UNIVERSITY OF OSLO
Department of Informatics

Towards a Formal
Definition of Electronic
Contracts

Research Report No.
348

Cristian Prisacariu

(Gerardo Schneider

[sbn 82-7368-305-2
Issn 0806-3036

January 2007

Towards a Formal Definition of Electronic
Contracts

Cristian Prisacariu® Gerardo Schneider®

January 2007

Abstract

In this paper we propose a formal language for writing electronic
contracts, based on the normative deontic notions of obligation, pro-
hibition, and permission. We take an ought-to-do approach, where
the above notions are applied to actions instead of state-of-affairs. We
propose an extension of the p-calculus in order to capture the intu-
itive meaning of obligation, prohibition and permission, and to express
deterministic and concurrent actions. We provide a translation of the
contract language into the logic, and we show how the semantics faith-
fully captures the meaning of the contract language. We also show
how our language captures most of the intuitive desirable properties
of electronic contracts, as well as how it avoids most of the classical
paradoxes of deontic logic. We also discuss informally the main prob-
lems in formalizing the above normative deontic notions in particular
in the context of electronic contracts. We finally show its applicability
on a contract example.

1 Introduction

With the imminent use of Internet as a means for developing cross-organiza-
tional collaborations and virtual communities engaged in business, new chal-
lenges arise to guarantee a successful integration and interoperability of such
virtual organizations. Service-oriented architectures (SOA) is becoming more

*Dept. of Informatics — Univ. of Oslo, P.O. Box 1080 Blindern, N-0316 Oslo, Norway.
E-mail: cristi@ifi.uio.no

TDept. of Informatics — Univ. of Oslo, P.O. Box 1080 Blindern, N-0316 Oslo, Norway.
E-mail: gerardo@ifi.uio.no

and more the trend in this arena. Entities participating in a SOA have no
access to complete information, including information for checking the relia-
bility of the service provider and/or service consumer. For instance, a service
consumer has no access to the code implementing the service, and is there-
fore unable to examine, much less verify, the service implementation to have
assurance of its compliance with his/her needs. This motivates the need
of establishing an agreement before any transaction is performed, through
a contract, engaging all participants in the transaction under the commit-
ments stipulated in such a document, which must also contain clauses stating
penalties in case of contract violations. In the case of a bilateral contract,
one usually talks about the roles of service provider and service consumer,
but multi-lateral contracts are also possible where the participants may play
other roles. A service provider may also use a contract template (i.e. a
yet-to-be-negotiated contract) to publish the services it is willing to provide.
As a service specification, a contract may describe many different aspects of
a service, including functional properties and also non-functional properties
like security and quality of service (QoS).

Before a contract is signed it has to go first through a stage of negotiation.
At this stage, the contract template offered by the service provider has to be
analyzed (e.g. by model checking techniques) and changed to suite the needs
of both the client and the provider. After each change the new contract is
sent to the other party which either accepts it or changes it again. This
process goes on until an agreement is achieved.

In order to advance towards a reliable SOA, we need to be able to write
contracts which can be “understood” by the software engaged in the negoti-
ation process, and later may be used by virtual organizations responsible for
ensuring that the contract is respected. In other words, contracts should be
amenable to formal analysis.

Formal Approaches for Contracts. There are currently several differ-
ent approaches aiming at defining a formal language for contracts. Some
works concentrate on the definition of contract taxonomies [Aag01, BJP99,
TPO05|, while others look for formalizations based on logics (e.g. classi-
cal [DKRO04], modal [DMO01|, deontic [GR06, PDKO05] or defeasible logic
|Gov05, SGO05]). Other formalizations are based on models of computation
(e.g. FSMs [MJSSWO04| and Petri Nets [Das00]).

In our opinion, the most promising approach is the one based on logic.
A logic for contracts not necessarily has to be based on, or extend, deontic
logic, but must contain normative deontic notions (obligation, permission,
and prohibition) and preserve their intuitive properties, both in the proof

system and in its model theory.

Deontic Logic. Formalizing the usual notions of obligation, permission
and prohibition is not an easy task as witnessed by the extensive research
conducted by the deontic community both from the philosophical and the
logical point of view, starting as early as 1926 [Mal26]'. These works have
obviously been done much before the concrete problem of defining electronic
contracts (e-contracts) and the problems identified still continue to challenge
philosophers, logicians and computer scientists.

