at each leaf node of tree ICA(α) we attach the tree ICA(0)
which is formed of only one edge labelled with τ and ends in a black node.
A simple example for this second part of the case is pictured in Figure 8ii.
It is simple to see that function Prune applies step 3a for the black nodes at
the leafs of the tree and removes the immediate upper edges (from the tree
ICA(α)). In the next round step 3b is applied. This process of applying the
sequence of steps 3a and 3b goes up the tree until it removes all the edges
and remains with the tree ICA(0).
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Figure 8: Illustration of Case 7.

Case 8 (axiom (8)). Take α = α1 · (α2 + α3) and β = α1 · α2 + α1 ·
α3. Because ICA is homomorphic then ICA(α) = ICA(α1)̂ ICA(α2 + α3) and
ICA(β) = ICA(α1 · α2) ∪ ICA(α1 · α3). Therefore Tα is composed first of the
tree Tα1

and at each leaf it is concatenated the tree Tα2+α3
. On the other

hand tree Tβ has to be a joint of trees Tα1·α2
and Tα1·α3

, which when joining
the suffix trees Tα1

which are equal we obtain the same tree Tα1
at the top

followed at the leafs by the joining of the remaining trees Tα2
and Tα3

. Thus
giving the same tree. Pruning the same tree gives the same pruned tree and
thus ÎCA(α) = ÎCA(β).

The case for axiom (9) is treated similarly.

Case 9 (axiom (10)). We need to prove that ÎCA(α&(β&γ)) =
ÎCA((α&β)&γ). For this case it is suficient to consider only ICA and thus we
need to prove that ICA(α) ‖ (ICA(β) ‖ ICA(γ)) = (ICA(α) ‖ ICA(β)) ‖ ICA(γ)
(as ICA is homomorphic). The behavior of the ‖ operator is to make the
cartesian product of the labels of the trees on each level and then descends
recursively to the other levels to apply the same concurrent join operation.
Because the cartesian product is associative we obtain on each level of the
trees the same edges and for each new edge we use inductively the hypothesis
to obtain the same subtrees. Thus we have the desired conclusion.

Case 10 (axiom (11)). Follows immediately from the commutativity
of ‖ operator; i.e. the fact that the order of the edges of the trees does not
matter.

Case 11 (axiom (12)). This case is proven at the level of Prune function
by the step 1a which removes the τ from the multiset labels thus resulting
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in the same pruned tree.

Case 12 (axiom (13)). This case is proven at the level of Prune function
also by considering steps 2-3a. This is because 0 introduces black notes into
the tree ICA(α).

Case 13 (axiom (14)). For this proof we do not need to take into
consideration the Prune function application as we can manage to show
the following: ICA(α) ‖ (ICA(β) ∪ ICA(γ)) = (ICA(α) ‖ ICA(β)) ∪ (ICA(α) ‖
ICA(γ)). It is known that for sets the cartesian product is distributive over
the union of sets. Therefore, in our case we get in both big trees the same
new edges at each level. We need to take care only of the common parts
of the trees. In the left tree the ∪ operator joins the two subtrees for each
common edges and afterword the edge is combined with the edges in the tree
ICA(α) and the subtrees are also combined thus offering the oportunity to
apply inductively the same reasoning. For the tree on the right first the ‖
operator combines the edges of the trees and because of the fact above we will
have the same set of identical edges which will join the subtrees (obtained
by concurrent composition ‖). Thus, applying the hypothesis inductively we
obtain the same trees.

The case for axiom (15) is treated similarly.

Case 14 (axiom (16)). The proof is natural as it basically states that
the concurrent join ‖ operates on levels of the tree and then descends to the
subsequent levels until no more join is possible and from that point on the
remaining part of the tree is just copied.

For the inductive step we have the following cases corresponding to the
derivation rules:

Case 1 (reflexivity). CA ⊢ α = α then because ÎCA is a function it is
imeediate by the definition that ÎCA(α) = ÎCA(α) and thus ÎCA(α)

.
= ÎCA(α).

Case 2 (symmetry). If CA ⊢ α = β then CA ⊢ β = α, where
by the induction hypothesis we have that from CA ⊢ α = β implies that
ÎCA(α) = ÎCA(β). We know that the equality

.
= on rooted trees is symmetric

and thus we have the conclusion CA ⊢ β = α⇒ ÎCA(β)
.
= ÎCA(α).

Case 3 (transitivity). If both CA ⊢ α = β and CA ⊢ β = γ then
CA ⊢ α = γ. The proof argument is similar to that in Case 2 and is based
on the fact that

.
= is transitive.
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Case 4 (substitution). We must consider each of the three operators
on action +, ·,&. We look only at + where if CA ⊢ α = α′ and CA ⊢ β = β ′

then CA ⊢ α + α′ = β + β ′. By the induction hypothesis we have that
ÎCA(α) = ÎCA(α′) and ÎCA(β) = ÎCA(β ′) which by Lemma 3.3 we have our
conclusion ÎCA(α + α′)

.
= ÎCA(β + β ′).

For the converse implication (⇐) of the theorem we need to prove that
the standard interpretation restricted to pruned tress ÎCA is an isomorphism.
This means that if ICA(α) is applied to action α it returns a normal rooted tree
Tα which is then pruned and from the pruned tree one can get by applying the
inverse function another action α′. The obtained action α′ has to be equal by
the axiom system with the original action α = α′. Having this isomorphism
then from two actions α and β we get the same tree Tγ from where we
translate back to the same action γ = α = β which is our conclusion.

Remember that the term algebra TCA is free in the class of algebras over
the generators AB. The fact that ÎCA is an algebraic isomorphism makes
the RT algebra also free in the class of algebras CA, which means that any
property on the rooted trees holds on the action terms and the converse.

First we take the usual way of defining a relation induced by the equality
on action terms and the derivation relation ⊢.

Definition 3.4. Consider the relation ≡⊆ TCA × TCA defined as:
α ≡ β ⇔ CA ⊢ α = β

The proof that ≡ is a congruence is classical based on the deduction rules
and we leave it to the reader.

The rest of the proof is based on the following lemma which basically
establishes the existence of the inverse function of the standard interpretation
ÎCA thus proving that ÎCA is an isomorphism.

Lemma 3.6 (Existence of the inverse of the interpretation).
There exists a map Î−1

CA : RT pruned → CA which is the inverse map up to

≡ of ÎCA.

Proof: The proof of the lemma involves three parts:

1. ∀T̂ ∈ RT pruned then ∃α ∈ CA

2. ∀T̂1
.
= T̂2 then Î−1

CA(T̂1) = Î−1
CA(T̂2)

The first two guarantee that Î−1
CA is a correctly defined function and

their proof will be part of the construction of Î−1
CA.

3. Î−1
CA ◦ ÎCA = Id/≡ i.e. ∀α ∈ CA then Î−1

CA ◦ ÎCA(α) = α′ and α ≡ α′
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We define Î−1
CA as the restriction of the function I−1

CA : RT → CA to
RT pruned the set of pruned trees. Note that one should not regard the no-
tation I−1

CA as the inverse function of ICA, our intension is just to keep an
intuitive notation. The construction of I−1

CA is first done for the basic trees
and in the second stage it is extended homomorphic to the tree operators.
The set of basic trees (nontrivial ones) contains the trees with only one edge
labeled with a basic action or τ ; i.e. {TB = ({r, n}, {(r, δ, n)}, {δ}) | δ ∈
AB ∪ {τ} and n : W or n : B}. The Prune function transforms all basic
trees with black nodes and a label a 6= τ into a basic tree with label τ . This
means that Î−1

CA is applied only to trees with labels a 6= τ and white nodes for
which it returns the action a ∈ AB, the tree labeled with τ and white node
for which it returns action 1, and to the tree labeled with τ and black node
for which it returns action 0.

