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Towards a Formal De�nition of Ele
troni
Contra
tsCristian Prisa
ariu∗ Gerardo S
hneider†January 2007Abstra
tIn this paper we propose a formal language for writing ele
troni

ontra
ts, based on the normative deonti
 notions of obligation, pro-hibition, and permission. We take an ought-to-do approa
h, wherethe above notions are applied to a
tions instead of state-of-a�airs. Wepropose an extension of the µ-
al
ulus in order to 
apture the intu-itive meaning of obligation, prohibition and permission, and to expressdeterministi
 and 
on
urrent a
tions. We provide a translation of the
ontra
t language into the logi
, and we show how the semanti
s faith-fully 
aptures the meaning of the 
ontra
t language. We also showhow our language 
aptures most of the intuitive desirable propertiesof ele
troni
 
ontra
ts, as well as how it avoids most of the 
lassi
alparadoxes of deonti
 logi
. We also dis
uss informally the main prob-lems in formalizing the above normative deonti
 notions in parti
ularin the 
ontext of ele
troni
 
ontra
ts. We �nally show its appli
abilityon a 
ontra
t example.1 Introdu
tionWith the imminent use of Internet as a means for developing 
ross-organiza-tional 
ollaborations and virtual 
ommunities engaged in business, new 
hal-lenges arise to guarantee a su

essful integration and interoperability of su
hvirtual organizations. Servi
e-oriented ar
hite
tures (SOA) is be
oming more
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and more the trend in this arena. Entities parti
ipating in a SOA have noa

ess to 
omplete information, in
luding information for 
he
king the relia-bility of the servi
e provider and/or servi
e 
onsumer. For instan
e, a servi
e
onsumer has no a

ess to the 
ode implementing the servi
e, and is there-fore unable to examine, mu
h less verify, the servi
e implementation to haveassuran
e of its 
omplian
e with his/her needs. This motivates the needof establishing an agreement before any transa
tion is performed, througha 
ontra
t, engaging all parti
ipants in the transa
tion under the 
ommit-ments stipulated in su
h a do
ument, whi
h must also 
ontain 
lauses statingpenalties in 
ase of 
ontra
t violations. In the 
ase of a bilateral 
ontra
t,one usually talks about the roles of servi
e provider and servi
e 
onsumer;but multi-lateral 
ontra
ts are also possible where the parti
ipants may playother roles. A servi
e provider may also use a 
ontra
t template (i.e. ayet-to-be-negotiated 
ontra
t) to publish the servi
es it is willing to provide.As a servi
e spe
i�
ation, a 
ontra
t may des
ribe many di�erent aspe
ts ofa servi
e, in
luding fun
tional properties and also non-fun
tional propertieslike se
urity and quality of servi
e (QoS).Before a 
ontra
t is signed it has to go �rst through a stage of negotiation.At this stage, the 
ontra
t template o�ered by the servi
e provider has to beanalyzed (e.g. by model 
he
king te
hniques) and 
hanged to suite the needsof both the 
lient and the provider. After ea
h 
hange the new 
ontra
t issent to the other party whi
h either a

epts it or 
hanges it again. Thispro
ess goes on until an agreement is a
hieved.In order to advan
e towards a reliable SOA, we need to be able to write
ontra
ts whi
h 
an be �understood� by the software engaged in the negoti-ation pro
ess, and later may be used by virtual organizations responsible forensuring that the 
ontra
t is respe
ted. In other words, 
ontra
ts should beamenable to formal analysis.Formal Approa
hes for Contra
ts. There are 
urrently several di�er-ent approa
hes aiming at de�ning a formal language for 
ontra
ts. Someworks 
on
entrate on the de�nition of 
ontra
t taxonomies [Aag01, BJP99,TP05℄, while others look for formalizations based on logi
s (e.g. 
lassi-
al [DKR04℄, modal [DM01℄, deonti
 [GR06, PDK05℄ or defeasible logi
[Gov05, SG05℄). Other formalizations are based on models of 
omputation(e.g. FSMs [MJSSW04℄ and Petri Nets [Das00℄).In our opinion, the most promising approa
h is the one based on logi
.A logi
 for 
ontra
ts not ne
essarily has to be based on, or extend, deonti
logi
, but must 
ontain normative deonti
 notions (obligation, permission,and prohibition) and preserve their intuitive properties, both in the proof2



system and in its model theory.Deonti
 Logi
. Formalizing the usual notions of obligation, permissionand prohibition is not an easy task as witnessed by the extensive resear
h
ondu
ted by the deonti
 
ommunity both from the philosophi
al and thelogi
al point of view, starting as early as 1926 [Mal26℄1. These works haveobviously been done mu
h before the 
on
rete problem of de�ning ele
troni

ontra
ts (e-
ontra
ts) and the problems identi�ed still 
ontinue to 
hallengephilosophers, logi
ians and 
omputer s
ientists.In early papers (e.g. [Wri51℄) the approa
h was to relate the normativenotions of obligation, permission and prohibition in a similar way as thequanti�ers (all, some, no) and modalities (ne
essary, possible, impossible) of
lassi
al and modal logi
, respe
tively. This was the bases of the so-
alledStandard Deonti
 Logi
 (SDL) whi
h is built on 
lassi
al propositional logi
,leading to a ni
e formalization but also to many paradoxes.One of the �rst issues to take into a

ount before formalizing normativenotions is whether we want to represent (names of) human a
tions or (sen-ten
es des
ribing) states of a�airs, produ
t of a human a
tion. The former isusually known as an ought-to-do and the latter as ought-to-be. The followingis a 
lassi
al example where �One ought to build a window� 
an be under-stood as an ought-to-do senten
e, while �There ought to be a window� is anought-to-be senten
e. In many 
ases it is possible to translate an ought-to-besenten
e into its 
orresponding ought-to-do quite easily, as in the followingexample: �It ought to be the 
ase that John pays the money to Smith�(ought-to-be) and �John ought to pay the money to Smith� (ought-to-do).In many e-
ontra
ts it is more natural to �nd ought-to-do statements; wherethe subje
t is stated expli
itly (the supplier, the 
lient), the a
tions (that arepermitted or forbidden) are visible, and also in many 
ases there might bean obje
t. There may be also 
ases where an ought-to-be approa
h gives amore 
on
ise expression, like in QoS 
ontra
ts where we may have statementsthat express quantitative restri
tions like: The average bandwidth should bemore than 20kb/s. The dis
ussion among philosophers and logi
ians is farfrom an end in what 
on
erns the de
ision of whether one approa
h is betterthan the other, or even if both should 
oexist in the same reasoning system.Some authors have os
illated from one side to the other � Avon Wright forinstan
e took an ought-to-be approa
h in early papers, and later in
lined forthe ought-to-do (a
tion-based) approa
h, as stated in [Wri99℄.Note that norms (and 
lauses in 
ontra
ts), by de�nition, are violable (if1Mally's work is 
onsidered a pre
ursor of deonti
 logi
, though it is widely a

eptedthat modern deonti
 logi
 started with the work by G.H. Avon Wright [Wri51℄.3



we have the guarantee that nobody will violate the norms, normative systemswould be 
ompletely useless). Hen
e, 
ontrary-to-duty obligations (or CTDs)and 
ontrary-to-prohibitions (or CTPs), 
on
erning the fa
t that obligationsmight not be ful�lled and that prohibitions might be violated, are importantaspe
ts to be 
onsidered. In both 
ases, we might want to know whi
h isthe reparation or the penalty to be applied. See for instan
e [PS96℄ for adis
ussion on CTDs.There are many other problems to be 
onsidered when formalizing obliga-tion, permission and prohibition. Among others, their interrelation (dualityand de�nition in terms of ea
h other), the understanding of their truth-value(even the dis
ussion whether it is reasonable to talk about the truth-value ofsu
h notions), and the di�eren
e between �must� and �ought�.The intention of this se
tion is to give an overview of the main problemsin deonti
 logi
, and not to dis
uss the di�erent solutions. See [Wri99℄ fora ni
e overview of the history, problems and di�erent approa
hes on deonti
logi
. The entry �Deonti
 Logi
� of the Stanford En
y
lopedia of Philosophy
ontains a general des
ription of the topi
, mainly the di�erent paradoxesarising under SDL2. See also the 
hapter of M
Namara in the Handbook ofthe History of Logi
 [M
N06℄.Our Approa
h and Contributions. The above dis
ussion should notgive the impression that we are trying to solve an old unsolvable problem. Weare mainly 
on
erned with formal de�nition of 
ontra
ts, and more pre
isely,of e-
ontra
ts. By narrowing the s
ope of appli
ation of deonti
 logi
, we arede�nitely on a terrain were many of the philosophi
al problems of the logi
are not present.In this paper we take a �rst step towards the de�nition of a formal 
ontra
tlanguage, based on an extension of the µ-
al
ulus. Our starting point is[BWM01℄, where a �x-point 
hara
terization of obligation, permission andprohibition is given, based on the modal µ-
al
ulus. The logi
 allows toexpress obligation, permission and prohibition on regular a
tions, taking thusan out-to-do approa
h.The main 
ontribution of this paper is the de�nition of a 
ontra
t lan-guage with the following properties:1. The language avoids most of the 
lassi
al paradoxes of deonti
 logi
;2. It is possible to express in the language obligations, permission andprohibition over 
on
urrent a
tions keeping their intuitive meaning;2http://plato.stanford.edu/entries/logi
-deonti
/index.html.4



3. Obligation of disjun
tive and 
onjun
tive a
tions is de�ned 
omposi-tionally;4. It is possible to express CTDs and CTPs;5. The language has a formal semanti
s given in a variant of the proposi-tional µ-
al
ulus.Other side 
ontributions are:1. We revisit the relations between the deonti
 notions, providing newinsight on how they should be related under the 
ontext of e-
ontra
ts;2. We give spe
ial attention to the disjun
tion on obligations, to whi
hwe provide a natural and pre
ise interpretation;3. We extend the propositional µ-
al
ulus with the possibility of express-ing 
on
urrent and deterministi
 a
tions.The paper is organized as follows. In Se
tion 2 we present an informaldis
ussion about deonti
 logi
, and the main problems arising when formal-izing the notions of obligation, permission and prohibition. In Se
tion 3 wepresent the most well-known paradoxes as well as a new one we found un-der 
ertain di�erent interpretation of the normative deonti
 notions. Basedon the two previous se
tions we present a list of desirable properties for a
ontra
t language, in Se
tion 4. In Se
tion 5 we present our formal languagefor writing 
ontra
ts, and in Se
tion 6 we present a variant of the µ-
al
ulus,with its syntax and semanti
s, and we give a translation of the language intothe logi
. In Se
tion 7 we show that our language avoids the most importantparadoxes, and that it satis�es most of the desirable properties des
ribed inSe
tion 4. In Se
tion 8 we present an example of a 
ontra
t written in ourlanguage. We brie�y des
ribe a related approa
h also based on a variantof the µ-
al
ulus [BWM01℄ in Se
tion 9 and we dis
uss the advantages anddisadvantages of the approa
h in 
ontrast to ours. We 
on
lude in Se
tion10.2 Obligation, Permission and Prohibition: In-formal Dis
ussionCapturing the right intuition of normative notions in general, and in parti
-ular of obligation, permission and prohibition, is a di�
ult task. We present5