In early papers (e.g. |[Wri51]) the approach was to relate the normative
notions of obligation, permission and prohibition in a similar way as the
quantifiers (all, some, no) and modalities (necessary, possible, impossible) of
classical and modal logic, respectively. This was the bases of the so-called
Standard Deontic Logic (SDL) which is built on classical propositional logic,
leading to a nice formalization but also to many paradoxes.

One of the first issues to take into account before formalizing normative
notions is whether we want to represent (names of) human actions or (sen-
tences describing) states of affairs, product of a human action. The former is
usually known as an ought-to-do and the latter as ought-to-be. The following
is a classical example where “One ought to build a window” can be under-
stood as an ought-to-do sentence, while “There ought to be a window” is an
ought-to-be sentence. In many cases it is possible to translate an ought-to-be
sentence into its corresponding ought-to-do quite easily, as in the following
example: "It ought to be the case that John pays the money to Smith”
(ought-to-be) and “John ought to pay the money to Smith” (ought-to-do).
In many e-contracts it is more natural to find ought-to-do statements; where
the subject is stated explicitly (the supplier, the client), the actions (that are
permitted or forbidden) are visible, and also in many cases there might be
an object. There may be also cases where an ought-to-be approach gives a
more concise expression, like in QoS contracts where we may have statements
that express quantitative restrictions like: The average bandwidth should be
more than 20kb/s. The discussion among philosophers and logicians is far
from an end in what concerns the decision of whether one approach is better
than the other, or even if both should coexist in the same reasoning system.
Some authors have oscillated from one side to the other — Avon Wright for
instance took an ought-to-be approach in early papers, and later inclined for
the ought-to-do (action-based) approach, as stated in [Wri99].

Note that norms (and clauses in contracts), by definition, are violable (if

"Mally’s work is considered a precursor of deontic logic, though it is widely accepted
that modern deontic logic started with the work by G.H. Avon Wright [Wri51].

we have the guarantee that nobody will violate the norms, normative systems
would be completely useless). Hence, contrary-to-duty obligations (or CTDs)
and contrary-to-prohibitions (or CTPs), concerning the fact that obligations
might not be fulfilled and that prohibitions might be violated, are important
aspects to be considered. In both cases, we might want to know which is
the reparation or the penalty to be applied. See for instance |PS96| for a
discussion on CTDs.

There are many other problems to be considered when formalizing obliga-
tion, permission and prohibition. Among others, their interrelation (duality
and definition in terms of each other), the understanding of their truth-value
(even the discussion whether it is reasonable to talk about the truth-value of
such notions), and the difference between “must” and “ought”.

The intention of this section is to give an overview of the main problems
in deontic logic, and not to discuss the different solutions. See [Wri99] for
a nice overview of the history, problems and different approaches on deontic
logic. The entry “Deontic Logic” of the Stanford Encyclopedia of Philosophy
contains a general description of the topic, mainly the different paradoxes
arising under SDL2. See also the chapter of McNamara in the Handbook of
the History of Logic [McNO6.

Our Approach and Contributions. The above discussion should not
give the impression that we are trying to solve an old unsolvable problem. We
are mainly concerned with formal definition of contracts, and more precisely,
of e-contracts. By narrowing the scope of application of deontic logic, we are
definitely on a terrain were many of the philosophical problems of the logic
are not present.

In this paper we take a first step towards the definition of a formal contract
language, based on an extension of the p-calculus. Our starting point is
IBWMO1|, where a fix-point characterization of obligation, permission and
prohibition is given, based on the modal p-calculus. The logic allows to
express obligation, permission and prohibition on regular actions, taking thus
an out-to-do approach.

The main contribution of this paper is the definition of a contract lan-
guage with the following properties:

1. The language avoids most of the classical paradoxes of deontic logic;

2. It is possible to express in the language obligations, permission and
prohibition over concurrent actions keeping their intuitive meaning;

’http://plato.stanford.edu/entries/logic-deontic/index.html.