The extension of I−1
CA to the tree operators is natural:

• I−1
CA(T1 ∪ T2) = I−1

CA(T1) + I−1
CA(T2)

• I−1
CA(T1̂ T2) = I−1

CA(T1) · I
−1
CA(T2)

• I−1
CA(T1 ‖ T2) = I−1

CA(T1)&I
−1
CA(T2)

With this construction we have proven that I−1
CA is defined on the whole

domain RT and thus Î−1
CA is defined on the whole RT pruned. Now we have

to prove that it returns a unique value for each input, in order to call it a
function.

Note that the definition of Î−1
CA does not take into consideration the names

of the nodes of the trees thus, for any two trees T̂1
.
= T̂2 it will return the

same action. It remains to show that if two trees are equal in the usual sense
(T̂1 = T̂2) than the function Î−1

CA returns the same action. This is obvious as
two equal trees have the same nodes, the same edges (with the same labels),
and thus the same structure. It does not matter the order of the edges of
a node or the order of the basic labels in a compound label, but these are
dealt with at the level of the actions by the commutativity of the + and the
commutativity of the & operators. Consider just the following case when two
branches of a tree are interchanged so to give a second tree. This gives the
same action in the algebra modulo commutativity axiom. We conclude that
Î−1
CA is a well defined function.

Lemma 3.7. Function Prune preserves the relation ≡ on actions, meaning
that ∀T ∈ RT if Prune(T ) = T̂ then I−1

CA(T ) ≡ I−1
CA(T̂ ).

Proof: The proof uses induction on the pruned tree and thus considers
a case for each step in the Definition 3.3 of the Prune function. We inves-
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tigate how Prune changes the tree and how these changes take the action
corresponding to the initial tree into a equivalent action w.r.t. ≡ relatio.

The basis of the induction considers only basic trees RT B for which the
Prune function returns the same tree (i.e. has no efect on the initial tree)
and thus I−1

CA(T ) = I−1
CA(Prune(T )) ⇒ I−1

CA(T ) ≡ I−1
CA(Prune(T )).

The inductive step considers compound trees and makes use of the homo-
morphic definition of I−1

CA considering a case for each step of the Definition
3.3.

• Case for step 1a when the τ is removed from the compound labels.
In this case we consider the initial tree changed only by step 1a which
means that there are no black nodes (and thus steps 2-4 are not applied)
and also there are no edges labeled just with τ (necessary for step 1b).
In this case relevant is composition of trees by means of ‖ operator.
I−1
CA(T ) ≡ I−1

CA(T̂ ) because of the axiom (12) of Table 1. Thus, for a
chain of applications of the step 1a the old action I−1

CA(T ) becomes an

equivalent action I−1
CA(T̂ ) because of a chain of application of axiom

(12).

• Case for step 1b is related to axiom (6). Now we consider inductively
also pruned trees obtained by applying step 1a. Note that for one appli-
cation of step 1b from the old action it is obtained a new action which
is equivalet because of the application of axiom (6). This is because the
edge labeled just with τ and ending in a white node would have been
translated by I−1

CA into the 1 action. This small tree is concatenated
with the big one which because of the homomorphism property of I−1

CA

it is related to the sequence composition α · 1 or 1 · α at the level of
the actions. In conclusion, from a chain o applications of step 1b it is
obtained by a chain of axiom (6) an equivalent action.

• Case for step 1c takes care that the tree which interprets 0 is a
pruned tree (the edge is not removed).

We now consider black nodes, and we look at one black node at a time
and apply the sequence of steps from 2 onwords.

• Case for step 2 is related to axiom (7) and (13). This step basically
states that once entered into a black node it si the same as saying at
the level of the actions that a fail 0 has occured, and thus axiom (7) is
the case. First step 2a removes the tree below the black node (at the
action level is equivalent to 0 ·α = 0) and then in step 2b it transforms
the edge (by changing the label into τ) such that it is translated by I−1

CA

into 0 action.
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• Case for step 3a is related to part α·0 of axiom (7) as it moves up the
branches of the tree the special edge (n, τ,m : B) which is transformed
by I−1

CA into 0.

Note that the last two cases are also related to axiom (13) because the
big tree may be result of concurrent join between ICA(α) and ICA(0).

• Case for step 3b is related to axiom (3). Basically the Prune function
removes the edges (n, τ,m : B) from the tree the same as axiom (3)
removes 0 actions from choices.

Note that the last two steps are applied repetedly, which at the level of
the actions it is the same as moving the 0 action through the action.

2

From Lemma 3.7 we conclude the following useful congruences:

I−1
CA ◦ ICA ≡ I−1

CA ◦ ÎCA (21)

which by restriction implies

I−1
CA ◦ ICA ≡ Î−1

CA ◦ ÎCA (22)

The proof of part 3 of Lemma 3.6 uses structural induction on the struc-
ture of the action α. Proving part 3 we prove that Î−1

CA is the isomorphic

image of ÎCA up to the congruence on actions ≡.

Basis:

• For α = a. ICA(a) = ({r, n}, {(r, a, n)}, {a}) with n : W which by
pruning remains the same tree and by the inverse Î−1

CA we have the
same action a.

• For α = 1 or α = 0 the same as above applies.

Inductive step:

• For α = α1 + α2.

By (22) we have that Î−1
CA ◦ ÎCA(α) ≡ I−1

CA ◦ ICA(α) = I−1
CA(ICA(α1 + α2))

where because ICA is a homomorphism we have that it is equal to
I−1
CA(ICA(α1) ∪ ICA(α2)) where by applying the homomorphic defini-

tion of I−1
CA we get that I−1

CA ◦ ICA(α) = I−1
CA(ICA(α1)) + I−1

CA(ICA(α2)).

Again by equation (22) we have that I−1
CA(ICA(α1)) ≡ Î−1

CA(ÎCA(α1)) and

I−1
CA(ICA(α2)) ≡ Î−1

CA(ÎCA(α2)). By the inductive hypothesis we know
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n1 : W n1 : W

r : W r : W

n2 : B

ICA ÎCA

τ aa
Prune

Figure 9: Example of applying the isomorphism ÎCA.

that Î−1
CA ◦ ÎCA(α1) = α′

1 ≡ α1 and that Î−1
CA ◦ ÎCA(α2) = α′

2 ≡ α2.
Which is equivalent to saying that CA ⊢ α′

1 = α1 and CA ⊢ α′
2 =

α2 which by the substitution rule of equational reasoning we have
that CA ⊢ α′

1 + α′
2 = α1 + α2 which is our desired conclusion; i.e.

Î−1
CA ◦ ÎCA(α) ≡∗ α′

1 + α′
2 ≡ α1 + α2 = α.

• For α = α1 · α2 or α = α1&α2 the reasoning is similar.

Consider as an example the special case when α = a+0 which is pictured
in Figure 9. ICA(α) = ({r, n1, n2}, {(r, a, n1), (r, τ, n2)}, {a, τ}) with n1 :
W and n2 : B. Applying the Prune function we obtain the tree T̂α =
({r, n1}, {(r, a, n1)}, {a}), where applying the Î−1

CA we obtain the action a ∈
CA. We have that CA ⊢ a + 0 = a as an instance of the axiom (3) of Table
1 and thus we have our conclusion α = a + 0 ≡ a = Î−1

CA ◦ ÎCA(α). 2

To finish the proof of the second implication, i.e. ÎCA(α) = ÎCA(β) ⇒
CA ⊢ α = β we make use of Lemma 3.6. From ÎCA(α) = ÎCA(β) we apply
Î−1
CA and obtain α′ = Î−1

CA ◦ ÎCA(α) and β ′ = Î−1
CA ◦ ÎCA(β) with α′ = β ′ as

hypothesis and α ≡ α′ and β ≡ β ′ from Lemma 3.6. Thus we have the
conclusion α ≡ α′ = β ′ ≡ β which is CA ⊢ α = β. 2

We can take another way of viewing the rooted trees as the set of all paths
starting from the root node. This is similar to the way of giving semantics
to actions in process logic [Pra79] where each action is interpreted as a set
of trajectories.