in this se
tion an informal dis
ussion about the main ideas to take into a
-
ount when trying to formalize the above notions. In what follows we use
O(a) to denote the obligation of performing a given a
tion a, similarly forpermission (P (a)) and prohibition (F (a)), and + for 
hoi
e among a
tions.A more pre
ise de�nition will be given later.2.1 On the Truth-Value and the Notion of Consisten
yin Deonti
 Logi
This se
tion is entirely based on [Wri99℄. In the philosophi
al tradition ofAvon Wright's edu
ation, norms were seen as subje
tive, relative and de-pendent on 
ulture, without any truth-value: �norms, as pres
riptions for
ondu
t, simply are not true or false� [Wri99℄. The apparent problem here isthat if one takes this point of view, then it is not possible to study the logi
alrelation between obligation, permission and prohibition, to de�ne a notion oflogi
al 
onsequen
e or to dete
t 
ontradi
tions. Von Wright argues that theabove only implies that logi
 is mu
h more than truth and thus norms arestill subje
t to logi
al laws. Von Wright makes a di�eren
e between pres
rip-tive and des
riptive senten
es. In the former the senten
e does not have atruth-value, it only enun
iates a norm, while in the latter it has a truth-value(it is a norm-proposition). In its des
riptive interpretation of formulas, de-onti
 logi
 should aim at a 
omplete and 
ontradi
tion-free system of norms.Von Wright makes a 
lear distin
tion between �ought�, the obligation, and�must�, the pra
ti
al ne
essity. The �rst is neither true nor false and it is anought-to-be, while the se
ond 
an be true or false depending on the situationand is thus related to something whi
h has to be done (ought-to-do).Von Wright 
laims that �a set of norms is 
onsistent if and only if, the
onjun
tion of all states pronoun
ed obligatory by the norms with any one ofthe states pronoun
ed permitted is a doable state of a�airs, i.e., somethingwhi
h 
an be a
hieved through human a
tion.� Along these lines, it is pos-sible to de�ne the notion of normative entailment: a 
onsistent set of normsentails another one if and only if adding the negation of the latter makes theset in
onsistent.2.2 Conjun
tion in A
tion Logi
sBefore explaining why 
onjun
tion is problemati
 when 
ombined with de-onti
 operators, we start by showing some problems when trying to add 
on-jun
tion to Propositional Dynami
 Logi
 (PDL). If we want to de�ne 〈a&b〉φ
ompositionally, it is natural to think that it 
an be de�ned as follows:6



φ

φs

a

b
t’

t

Figure 1: Example of a model for 〈a〉φ ∧ 〈b〉φ but not for 〈a&b〉φ.
〈a&b〉φ = 〈a〉φ ∧ 〈b〉φ.If a
tions a and b are interpreted as sets of pairs of states (i.e. relationsover states) and if 
onjun
tion over a
tions a&b is interpreted as interse
tionof sets [BV03℄ then in PDL extended with a
tion 
onjun
tion (denoted as

PDL∩) it holds only that 〈a&b〉φ ⇒ 〈a〉φ ∧ 〈b〉φ. The 
onverse impli
ationdoes not hold in PDL∩ be
ause the left side means that there exists a state,say t to whi
h the system may get by performing a
tion a and also by per-forming a
tion b and the formula φ holds in t. On the other hand, the rightside means that there exists a state t to whi
h one may get by performinga
tion a and there exists another state t′ to whi
h one may get by performinga
tion b, and in both t and t′, φ holds; but t and t′ may be di�erent. Be
auseof these the right side does not imply the left side. Consider the model inFigure 1 whi
h is a model for the formula on the right of the impli
ation butis not a model for the formula on the left of the impli
ation be
ause it doesnot exist a state to whi
h the system 
an get by performing both a
tions aand b.One solution to the above problem is not to de�ne 〈·〉 and [·] on 
onjun
-tion of a
tions, but to axiomatize the logi
 giving the desirable properties[BV03℄. Another solution is to enhan
e the logi
 with nominals as in hybridlogi
s (see for instan
e [AtC06℄ and referen
e therein). Hybrid logi
s de�ne,besides the sort of propositional variables, a new sort of spe
ial propositions
alled nominals NOM = {i, j, k, . . .} disjoint from the set of propositionalvariables. The intent of the nominals is to name states of a model. Thenaming of the states is possible be
ause ea
h nominal holds in only one stateof the model (i.e. if a nominal i holds in the state s of the model then itis said that the state has the name i; also there 
an not be another state s′with the same name i). Given a 
urrent state, if i is the name of a su

essorstate, then we 
ould write: 7
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Figure 2: Example of a model for both 〈a〉φ ∧ 〈b〉φ and 〈a&b〉φ.
〈a〉(i ∧ φ) ∧ 〈b〉(i ∧ φ) ⇒ 〈a&b〉(i ∧ φ),whi
h would for
e the transitions to have the same sour
e and target states.A model for both formulas on the left and right of the impli
ation arrow ispi
tured in Figure 2. This, however, does not for
e the two a
tions to beperformed 
on
urrently. In order to 
apture true 
on
urren
y we would needto for
e having only one transition labeled with a and b in an atomi
 way;we will see a solution in Se
tion 6. An extension of PDL with nominals was�rst presented in [PT85℄ (see also [PT91℄).2.3 On the Relationship Between Obligation and Per-missionThe relation between obligation and permission is rather 
umbersome. Thereis no 
onsensus on how to relate these two notions or if it is possible (ormore pre
isely, natural) to express one in terms of the other. Many re-sear
hers argue for de�ning permission as derived from obligation (or vi
e-versa): O(a) ≡ ¬P (a). In [Wri99℄, von Wright argues for not using the abovede�nition, though he introdu
ed it in his early works; he proposes insteadthe following two equivalen
es: ¬O(a) ≡ P (a) and O(a) ≡ ¬P (a).We 
laim that none of the above equivalen
es are natural, at least for ourpurpose in trying to de�ne a logi
 for formalizing e-
ontra
ts.First noti
e that not being obliged to do something does not add anyknowledge about what is permitted. Furthermore, in the 
ontext of a logi
for 
ontra
ts it does not make mu
h sense to talk about negation of obli-gations: a 
ontra
t must spe
ify your rights and obligations, not what youare not obliged to do. Thus the �rst equivalen
e above 
an be dis
arded.Furthermore, we do not a

ept the impli
ation ¬P (a) ⇒ O(a) be
ause it isnot natural to infer from not being permitted an a
tion (or equivalently, thea
tion is prohibited) that it is obligatory to perform the negated a
tion. Onthe other hand, O(a) ⇒ ¬P (a) might be reasonable only on systems where8



the presen
e of O(a) and O(a) make the system in
onsistent. Not everybodyagrees on su
h in
onsisten
y, so we do not 
onsider it in a �rst instan
e.In our opinion the only natural relations between obligation and permis-sion are the following:
O(a) ⇒ P (a)
O(a) ⇒ ¬P (a)

(1)where the se
ond impli
ation only holds if there is no 
ontrary-to-duty obliga-tion (CTD) asso
iated with O(a), in whi
h 
ase one must take the reparationin 
ase the obligation is not ful�lled.2.4 Obligations and Permissions2.4.1 About Disjun
tion of A
tionsWe �rst make a remark about obligation over disjun
tion of a
tions. Manypapers use the notation O(a ∪ b) for obligation of �disjun
tion� of a
tions,while in fa
t they mean �
hoi
e�, or �ex
lusive or�. Indeed, it does not seemvery intuitive to de�ne obligation of 
lassi
al disjun
tion of a
tions, sin
ethis is not the usual meaning in natural languages. We will, thus, use thenotation a + b for the 
hoi
e of a
tions.We want to de�ne O(a+b) 
ompositionally while avoiding the Ross para-dox. In order to do so, we need to have a hierar
hi
al de�nition of formulasand not allow the ∨ on obligation formulas. Instead we add a XOR operator(⊕) over obligation formulas to represent the intuitive idea of 
hoi
e3. In thisway we have the intuitive meaning of the obligation of a 
hoi
e:
O(a+ b) = O(a) ⊕ O(b).Many of the problems asso
iated with the 
hoi
e disappear as soon as atemporal aspe
t is introdu
ed [PS96℄, as for example in "You must pay ontime or at least give a noti
e 10 days before the paying date. If you don'tpay on time and you don't give noti
e, you must pay a �ne of 1000$".2.4.2 About Conjun
tion of A
tionsWe would like to be able to express obligation of performing 
on
urrenta
tions, O(a&b). There are two solutions to do this: (1) using interleaving,and (2) having true 
on
urren
y. True 
on
urren
y would 
apture the idea3This operator is not new to logi
s: it 
an be de�ned in 
lassi
al propositional logi
and also has spe
ial properties in linear logi
.9



that O(a)∧O(b) ⇒ O(a&b). We will propose later a solution based on setsof a
tions to 
apture 
on
urrent a
tions in the logi
Another important aspe
t to take into a

ount is the di�eren
e betweenpermission and obligation over 
onjun
tion of a
tions. Saying that �you areobliged to remain silent and to talk with your lawyer� introdu
es an in
on-sisten
y sin
e there is a requirement to do two 
ontradi
tory a
tions. On theother hand, to say that �you have the right to remain silent and to talk withyour lawyer� does not introdu
es any in
onsisten
y. This shows that thereis a 
lear di�eren
e between permission and obligation of 
onjun
tion of a
-tions. We believe the dis
ussion about the di�eren
es between 
onjun
tionunder permission and under obligations is 
onstru
tive and sheds some lighton problems not always 
onsidered by many resear
hers.We 
onsider now the problem of understanding ¬O(a&b)4. We will givehere three di�erent interpretations. We then justify the intuitive solution,and then explain how we 
an get the right solution by making a distin
-tion between the 
onjun
tion of a
tions under the s
ope of obligations andpermissions.1. By de�ning ¬O(a) = P (a), we get (by applying De Morgan law andthe equivalen
e O(a&b) ≡ O(a) ∧O(b)):
¬O(a&b) = ¬(O(a) ∧ O(b)) = ¬O(a) ∨ ¬O(b) = P (a) ∨ P (b)This is 
ompletely 
ounter-intuitive sin
e it is not 
lear what the dis-jun
tion over permissions means. We also have disjun
tion on obliga-tions, whi
h we believe should be forbidden synta
ti
ally, though manyresear
hers on deonti
 logi
 see disjun
tion on obligations as natural.2. One 
an argue that ¬O(a) = P (a) ∧ P (a), sin
e intuitively not beingobliged to do something gives you permission to do the 
ontrary, butalso the permission of the positive a
tion itself. In this 
ase we have:

¬O(a&b) = P (a) ∧ P (b) ∧ P (a) ∧ P (b)We have now two di�erent interpretations (based on the interpretation
P (a&b) = P (a) ∧ P (b) or P (a+ b) = P (a) ∧ P (b))(a) ¬O(a&b) = P (a&a&b&b)(b) ¬O(a&b) = P (a+ a+ b+ b)4Noti
e that the dis
ussion about negation of obligations is more philosophi
al, andin
luded here only for 
ompleteness. As dis
ussed in the previous se
tion negation overobligations is not natural in e-
ontra
ts. 10



The �rst option seems more natural, but this would imply to give spe-
ial meaning to the &, sin
e intuitively a&a =⊥ under obligation, but
a&a 6=⊥ under permission. The se
ond option has the problem thatwe 
annot do two things at the same time (like a&b, whi
h should beallowed).All the dis
ussion above lead us to the following 
on
lusions:1. The a
tion operator & behaves di�erently under permissions and obli-gations, hen
e we need two di�erent a
tion operators (let's 
all them
&o and &p).2. We need to introdu
e XOR also for permissions.3. We must allow negation on a
tions also under permissions.Assuming we have a 
on�i
t relation ♯ between a
tions, in what followswe propose some laws for getting the above:1. &o 
an only be used under obligations and must have the followingproperties:

a&oa =⊥
a&ob =⊥ if a♯b
(a&ob) = a&obWe then have that:

O(a&ob) =⊥ if a♯b
O(a&oa) =⊥
O(a&ob) = O(a) ∧O(b)