3. Obligation of disjunctive and conjunctive actions is defined composi-
tionally;

4. It is possible to express CTDs and CTPs;

5. The language has a formal semantics given in a variant of the proposi-
tional p-calculus.

Other side contributions are:

1. We revisit the relations between the deontic notions, providing new
insight on how they should be related under the context of e-contracts;

2. We give special attention to the disjunction on obligations, to which
we provide a natural and precise interpretation;

3. We extend the propositional u-calculus with the possibility of express-
ing concurrent and deterministic actions.

The paper is organized as follows. In Section 2 we present an informal
discussion about deontic logic, and the main problems arising when formal-
izing the notions of obligation, permission and prohibition. In Section 3 we
present the most well-known paradoxes as well as a new one we found un-
der certain different interpretation of the normative deontic notions. Based
on the two previous sections we present a list of desirable properties for a
contract language, in Section 4. In Section 5 we present our formal language
for writing contracts, and in Section 6 we present a variant of the p-calculus,
with its syntax and semantics, and we give a translation of the language into
the logic. In Section 7 we show that our language avoids the most important
paradoxes, and that it satisfies most of the desirable properties described in
Section 4. In Section 8 we present an example of a contract written in our
language. We briefly describe a related approach also based on a variant
of the p-calculus [BWMO1] in Section 9 and we discuss the advantages and
disadvantages of the approach in contrast to ours. We conclude in Section
10.

2 Obligation, Permission and Prohibition: In-
formal Discussion

Capturing the right intuition of normative notions in general, and in partic-
ular of obligation, permission and prohibition, is a difficult task. We present

in this section an informal discussion about the main ideas to take into ac-
count when trying to formalize the above notions. In what follows we use
O(a) to denote the obligation of performing a given action a, similarly for
permission (P(a)) and prohibition (F'(a)), and + for choice among actions.
A more precise definition will be given later.

2.1 On the Truth-Value and the Notion of Consistency
in Deontic Logic

This section is entirely based on |[Wri99|. In the philosophical tradition of
Avon Wright’s education, norms were seen as subjective, relative and de-
pendent on culture, without any truth-value: “norms, as prescriptions for
conduct, simply are not true or false” [Wri99|. The apparent problem here is
that if one takes this point of view, then it is not possible to study the logical
relation between obligation, permission and prohibition, to define a notion of
logical consequence or to detect contradictions. Von Wright argues that the
above only implies that logic is much more than truth and thus norms are
still subject to logical laws. Von Wright makes a difference between prescrip-
tive and descriptive sentences. In the former the sentence does not have a
truth-value, it only enunciates a norm, while in the latter it has a truth-value
(it is a norm-proposition). In its descriptive interpretation of formulas, de-
ontic logic should aim at a complete and contradiction-free system of norms.
Von Wright makes a clear distinction between “ought”, the obligation, and
“must”, the practical necessity. The first is neither true nor false and it is an
ought-to-be, while the second can be true or false depending on the situation
and is thus related to something which has to be done (ought-to-do).

Von Wright claims that “a set of norms is consistent if and only if, the
conjunction of all states pronounced obligatory by the norms with any one of
the states pronounced permitted is a doable state of affairs, i.e., something
which can be achieved through human action.” Along these lines, it is pos-
sible to define the notion of normative entailment: a consistent set of norms
entails another one if and only if adding the negation of the latter makes the
set inconsistent.

2.2 Conjunction in Action Logics

Before explaining why conjunction is problematic when combined with de-
ontic operators, we start by showing some problems when trying to add con-
junction to Propositional Dynamic Logic (PDL). If we want to define (a&b)¢
compositionally, it is natural to think that it can be defined as follows:

Figure 1: Example of a model for (a)¢ A (b)¢ but not for (a&b)e.

{a&eb)d = (a)p A (0)o.

If actions a and b are interpreted as sets of pairs of states (i.e. relations
over states) and if conjunction over actions a&b is interpreted as intersection
of sets [BV03| then in PDL extended with action conjunction (denoted as
PDL™) it holds only that (a&b)¢ = (a)p A (b)¢. The converse implication
does not hold in PDL"™ because the left side means that there exists a state,
say t to which the system may get by performing action a and also by per-
forming action b and the formula ¢ holds in . On the other hand, the right
side means that there exists a state ¢ to which one may get by performing
action a and there exists another state ¢’ to which one may get by performing
action b, and in both ¢ and ', ¢ holds; but ¢ and ¢’ may be different. Because
of these the right side does not imply the left side. Consider the model in
Figure 1 which is a model for the formula on the right of the implication but
is not a model for the formula on the left of the implication because it does
not exist a state to which the system can get by performing both actions a
and b.