4 The Boolean tests

In this section we extend CA with a Boolean algebra of tests to obtain an
action algebra with tests which we denote by CAT ; we follow the work of
Kozen [Koz97] on defining Kleene algebra with tests.
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The structure CAT = (CA,B) combines the previous defined algebraic
structure CA with a Boolean algebra B in a special way we see in this section.
A Boolean algebra is a structure B = (A1,∨,∧,¬,⊥,⊤) where the function
symbols (∨, ∧, and ¬) and the constants (⊥ and ⊤) have the usual meaning of
disjunction, conjunction, negation, falsity, and truth respectively. Moreover,
the elements of set A1 are called tests and are included in the set of actions
of the CA algebra (i.e. tests are special actions; A1 ⊆ A). We denote
tests by letters from the end of the Greek alphabet φ, ϕ, . . . followed by a
question mark ?. Our notation for tests is more related to the notation used
in Propositional Dynamic Logic (PDL).

For a more clear presentation, we abuse the syntax and use, e.g. (φ ∧
ϕ)? instead of φ? ∧ ϕ?. More generally, we consider ? only at the end of
an expression from A1; i.e. if ψ is a test expression generated using any
combination of the constructors of the boolean algebra then the notation for
the test is just ψ?.

The intuition behind tests is that in an action φ? · α formed of a test
φ? followed by an action α is the case that action α can be performed
only if the test succeeds (the condition φ is satisfied). Tests are sometimes
called guards and have been used to model while programs which involve pro-
gramming constructs like loops and conditionals. For example, consider the
if φ then a else b programming construct. We can model this using tests
as: φ? · a + ¬φ? · b. Some other properties of systems could be modelled by
giving equations involving both actions and tests. For example the following
commutative equation φ? ·α = α ·φ? models an action invariant8; i.e. if φ is
true before action α then we should consider it also true after performing α.

We do not go into details about the properties of a Boolean algebra as
these are classical results in the literature. For a more thorough understand-
ing see [Koz97] and references therein. In the reminder of this section we
present the relation between tests and actions.

The first relation between the CA algebra and the boolean algebra B is
that ⊤? = 1 with the intuition that testing a tautology allways succeeds. The
dual is ⊥? = 0 meaning that testing a falsity never succeeds. Furthermore,
1 ·α = α = ⊤? ·α which is obvious as testing a tautology allways succeeds so
the action α can allways be performed. For the dual we have 0·α = 0 = ⊥?·α
with the intuition that because testing a falsity never succeeds the action α
is never performed (the sequence of actions stops when it reaches the falsity
test).

We consider the sequence actions as strings separated by · constructor.
With the extension with tests we no longer have strings but guarded strings

8Performing any action α does not affect the truth value of proposition φ.
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[Kap69]. A guarded string (in our algebra) is a sequence of actions interplaced
with tests; e.g. φ1? a φ2? φ3? b φ4? is a guarded string (recall that we
sometimes omit the · for brevity). Moreover, note that is not necessary to
have more tests in a row because the sequence of test actions from CA algebra
is pushed inside the boolean algebra and shrunken into only one test with
the use of conjunction operator of B; e.g. φ2? φ3? = (φ2 ∧ φ3)? . Thus a
guarded string is an alternation of tests and actions:

φ0? α1 φ1? . . . αn φn? (23)

Note that a normal string of actions is a guarded string where instead of tests
φi? we have the tautology test ⊤? = 1.

For a better intuition of tests and actions we give the following example.
Take the test φ? to be: "The bank account is less than 500$", and an action
a of "deposit 1000$". We can give the more complex action φ? · a which
states that "when the bank account is less than 500$ deposit 1000$ into the
account". Another example is: φ? to test that "The bank account is less
than 500$" and ϕ? to test that "The bank account is greater than 500$".
The complex test (φ ∧ ϕ)? which (because ϕ = ¬φ) is an instance of the
general falsity test (φ ∧ ¬φ)? never succeeds. The example is that whenever
one waits to "deposit 1000$" after the test (of falsity) (φ∧ϕ)? succeeds then
the action of depositing the money will never be performed.

We extend the definition of the length function to apply it also to tests.
As we have seen the relation between 1 and ⊤? we consider the length of a
test is 0; i.e. l(φ?) = 0. In other words, the length function does not take
into consideration the tests; e.g. l(φ? a) = l(φ? a ϕ?) = 1. Moreover, the
position syntax α(n) skips the tests; e.g. if α = φ1? a φ2? φ3? b φ4? then
α(2) = b.

Other relations between CA and B are:

1. concurrent composition of two tests φ?&ϕ? is (φ ∧ ϕ)? which is the
same as the sequence of two tests.

2. concurrent composition of a test and an action φ?&a or a&φ? is the
same as the sequence of the test and the action φ? · a. An intuitive
motivation for this is that when performing at the same time an action
and a test one expects that the test is satisfied before the completion
of the action; and because we do not have a notion of start and end of
an action we have to consider the test before the action. This approach
is also motivated by the fact that an action can change the world and
thus the test may hold no longer.
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3. concurrent composition of two sequence actions each formed of one test
followed by an actions; i.e. (φ? · a)&(ϕ? · b) which is (φ ∧ ϕ)? · a&b.
Note that this way of concurrently composing sequence of tests and
actions conforms with the axiom (16) of CA. More precisely, recall
that the length function (and the position syntax) for guarded strings
of actions do not take into consideration the tests. Thus, in the general
concurrent composition of two guarded strings φ0? α1 φ1? . . . αn φn?
and ϕ0? β1 ϕ1? . . . βm φm? the axiom considers pairs of (φ0? ·α1)&(ϕ0? ·
β1).

Example 4.1. Let us consider some simple examples.

i. The action a&(ϕ? ·b) is an instance of the case 3. above where action a
is preceded by test ⊤?. Thus, the action is the same as (⊤∧ϕ)?·(a&b) =
ϕ? · (a&b).

ii. An example of the distributivity axion (9) of Table 1 is the action (a+
φ?) · b which is equivalent to a · b+ φ? · b.

iii. The action (a&φ?) · b transforms using the case 2. above into φ? · a · b.

The syntactic structure of the actions in CAT is given through defining
the term algebra TCAT . In the following we define inductively two kinds of
terms: the boolean terms and the action terms. The carrier set of the term
algebra TCAT is the set of all action terms.

Definition 4.1 (action terms of CAT ).

1. ⊤? and ⊥? are boolean terms;

2. if φ? and ϕ? are boolean terms then (φ ∧ ϕ)?, (φ ∨ ϕ)?, and ¬φ? are
boolean terms;

3. nothing else is a boolean term;

4. any boolean term is an action term;

5. any basic action a ∈ AB is an action term;

6. if α and β are action terms then α&β, α · β, and α + β are action
terms;

7. nothing else is an action term.
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Figure 10: Example of concatenation of two guarded rooted trees.

4.1 Standard interpretation of CAT over guarded rooted

trees

In this section we extend the rooted trees of Section 3.1 with tests and call
them guarded rooted trees. On this trees we give the standard interpretation
of the CAT algebra.