¬O(a&ob) = ¬O(a) ∧ ¬O(b) = P (a&b)2. &p 
an only be used under permissions and must have the followingproperties:
a&pa = a+ a

a&pb 6= a+ b if a 6= b ∧ ¬(a♯b)
a&pb → a+ b if a♯b (Here → means that a&pb must be repla
edby a+ b)
¬(a&pb) = a&pb 11



We then have that:
P (a&pb) = P (a) ∧ P (b) if ¬(a♯b)
P (a&pa) = P (a+ a) = P (a) ⊕ P (a)
P (a&pb) = P (a+ b) = P (a) ⊕ P (b) if a♯b
P (a&pb) = F (a) ∧ F (b)With these laws, we might get the right interpretation of the ¬O(a&b).2.4.3 About the Negation of A
tionsNegation introdu
es new problems and at �rst it seems enough to 
onsideronly negation over atomi
 a
tions. We 
an have "positive" and "negative"atomi
 a
tions. One 
ru
ial question is: Given an a
tion a, what does itmean by �negation� of a? Does it mean �not doing a�, or �doing anything but

a�? Do we want to allow both interpretations? If so, we might need to havedi�erent notations, like a and ¬a for the two di�erent notions. The intuitivemeaning of a negative a
tion a is "not performing a". That is, a is not de�nedas "the set of all the a
tions but a". One intrinsi
 problem 
on
erning thede�nition of negative a
tions is that when performing an a
tion, the 
urrentstate 
hanges, but what is the e�e
t of not perform an a
tion? Is it natural to
onsider not performing an a
tion as being an a
tion itself? For example, if Iwithdraw money from my personal bank a

ount, then the a

ount 
hanges.On the other hand, if I do not withdraw any money, this negative a
tion hasnot e�e
t on my bank a

ount. Though we do not have a 
onvin
ing �nalsolution on how to treat negation, we will see later the approa
h we take inour 
ontra
t language.Besides, the above problem extends to obligation, permission and pro-hibition over negative a
tions. For instan
e "you are not obliged to talk",
¬O(talk), might be interpreted as "you have the right to remain in silen
e"(whi
h means "you have the right not to talk", i.e., P (talk)). This showsthat the intuition of negated a
tions on permission is in some sense di�erentfrom those on obligations, and it might be reasonable to allow them underpermissions.2.5 On Obligation, Permission and Prohibition in E-
ontra
tsMany of the resear
h 
ondu
ted by philosophers and logi
ians tend to stressdi�eren
es between �ought� and �must�, or to de�ne logi
al equivalen
es be-tween obligation and permission, or even to for
e one notion being dual of12



the other and then 
hara
terizing the ex
eptions. Although this is reasonablein a philosophi
al 
ontext or in pure logi
, we 
laim that we 
an avoid manyof the above dis
ussions given that we are restri
ted to ele
troni
 
ontra
ts.In what follows we provide arguments for restri
ting synta
ti
ally the o
-
urren
e of 
ertain expressions involving obligation (O), permission (P ) andprohibition (F ) in a e-
ontra
ts.In what follows we resume some of the above dis
ussions, and we introdu
enew insights of what should and should not be expressible in a 
ontra
tlanguage.
• We 
onsider statements expressing one is NOT obliged to do somethingis not intuitive in the setting of e-
ontra
ts.

¬O(a) should not o

ur in a 
ontra
t
• It is 
ounter intuitive to have iteration of a
tions under obligation,permission and prohibition; e.g. it is not normal to have in a 
ontra
ta statement like: One is obliged to not pay, or pay on
e, o pay twi
e,or . . ..

O(a∗), P (a∗), or F (a∗) are not allowed
• A statement like one is NOT permitted to do some a
tion 
an be rewrit-ten as one is forbidden to do the a
tion

¬P (a) ≡ F (a)

• A statement like one is NOT forbidden to do an a
tion 
an be rewrittenas one is permitted to do the a
tion
¬F (a) ≡ P (a)Note that we adhere to the 
lassi
al de�nitions of permission and prohibitionas one being the negation of the other.We now dis
uss some restri
tions related to Prohibition (F ).

• It is not intuitive to have the + under the F operator. Consider forexample the following norm: In Europe it is forbidden one of the fol-lowing a
tions (but not both): to drive on the left side of the road (dl),or to drive on the right side (dr) whi
h 
an be represented as F (dl+dr).The problem is that it is not 
lear under whi
h 
ir
umstan
es ea
h one13



of the a
tions 
an be taken. The natural way to ex
lusively forbidthe 
hoi
e between two a
tions is to relate ea
h of the a
tions with its
ontext. So, the above senten
e 
ould be rewritten as: In the UnitedKingdom it is forbidden to drive on the right side of the road. In therest of Europe (ex
ept United Kingdom) it is forbidden to drive on theleft side of the road. Whi
h 
an be formalized as:
ϕUK ⇒ F (dr)
ϕREU ⇒ F (dl).Where ϕUK and ϕREU are mutually ex
lusive. On the other hand, itis possible to forbid two a
tions a and b simultaneously by imposing

F (a) ∧ F (b).Moreover, we argue that in 
ontra
ts it is not 
ommon to �nd state-ments that may be formalized using an ex
lusive OR operator ⊕ be-tween prohibitions. If we take the formula F (a) ⊕ F (b) to mean thateither is forbidden a or forbidden b but not forbidden both then one
ase of the statement is F (a) ∧ ¬F (b) whi
h, using the above equiva-len
e between P and ¬F is F (a) ∧ P (b). This means that one has thepermission to do b. Similar from the se
ond 
ase, one may 
on
ludethat it is permitted to do a. In the end, the formula F (a) ⊕ F (b) doesnot expli
itly prohibit anything, making its use 
ompletely meaninglessand dangerous.
• The prohibition of performing an a
tion a should imply the prohibitionof any 
on
urrent exe
ution of any set of a
tions that 
ontain the a
tion
a:

F (a) ⇒ F (a&b), (2)but the 
onverse impli
ation should not hold:
F (a&b) 6⇒ F (a). (3)3 Puzzles and ParadoxesIn what follows we mention only the most important paradoxes of deonti
logi
; see for instan
e [M
N06℄ for more details.

14



3.1 Classi
al Paradoxes and PuzzlesRoss's Paradox [Ros41℄: In natural language it is expressed as:1. It is obligatory that one mails the letter.2. It is obligatory that one mails the letter or one burns the letter.In Standard Deonti
 Logi
 (SDL) these are expressed as:1. O(p)2. O(p ∨ q)The problem is that in SDL one 
an infer that O(p) ⇒ O(p ∨ q).The Good Samaritan Paradox [Pri58℄: In natural language we have:1. It ought to be the 
ase that Jones helps Smith who has beenrobbed.2. It ought to be the 
ase that Smith has been robbed.And one naturally infers that:Jones helps Smith who has been robbed if and only if Jones helpsSmith and Smith has been robbed.In SDL the �rst two are expressed as:1. O(p ∧ q)2. O(q)The problem is that in SDL one 
an derive that O(p∧q) ⇒ O(q) whi
his 
ounter intuitive in the natural language, as in the example above.The Free Choi
e Permission Paradox [Ros41℄: In natural language wehave:1. You may either sleep on the sofa or sleep on the bed.2. You may sleep on the sofa and you may sleep on the bed.In SDL this is:1. P (p ∨ q)2. P (p) ∧ P (q) 15



The natural intuition tells that P (p ∨ q) ⇒ P (p) ∧ P (q). In SDL thiswould lead to P (p) ⇒ P (p ∨ q) whi
h is P (p) ⇒ P (p) ∧ P (q), so
P (p) ⇒ P (q). As an example: If one is permitted something, then oneis permitted anything.Sartre's Dilemma [M
N06℄: In natural language:1. It is obligatory to meet Jones now (as promised to Jones).2. It is obligatory to not meet Jones now (as promised to Smith).In SDL this is:1. O(p)2. O(¬p)The problem is that in the natural language the two obligations areintuitive and often happen, where the logi
al formulas are in
onsistentwhen put together (in 
onjun
tion) in SDL.Chisholm's Paradox [Chi63℄: In natural language it is expressed as:1. John ought to go to the party.2. If John goes to the party then he ought to tell them he is 
oming.3. If John does not go to the party then he ought not to tell themhe is 
oming.4. John does not go to the party.In Standard Deonti
 Logi
 (SDL) these are expressed as:1. O(p)2. O(p ⇒ q)3. ¬p ⇒ O(¬q)4. ¬pThe problem is that in SDL one 
an infer O(q) ∧ O(¬q) whi
h is dueto statement (2).The Gentle Murderer Paradox [For84℄: In natural language it is ex-pressed as:1. It is obligatory that John does not kill his mother.16



2. If John does kill his mother, then it is obligatory that John killsher gently.3. John does kill his mother.In Standard Deonti
 Logi
 (SDL) these are expressed as:1. O(¬p)2. p ⇒ O(q)3. pThe problem is that when adding a natural inferen
e like q ⇒ p thenin SDL one 
an infer that O(p).3.2 A new paradox?Apparently the deonti
 
ommunity does not see, in general, O(a) ∨ O(b)as a problemati
 formula, but we believe it is indeed a problem to havedisjun
tion of obligations � and also of permissions and prohibitions. Thismight be avoided in di�erent ways depending on the approa
h, but in thepresen
e of 
onjun
tion of a
tions and some of the usual relations betweenobligation, permission and prohibition, a new paradox arises. In what followswe explain why we think the above 
auses problems on the deonti
 reasoning.Most of the approa
hes using logi
s for formalizing normative deonti
notions5 propose an extension of propositional logi
 (PL), meaning that thelogi
s in
lude all the tautologies of PL. This naturally in
ludes the followingtautology: A ⇒ A ∨ B. We will show in what follows that from O(a) we
an derive P (a)∧P (b) whi
h is 
learly a dangerous paradox (�if I am obligednot to talk in the presen
e of the Pope, then I am permitted not to talk andto kill the Pope�). In our derivation we use the following 
ommon relations:
• O(·) ⇒ P (·),
• P (·) ≡ ¬F (·).We also make use of the De Morgan laws and the following intuitiveequivalen
es:
• P (a&b) ≡ P (a) ∧ P (b),5Usually these notions are formalized as operators and in deonti
 logi
 are 
onsideredto be modalities. Though they are not operators in our approa
h, we keep the terminologywhenever no 
onfusion might arise. 17



• F (a&b) ≡ F (a) ∧ F (b).Noti
e that the above is not �standard� sin
e many approa
hes do not
onsider 
onjun
tion over a
tions, but it is very intuitive to interpret permis-sion and prohibition of 
onjun
tion of a
tions as above. We are ready nowto show that O(a) implies P (a) ∧ P (b).First takeO(a) ⇒ O(a)∨O(b) (instan
e of the PL tautologyA ⇒ A∨B).From O(a) ⇒ P (a) and O(b) ⇒ P (b), we get that O(a) ∨ O(b) ⇒ P (a) ∨
P (b). But P (a)∨P (b) ⇒ ¬F (a)∨¬F (b) and by the De Morgan law we havethat ¬(F (a) ∧ F (b)) whi
h implies ¬F (a&b). We then get P (a&b) whi
h isequivalent to P (a) ∧ P (b).What is wrong on the above derivation? Some might argue that theequivalen
es given for permission and prohibition of a
tions are not univer-sally a

epted by the deonti
 
ommunity and that they are not 
orre
t. Webelieve that the 
ause of the problem relies on a

epting 
ertain laws ofpropositional logi
 when reasoning about deonti
 modalities (like de Morganlaws). Moreover, we strongly advo
ate for the elimination of the 
lassi
aldisjun
tion on normative deonti
 notions, given that the intuitive idea innatural language when using the word or is usually that of an ex
lusive or(�The 
lient is obliged to pay or to send a noti�
ation of delay.�, and anotherexample would be: �You have the right to remain silent or anything you say
an be used against you in the 
ourt of law.�). Thus, we 
laim that a logi
of a
tions (with 
onjun
tion of a
tions) for a 
orre
t representation and rea-soning of obligation, permission and prohibition should have the followingrestri
tions:

• The De Morgan laws 
annot be applied to deonti
 modalities,
• Use the ex
lusive or, and disallow (synta
ti
ally) the 
lassi
al disjun
-tion on deonti
 modalities.We 
laim that the right interpretation of ¬(O(a)∧O(b)) should be ¬O(a)∧

¬O(b), whi
h is more intuitive, in 
ase one admits the use of negation overobligations. Similarly for prohibition.4 Desirable Properties of a Language for Con-tra
tsBefore presenting our language we start by listing some of the intuitive prop-erties we should have, and others we should avoid, when formalizing 
on-tra
ts. 18



(1) Avoid as many deonti
 logi
 paradoxes as possible:(a) Avoid the Good Samaritan paradox, Satre's dilemma, and theGentle Murder paradox;(b) Avoid Chisholm's paradox. This means obligation should be de-�ned only on a
tions, not on formulas. In parti
ular do not writeformulas of the form O(φ ⇒ ψ);(
) Avoid Ross's paradox. This means avoid having (in the 
lassi
alnotation of deonti
 logi
): O(p) ⇒ O(p ∨ q);(d) Avoid the Free Choi
e Permission paradox (i.e. do not allow thefollowing impli
ation: P (p) ⇒ P (p ∨ q));(e) Avoid the new paradox des
ribed in Se
tion 3.2; i.e., synta
ti
allydisallow the 
lassi
al disjun
tion between deonti
 modalities.(2) Use the XOR logi
al 
onne
tive instead of the 
lassi
al disjun
tion be-tween modalities;(3) Allow 
on
urrent a
tions and keep the intuition of 
onjun
tion on obli-gations; i.e., O(a&b) = O(a) ∧ O(b).(4) Some intuitive desirable relations on obligations:(a) O(a; b) = O(a) ∧ [a]O(b)(b) Allow CTD (reparation)(5) Allow the de�nition of 
onditional obligations, i.e., formulas of the form
ψ ⇒ O(a).(6) Have the following: O(a) ⇒ P (a).(7) Do not de�ne permission and obligations in terms of ea
h other (forinstan
e, do not de�ne obligation as O(a) = ¬P (¬a)).(8) Some intuitive desirable relations on permissions:(a) P (a; b) = P (a) ∧ [a]P (b)(b) P (a+ b) = P (a) ⊕ P (b)6(9) Some intuitive desirable relations on prohibitions:(a) F (a) = ¬P (a)6Many authors prefer to have P (a + b) = P (a) ∧ P (b) (see for instan
e [BWM01℄).19



(b) F (a; b) = F (a) ∨ 〈a〉F (b)(
) F (a+ b) = F (a) ∧ f(b)(d) F (a) ⇒ F (a&b)(e) F (a&b) 6⇒ F (a)(f) Allow 
ontrary-to-prohibition.5 A Spe
i�
ation Language for Contra
tsThis se
tion 
ontains the de�nition of our spe
i�
ation language for writinge-
ontra
ts. The �rst two subse
tions are meant as a te
hni
al preamble tosubse
tion 5.3 where the language is de�ned. If the reader is more or lessfamiliar with the 
on
ept and the intuition of an a
tion (from dynami
 logi
sfor example) then she may skip dire
tly to subse
tion 5.3. Subse
tion 5.2 isintended to de�ne the 
on
ept of a
tion negation. This se
tion 
an also beskipped in a �rst reading.5.1 A
tion AlgebraSome of the most well known and studied a
tion algebras 
ome from the workon dynami
 logi
s [Pra76℄. We base our work on Pratt and Kozen's dynami
algebra [Pra80, Koz80℄. This algebra is built on top of Kleene algebra whi
hwas introdu
ed in 1956 and further developed by Conway in [Con71℄. Forreferen
es and an introdu
tion to both Kleene and dynami
 algebra see theextensive work of Kozen [Koz81, Koz90, Koz97℄.In these resear
h e�orts the authors used, for example, regular languagesas the obje
ts of the algebra, or relations over a �xed set (as we have in dy-nami
 logi
) and analyzed properties like 
ompleteness [Koz94℄, 
omplexity[CKS96℄ and appli
ations [Coh94℄ of variants of Kleene algebra. Some vari-ants in
lude the test operator ?, and others dis
ard the iteration operator ∗.Many insights 
an be drawn from this extensive work related to our need ofa
tion algebra.We de�ne an algebrai
 stru
ture similar to dynami
 algebra, modi�ed sothat it 
omplise with the intuition drawn from e-
ontra
ts. A �rst 
hangeis in dropping the Kleene star (iteration) as it is unnatural to have it underobligation, permission and prohibition of the Contra
t Language (see dis
us-sion in Se
tion 2.5). A se
ond 
hange involves the 
on
urren
y of two ormore a
tions, and it 
onsists of de�ning a spe
ial operator for the algebra tomodel truly 
on
urrent a
tions. For example, we need to express that The
lient is obliged to do a
tions a and b at the same time.20



We re
all that a Kleene algebra is a stru
ture K = {K,+, ·, 0, 1,∗ } withthe properties that (K,+, 0) is a 
ommutative monoid with the identityelement 0, and (K, ·, 1) is a monoid with the identity element 1. Moreover,operator + is idempotent and thus it is possible to de�ne a partial order ≤on K thus having that (K,+, 0) is a semilati
e. The ∗ is a unary operatorwhi
h respe
ts a set of axioms with the intuition that a∗ = 1+ a+ a · a+ . . ..In programming theory it is usual to interpret + as 
hoi
e, · as sequen
e and
∗ as iteration.A dynami
 algebra is a rather more 
omplex stru
ture D = (K,B, 〈·〉)where K is a Kleene algebra, B is a Boolean algebra, and 〈·〉 a s
alar multi-pli
ation de�ned as 〈·〉 : K × B → B respe
ting the usual rules.Our a
tion algebra has a set of atomi
 a
tions denoted A and the a
tionoperators whi
h form the 
ompound a
tions: + for 
hoi
e of two a
tions,
· for sequen
e of a
tions (or 
on
atenation; in PDL we �nd this operatordenoted as ;), & for 
on
urrent exe
ution of two atomi
 a
tions, and the testoperator ? (we will see later how with test operator we 
an simulate impli-
ation over formulas [HKT00℄). The three operators +, ·, and & are binaryoperators. Choi
e (+) is applied to 
ompound a
tions and is asso
iative and
ommutative. Con
urren
y (&) operator is applied to atomi
 a
tions onlyand is asso
iative and 
ommutative. The sequen
e (·) operator is applied to
ompound a
tions and is right-asso
iative and non-
ommutative. For brevitywe often drop the sequen
e operator and instead of α · β we just write αβ.The operators +, ·, and & are applied to elements of A (a
tions).In dynami
 algebra, the elements of the boolean algebra are 
alled testsand are in
luded in the set of a
tions of the Kleene algebra (i.e. tests arespe
ial a
tions)7. With the test operator the skip a
tion (denoted 1 above)is de�ned as ⊤?, where ⊤ is the spe
ial proposition that holds in every world.
1 is interpreted in PDL as the identity relation over the set of worlds. It hasthe meaning that when exe
uting the skip atomi
 a
tion the system goes tothe same state. With skip the a
tions a and a ·1 have the same set of tra
es,and skip has also the property that 1∗ = 1.We do not study in this paper properties of this a
tion algebra but at a�rst look the + and · operators obey the same properties as the operators ofKleene algebra. It is left to investigate the properties of & operator and itsrelations with the other operators. Adding the test operator we obtain ana
tion algebra with tests [Koz97℄ and we expe
t to have similar properties.7To be more formal and to have a syntax more 
loser to the syntax used in PDL we usethe ? operator and 
all it test operator. The test operator is spe
ial in the sense that itis applied to elements of B (i.e. formulas in the boolean algebra) and generates a
tions of
A (i.e. ? : B → A). Basi
ally ? generates the set of a
tions 
alled the set of tests in
ludedin A. 21



5.2 A
tion Normal FormalIt is known that for regular expressions there is no standard normal form;for example, see the Starr-Height problem [Egg63℄ whi
h looks at regularexpressions normal forms from the perspe
tive of Kleene star.For the set of a
tion operators (+, ·, ∗, ?) of the algebra de�ned inSe
tion 5.1 we have the following de�nition of a
tion normal form. For thesemanti
s of a
tions given with tra
es, as in pro
ess logi
s [Pra79℄, we obtainall the tra
es of the a
tion.De�nition 5.1 (a
tion normal form for +). For a
tions de�ned with theoperators +, ·, ∗, ? we have an a
tion normal form denoted by ANF+ andde�ned as
α = +

ρ∈R
ρ · α′where α is a 
ompound a
tion, ρ represents either an atomi
 a
tion or a test,and R is a subset of atomi
 a
tions and tests.Theorem 5.1. For every a
tion in the algebra of Se
tion 5.1 we have a
orresponding ANF+.A natural and useful view of a
tion negation when we 
onsider a
tions in-terpreted as tra
es is to say that the negation α of a
tion α is the a
tion givenby all the immediate tra
es that take us outside the tra
e of α [BWM01℄.With ANF+ it is easy to formally de�ne α.De�nition 5.2 (a
tion negation). The a
tion negation is denoted by α andis de�ned for any a
tion α in ANF+ as:

α = +
ρ∈R

ρ · α′ = +
b∈A\R

b + +
ρ∈R

ρ · α′where α′ is also in ANF+, and R is a set of the atomi
 a
tions or tests.Note that b is only an atomi
 a
tion8 of A, whi
h means that the a
tionnegation does not take into 
onsideration the tests.5.3 The Contra
t LanguageWe aim at the de�nition of a pre
ise syntax of a 
ontra
t language, with atranslation into a logi
 in order to be able to reason about it. We de�nea Contra
t Language (CL), and provide a set of rewriting rules in order tosimplify and minimize the number of expressions in the language.8When we remove from the set of atomi
 a
tions A the set R whi
h 
ontains bothatomi
 a
tions and tests, the resulting set will 
ontain only the a
tions of A whi
h are notin R. 22



De�nition 5.3 (Contra
t Language Syntax). The syntax of the 
ontra
tlanguage is:
Contract := D ; C

C := φ | CO | Cp | CF | C ∧ C | [α]C | 〈α〉C | C U C | © C

CO := O(α) | CO ⊕ CO

CP := P (α) | CP ⊕ CP

CF := F (δ) | CF ∨ [δ]CFThe syntax of CL 
losely resembles the syntax of a modal (deonti
) logi
.Though this similarity is 
learly intentional sin
e we are driven by a logi
-based approa
h, CL is not a logi
. In what follows we provide an intuitiveexplanation of the CL syntax; a more pre
ise meaning will be given laterthrough a translation into an extension of the propositional µ-
al
ulus.A 
ontra
t spe
i�
ation 
onsists of two parts: de�nitions (D) and 
lauses(C). In the de�nitions part we expli
it the assertions (or 
onditions) andthe atomi
 a
tions present in the 
lauses. In a �rst presentation we let theatomi
 a
tions underspe
i�ed, whi
h for our purposes 
an be understoodas 
onsisting of three parts: the proper a
tion, the subje
t performing thea
tion, and the target of (or, the obje
t re
eiving) su
h an a
tion. C isthe general 
ontra
t 
lause. CO, CP , and CF denote respe
tively obligation,permission, and prohibition 
lauses.
φ represents an assertion, like the budget is more than 200$. ∧ and ⊕maybe thought as the 
lassi
al 
onjun
tion and ex
lusive disjun
tion, whi
h maybe used to 
ombine obligations and permissions. For prohibition CF we have