One solution to the above problem is not to define (-) and [-] on conjunc-
tion of actions, but to axiomatize the logic giving the desirable properties
[BV03]. Another solution is to enhance the logic with nominals as in hybrid
logics (see for instance [AtC06| and reference therein). Hybrid logics define,
besides the sort of propositional variables, a new sort of special propositions
called nominals NOM = {i,7j,k, ...} disjoint from the set of propositional
variables. The intent of the nominals is to name states of a model. The
naming of the states is possible because each nominal holds in only one state
of the model (i.e. if a nominal 7 holds in the state s of the model then it
is said that the state has the name i; also there can not be another state s’
with the same name 7). Given a current state, if ¢ is the name of a successor
state, then we could write:

Figure 2: Example of a model for both (a)¢ A (b)¢ and (a&eb)é.

(@)(iA@) N (D) N @) = (a&b)(iN @),

which would force the transitions to have the same source and target states.
A model for both formulas on the left and right of the implication arrow is
pictured in Figure 2. This, however, does not force the two actions to be
performed concurrently. In order to capture true concurrency we would need
to force having only one transition labeled with @ and b in an atomic way;
we will see a solution in Section 6. An extension of PDL with nominals was
first presented in [PT85]| (see also [PT91]).

2.3 On the Relationship Between Obligation and Per-
mission

The relation between obligation and permission is rather cambersome. There
is no consensus on how to relate these two notions or if it is possible (or
more precisely, natural) to express one in terms of the other. Many re-
searchers argue for defining permission as derived from obligation (or vice-
versa): O(a) = —P(a@). In [Wri99|, von Wright argues for not using the above
definition, though he introduced it in his early works; he proposes instead
the following two equivalences: —O(a) = P(a) and O(a) = —P(a).

We claim that none of the above equivalences are natural, at least for our
purpose in trying to define a logic for formalizing e-contracts.

First notice that not being obliged to do something does not add any
knowledge about what is permitted. Furthermore, in the context of a logic
for contracts it does not make much sense to talk about negation of obli-
gations: a contract must specify your rights and obligations, not what you
are not obliged to do. Thus the first equivalence above can be discarded.
Furthermore, we do not accept the implication =P (a) = O(a) because it is
not natural to infer from not being permitted an action (or equivalently, the
action is prohibited) that it is obligatory to perform the negated action. On
the other hand, O(a@) = —P(a) might be reasonable only on systems where

the presence of O(a) and O(a) make the system inconsistent. Not everybody
agrees on such inconsistency, so we do not consider it in a first instance.

In our opinion the only natural relations between obligation and permis-
sion are the following:

O(a) = P(a)
Ola) = —~P(3) (1)

where the second implication only holds if there is no contrary-to-duty obliga-
tion (CTD) associated with O(a), in which case one must take the reparation
in case the obligation is not fulfilled.

2.4 Obligations and Permissions
2.4.1 About Disjunction of Actions

We first make a remark about obligation over disjunction of actions. Many
papers use the notation O(a U b) for obligation of “disjunction” of actions,
while in fact they mean “choice”, or “exclusive or”. Indeed, it does not seem
very intuitive to define obligation of classical disjunction of actions, since
this is not the usual meaning in natural languages. We will, thus, use the
notation a + b for the choice of actions.

We want to define O(a+b) compositionally while avoiding the Ross para-
dox. In order to do so, we need to have a hierarchical definition of formulas
and not allow the V on obligation formulas. Instead we add a XOR operator
(@) over obligation formulas to represent the intuitive idea of choice®. In this
way we have the intuitive meaning of the obligation of a choice:

O(a+b) =0O(a) ® O(D).

Many of the problems associated with the choice disappear as soon as a
temporal aspect is introduced [PS96], as for example in "You must pay on
time or at least give a notice 10 days before the paying date. If you don’t
pay on time and you don’t give notice, you must pay a fine of 1000$".

2.4.2 About Conjunction of Actions

We would like to be able to express obligation of performing concurrent
actions, O(a&b). There are two solutions to do this: (1) using interleaving,
and (2) having true concurrency. True concurrency would capture the idea

3This operator is not new to logics: it can be defined in classical propositional logic
and also has special properties in linear logic.

that O(a) AO(b) = O(a&b). We will propose later a solution based on sets
of actions to capture concurrent actions in the logic

Another important aspect to take into account is the difference between
permission and obligation over conjunction of actions. Saying that “you are
obliged to remain silent and to talk with your lawyer” introduces an incon-
sistency since there is a requirement to do two contradictory actions. On the
other hand, to say that “you have the right to remain silent and to talk with
your lawyer” does not introduces any inconsistency. This shows that there
is a clear difference between permission and obligation of conjunction of ac-
tions. We believe the discussion about the differences between conjunction
under permission and under obligations is constructive and sheds some light
on problems not always considered by many researchers.