The extension is simple by associating with each node a boolean expres-
sion φ. We denote the new nodes by n : {φ} where φ is generated by the
Boolean algebra B of Section 4. The two colors of the nodes are now special
cases in the extended trees: a white node is n : {⊤} and the black node is
n : {⊥}.

All the constructions for rooted trees are the same with minor modifica-
tions. The operators ∪, ,̂ and ‖ for guarded rooted trees when combining two
nodes n1 : {φ} and n2 : {ϕ} make the conjunction of the Boolean expressions
into n12 : {φ ∧ ϕ}. The pruning procedure also adheres to this conjunction
of the Boolean expressions of the two nodes that need to be combined.

Example 4.2. We give in Figure 10 an example of concatenating two trees;
the first representing an action a and the second consisting of an empty label
τ and a test φ. The resulting guarded rooted tree represents the action of
performing a after which the Boolean expression φ is tested. Note that in a
first step the two trees are just combined using the concatenation operation
and only afterwards the tree is pruned by removing the τ edge. In the first
step the combination of the nodes n1 and r2 into m gives the expression
⊤∧⊤ = ⊤. After pruning of the tree the nodes m and n2 are combined into
p with the resulting conjunction ⊤ ∧ φ which is the same as just φ.

The standard interpretation of CAT algebra over the guarded rooted trees
is given through a map ICAT which maps every action term of TCAT into a
guarded rooted tree and preserves the structure imposed by the constructors.
ICAT is the same as ICA of Section 3.2 with the following differences:
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1. for basic actions a ∈ AB the white nodes of the trees are replaced by
nodes with the ⊤ expression inside; i.e. r : {⊤} and n : {⊤}.

2. the special actions 1 and 0 have the white nodes replaced with ⊤ and
the black node with ⊥; i.e. n1 : {⊤} and n0 : {⊥}.

3. the tree operators are changed as discussed above.

4. the major difference is that ICAT interprets test φ.

ICAT (φ) = ({r, n}, {(r, τ, n)}, {τ}) and n : {φ} is the tree with one edge
labeled with τ and the leaf node has φ inside.

As we have discussed there is only one test needed between any two
actions in the CAT algebra. At the level of the guarded trees this is respected
because of the pruning and of the conjunction of the expressions inside the
combined nodes. The interpretation of tests gives trees with hight 0 (as we
have seen for 1 and 0 earlier). Note that we can still interpret an action
formed of only one test.

We conjecture here that the algebra CAT is complete with respect to the
guarded rooted trees, and the proof is similar to the proof of the correspond-
ing Theorem 3.5 for CA algebra.

5 Canonical Form of Actions

It is known that for regular expressions there is no standard normal form;
for example, see the Starr-Height problem [Egg63] which looks at regular
expressions normal forms from the perspective of Kleene ∗. Similarly, there
is no action normal form for the action algebra of PDL.

A first attempt to identify a normal form for the classical action operators
of Kleene algebra choice ∪, sequence ;, and Kleene star ∗ underlying PDL is:

α = ∪
a∈A

a;α′

where α is a compound action, a is an atomic action, A is a subset of atomic
actions, and α′ is in normal form. For the semantics of actions given with
trajectories, as in Process Logics [Pra79] this way of representing actions
gives all the trajectories of an action.

The problem with this definition is that it takes into account the ∗ oper-
ator which has an infinitary interpretation as the reflexive transitive closure
on binary relations. Looking at its unfolding a∗ = 1+a+a ·a+ . . . it respects
the normal form above. But, when we take one of the equations that define
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it; a∗ = 1+a ·a∗ it is clear that we can not prove the existence of the normal
form. This is because the normal form of α = a∗ would be based on the fact
that α′ = a∗ is in normal form, and we get nontermination.

For our action algebra CAT defined in Section 2 we have a canonical form
similar to the one above. The definition below shows how any action term
constructed by the term algebra TCAT can be written in a concise and clear
way.

Definition 5.1 (canonical form for CAT ). For actions α defined with the
operators +, ·, &, and tests we have a canonical form denoted by ACF α and
defined as

α = +
ρ∈R

ρ · α′

Where R contains elements either from basic actions, concurrent actions,
or tests, and α′ is a compound action in canonical form.

Theorem 5.1. For every action α of the algebra CAT we have a correspond-
ing ACF α.

Proof: We use structural induction on the structure of the actions of A
given by the constructors of the algebra. In the inductive proof we take one
case for each action construct. The proof also makes use of the equations of
the algebra.

Basis:

a) If α is a base action a of AB it is immediately proven to be in canonical
form just by looking at the definition of the canonical form. Action a
is a canonical form with the set R containing only one element, namely
a and the · constructor is applied to a and to skip action 1 (a · 1 = a).
Note that we appeal to the common sense and the choice (+) of only
one action (+a a) should be understood as choice among fail action 0

and a (+a a
def
= 0 + a = a).

b) If α = φ? is a test of B then it is considered in ACF α by definition. This
case is similar to the one for base actions. The set R of the canonical
form contains only one test, and the action α′ is the skip action which
is in canonical form.

c) The special actions 1 = ⊤? and 0 = ⊥? are given by tests and therefore
are considered by definition to be in canonical form.
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In the inductive step we consider only one step of the application of the
constructors; the general compound actions should follow from the associa-
tivity of the constructors.

Inductive steps:

a) If α = β + β ′ is a compound action obtained by applying once the +
constructor. By the induction supposition β and β ′ are in canonical
form. It means that β should be β = +bi

bi · βi and β ′ = +b′j
b′j · β

′
j.

Because of the associativity and commutativity of +, β + β ′ is also in
canonical form:

β + β ′ = +
bi∈B

bi · βi + +
b′j∈B′

b′j · β
′
j = +

a∈B∪B′

a · βa

where a and βa are related in the sense that if a = bi then βa = βi and
if a = b′j then βa = β ′

j . Because the inductive hypothesis states that
all βi and β ′

j are in canonical form it follows that also βa (which is just
a change of notation) is in canonical form.

b) If α = β ·β ′ with β = +bi
bi ·βi and β ′ = +b′j

b′j ·β
′
j in canonical form. We

now make use of the distributivity of · over +, and of the associativity
of · and + constructors. α transforms in several steps into a canonical
form. In the first step α is:

α = β · β ′ = ( +
bi∈B

bi · βi) · ( +
b′j∈B′

b′j · β
′
j)

and if we consider |B| = m then α becomes:

α = b1 · β1 · ( +
b′j∈B′

b′j · β
′
j) + . . . + bm · βm · ( +

b′j∈B′

b′j · β
′
j)

Subsequently α distributes the · over all the members of the choice
actions. In the end α becomes a choice of sequences; when we consider
|B| = m and |B′| = k.

α = b1 · β1 · b
′
1 · β

′
1 + . . . + bm · βm · b′k · β

′
k

This is clearly a canonical form because all actions βi · b′j · β
′
j are in

canonical form due to the inductive hypothesis.

c) If α = β&β ′ with β = +bi
bi · βi and β ′ = +b′j

b′j · β
′
j in canonical form.

The proof of this case is fairly lengthy and we show here only a simple
particular case.
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Let us consider actions β = b · β ′, γ = c · γ′, and δ = d · δ′ in canonical
form. They are the components of α = (β + γ)&δ. We apply the
distributivity of & with respect to + and get:

α = β&δ + γ&δ = (b · β ′)&(d · δ′) + (c · γ′)&(d · δ′)

By applying equation (10) we get:

α = b&d · β ′&δ′ + c&d · γ′&δ′

This shows that α is in canonical form because by the inductive sup-
position β ′&δ′ and γ′&δ′ are in canonical form.