∨, again with the 
lassi
al meaning of the 
orresponding logi
al operator. αis a 
ompound a
tion with syntax as given in Se
tion 5.1, while δ denotesa 
ompound a
tion not 
ontaining any o

urren
e of +. Operationally, we
onsider that atomi
 a
tions do not require time for their exe
ution, i.e., theatomi
 a
tions are instantaneous. A 
on
urrent a
tion is also instantaneous,so from this point of view it 
an be seen also as atomi
. Note that synta
-ti
ally ⊕ 
annot appear between prohibitions and + 
annot o

ur under F ,as dis
ussed in Se
tion 2.5.We borrow from PDL the syntax [α]C (also 
alled dynami
 box ) to repre-sent that after performing α, C should be the 
ase. Intuitively, one may thinkof [·] as the ∀ quanti�er in the sense that either the a
tion is not performed orif it is performed then the 
lause after it should be enfor
ed. The [·] notationallows having a test inside, where the syntax [φ?]C must be understood as
φ ⇒ C. 〈α〉C (also known as dynami
 diamond) 
aptures the idea that theremust exist the possibility of exe
uting α, in whi
h 
ase C will be enfor
ed23



(1) O(α+ β) = O(α) ⊕ O(β)(2) O(a&b) = O(a) ∧O(b)(3) O(αβ) = O(α) ∧ [α]O(β)(4) P (α+ β) = P (α) ⊕ P (β)(5) P (αβ) = P (α) ∧ 〈α〉P (β)(6) F (αβ) = F (α) ∨ [α]F (β)Table 1: Compositional rulesafterwards. In the 
ontra
t language we do not relate the dynami
 box to thedynami
 diamond. They are related in µ-
al
ulus, through their translationof Se
tion 6.3. Following temporal logi
 (TL) [Pnu77℄ notation we have U(until) and© (next) with the intuitive behavior as in TL. Thus C1 U C2 statesthat C1 should hold until C2 holds. ©C intuitively states that the C shouldhold in the next moment, usually after something happens. We 
an de�ne
�C (always) and ♦C (eventually) for expressing that C holds everywhere andsometimes in the future, respe
tively.The 
ompound a
tions have a 
ompositional behavior in CL when theyappear under obligation O. For 
hoi
e of a
tions we have

O(α+ β) = O(α)⊕ O(β) (4)with the intuition (drawn from the world of 
ontra
ts) that If one is obligedto 
hoose between doing one a
tion or doing another a
tion, then one shouldregard it as being either obliged to do the �rst a
tion or as being obliged todo the se
ond a
tion.For 
on
urrent a
tions we have
O(a&b) = O(a) ∧ O(b) (5)with the intuition that, regarding atomi
 a
tions If one is obliged to do anatomi
 a
tion a and is also obliged to do another atomi
 a
tion b then oneshould 
on
lude that one is obliged to do the two atomi
 a
tions at the sametime.For the sequen
e of a
tions we have
O(αβ) = O(α) ∧ [α]O(β) (6)whi
h intuitively means that if one is obliged to do a sequen
e of a
tions thenone should be obliged to do the �rst a
tion, and after doing the �rst a
tionone should also be obliged to do the se
ond a
tion.24



The 
ompound a
tions under permition are similar to the ones underobligation. The 
hoi
e of a
tions is also ex
lusive 
hoi
e and we still have
ompositionallity of P :
P (α+ β) = P (α) ⊕ P (β) (7)whi
h intuitively means that if one is permitted to 
hoose between doingone of the a
tions α or β then, one is either permitted the �rst a
tion or ispermitted the se
ond a
tion.For 
on
urren
y under permission we do not �nd any 
ompositionallityrule. A 
lause P (a&b) stating that it is permitted to do the two a
tions atthe same time, does not give any information about the individual a
tions.Moreover, the permission of the individual a
tions 
an not give informationabout the permission of the 
on
urrent exe
ution of the two a
tions.For the sequen
e of a
tions under permission we have:
P (αβ) = P (α) ∧ 〈α〉P (β) (8)with the intuition that if one is permitted to do the sequen
e of a
tions thenone may 
on
lude that one is both permitted the �rst a
tion and also thereexists a way of doing the �rst a
tion and afterwords one would be permittedthe se
ond a
tion.Compound a
tions under prohibition do not behave the same as underobligation or permission. For 
on
urren
y under prohibition we do not �ndany 
ompositionallity rule; (see equations (2), and (3) of Se
tion 2.5).For the sequen
e of a
tions under prohibition we have
F (αβ) = F (α) ∨ [α]F (β) (9)with the intuition that if one is forbidden to do the sequen
e of a
tions thenone may 
on
lude that one is either forbidden the �rst a
tion or, if the �rsta
tion is performed the se
ond a
tion is forbidden.The main di�eren
e between modal logi
 (where the modality denotesne
essity) and deonti
 logi
 (where the modality denotes obligation) is in thefa
t that the deonti
 modality 
an be violated. For example, if in modallogi
 one 
an make the inferen
e: �p then p (if it is ne
essary that p, then

p is true), in deonti
 logi
 the inferen
e is no longer possible be
ause O 
anbe violated (see Se
tion 2.1 for a dis
ussion). Related to this we 
onstantly�nd in 
ontra
ts the 
ontrary to duty (CTD) and 
ontrary to prohibition(CTP) formulas. CTDs express what happens if an obligation is violated. Inour 
ase, if we have the obligation to do an a
tion then the violation of theobligation is the exe
ution of the negation of the a
tion. CTDs are added tothe 
ontra
t language with the following syntax:25



Oϕ(α)stating the obligation to exe
ute the 
ompound a
tion α and the reparationformula ϕ whi
h should hold in 
ase the obligation is violated. The reparationmay be either another obligation, a prohibition, a stand alone assertion, oreven another CTD whi
h should be enfor
ed after the violation o

urs. Theabove is synta
ti
 sugar for the following CL formula:
Oϕ(α) = O(α) ∧ [α]ϕ (10)stating the obligation O(α) whi
h should hold in the 
urrent world and ifthe negation of α is exe
uted (meaning that the obligation is violated) thereparation ϕ should be enfor
ed.One might suggest that just the a
tion negation as de�ned in Se
tion5.2 does not 
apture the intuition of violation of an obligation of an a
tion.One may say that for an a
tion a (e.g. deposit money in the bank a

ount)a violating a
tion may be just the negative a
tion ¬a (NOT deposit moneyin the bank a

ount). In this paper we do not 
onsider negative a
tions; fora dis
ussion about our de
ision see Se
tion 2.4.3. A se
ond argument forour de
ision is that negative a
tions may be expressed in other ways. Forexample, in order to say obliged NOT to do one 
an say forbidden to do.Contrary to Prohibition statements expli
itly provide the reparation for-mula whi
h should hold in 
ase the prohibition is violated. For example if theforbidden a
tion α is exe
uted (the prohibition is violated) then a reparationformula ϕ should be enfor
ed. The CTPs (denoted as Fϕ(α)) are abbrevia-tions of the CL formulas:
Fϕ(α) = F (α) ∧ [α]ϕ (11)With the dynami
 box syntax we 
an model in CL 
onditional obligations,permissions, and prohibitions (see Dyadi
 Deonti
 Logi
 for an introdu
tionto the formalism that has introdu
ed 
onditional obligations [PS97℄). Wemay have two kinds of 
onditional expressions; let us take an example forobligation. Conditional obligations 
an depend on both the exe
ution ofan a
tion, or on an assertion whi
h holds in the 
urrent state. Intuitively,
onditional obligations related to a
tions state that after exe
uting an a
tion,a 
ertain obligation is the 
ase. We represent su
h 
onditional obligation as:

[α]O(β) (12)where α is the 
onditioning a
tion and O(β) is the obligation enfor
ed bythe 
onditioning a
tion. Often in 
ontra
ts we �nd obligations triggered bysome assertion that holds in the 
urrent world. Intuitively, if the assertion26



(1) O(a) ∧ O(b) → O(a&b)(2) O(a) ⊕ O(a&b) → O(a)(3) O(a) ∧ O(a&b) → O(a&b)(4) O(a) ∧ (O(a) ⊕ O(b)) → O(a)(5) O(a) ∧O(a) → O(a)(6) O(a) ⊕O(a) → O(a)(7) O(c) ∧ (O(a) ⊕ O(b)) → (O(c) ∧ O(a)) ⊕ (O(c) ∧ O(b))(8) (⊕iO(ai)) ∧ (⊕jO(bj)) → ⊕i,j(O(ai) ∧ O(bj)) ai 6= bjTable 2: Rewriting rules for obligation O
ϕ holds in the 
urrent world then the obligation should be enfor
ed in the
urrent world. We model this by using the test operator ?:

[ϕ?]O(α) (13)The formula ϕ represents any 
ontra
t formula C spe
i�ed in the Contra
tLanguage or a stand alone assertion φ like: the budget is more than 200$.We aim at translating into the logi
 of Se
tion 6.2 as few 
onstru
ts fromthe 
ontra
t language as possible. For this we give �rst a set of rewritingrules for the CL obligation formulas whi
h lead to an obligation normal formwhi
h is mu
h easier to translate. The rewriting rules are also useful forgiving several restri
tions on the formulas of CL drawn from real 
ontra
ts inpra
ti
e. In the Table 2 the rules (1)-(4) are guided by the 
ommon examplesfound in real 
ontra
ts, rules (5)-(6) are the usual 
ontra
tion rules, and therules (7)-(8) basi
ally give the distributivity of the 
onjun
tion operator overthe ex
lusive disjun
tion operator. Note that the rules (1)-(8) are appliedonly to obligation operator over atomi
 or 
on
urrent a
tions.For formulas involving just the obligation 
onstru
t and the ∧ and ⊕ overobligations we 
an write them in the following obligation normal form. Notethat it is applied only to obligations of atomi
 or 
on
urrent a
tions, thusgiving a normal form only for the �rst step in the tra
es of the 
ompounda
tions. We do not take into 
onsideration the · sequen
e syntax.
n⊕

i=1

(O(&m
i=1ai,j))where for a �xed i, and ∀j, ai,j are di�erent one from another. Be
ause ofthe normal form, all we need to translate for obligations into the extended

µ-
al
ulus is: O(a), O(a&b), and the ⊕ synta
ti
 
onstru
ts.27



6 The Underlying Logi
 for the Contra
t Lan-guage6.1 Propositional µ-
al
ulus: Syntax and Semanti
sWe take the 
lassi
al propositional µ-
al
ulus as de�ned in [Koz83℄ (a veryni
e introdu
tion 
an be found in [BS01℄, where the authors 
all the logi
modal µ-
al
ulus). µ-
al
ulus has ni
e properties: it is de
idable [KP83℄and has a 
omplete [Wal95℄ axiomati
 system and a 
omplete Gentzen-stylededu
tion system [Wal93℄.
µ-
al
ulus de�nes a spe
ial set L of labels, whi
h we 
all atomi
 a
tionsand denote them by small letters from the beginning of the Latin alphabet

a, b, c, . . .. The syntax of propositional µ-
al
ulus is:
P , Z, and ⊤ are µ-formulas; where P represents the propositional vari-ables, Z represents the state variables, and⊤ is the 
onstant propositiondenoting true.If ϕ and ψ are µ-formulas then ¬ϕ, ϕ ∧ ψ, and [a]ϕ are µ-formulaswhere a ∈ L are labels.If ϕ is µ-formula and ν denotes the greatest �x-point then νZ.ϕ(Z) isa µ-formula.In a more 
on
ise notation the syntax of µ-
al
ulus is:

ϕ := P | Z | ⊤ | ¬ϕ | ϕ ∧ ϕ | [a]ϕ | νZ.ϕ(Z)We also have the usual dualities:
ϕ ∨ ψ

def
= ¬(¬ϕ ∧ ¬ψ)

〈a〉ϕ
def
= ¬[a]¬ϕ

µZ.ϕ(Z)
def
= ¬νZ.¬ϕ(¬Z)In the following we give the standard semanti
s of the operators of propo-sitional µ-
al
ulus. The semanti
 interpretation of the above synta
ti
 
on-stru
ts follows the 
lassi
al set-theoreti
al approa
h [Koz83℄. The formulasare interpreted over a stru
ture (similar to a labelled transition system) de-noted T . T is de�ned with respe
t to a set of propositions P and a set oflabels L and is T = (S, RL,VP ,V). S is the set of states (worlds), RL is afun
tion assigning to ea
h a
tion in L a relation over S (i.e. RL(a) ⊆ S ×S,28



a ∈ L), VP : P → 2S is the interpretation of the propositions as subsets ofstates where the propositions hold. V is a valuation fun
tion assigning toea
h state variable a set of states. The valuation V[Z := S] maps variable Zto the states set S and in the rest it agrees with V. For the sake of notationinstead of RL(a) we write Ra.Some of the papers in the literature present the semanti
s of µ-
al
ulusas a Labeled Transition System (LTS) [BS01℄. The di�eren
e between a LTSand the present stru
ture T is that in pla
e of a labelled transition relation
→⊆ S ×L×S we asso
iate for ea
h a
tion of L a set of transitions betweentwo states. This set of pairs of states gives for ea
h a
tion a relation over S.The semanti
s of µ-
al
ulus is:

‖⊤‖TV = S

‖P‖TV = VP (P )

‖Z‖TV = V(Z)

‖¬ϕ‖TV = S \ ‖ϕ‖TV

‖ϕ ∧ ψ‖TV = ‖ϕ‖TV ∩ ‖ψ‖TV

‖[a]ϕ‖TV = {s | ∀t ∈ S. (s, t) ∈ Ra ⇒ t ∈ ‖ϕ‖TV }

‖νZ.ϕ‖TV =
⋃
{S ⊆ S | S ⊆ ‖ϕ‖TV [Z:=S]}

‖ϕ ∨ ψ‖TV = ‖ϕ‖TV ∪ ‖ψ‖TV

‖〈a〉ϕ‖TV = {s | ∃t ∈ S. (s, t) ∈ Ra ∧ t ∈ ‖ϕ‖TV }

‖µZ.ϕ‖TV =
⋂
{S ⊆ S | S ⊇ ‖ϕ‖TV [Z:=S]}It is known that propositional µ-
al
ulus is more expressive than PDLand 
an embed PDL [BWM01℄. Therefore we de�ne the following synta
ti
short
uts whi
h 
apture the behavior of the a
tion algebra we have in PDL.We denote by [α; β]ϕ the following µ-formula [α][β]ϕWe denote by [α ∪ β]ϕ the following µ-formula [α]ϕ ∧ [β]ϕWe denote by [α∗]ϕ the following µ-formula νZ.ϕ ∧ [α]Z29



We denote by [ψ?]ϕ the following µ-formula ψ ⇒ ϕA simple example of a 
ompound a
tion in PDL is [ψ?; a]ϕ whi
h meansthat if in the 
urrent state ψ holds then we may 
ontinue and exe
ute a
tion
a and every time the a
tion terminates it will terminate in a state satisfyingformula ϕ. Guided by the de�nitions of the above synta
ti
 short
uts we geta µ-formula:

[ψ?; a]ϕ
def
= [ψ?][a]ϕ

def
= ψ ⇒ [a]ϕThis formula expresses the partial 
orre
tness assertion of Hoare logi
 {ψ}a{ϕ}whi
h means that if a program starts with the input ψ (in a state satisfying

ψ) then, whenever the program ends it will end in a state satisfying ϕ.6.2 Yet another propositional µ-
al
ulusIn this se
tion we give a variant of the propositional µ-
al
ulus spe
iallytailored for our needs to have a formal framework to reason about 
ontra
tsspe
i�ed in CL. We take the syntax of the propositional µ-
al
ulus as de�nedin Se
tion 6.1, and we modify the set of a
tions L, and the set of propositions
P by adding a set of propositional 
onstants whi
h we denote by Pc in
ludedin P . The set of state variable remains also un
hanged. We 
all the extendedlogi
 Cµ.The interpretation of the operators remains the same. We only give thesemanti
s for our extension part.We need �rst to be able to deal with true 
on
urren
y. Instead of thelabels representing atomi
 a
tions we have �nite subsets of atomi
 a
tionswith the intuitive meaning that all the atomi
 a
tions in the set are exe
uted
on
urrently.De�nition 6.1 (
on
urrent sets). A 
on
urrent set denoted by γ (possibleindexed) is a �nite subset of the set of atomi
 a
tions L, γ = {a1, . . . , an}where ai ∈ L. These 
on
urrent sets are 
onsidered the labels of Cµ. Thestru
ture of the new logi
 is interpreted over 2L instead of L.Inside the box operator we now have 
on
urrent sets γ instead of atomi
a
tions ([γ]ϕ). Note that Cµ subsumes the 
lassi
al µ-
al
ulus by taking thea
tions of µ-
al
ulus to be singleton 
on
urrent sets (γ = {a}). We 
hangethe RL fun
tion of µ-
al
ulus into R2L whi
h is applied to 
on
urrent sets of
2L instead of atomi
 a
tions of L. R2L : 2L → S×S is a fun
tion assigning toea
h 
on
urrent set γ of 2L a relation over S (i.e., R2L(γ) ⊆ S ×S, γ ∈ 2L).Note also that R2L for singleton 
on
urrent sets behaves the same as RL for30
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Figure 3: The intuition for the determinism in Cµ.a
tions of µ-
al
ulus. For the sake of notation instead of R2L(γ) we write Rγ .In the 
ase of singleton 
on
urrent sets instead of R{a} we just write Ra whenthere is no 
han
e of 
onfusion with the one from propositional µ-
al
ulus.Also, we often use as shorthand for a 
on
urrent set inside dynami
 operatorsjust the syntax [a, b]ϕ instead of [{a, b}]ϕ.Non-determinism in a
tion logi
s like PDL and 
onsequently propositional
µ-
al
ulus refers to the a
tions. A
tions are 
onsidered non-deterministi
be
ause from one world/state, by performing an a
tion, the system may goto several other worlds/states.On the other hand deterministi
 variants of the above logi
s have beeninvestigated. Among the �rst approa
hes was DPDL of Ben-Ari, Halpern,and Pnueli [BAHP81℄ where the intuition is that an a
tion started in the
urrent state may terminate in only one �nal state. The determinism isnaturally de�ned for atomi
 a
tions. Formally, the relationRa that interpretsthe atomi
 a
tion a be
omes a partial fun
tion ρ(a), i.e., for any (s, t), (s, t′) ∈
ρ(a) then t = t′. Naturally a 
ompound a
tion may have several endingworlds, both in the interpretation of the a
tions as relations [FL77℄ or thea
tions as traje
tories [Pra78℄.In the ni
e essay [PT91℄ on Combinatory Dynami
 Logi
 (PDL is ex-tended with nominals; whi
h are spe
ial 
onstant propositions valid in onlyone state) determinism is de�ned by an axiom:

(det) ⊢ 〈a〉ϕ ⇒ [a]ϕThe intuition is that an a
tion may end up in several worlds but in all theending worlds we have the same set of propositions holding. This means thatin a Kripke stru
ture we 
an merge all the arrows labelled with our a
tioninto one arrow and all the states that the arrows end up in, into one state(for an example 
onsider the pi
ture in Figure 3). Note that the authors alsorelate the determinism to the atomi
 a
tions.From the point of view of modelling 
ontra
ts it is natural to adopt thedeterministi
 variant of an a
tion logi
. Usually the aim of a 
ontra
t 
lause31



is to expli
itly state what is the out
ome of performing an a
tion. Non-determinism is not desirable be
ause we would be able to model a
tionswhi
h have no 
lear single out
ome.The determinism that we have presented above extends to the 
on
urrentsets by requiring to have only one transition from one state labelled with a
on
urrent set. Formally we take the approa
h of DPDL and restri
t R2Lto assign to ea
h 
on
urrent set only partial fun
tions (not relations). Forexample, if (s, t), (s, t′) ∈ R{a,b}, and s, t, t′ ∈ S then t = t′. Note that if
(s, t) ∈ Ra and (s, t′) ∈ R{a,b} it does not mean that for a
tion a we havenon-determinism. This is be
ause one may either perform a
tion a and havea formula holding after, or may perform the 
on
urrent a
tion a&b and havesome other out
ome (other formula holding) in the state after. For exampleone may 
onsider O(a&b) ⊕ O(a) to generate non-determinism. A 
loseranalysis of the above example shows that it does not make sense to 
hoosebetween O(a&b) and O(a), sin
e if it is my 
hoi
e, then I would 
hoose thelest restri
tive for me (i.e. O(a)), and if the 
hoi
e is external (or imposed)it may be the 
ontrary.Note that the a
tion normal form ANF+ de�ned in Se
tion 5.2 mergestogether several arrows labelled with the same a
tion into one arrow, whi
hgoes well with our deterministi
 variant of µ-
al
ulus.In order to translate obligation, permission and prohibition syntax of CLinto the new logi
 we need to extend the propositional µ-
al
ulus with a newset Pc of 
onstant propositions. The 
onstant propositions are interpreted,the same as the propositional variables of P , as a set of states where the
onstant proposition holds. We de�ne the obligation 
onstants Oa ∈ Pc whi
hare indexed by the atomi
 a
tions of L. Similarly we de�ne the prohibition
onstants Fa ∈ Pc whi
h are also indexed by the atomi
 a
tions.The intuition of the obligation 
onstants is that when the system is in astate s and ∃t ∈ S with (s, t) ∈ Ra and t ∈ ‖Oa‖

T
V then we may 
on
ludethat in the 
urrent state s the system has the obligation to exe
ute a
tion a.A �rst reason for having a set of obligation 
onstants indexed by thea
tions is that we want to 
apture in the logi
 the 
ompositionallity of theobligation 
onstru
t of the CL over the 
on
urrent a
tions. Another reasonfor indexing the obligation 
onstants is that in ea
h state we need to knowwhi
h in
oming a
tions are obligation a
tions; i.e. if we would have only one
onstant proposition O denoting obligation then if O holds at a state t, andtwo a
tions a = (s, t) and b = (s′, t) enter the state t then both a
tions haveto be obligatory a
tions.For the obligation and prohibition 
onstants we 
hoose to have a restri
-tion on their semanti
s. 32



(1) fT (O(a)) = 〈a〉Oa(2) fT (O(a&b)) = 〈{a, b}〉(Oa ∧ Ob)(3) fT (CO ⊕ CO) = fT (CO) ∧ fT (CO)(4) fT (P (&n
i=1ai)) = 〈{a1, . . . , an}〉(∧

n
i=1¬Fai

)(5) fT (CP ⊕ CP ) = fT (CP ) ∧ fT (CP )(6) fT (F (&n
i=1ai)) = [{a1, . . . , an}](∧

n
i=1Fai

)(7) fT (F (δ) ∨ [β]F (δ)) = fT (F (δ)) ∨ fT ([β]F (δ))Table 3: The Translation Fun
tion for CO, CP and CFDe�nition 6.2 (
onstants in
ompatibility). We de�ne the 
onstant propo-sitions Fa and the 
onstant obligations Oa, with a ∈ L to be in
ompatible,meaning that their interpretations as sets of states must be disjoint:
‖Fa‖