We consider now the problem of understanding —O(a&b)*. We will give
here three different interpretations. We then justify the intuitive solution,
and then explain how we can get the right solution by making a distinc-
tion between the conjunction of actions under the scope of obligations and
permissions.

1. By defining =O(a) = P(a), we get (by applying De Morgan law and
the equivalence O(a&b) = O(a) A O(D)):

~0(ak&eb) = ~(0(a) A O(b)) = =O(a) V =O(b) = P(a@) V P(b)

This is completely counter-intuitive since it is not clear what the dis-
junction over permissions means. We also have disjunction on obliga-
tions, which we believe should be forbidden syntactically, though many
researchers on deontic logic see disjunction on obligations as natural.

2. One can argue that =O(a) = P(a) A P(a), since intuitively not being
obliged to do something gives you permission to do the contrary, but
also the permission of the positive action itself. In this case we have:

=0(a&b) = P(@) A P(b) A P(a) A P(b)
We have now two different interpretations (based on the interpretation
P(a&b) = P(a) A\ P(b) or P(a+b) = P(a) A P(b))

(a) =O(a&eb) = P(a&a&eb&ed)

(b) =O(a&b) = P(a+a+b+Db)

4Notice that the discussion about negation of obligations is more philosophical, and
included here only for completeness. As discussed in the previous section negation over
obligations is not natural in e-contracts.

10

The first option seems more natural, but this would imply to give spe-
cial meaning to the &, since intuitively a&a =1 under obligation, but
a&a #1 under permission. The second option has the problem that
we cannot do two things at the same time (like a&b, which should be
allowed).

All the discussion above lead us to the following conclusions:

1. The action operator & behaves differently under permissions and obli-

gations, hence we need two different action operators (let’s call them
&, and &,).

2. We need to introduce XOR also for permissions.
3. We must allow negation on actions also under permissions.

Assuming we have a conflict relation § between actions, in what follows
we propose some laws for getting the above:

1. &, can only be used under obligations and must have the following
properties:

a&,a =1
a&,b =1 if atb
(a&ob) = a&e,b

We then have that:

(adeob) = O(a) A O(b)
=0(ad&e,b) = ~O(a) A =O(b) = P(akeb)

2. &, can only be used under permissions and must have the following
properties:

a&,a =a+a

alpb #a+b ifa#bA—(afib)

akp,b — a+0b if afb (Here — means that a&,b must be replaced
by a + b)

—(a&,b) = ake,b

11

We then have that:

Pladeyb) = Pla) A P(b) if =(afb)
P(a&,a) = P(a+a) = (a) ® P(a)

P(a&yb) = P(a+0b) = P(a) ® P(b) if atb
P(a&,b) = F(a) N F(b)

With these laws, we might get the right interpretation of the =O(a&?b).

2.4.3 About the Negation of Actions

Negation introduces new problems and at first it seems enough to consider
only negation over atomic actions. We can have "positive" and "negative"
atomic actions. One crucial question is: Given an action a, what does it
mean by “negation” of a? Does it mean “not doing a”, or “doing anything but
a™ Do we want to allow both interpretations? If so, we might need to have
different notations, like @ and —a for the two different notions. The intuitive
meaning of a negative action a is "not performing a". That is, @ is not defined

s "the set of all the actions but a". One intrinsic problem concerning the
definition of negative actions is that when performing an action, the current
state changes, but what is the effect of not perform an action? Is it natural to
consider not performing an action as being an action itself? For example, if I
withdraw money from my personal bank account, then the account changes.
On the other hand, if I do not withdraw any money, this negative action has
not effect on my bank account. Though we do not have a convincing final
solution on how to treat negation, we will see later the approach we take in
our contract language.

Besides, the above problem extends to obligation, permission and pro-
hibition over negative actions. For instance "you are not obliged to talk",
—O(talk), might be interpreted as "you have the right to remain in silence"
(which means "you have the right not to talk", i.e., P(talk)). This shows
that the intuition of negated actions on permission is in some sense different
from those on obligations, and it might be reasonable to allow them under
permissions.

2.5 On Obligation, Permission and Prohibition in E-
contracts

Many of the research conducted by philosophers and logicians tend to stress
differences between “ought” and “must”, or to define logical equivalences be-
tween obligation and permission, or even to force one notion being dual of

12

the other and then characterizing the exceptions. Although this is reasonable
in a philosophical context or in pure logic, we claim that we can avoid many
of the above discussions given that we are restricted to electronic contracts.
In what follows we provide arguments for restricting syntactically the oc-
currence of certain expressions involving obligation (O), permission (P) and
prohibition (F) in a e-contracts.