2

Proposition 5.2. The demanding relation <& defined in Definition 2.3 is a
strict partial order over the whole actions of CA.

Proof: We have to prove the two properties of ireflexivity and transitivity.
We make use of the canonical form of the actions. The proof uses induction
over the structure of the actions. The basic case is proven by Proposition 2.1
for concurrent actions.

1. ireflexivity : ∄α ∈ A s.t. α <& α. We use the proof principle reductio ad
absurdum and consider that it exists a compound action α for which
α <& α. Without loss of generality we consider α = +ρ∈R ρ · α′,
where R contains concurrent actions (therefore also basic actions as
they can be considered as an instance of concurrent actions). For the
definition of <& to choice actions it implies that we can find a function
f : {. . .}α → {. . .}α where {. . .}α is a set containing all the compound
actions ρi · α′

i of the choice with 0 < i ≤ |{. . .}α| an index. The
definition of <& says that f(ρk ·α′

k) = ρk′ ·α′
k′ s.t. ρk′ ·α′

k′ <& ρk ·α′
k and

f(ρk′ ·α′
k′) = ρk′′ ·α′

k′′ s.t. ρk′′ ·α′
k′′ <& ρk′ ·α′

k′, and so on for all elements
ρk·α′

k ∈ {. . .}α. Note that starting with any k and applying the function
f we get a descending chain . . . <& ρk′′ · α′

k′′ <& ρk′ · α′
k′ <& ρk · αk.

But because the set {. . .}α is finite this chain cannot contain all the
actions of {. . .}α which means that there is a point where the chain
is broken. This means that there exists a action ρj · αj s.t. f(ρj · αj)
cannot have a value because there exists no other action ρj′ · αj′ with
ρj′ · αj′ <& ρj · αj. Therefore we cannot define the function f and thus
the supposition that α <& α is wrong. Therefore ireflexivity holds.
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2. transitivity : The proof of transitivity is more simple. Take α1 <& α2

and α2 <& α3 and we have to prove that α1 <& α3. We again consider
the actions αi in canonical form. By the definition of <& we know that
we have two functions f 12 : {. . .}α2 → {. . .}α1 and f 23 : {. . .}α3 →
{. . .}α2. We have to prove that it exists a function f 13 : {. . .}α3 →
{. . .}α1 s.t. ∀ρk · α′

k ∈ {. . .}α3 f 13(ρk · α′
k) = ρk′ · α′

k′ with ρk′ · α′
k′ ∈

{. . .}α1 s.t. ρk′ · α′
k′ <& ρk · α′

k. It is simple to construc the function
as f 13 = f 12 ◦ f 23. It is clear that the defined function f 13 satisfies
the requirement of the definition: ∀ρk · α′

k ∈ {. . .}α3 f 13(ρk · αk) =
f 12 ◦ f 23(ρk · αk) = f 12(ρk′ · αk′) = ρk′′ · αk′′. By the definition of the
two other functions f 12 and f 23 we know that ρk′′ ·αk′′ <& ρk′ ·αk′ and
ρk′ · αk′ <& ρk · αk, which means that ρk′′ · αk′′ <& ρk · αk.

Note that in both proofs we have used the inductive hypothesis over the
smaller components of the choice actions. 2

5.1 Action negation

One of the purposes of the investigation of the algebra in this paper is to be
able to give a natural notion of action negation. There have been a few works
related to negation of actions [Mey88, HTK00, LW04, Bro03]. In [Mey88], the
same as in [HTK00] action negation is with respect to the universal relation
which, for example for PDL gives undecidability. Decidability of PDL with
negation of only atomic actions has been achieved in [LW04]. A so called
"relativized action complement" is defined in [Bro03] which is basically the
complement of an action (not with respect to the universal relation but) with
respect to a set formed of atomic actions closed under the application of the
action operators. This kind of negation still gives undecidability when several
action operators are involved.

A natural and useful view of action negation is to say that the negation
α of action α is the action given by all the immediate trajectories that take
us outside the trajectory of α [BWM01]. With ACF α it is easy to formally
define α.

Definition 5.2 (action negation). The action negation is denoted by α and
is defined as:

α = +
ρ∈R

ρ · α′ = +
b∈R

b + +
ρ∈R

ρ · α′

where ρ is either a basic action, a concurrent action, or a test. α′ is a
compound action in ACF α′

. The set R is defined in the following.
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Discussion: We elaborate here on a discussion we had [PS07b] about the
nature of actio negation. Literaly one may consider two kinds of action
negation: one “anything else but a” and another “not doing a”. We choose
the first type as in our setting the second type of action negation is not found.

We consider active systems which are systems that allways do an action.
It is simple to model passivity by action 1 skip. Moreover, in a subsequent
paper we add time for actions (i.e. the duration of an action) and with time
it is natural to model idleing by the skip action with a certain duration.
Thus, not doing action a may be represented by doing action skip or may be
represented by doing another explicit action.

When adding time the “doing” of an action will become more compli-
cated...

We include action negation as a restricted operator of the CAT algebra.
Action negation is restricted to being applied only once in an action, i.e. we

cannot find negation applied to the negation of an action (e.g. a or a + b).
On the other hand, we can have combination using the normal operators of
negated actions and normal actions (e.g. a + b).

In the construction of the set R we include several things. First we look
at the negation of a single test (i.e. when ρ is the test φ?) φ? which is
just the negated test in the Boolean algebra (¬φ)?. The problematic part
is the negation of a basic action a. For example, another basic action b
different from a is part of a, but also any concurrent composition with itself
(b&b, . . . b&b&b . . .) is part of a. This gives an infinite number of actions
because operator & is not idempotent.

We considered any action of CAT to be finite as it is constructed by
applying the constructors of the algebra a finite number of times. For this we
also considered finite rooted trees. Note that because of the action negation
and of the non-idempotence of & we get infinite actions and rooted trees with
infinite branching. We try to avoid this problem by giving a procedure for
generating the actions of R using the demanding order <& of the algebra,
and by defining tree schemas for interpreting the action negation.

Let us take one more particular case of the negation of the choice between
two basic actions a + b. Any action which does not "contain" neither a nor
b is part of the negation of a + b; e.g. a&c 6∈ a+ b, but c, c&c, c&d ∈ a + b.
Formally, any concurrent action c ∈ A& with the properties that a 6<& c and
b 6<& c is a negation of a+ b.

We define the set R to contain:

1. {(¬φ)? |φ ∈ R}; all the negation of the tests in R.

2. {α |α ∈ A&, and ∀β ∈ R, β 6<& α}; all actions α (constructed using
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only &) with the property that there is no action β of R which is less
than α with respect to the demanding order <&.

This definition still generates an infinite set R which means that we still
have infinite branching in the rooted tree associated to the action negation.
The infiniteness of the action negation is not so problematic as it can be
characterized. We have infinite branching because whenever we can put in
the set R a compound action, e.g. a&b we have to put also all the actions
a&b&b& . . . and more. With this observation we can characterize the infinite
set R as a finite set in terms of action schemas. An action schema is defined
with respect to basic actions and is denoted a|∞k . The action schema repre-
sents the choice between an infinite number of concurrent actions: ∀a ∈ AB

the action schema a|∞1 = a+ a&a+ a&a&a+ . . .; the general definition a|∞k
starts with the action a& . . .&a︸ ︷︷ ︸

k

and continues with larger actions. An action

schema a|∞1 may be executed concurrently with another action b and results
in a new schema b&a|∞1 = b&a + b&a&a + . . ..