T
V ∩ ‖Oa‖

T
V = ∅, ∀a ∈ L.The intuition drawn from ele
troni
 
ontra
ts is that we want to disallowhaving in a 
ertain world the obligation to do an a
tion and prohibition ofthe same a
tion. Note that the above de�nition gives the following naturalresult:Proposition 6.1 (
onstants impli
ation). We have the following impli
a-tions holding:1. Oa ⇒ ¬Fa2. Fa ⇒ ¬Oa6.3 Translating the language into the logi
Be
ause of the spe
ial status of the 
on
urrent a
tions we 
hoose to translateboth O(a) and O(a&b). Be
ause of this and of the equation (5) of Se
tion 5.3we do not translate into Cµ the ∧ 
onjun
tion over obligations. Nevertheless,we translate the 
hoi
e and the dynami
 box.We 
onsider a translation fun
tion fT applied to formulas of CL whi
hgenerates formulas of Cµ.Translation of the obligation to do an atomi
 a
tion a is:

fT (O(a)) = 〈a〉OaTranslation of the obligation to do both a
tions a and b at the same timeuses the 
on
urrent sets: 33



fT (O(a&b)) = 〈{a, b}〉(Oa ∧ Ob)Note that the 
onjun
tion ∧ on the right side of the de�nition is the 
onjun
-tion operator from propositional µ-
al
ulus (with the usual interpretation).The two translations above 
an be generalized and 
ombined into thefollowing 
on
ise notation:
fT (O(&n

i=1ai)) = 〈{a1 . . . an}〉(∧
n
i=1Oai

) (14)where Oai
are the spe
ial 
onstant propositions of Cµ, and 
on
urren
y ofonly one atomi
 a
tion (i.e. &1

i=1ai) represents the exe
ution of only thatspe
i�
 atomi
 a
tion (a1).The translation of the ex
lusive or ⊕ over obligations is:
fT (CO ⊕ CO) = fT (CO) ∧ fT (CO) (15)There is no translation for the 
onjun
tion operator ∧ over obligationsbe
ause this is handled by the rewriting rule (1) of Table 2.The translation of the permission operator is similar to the translation ofthe obligation operator.

fT (P (&n
i=1ai)) = 〈{a1 . . . an}〉(∧

n
i=1¬Fai

) (16)And the translation of the ⊕ over permition is:
fT (CP ⊕ CP ) = fT (CP ) ∧ fT (CP ) (17)We need to translate both prohibition over atomi
 a
tions and prohibitionover 
on
urrent a
tions; i.e., F (a) and F (a&b).

fT (F (a)) = [a]F
fT (F (a&b)) = [{a, b}]F

(18)The disjun
tion ∨ over prohibition is translated naturally to its 
orre-sponding operator of propositional µ-
al
ulus.
fT (F (α) ∨ [β]F (γ)) = fT (F (α)) ∨ fT ([β]F (γ)) (19)Regarding general 
ontra
t 
lauses C, the 
onjun
tion is translated as the
orresponding 
onjun
tion operator of propositional µ-
al
ulus, and until U ,and next © operators are translated using �x-point expressions.34



fT (C1 ∧ C2) = fT (C1) ∧ f
T (C2)

fT (©C) = [any]fT (C)

fT (C1UC2) = µZ.fT (C2) ∨ (fT (C1) ∧ [any]Z ∧ 〈any〉⊤)

(20)where any is the spe
ial a
tion whi
h is interpreted as the union of all a
tionsin L; the intuition is doing any a
tion.Be
ause α inside the dynami
 box [α]C is a 
ompound a
tion obtained byapplying the operators of the a
tion algebra of Se
tion 5.1 and in Cµ we haveonly 
on
urrent sets of atomi
 a
tions, we have to give separate translationsfor ea
h 
ompound a
tion. We give the translation of the 
ompound a
tionsunder the dynami
 box operator from CL into Cµ as follows:
(1) fT ([&n

i=1ai]C) = [{a1, . . . , an}]f
T (C)

(2) fT ([(&n
i=1ai)α]C) = [{a1, . . . , an}]f

T ([α]C)

(3) fT ([α+ β]C) = fT ([α]C) ∧ fT ([β]C)

(4) fT ([ϕ?]C) = fT (ϕ) ⇒ fT (C)

(21)
7 Properties of the Contra
t LanguageWe show here some of the good properties CL enjoys, as well as that thelanguage avoids most important deonti
 paradoxes and the undesirable prop-erties listed in Se
tion 4.Proposition 7.1 ensures that it is not needed to use negation on deonti
operators, while Proposition 7.2 establishes the standard relation betweenobligations and permissions.Proposition 7.1. The following statements are valid in CL:a) P (α) ≡ ¬F (α)b) F (α) ≡ ¬P (α)Proof: The proof follows easy from the translation of the P and F operatorsinto the logi
 and the duality of the µ-
al
ulus operators [·] and 〈·〉. 2Proposition 7.2. The following statement is valid in CL:

O(α) ⇒ P (α)35
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Figure 4: A model M in the Cµ.Proof: The proof follows from the similar translations of the O and Pinto the logi
. Moreover, the proof makes use of the De�nition 6.2 of thein
ompatibility of Oa and Fa 
onstants. 2The following three results express that CL does not allow the derivationof 
ertain undesirable properties.Proposition 7.3. The following statement does not hold in CL:
P (a) ⇒ P (a&b)Proof: We give a 
ounter example to show that the impli
ation is notpossible. In our 
ase we should give a model in the logi
 whi
h is a model forthe translation of the �rst CL formula and is not a model for the translationof the se
ond CL formula.Consider (s, t) ∈ Ra and (s, t′) ∈ R{a,b} with t 6∈ ‖Fa‖

T
V and t′ ∈ ‖Fa‖

T
V ∩

‖Fb‖
T
V . Consider the model M in Figure 4 whi
h has states S = {s, t, t′}two relations: one for a
tion a, Ra = {(s, t)} and one for a
tion {a, b},

R{a,b} = {s, t′}. M is a model for the �rst formula but is not a model of these
ond formula. 2Proposition 7.4. The following statement does not hold in CL:
F (a) ⇒ F (a&b)Proof: The proof is based again on giving a 
ounterexample. We 
hangethe example of Proposition 7.3 su
h that t ∈ ‖Fa‖

T
V and t′ 6∈ ‖Fa‖

T
V . M isin this 
ase a model of the �rst formula but is not a model of the se
ondformula. 236
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...

FbFa∧

Fa

Fa Fc∧

{a,b}

a

{a,c}

Figure 5: A model in Cµ for the CL prohibition expression F (a).Remark: We may give an alternative translation of the prohibition opera-tor F so that the above impli
ation holds in CL. The translation we give for
F (a) respe
ts equations (2) and (3) and represents also F (a&b):

fT (F (a)) =
∧

γ⊆L

[γ](∧ai∈γ Fai
) (22)where Fai

are the spe
ial 
onstant propositions and γ is a 
on
urrent setwhi
h 
ontains a
tion a, i.e., γ = {a} ∪ γ′, γ′ ⊆ L \ {a}. For a pi
turedintuition of this translation 
onsider Figure 5.If we were to 
onsider only one 
onstant proposition F instead of thea
tions indexed 
onstants Fa then the translation above is more 
on
ise andalso respe
ts the above impli
ation and equations (2) and (3).
fT (F (a)) =

∧

γ⊆L

[γ]F (23)Note that this translation of prohibition goes well with the desideratafrom Broersen et al. [BWM01℄. If F (a&b) than we 
an not say that F (a)but we may 
on
lude that we are forbidden to do any other 
on
urrent a
tionswhi
h involves the a&b.Proposition 7.5. The following statements do not hold in CL:a) F (a&b) ⇒ F (a)b) P (a&b) ⇒ P (a)Proof: Proof pro
eeds similar to the proofs of the propositions above bygiving a 
ounterexample. 237



7.1 ParadoxesThe following propositions express that the most important paradoxes ofdeonti
 logi
 are avoided in our 
ontra
t language, either be
ause they arenot expressible in the language or be
ause they are simply ex
luded by thetranslation into the underlying logi
.Proposition 7.6. Ross's paradox does not hold in CL.Proof: Basi
ally, Ross's paradox says that it is 
ounter intuitive to have
O(a) ⇒ O(a + b); i.e., Obligation to drink implies obligation to drink or tokill. In CL this inferen
e is not possible. The �rst formula is translated into
Cµ as 〈a〉Oa. For the se
ond formula we have O(a + b) ≡ O(a) ⊕ O(b)

fT

=
〈a〉Oa ∧ 〈b〉Ob. We have in the logi
 that 〈a〉Oa 6⇒ 〈a〉Oa ∧ 〈b〉Ob. 2Proposition 7.7. The Free Choi
e Permission paradox does not exist in CL.Proof: The Free Choi
e Permission paradox basi
ally says that from havingone permission we may infer that we have any permission. That is: P (a) ⇒
P (a+ b) or P (a) ⇒ P (a) ∧ P (b).Neither of the two impli
ations hold in our approa
h. The se
ond oneis obvious. The �rst one is based on the se
ond one be
ause P (a + b) ≡
P (a) ⊕ P (b) whi
h translates in the logi
 with the 
onjun
tion operator. 2Proposition 7.8. Sartre's Dilemma is not expressable in our approa
h.Proof: Sartre's dilemma 
an be rewritten in 
ontra
ts terminology as:Obliged to meet John and Forbidden to meet John. This is formally writtenin CL as O(a)∧F (a) whi
h is a well formed formula. The translation into Cµwould result in a 
ontradi
tion be
ause we would have a state t with (s, t) ∈
Ra and t ∈ ‖Fa‖

T
V and t ∈ ‖Oa‖

T
V . This means that ‖Fa‖

T
V ∩ ‖Oa‖

T
V 6= ∅whi
h is a 
ontradi
tion with the semanti
s of the two 
onstant propositionsin the logi
 (see De�nition 6.2). So this paradox is dealt with at the semanti
level, in Cµ. 2Proposition 7.9. The Good Samaritan paradox 
an not be expressed like inSDL, whi
h means we do not have this paradox.Proof: The Good Samaritan paradox uses ought-to-be and is more deli
ateto transform it into our ought-to-do approa
h. The transformation lookslike: ψ ⇒ O(h) whi
h means that If Smith has been robbed then John isobliged to help Smith. Where ψ is Smith has been robbed, ⇒ is if . . . then,and h is the a
tion John helps Smith. We 
an not express in CL obligation38



over 
onjun
tion of two a
tions that are not performed 
on
urrently as thisparadox is expressed in SDL; i.e., we 
annot express O(a∧ b). Also, with ourrepresentation of the paradox we 
annot infer that ψ holds; i.e., infer thatSmith has been robbed. 2Proposition 7.10. The Chisholm's paradox is avoided in CL.Proof: The propositions of the Chisholm's paradox are expressed in CL as:1. O(a)2. [a]O(b)3. [a]O(b)Note �rst that formulas (1) and (3) give the CTD formula Oϕ(a) of CLwhere ϕ = O(b). The problem in SDL was that one may infer both O(b)and O(b) holding in the same world. This is not our 
ase be
ause O(b) holdsonly after doing a
tion a, where O(b) holds only after doing the 
ontradi
torya
tion a. In the model of the above representation we 
an not have in thesame world both O(b) and O(b).
2Proposition 7.11. The Gentle Murderer paradox is avoided in CL.Proof: The propositions of the Gentle Murderer paradox are expressed inCL as:1. F (a)2. [a]O(b)Note �rst that the above two formulas give the CTP formula Fϕ(a) where