In what follows we resume some of the above discussions, and we introduce
new insights of what should and should not be expressible in a contract
language.

e We consider statements expressing one is NOT obliged to do something
is not intuitive in the setting of e-contracts.

—0(a) should not occur in a contract

e It is counter intuitive to have iteration of actions under obligation,
permission and prohibition; e.g. it is not normal to have in a contract
a statement like: One is obliged to not pay, or pay once, o pay twice,
or ...

O(a*), P(a*), or F(a*) are not allowed

e A statement like one is NOT permitted to do some action can be rewrit-
ten as one is forbidden to do the action

-P(a) = F(a)

o A statement like one is NOT forbidden to do an action can be rewritten
as one is permitted to do the action

Note that we adhere to the classical definitions of permission and prohibition
as one being the negation of the other.
We now discuss some restrictions related to Prohibition (F).

e It is not intuitive to have the 4+ under the F' operator. Consider for
example the following norm: In Furope it is forbidden one of the fol-
lowing actions (but not both): to drive on the left side of the road (d;),
or to drive on the right side (d,) which can be represented as F'(d;+d,.).
The problem is that it is not clear under which circumstances each one

13

of the actions can be taken. The natural way to exclusively forbid
the choice between two actions is to relate each of the actions with its
context. So, the above sentence could be rewritten as: In the United
Kingdom it is forbidden to drive on the right side of the road. In the
rest of Europe (except United Kingdom) it is forbidden to drive on the
left side of the road. Which can be formalized as:

pur = F(d,)
YREU = F(dl)

Where ppyx and prpy are mutually exclusive. On the other hand, it
is possible to forbid two actions a and b simultaneously by imposing

F(a) N F(b).

Moreover, we argue that in contracts it is not common to find state-
ments that may be formalized using an exclusive OR operator @& be-
tween prohibitions. If we take the formula F'(a) ® F(b) to mean that
either is forbidden a or forbidden b but not forbidden both then one
case of the statement is F'(a) A =F'(b) which, using the above equiva-
lence between P and —F is F'(a) A P(b). This means that one has the
permission to do b. Similar from the second case, one may conclude
that it is permitted to do a. In the end, the formula F(a) @& F(b) does
not explicitly prohibit anything, making its use completely meaningless
and dangerous.

e The prohibition of performing an action a should imply the prohibition
of any concurrent execution of any set of actions that contain the action
a:

F(a) = F(a&b), (2)

but the converse implication should not hold:

F(akeh) % F(a). (3)
3 Puzzles and Paradoxes

In what follows we mention only the most important paradoxes of deontic
logic; see for instance [McNO6] for more details.

14

3.1 Classical Paradoxes and Puzzles

Ross’s Paradox [Ros41]: In natural language it is expressed as:

1. It is obligatory that one mails the letter.

2. It is obligatory that one mails the letter or one burns the letter.

In Standard Deontic Logic (SDL) these are expressed as:

1. O(p)
2. O(pVq)

The problem is that in SDL one can infer that O(p) = O(pV q).

The Good Samaritan Paradox [Pri58|: In natural language we have:

1. It ought to be the case that Jones helps Smith who has been
robbed.

2. Tt ought to be the case that Smith has been robbed.

And one naturally infers that:

Jones helps Smith who has been robbed if and only if Jones helps
Smith and Smith has been robbed.

In SDL the first two are expressed as:

1. O(pAq)
2. O(q)

The problem is that in SDL one can derive that O(pAq) = O(q) which
is counter intuitive in the natural language, as in the example above.

The Free Choice Permission Paradox [Ros41]: In natural language we
have:

1. You may either sleep on the sofa or sleep on the bed.

2. You may sleep on the sofa and you may sleep on the bed.
In SDL this is:

1. P(pVaq)
2. P(p) A P(q)

15

The natural intuition tells that P(p V ¢) = P(p) A P(q). In SDL this
would lead to P(p) = P(pV ¢) which is P(p) = P(p) A P(q), so
P(p) = P(q). As an example: If one is permitted something, then one
1s permitted anything.

Sartre’s Dilemma [McNO06|: In natural language:

1. Tt is obligatory to meet Jones now (as promised to Jones).

2. Tt is obligatory to not meet Jones now (as promised to Smith).

In SDL this is:

The problem is that in the natural language the two obligations are
intuitive and often happen, where the logical formulas are inconsistent
when put together (in conjunction) in SDL.