Tree schemas are introduced to interpret the action schemas. A tree
schema is a guarded rooted tree with special edge schemas. An edge schema
is a special edge labeled with an action schema. An edge schema (n, a|∞1 , m)
represents an infinite set of normal edges {(n, α,m) |α ∈ a|∞1 } where α is
one of the actions in the infinite choice action represented by a|∞1 . Note that
a tree schema is a finite representation of a guarder rooted tree with infinite
branching.

Note that as expected the negation of an action is also in ACF α. We
conjecture that if we equip Propositional Dynamic Logic with such an action
negation we still have decidability.

6 Relation between CAT and CL

In this section we give a direct semantics to the CL language using the CAT
algebra.

We start by defining some preliminary notions. Consider standard labelled
Kripke structures and guarded rooted trees. We give now the definition of
labeled Kripke structure that we use.9

Definition 6.1 (Labelled Kripke Structure). A labeled Kripke structure is a
structure K = (W,R

N
AB ,V) where W is a set of worlds (states), V : P →

2W is a valuation function of the propositional constants returning a set of
worlds where the constant holds. AB is a finite set of basic labels (called

9The definition is standard, but several definitions of Kripke structures exist.
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basic actions), NAB is the set of multisets built with the elements of AB, and
R

N
AB : NAB → 2W×W is a function returning for each multiset a set of pairs

of worlds (intuitively RN
AB gives a relation on the worlds for each multiset

label).

The rooted trees and the guarded rooted trees are defined as in sections
3.1 and 4 respectively. We use the notation Tn to denote the subtree of T
with root in the node n of T .

Definition 6.2 (Simulation for rooted trees). We say that a rooted tree T =
(N,E,A) is simulated by a labeled Kripke structure K = (W,R

N
AB ,V) with

respect to a state r of K, denoted TSrK, iff

whenever TSrK then
if (r, γ, n) ∈ E is an edge in T and γ ∈ A is a label10 then
∃w ∈W with (r, w) ∈ RN

AB (γ) and TnSwK.

Definition 6.3 (Simulation for guarded rooted trees). We say that a guarded
rooted tree T = (N,E,A) is simulated by a labeled Kripke structure K =
(W,RN

AB ,V) with respect to a state r of K, denoted TSrK, iff

r ∈ V(φ) where φ the guard of node r : {φ} of the tree T , and
whenever TSrK then
if (r, γ, n) ∈ E is an edge in T , γ ∈ A is a label, and ϕ of n : {ϕ} is the
guard of node n then
∃w ∈W with (r, w) ∈ RN

AB (γ) and w ∈ V(ϕ), and TnSwK.

Definition 6.4 (Partial simulation). We say that a guarded rooted tree T =
(N,E,A) is partially simulated by a labeled Kripke structure K = (W,R

N
AB ,V)

with respect to a state r of K, denoted TS ′
rK, iff ∃Tr a subtree of T starting

at node r11 such that TrSrK.

We consider a slight variation of a Kripke structure which we call nor-
mative structure and usually denote by KN . The normative structure was
defined in [PS07a] but not with this particular name, here we just restate
the definition for the sake of presentation.

Definition 6.5 (Normative structure). A normative structure is a normal
labeled Kripke structure as in Definition 6.1 with the following extensions:

• The labels are multisets on a set of basic actions AB

10Remember that the labels of the rooted trees are multisets.
11Which is the root node in our case.
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• There is a set Pc of special propositional constants Oa and Fb indexed
by the basic actions of AB

• The transitions are deterministic; i.e. the function RN
AB associates to

each label a function now instead of a relation, therefor for each label
from one world there is only one reachable world.

We have given in [PS07a] the semantics of CL with the help of a trans-
lation function which translated each CL syntax into Cµ syntax (a variant
of the µ-calculus [Koz83]). The semantics of the logic is given in a set the-
oretical way on a Kripke structure. We take the equivalent way of giving
semantics in terms of satisfiability w.r.t. a model and a state. Our model is
the normative structure KN .

KN , r |=O(α) iff ICA(α)SrK
N and

∀n 6= r ∈ Nα with ICA(α) = (Nα, Eα,Aα)
∀a ∈ AB with Mγ(a) ≥ 1 where (p, γ, n) ∈ Eα, p < n then
n ∈ V(Oa)

KN , r |= P (α) iff ICA(α)SrK
N and

∀n 6= r ∈ Nα with ICA(α) = (Nα, Eα,Aα)
∀a ∈ AB with Mγ(a) ≥ 1 where (p, γ, n) ∈ Eα, p < n then
n ∈ V(¬Fa)

KN , r |= F (α) iff whenever ICA(α)S ′
rK

N then, considering ICA(α) = T ,
∀Tr a subtree s.t. TrSrK

N , and ∀σ a branch in Tr

∃(n, β, n′) ∈ σ an edge in Tr = (NTr , ETr ,ATr) s.t.
∀(n, γ,m) ∈ KN with β <& γ then
∀a ∈ AB with Mβ(a) ≥ 1, m ∈ V(Fa)

We pause now for some comments on the semantics above. For the F
modality we use partial simulation S ′

r between the tree and the normative
structure in order to have our intuition that if an action is not present as
a label of an outgoing transition of the model then the action is by default
considered forbidden. In the second line we consider all subtrees and for
each of them all branches in order to respect the intuition that F (a + b) =
F (a) ∧ F (b), prohibition of a choice must prohibit all. In the third line
we consider just the existance of a node on each path in order to respect
the intuition that F (a · b) = F (a) ∨ [a]F (b), forbidding a sequence means
forbidding some action on that sequence. The last lines of the semantics of
F look for all the transitions of the normative structure from the choosen
node which have a label more demanding than the label of the tree; this is
in order to respect the intuition that F (a) ⇒ F (a&b), forbidding an action
implies forbidding any action more demanding.
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With the above semantics we have the following holding:

F (a) ⇒ F (a&b) (24)

F (a+ b) ≡ F (a) ∧ F (b) (25)

P (a+ b) ≡ P (a) ∧ P (b) (26)

F (a · b) ≡ F (a) ∨ [a]F (b) (27)

P (a · b) ≡ P (a) ∧ [a]P (b) (28)

All these have to be proven. For equation (24) for example the proof has
to follow the standard way that ∀M a model of F (a) we must prove that it
is also a model of F (a&b), i.e. if M |= F (a) then M |= F (a&b). We prove
a generalisation of equation (24) where instead of a and a&b we have any
concurrent compound actions α and β s.t. the second is more demanding
than the first.

Proposition 6.1. F (α) ⇒ F (β), ∀α, β ∈ A& and α <& β, iff ∀M a
normative structure s.t. M |= F (α) then M |= F (β)

Proof: PROOF HERE 2

Moreover, the following do not hold (and this follows the intuition drawn
from practice):

F (a&b) 6⇒ F (a) (29)

P (a&b) 6⇒ P (a) (30)

CL does not allow expressions like F (a)∧(ϕ⇒ P (a)) which are not valid,
but which may be intuitive for the reader as (s)he may think of real examples
where some action is declared forbidden and only in some exceptional cases
it is permitted. In this case the same intuitive example can be modelled in
CL as (¬ϕ ⇒ F (a)) ∧ (ϕ⇒ P (a)) which from a logical point of view is also
more natural.

For the other operators of CL (the dynamic modality [·] and 〈·〉 or the
temporal modalities �, ♦, or U) the semantics is the usual one. Note that
for O, P , or F the semantic interpretation “walks” through the nodes of the
whole tree of the action, where in the case of [α] it looks only at the nodes
at the boundery of the tree (the leaf nodes). The semantics of O, P , or F
relates to the trace-based semantics of Process Logic [Pra79] and to some
extent to the modalities of [VdM90] (if we think instead of each transition to
be green that the states are green).