ϕ = O(b). The problem in the paradox 
omes from the fa
t that in SDL it ispossible to express the natural impli
ation b ⇒ a whi
h in 
ommon languageis If John kills the mother gently then it implies that John kills the mother.This is not the 
ase in CL be
ause we do not have impli
ation among a
tions.On the other hand we 
ould 
onsider that the a
tion of killing gentlyimplies the a
tion of killing by giving a formula in CL whi
h representsimpli
ation of a
tions:
[b]ϕ ⇒ [a]ϕ (24)The expression above intuitively says that whenever after exe
uting a
tion

b and formula ϕ holds then it must be the 
ase that whenever after exe
uting39



the a
tion a the same formula ϕ holds. In other words all the e�e
ts of a
tion
b are also the e�e
ts of a
tion a but there may be e�e
ts of a
tion a that arenot e�e
ts of a
tion b.Still with this de�nition of impli
ation among a
tions we 
an not infer
O(b) ⇒ O(a), whi
h in SDL lead to the problem of the paradox. This isbe
ause by 
onsidering a
tion b to imply a
tion a we have the following:
O(b)

fT

=〈b〉Ob

(24)
⇒ 〈a〉Ob 6= O(a) 28 ExampleIn what follows we provide part of a 
ontra
t between a servi
e providerand a 
lient, where the provider gives a

ess to Internet to the 
lient. We
onsider two parameters of the servi
e: high and low, whi
h denote the 
lient'sInternet tra�
. We abstra
t away from several te
hni
al details as how it ismeasured the Internet tra�
. We will 
onsider only the following 
lauses ofthe 
ontra
t:1. Whenever the Internet tra�
 is high then the 
lient must pay x$ im-mediately, or the 
lient must notify the servi
e provider by sending ane-mail spe
ifying that he will pay later.2. In 
ase the 
lient delays the payment, after noti�
ation he must imme-diately lower the Internet tra�
 to the low level, and pay later 2 ∗ x$.3. If the 
lient does not lower the Internet tra�
 immediately, then the
lient will have to pay 3 ∗ x$.4. The provider is forbidden to 
an
el the 
ontra
t without previous writ-ten noti�
ation by normal post and by e-mail.5. The provider is obliged to provide the servi
es as stipulated in the
ontra
t, and a

ording to the law regulating Internet servi
es.We here formalize this partial 
ontra
t, showing the CL formula for ea
hof the �ve 
lauses above. Let us �rst de�ne the di�erent propositions anda
tions:
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ϕ = the Internet tra�
 is high
p = 
lient pays x$
d = 
lient delays payment
n = 
lient noti�es by e-mail
l = 
lient downs the Internet tra�

s = provider provides the servi
e as stipulated in the 
ontra
t
c = provider 
an
els the 
ontra
t
e = provider sends a written noti�
ation to the 
lient by e-mail
w = provider sends a written noti�
ation to the 
lient by normal postThe following is the 
ontra
t written in CL:1. �(ϕ ⇒ O(p+ (d&n)))2. �([d, n](O(l) ∧ [l]♦(O(p) ∧ [p]O(p))))3. �([d, n][ l ]♦(O(p) ∧ [p]O(p) ∧ [p · p]O(p))4. �(F (c) ∧ [w, e]P (c))5. �O(s)Remarks1. Formulas 2 and 3 are rather long be
ause we 
an not represent in CLquantitative information like pay two times (2 ∗ x$). It might be morenatural to use the & operator over a
tions with the same intuition asin logi
s of resour
es (e.g. linear logi
 [Gir87℄) and for obliged to paytwi
e we 
ould write in CL O(p&p) instead of O(p)∧ [p]O(p). Formulas2 and 3 above would be
ome:2' �([d, n](O(l) ∧ [l]♦(O(p&p))))3' �([p · p, n][ l ](♦O(p&p&p)))For these two formulas written in this 
on
ise syntax we give the exam-ple model in Figure 6. The model as it is allows unwanted tra
es whi
hare pi
tured in dashed labeled arrows. A dis
ussion and a solution tothis follows.
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l
−

ϕ?

ϕ?

l

ϕ?

Ol

ϕ? • {d,n}

{p,p}

{p,p,p}Figure 6: A model for statements 2' and 3' of the 
ontra
t example.2. The above example shows the importan
e of being able to model 
he
ka 
ontra
t. Noti
e that the 
ontra
t allows the 
lient to go from lowto high Internet tra�
 many times and pay the penalty (2 ∗ x$) onlyon
e. The problem is that after the 
lient downs the Internet tra�
,he might get a high tra�
 again and delay the payment till a futuremoment. To avoid this situation we should add a 
lause spe
ifying that�after getting a high Internet tra�
, if the 
lient delays the paymentthen he 
an get a high tra�
 again only after having paid�. In CL thismight be expressed by 
hanging formulas 2 and 3 above:2� �([d, n](O(l) ∧ ¬ϕU (O(p) ∧ [p]O(p)))3� �([d, n][ l ](¬ϕU (O(p) ∧ [p]O(p) ∧ [p · p]O(p)))In Figure 7 we give a model for the new statements 2� and 3�. Notethat the dashed arrows from the previous model have 
hanged into thedotted arrows, and we have also added the negative guards ¬ϕ? so thatthe until U formulas are satis�ed. Also the 
hange in the statementsrequired two more states to be added to the model.42



l
−

•¬ϕ? {p,p,p}

•¬ϕ? {p,p}

l

ϕ?

ϕ?

¬ϕ?

Ol

ϕ? • {d,n}

Figure 7: A model for the 
orre
ted example.Model 
he
king is out of the s
ope of this paper and will be 
onsiderin future works.3. Noti
e that our 
ontra
t language la
ks the possibility of expressingtiming 
onstraints and more involved 
lauses like �the 
lient must paywithin 7 days�, or �the 
lient is forbidden to pass more than 10 timesper month from low to high Internet tra�
�, 
an only be expressed hereby introdu
ing spe
ial variables and simulating a 
ounter. For model
he
king purposes we would like to in
lude the possibility to expressthese properties dire
tly in the logi
 and an extension with real-timewould be desirable.9 Other Approa
hesIn this se
tion we 
ontrast our approa
h in detail with the work by Broersenet al [BWM01℄. Broersen et al introdu
e a very interesting 
hara
terization ofobligation, permission and prohibition by following an ought-to-do approa
hbased on a deonti
 logi
 of regular a
tions. The idea is to use the µa-
al
ulusas a basis and then de�ne obligation, permission and prohibition over regular43



expressions on a
tions. The main di�eren
es w.r.t. our approa
h are thefollowing.1. There is no notion of 
ontra
t language, only 
hara
terization of obli-gation, permission and prohibition in the logi
.2. • The only deonti
 primitive is permission over atomi
 a
tions;
• Obligation is de�ned as an in�nite 
onjun
tion of negation of per-missions over a
tions not in the s
ope of the negation. We avoidthis in�nite 
onjun
tion by de�ning both prohibition and obliga-tion as primitive (and using the propositional 
onstants Oa and Faat the semanti
 level) and prohibition as negation of permission.
• Obligation (O(·)) and prohibition (F (·)) are de�ned in terms ofpermissions (e.g. F (α) = ¬P (α)).3. All the deonti
 operators are de�ned over regular a
tions, in
luding theKleene star. We 
onsider it is not natural to have starred a
tions underthe deonti
 notions, we have thus dropped it.4. Obligation on the 
hoi
e of a
tions is not 
ompositional; it is 
omposi-tional in our 
ase.5. There is no 
onjun
tion over a
tions, i.e., it is not possible to express
on
urrent a
tions, whi
h is the 
ase in our approa
h.6. The approa
h uses disjun
tion over a
tions. We have de
ided to usethe ex
lusive or instead.7. Negation on a
tions (meaning �not performing an a
tion�) is de�nedas a 
omplement of the (in�nite) set of a
tions. In our 
ase the set ofa
tions is �nite, at the language level, and we have a spe
ial de�nitionfor negation of a
tions.8. CTDs 
annot be de�ned unless an extension of the µa-
al
ulus is 
on-sidered. In our setting both CTDs and CTPs are easily de�ned.9. The semanti
s of obligation, permission and prohibition is given interms of properties over tra
es, instead of over an extension of theKripke stru
ture as in our 
ase.The idea of using a propositional 
onstant in an a
tion-based logi
 forgiving semanti
s to the deonti
 notions was �rst presented in [Mey88℄, wherethe spe
ial 
onstant V was added to denote an �undesirable state-of-a�airs�in the 
urrent state. 44



10 Con
lusionIn this paper we have presented a formal language for writing 
ontra
ts, andprovided a formal semanti
s through the translation of the language intoa variant of the propositional µ-
al
ulus extended with 
on
urrent a
tions.The language avoids most of the 
lassi
al paradoxes, and enjoys all the ni
eproperties listed in Se
tion 4. To our knowledge no other work in the �eld hasa
hieved su
h goals. Given that our appli
ation domain is that of ele
troni

ontra
ts, we have also given arguments for restri
ting synta
ti
ally and se-manti
ally 
ertain uses of (and relations between) obligations, permissionsand prohibitions, usually 
onsidered in philosophi
al and logi
al dis
ussions.10.1 Further WorkOur work is a �rst step towards a more ambitious task, and we believe theformalism 
hosen will allow us to a
hieve the following goals. The �rst ex-tension is to add real-time to be able to express and reason about 
ontra
tswith deadlines. Other immediate extension is the synta
ti
 distin
tion in thesignature of the de�nition part of CL between subje
ts, proper a
tions andobje
ts. This would permit to make queries (and model 
he
k properties) forinstan
e about all the rights and obligations of a given subje
t, or determineunder whi
h 
onditions somebody is obliged/forbidden of performing some-thing. We have not 
onsidered in this paper the problem of negotiation normonitoring of 
ontra
ts. We believe these are important features of a 
on-tra
t language whi
h must be taken into a

ount in future works. Con
erninga
tions, we got inspiration from the works on dynami
 logi
s [Pra76℄. Wewould like to deepen the study of the a
tion algebra to make the distin
tionbetween the intuitive meaning of 
onjun
tion under obligation, permissionand prohibition. Further investigation is also needed to 
hara
terize nega-tion on a
tions, both for 
apturing and distinguishing the ideas of �not doingsomething� and �doing something but a given a
tion�, whi
h are not di�er-entiated in our 
urrent approa
h. The use of a variant of the µ-
al
ulus as asemanti
 framework for our language is not 
asual. The logi
 has ni
e prop-erties: it is de
idable [KP83℄, has a 
omplete axiomati
 system [Wal95℄, anda 
omplete Gentzen-style dedu
tion system [Wal93℄. We want to explore theproof system of the logi
, and to extend existing model 
he
kers [Bie97℄ toanalyze 
ontra
ts as mentioned in the remarks of our example (Se
tion 8).We would like to be able to extra
t a 
ontra
t monitor from the Kripkestru
ture of a given 
ontra
t. Noti
e that this is not easy in general sin
ethere are many models for a parti
ular 
ontra
t. As an example 
onsider a
ontra
t 
ontaining the following 
lauses:45



�(φ1 ⇒ ♦O(p1))
�(φ2 ⇒ ♦O(p2))where φ1 and φ2 represent 
onditions on re
eiving a servi
e with 
ertainquality q1 and q2 respe
tively. Depending to the quality of the servi
e wemust pay a di�eren
e pri
e p1 or p2. It is possible to get a servi
e withquality q1 on
e, and then with quality q2 n times. The above 
onditionalobligations establish that we must pay p1 only on
e and n times p2. Thisshows that the monitor should keep tra
k of the 
orrelation between thedi�erent o

urren
es of the servi
es and mat
hing with the 
orrespondingpayment. Though the run-time monitor is mu
h more 
omplex than theKripke stru
ture, we believe that the latter 
an be the bases for 
onstru
tingthe monitor, whi
h would have to be enhan
ed with some 
ounters and maybeadditional data stru
ture. The addition of real-time (e.g. 
lo
ks) will simplifymany of these kind of problems.Referen
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