Chisholm’s Paradox [Chi63]: In natural language it is expressed as:

—

. John ought to go to the party.

[\

. If John goes to the party then he ought to tell them he is coming.

w

. If John does not go to the party then he ought not to tell them
he is coming.

4. John does not go to the party.

In Standard Deontic Logic (SDL) these are expressed as:

1. O(p)

2. O(p = q)

3. =p = O(—q)
4. —p

The problem is that in SDL one can infer O(q) A O(—q) which is due
to statement (2).

The Gentle Murderer Paradox [For84]: In natural language it is ex-
pressed as:

1. It is obligatory that John does not kill his mother.

16

2. If John does kill his mother, then it is obligatory that John kills
her gently.

3. John does kill his mother.
In Standard Deontic Logic (SDL) these are expressed as:

1. O(-p)
2. p = O(q)
3. p

The problem is that when adding a natural inference like ¢ = p then
in SDL one can infer that O(p).

3.2 A new paradox?

Apparently the deontic community does not see, in general, O(a) V O(b)
as a problematic formula, but we believe it is indeed a problem to have
disjunction of obligations and also of permissions and prohibitions. This
might be avoided in different ways depending on the approach, but in the
presence of conjunction of actions and some of the usual relations between
obligation, permission and prohibition, a new paradox arises. In what follows
we explain why we think the above causes problems on the deontic reasoning.

Most of the approaches using logics for formalizing normative deontic
notions® propose an extension of propositional logic (PL), meaning that the
logics include all the tautologies of PL. This naturally includes the following
tautology: A = AV B. We will show in what follows that from O(a) we
can derive P(a) A P(b) which is clearly a dangerous paradox (“if I am obliged
not to talk in the presence of the Pope, then I am permitted not to talk and
to kill the Pope”). In our derivation we use the following common relations:

. 0() = P(),
o P()=—F().

We also make use of the De Morgan laws and the following intuitive
equivalences:

e P(a&b) = P(a) A P(b),

5Usually these notions are formalized as operators and in deontic logic are considered
to be modalities. Though they are not operators in our approach, we keep the terminology
whenever no confusion might arise.

17

e F(a&b) = F(a) N F(b).

Notice that the above is not “standard” since many approaches do not
consider conjunction over actions, but it is very intuitive to interpret permis-
sion and prohibition of conjunction of actions as above. We are ready now
to show that O(a) implies P(a) A P(b).

First take O(a) = O(a)VO(b) (instance of the PL tautology A = AVB).
From O(a) = P(a) and O(b) = P(b), we get that O(a) vV O(b) = P(a) V
P(b). But P(a)VP(b) = —F(a)V—F(b) and by the De Morgan law we have
that —(F(a) A F(b)) which implies =F(a&b). We then get P(a&b) which is
equivalent to P(a) A P(b).

What is wrong on the above derivation? Some might argue that the
equivalences given for permission and prohibition of actions are not univer-
sally accepted by the deontic community and that they are not correct. We
believe that the cause of the problem relies on accepting certain laws of
propositional logic when reasoning about deontic modalities (like de Morgan
laws). Moreover, we strongly advocate for the elimination of the classical
disjunction on normative deontic notions, given that the intuitive idea in
natural language when using the word or is usually that of an exclusive or
(“The client is obliged to pay or to send a notification of delay.“, and another
example would be: "You have the right to remain silent or anything you say
can be used against you in the court of law.”). Thus, we claim that a logic
of actions (with conjunction of actions) for a correct representation and rea-
soning of obligation, permission and prohibition should have the following
restrictions:

e The De Morgan laws cannot be applied to deontic modalities,

e Use the exclusive or, and disallow (syntactically) the classical disjunc-
tion on deontic modalities.

We claim that the right interpretation of =(O(a)AO(b)) should be =O(a)A
=O(b), which is more intuitive, in case one admits the use of negation over
obligations. Similarly for prohibition.

4 Desirable Properties of a Language for Con-
tracts

Before presenting our language we start by listing some of the intuitive prop-
erties we should have, and others we should avoid, when formalizing con-
tracts.