We may see the semantics given in terms of “actions as trees” as a unifica-
tion of the two semantics known for Dynamic Logics: the one given in terms
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of relations over the states of the Kripke structure, and the other given in
terms of traces over the Kripke structure. The semantics for our language
combines the two: for O, P , or F the semantics is given in terms of traces
where for [·] or 〈·〉 the semantics is given in terms of relations.

7 Conclusion

In this paper we have introduced a new algebraic structure for true concur-
rent actions. The algebra faithfully formalizes the properties of the actions
used in the contract language introduced in [PS07a]. A natural question here
is, why to include true concurrency in the context of electronic contracts?
There are many reasons for choosing true concurrency instead of interleaving.
First, it reflects more naturally what it is expressed in natural languages when
writing a contract, where some obligations can be stated on actions occurring
simultaneously. Second, even in cases where true concurrency is not really
required, or whenever it is impossible to detect simultaneity –as in run-time
monitoring of events– true concurrency provides a more concise representa-
tion of the contract to be analyzed. This is indeed the case in the following
two kinds of analysis. (1) When model checking contracts, the state-space is
dramatically reduced by using true concurrency instead of interleaving; this
applies even in the presence of partial order reduction techniques. (2) In
run-time monitoring (for instance to monitor that contract violations do not
occur) the monitor (automaton) obtained is definitely smaller if it has labels
containing concurrent actions than in the presence of interleaving.

Besides the concurrent operator, the new features comprise: the defini-
tion of negation over non-atomic actions, including a procedure to “push” the
negation only to atomic actions; test actions; and an action canonical form.
Moreover, we have provided an interpretation of the algebra terms into rooted
trees. Though the trees are in theory potentially infinite branching due to
action negation, for our practical purposes in the context of contract specifi-
cation (and run-time monitoring), this does not cause any problem. Indeed,
when using the negation a of an action a, we never need to generate, or test
against, all possible actions different from a: it only suffices to identify that
the action is not a. The tree schema we have presented is thus extremely
useful in practice.

We have also introduced a conflict relation to determine when two actions
cannot be performed concurrently. In practice, when writing a contract,
we provide the conflict relationship by listing which actions are in conflict.
In this way we are able to reason and detect possible inconsistencies and
contradictions.
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The decision to define a new action-based algebraic structure instead of
using previous work was not driven by a mere capricious intellectual chal-
lenge. In what follows we discuss and contrast our approach with other
related work, showing why they are not suitable to our needs.

7.1 Related Work

Some of the most known and studied action algebras come from the work
on dynamic logics [Pra76]. We base our work on Kleene algebra which was
introduced by Kleene in 1956 and further developed by Conway in [Con71].
For references and an introduction to Kleene algebra see the extensive work
of Kozen [Koz81, Koz90, Koz97]. In these research efforts the authors used,
for example, regular languages as the objects of the algebra, or relations
over a fixed set and analyze properties like completeness [Koz94], complexity
[CKS96] and applications [Coh94] of variants of Kleene algebra. Some vari-
ants include the notion of tests [Koz97], and others add some form of types or
discard the neutral element 1 [Koz98]. An interpretation for Kleene algebra
with tests has been given using automata over guarded strings [Koz03]. An
introduction to the method of giving interpretation using trees and opera-
tions on trees can be found in [Hen88].

Our algebra has three major differences with respect to the above works
(dictated mainly by our application to e-contracts): (1) it has no Kleene
star, (2) it has a true concurrency operator &, and (3) it can model discrete
quantities.

In the following we relate the research done in this paper to other works.

Q-algebra [CK07]: An algebraic structure called Q-algebra is presented
in [CK07] which is similar to our CA algebra because it has the same three
operators choice, sequence, and concurrent composition. Basically Q-algebra
is two idempotent semirings (which authors call “constraint semirings”) but
no further analisis of the relations between the operators is given. There are
no axioms of the algebra and not much intuitive explanations nor application
examples. Q-algebras do not have action negation, nor the notion of conflict
actions, nor tests. Our interpretation as rooted trees is more appealing for
the semantics of our contract language than the Q-automata.

On the other hand the theory of [CK07] is questionable in itself as it
is based on wrong notions. For example the authors restate the definition
of a constraint semiring (or c-semiring [BMR97]) as a normal idempotent
semiring with the additive operation a binary operation. This definition is in
contradiction with the original definition of c-semirings [BMR97] where the
feature of a c-semiring (different than the classical idempotent semirings) is
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that the additive operator is applied on a set of elements (i.e. either to zero,
one, two, or all elements of the domain).

We would like to refer here more to the work on c-semirings [BMR97]
which has similar notions to ours as most of the results presented for c-
semirings are just restatements and adaptations of the classical results from
idempotent semirings theory. The novelty of c-semirings is in the treatment
of the additive operation, as it is applied (not as in classical semirings on
two elements) on (possibly infinite) sets of elements. The application of c-
semirings is to model constraints and thus they adopt a desirable property
that the identity element 1 of the multiplicative operation is also an ab-
sorption element for the additive operation. This is because addition of all
elements in the domain is defined to be equal to 1 in a c-semiring. Anyway,
in any semiring the addition of all the elements of the domain gives a ab-
sorption element, and in particular in our CA at the level of the basic action,
the finite choice of all the basic actions of AB is absorption element for the
choice operator +.

mCRL2 [GMR+07]: The language mCRL2 for the specification and anal-
ysis of distributed systems introduced in [GMR+07] by Groote et al, is based
on well-founded algebraic theories. With the exception of the action negation
introduced in our algebra, the underlying action algebra of mCRL2 contains
all the other features we need, including true concurrent actions, and more.
For our purposes, however, it seems more natural to define a new algebra
since we do not need all the expressive power of the mCRL2 action algebra,
and we need a special action negation not present there. Moreover, we pro-
vided a semantics of actions over rooted trees to make the connection with
the contract language CL.

Dynamic Deontic Logic [Mey88]: Actions similar to ours have been
investigated in the framework of a deontic logic of actions by Meyer [Mey88].
The differences are that the concurrency operator of Meyer is basically the
intersection of sets (as in extensions of PDL) and he does not consider the
non-idempotence of it (as we do). Moreover, Meyer’s action negation is
defined with respect to the universal relation.

In [Mey88], as well as in [HTK00], action negation is with respect to the
universal relation which, for example for PDL [Pra76] gives undecidability.
Decidability of PDL with negation of only atomic actions has been achieved
in [LW04]. A so called "relativized action complement" is defined in [Bro03]
which is basically the complement of an action (not with respect to the
universal relation but) with respect to a set formed of atomic actions closed
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under the application of the action operators. This kind of negation still
gives undecidability when several action operators are involved.

Our action negation is more general than just negation of atomic actions
and at the same time it does not involve the universal relation. This leads
us to conjecture that PDL extended with our kind of action negation does
not yield undecidability.

Meyer’s approach of defining obligation (i.e. O(α) = [α]V ) can be found
in some variant in [And58] as Oϕ ≡ �(¬ϕ ⊃ s) where s is a propositional
constant which means violation (something bad). This relation is discussed
also by Meyer.

SCCS [Mil83]: Synchronous CCS (introduced in [Mil83]) is a rather gen-
eral calculus developed in the same style as CCS. It has many features that
we needed but the main drawback is that we could not see the way to inte-
grate it (or a similar variant) within our logical setting. Many of the main
features of SCCS are also found in our algebra CAT . These are: atomic
actions as building blocks of the calculus; a product combinator which com-
bines concurrently two agents and the combination of the actions is the same
as in our case (forming a set of basic actions); an action combinator which
basically is constructing the agents sequencely from basic actions; the nonde-
terministic summation or our choice. Besides these there is also a restriction
operator; an idling operator; and an action morphism operator. There is also
a recursion combinator with a fix point behavior. The recursion operator has
the purpose of modelling persistent agents. The semantics of the operators is
given with derivation rules (like in CCS) and later the equational properties
of the operators are analyzed in a way similar to ours. We can view the
derivation trees associated to each agent as similar to our rooted trees.

We do not have the Kleene ∗ for recursion but we have the µ fix point
operator at the level of the language. SCCS considers infinite summation
thus generating infinitely branching derivation trees which is not what we
desired. Our sequence operator is more general and compositional as it can
put in sequence any arbitrary two actions in contrast with SCCS operator
which can append only a basic action to an agent. The concurrency product
operator of SCCS is not infinitary contrary to ours. On the other hand the
argument in Milner [Mil83] that it is not so realistic to have this behavior is
pertaining.

Milner has an interesting notion of inverse of a basic action with respect
to the concurrent composition of two actions, i.e. aa = 1 in SCCS notation.
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Statecharts [Har87]: We should relate our CAT algebra also with Harel’s
statecharts [Har87] because, as our algebra claims to model a kind of concur-
rent execution of actions, statecharts are one of the well known concurrency
formalisms. The relation is not so obvious as in the case of Milner’s SCCS
as statecharts are oriented towards a graphical representation of the reactive
system (Statecharts are one of the first visual languages).

The main features of the statecharts are: they are a state-based formalism
(extending Finite State Machines) which from one state, the system can
change state in respect with events, conditions on states, and also have a
Mealy-like output modelling actions. The conditions can be viewed as our
guards on actions: if in statecharts an action does not have a condition then
in CAT the guard is just ⊤?. A first extension of the FSMs is that statecharts
include techniques for clustering of states into a superstate and refinement
of one state into substates. This gives the formalism modularity and a well-
structured hierarchical representation of a system (being now able to zoom-in
and zoom-out of the model).

A second class of features of statecharts in orthogonality which includes
concurrency and independence. Statecharts, as well as Milner’s SCCS or
Pratt’s pomsets are models on concurrency which do not take the interleaving
view. Concurrency in statecharts models how a system can be in several
(clustered) states at the same time and execute several actions at the same
time (from several of the concurrent states). This is not far from our view; in
our case we consider only one state from which several actions can be executed
concurrently. We do not have the notion of refinement or clustering of states
so we kind of encode this into one state with several propositional constants
holding in each state. Orthogonality is a more graphical-friendly and with
fewer states of giving a synchronous product of the FSMs corresponding to
the several concurrent components.

It is clear that we cannot use statecharts for our purpose of using the
concurrent actions inside the logical language CL. On the other hand many
interesting ideas can be taken from this formalism and more, our way of con-
sidering concurrent actions goes well with the ideas presented in statecharts,
which gives us a degree of confidence in our formalism.

Esterel [BG92]: Esterel is a synchronous language introduced in [BG92]
(the journal version). Esterel is not well suited to be introduced inside our
CL language as the basic theory and semantics for our actions, but many
interesting ideas can be found. Firstly, Esterel has an incompatibility relation
over events the same as ours over actions. Esterel adopts the synchrony
hypothesis which basically states that every interactions in the model are
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instantaneous. We adopted for now this same simplified view for our actions
(as our actions do not take time to execute; or equivalently, at each tick of the
clock all possible actions at that step are executed). We plan to extend the
actions with parameters where one parameter may be of type real numbers
such that it will be interpreted as the duration of the action. This extension
will give greater modelling power for our actions, as it is needed for modelling
real-life contracts.

In the following we discuss models of concurrency which have as primary
object of discourse events, (partial) orderings over events and other kinds of
relations. All these research efforts were motivated by the need to model
executions of parallel and distributed computation. We have no preference
on the order in which we base our presentation of the different models. There
is not much distinction between events and actions as is the case in Esterel.

Event structures [NPW79]: Event structures were introduced in [NPW79]
as a model of concurrency based on events partially ordered by a causal depen-
dency relation and with additional structure given by a conflict relation and
an enabling relation. We base our presentation on [Win88]. Configurations
(or computation states) are viewed as subsets of events (left-closed w.r.t. the
causal dependency order) which for one event all the events it depends on are
included. Note that parallel processes computations are modeled by causal
independence between events. Event structures are based on the fundamen-
tal axiom of finite causes which basically states that any event depends on a
finite number of events. We like to note that our interpretation of actions as
trees mimic event structures with the · as a causal dependency relation and
any node respects the axiom of finite causes.

The conflict relation # is similar to our conflict relation and to the one
found in Esterel. The conflict relation is defined over events and its intuitive
interpretation is to express how the occurrence of an event rules out the
occurrence of another. More general event structures (E,#,⊢) are obtained
by relaxing the partial order to a enabling relation ⊢ with the intuition that
now it is sufficient for an event to be enabled by a single chain of enabled
events starting with an event e0 which is enabled by no event.

Event structures are much related to Petri nets [Pet73]. We do not
analyze here the extensive literature on Petri nets, but we try to relate to the
basic concepts of Petri nets for modelling concurrency. A transition in a Petri
net may be triggered by occurrence concurrently of a set of events and some
set of conditions. Moreover, a transition consumes the set of (pre)conditions
and inserts a new set of (post)conditions. It is shown how via the Mazuriewicz
traces [Maz84] a safe Petri net is equivalent to a (prime) event structure whose
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events correspond to occurrences of events in the net.

Trace theory [Maz88]: As we have seen, event structures and Mazuriewicz
traces, and we will see that also pomsets have many notions in common.
Trace theory is also based on events (actually traces of events which may be
thought as strings for concurrent processes) with a partial order and a causal
dependency relation. As the (binary) causal dependency relation is defined
on the set (alphabet) of events there is the natural relation of independence
of two events. In traces one can see the notion of interleaving12 as with the
independence relation one may constructs equivalence classes of traces (sets
of strings of events): e.g. if (a, b) ∈ I ⇒ ab ≡ ba where I is the independence
relation and ≡ is the equivalence relation defined as shown. It turns out
that the algebra of traces has a nice isomorphic graphical formalism called
dependency graphs which make visually explicit the ordering of events within
traces. Trace theory also has a nice notion of individual and global history
of processes.

Pomsets [Pra86]: Pomsets have been long advocated by Pratt [Pra86]
and many of the initial theoretical results were published as [Gis84]. Our
presentation here is also based on [Gai88]. Pomsets are multisets of actions
with two partial orders: causal precedence and temporal precedence.13 The
theory of pomsets is among the first in concurrency theory to make a distinc-
tion between events and actions. Normally a multiset is NA and assigns to
each action of A a multiplicity from N. In pomset theory they are more: EA

which assigns to each action of A a set of events from E, and more, events
are ordered by the temporal partial order. Thus, an action may be executed
several times and each execution of an action is an event.

Pomsets make the distinction between simultaneous events (which are
incomparable by the temporal precedence) and concurrent events (which are
incomparable by the causal precedence). Sequentiality is given by compa-
rability of two events with respect to the causal precedence (which is the
smallest of the two).

Another feature of the pomset theory is that it is independent of the
granularity of the atomicity ; i.e. events may be either atomic or may have a
even more elaborated structure. Moreover, the view of time does not matter
as event may occupy time points or time intervals with no difference to the

12Interleaving is not mentioned explicitly in the related literature.
13Causal precedence is included in the temporal precedence, so Gaifmans’s presentation

does not diverge from Pratt’s presentation.
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theory. There is also a large number of operations defined over pomsets (see
[Pra86]), more than in the other theories we have seen.

EXTEND THE PART WITH mCRL2
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