18

(1) Avoid as many deontic logic paradoxes as possible:
(a) Avoid the Good Samaritan paradox, Satre’s dilemma, and the
Gentle Murder paradox;

(b) Avoid Chisholm’s paradox. This means obligation should be de-
fined only on actions, not on formulas. In particular do not write
formulas of the form O(¢ = v);

(c¢) Avoid Ross’s paradox. This means avoid having (in the classical
notation of deontic logic): O(p) = O(pV q);

(d) Avoid the Free Choice Permission paradox (i.e. do not allow the
following implication: P(p) = P(pV q));

(e) Avoid the new paradox described in Section 3.2; i.e., syntactically
disallow the classical disjunction between deontic modalities.

(2) Use the XOR logical connective instead of the classical disjunction be-
tween modalities;

(3) Allow concurrent actions and keep the intuition of conjunction on obli-

gations; i.e., O(a&b) = O(a) A O(b).
(4) Some intuitive desirable relations on obligations:

(a) O(a;b) = O(a) A la]O(b)
(b) Allow CTD (reparation)

(5) Allow the definition of conditional obligations, i.e., formulas of the form

Y = Ofa).
(6) Have the following: O(a) = P(a).

(7) Do not define permission and obligations in terms of each other (for
instance, do not define obligation as O(a) = ~P(—a)).

(8) Some intuitive desirable relations on permissions:

(a) P(a;b) = P(a) Ala]P(b)
(b) P(a+b) = P(a)® P(b)°

(9) Some intuitive desirable relations on prohibitions:

6Many authors prefer to have P(a + b) = P(a) A P(b) (see for instance [BWMO1]).

19

5 A Specification Language for Contracts

This section contains the definition of our specification language for writing
e-contracts. The first two subsections are meant as a technical preamble to
subsection 5.3 where the language is defined. If the reader is more or less
familiar with the concept and the intuition of an action (from dynamic logics
for example) then she may skip directly to subsection 5.3. Subsection 5.2 is
intended to define the concept of action negation. This section can also be
skipped in a first reading.

5.1 Action Algebra

Some of the most well known and studied action algebras come from the work
on dynamic logics [Pra76]. We base our work on Pratt and Kozen’s dynamic
algebra [Pra80, Koz80|. This algebra is built on top of Kleene algebra which
was introduced in 1956 and further developed by Conway in |Con71|. For
references and an introduction to both Kleene and dynamic algebra see the
extensive work of Kozen [Koz81, Koz90, Koz97|.

In these research efforts the authors used, for example, regular languages
as the objects of the algebra, or relations over a fixed set (as we have in dy-
namic logic) and analyzed properties like completeness [Koz94|, complexity
|CKS96| and applications [Coh94| of variants of Kleene algebra. Some vari-
ants include the test operator 7, and others discard the iteration operator *.
Many insights can be drawn from this extensive work related to our need of
action algebra.

We define an algebraic structure similar to dynamic algebra, modified so
that it complise with the intuition drawn from e-contracts. A first change
is in dropping the Kleene star (iteration) as it is unnatural to have it under
obligation, permission and prohibition of the Contract Language (see discus-
sion in Section 2.5). A second change involves the concurrency of two or
more actions, and it consists of defining a special operator for the algebra to
model truly concurrent actions. For example, we need to express that The
client is obliged to do actions a and b at the same time.

20

We recall that a Kleene algebra is a structure £ = {K, +,-,0,1,* } with
the properties that (K,+,0) is a commutative monoid with the identity
element 0, and (K, -,1) is a monoid with the identity element 1. Moreover,
operator + is idempotent and thus it is possible to define a partial order <
on K thus having that (K, +,0) is a semilatice. The * is a unary operator
which respects a set of axioms with the intuition that «* =14+a4+a-a+....
In programming theory it is usual to interpret 4 as choice, - as sequence and
* as iteration.

A dynamic algebra is a rather more complex structure D = (K, B, (-))
where K is a Kleene algebra, B is a Boolean algebra, and (-) a scalar multi-
plication defined as (-) : L x B — B respecting the usual rules.

Our action algebra has a set of atomic actions denoted A and the action
operators which form the compound actions: + for choice of two actions,
- for sequence of actions (or concatenation; in PDL we find this operator
denoted as ;), & for concurrent execution of two atomic actions, and the test
operator 7 (we will see later how with test operator we can simulate impli-
cation over formulas [HKT00|). The three operators +, -, and & are binary
operators. Choice (+) is applied to compound actions and is associative and
commutative. Concurrency (&) operator is applied to atomic actions only
and is associative and commutative. The sequence (-) operator is applied to
compound actions and is right-associative and non-commutative. For brevity
we often drop the sequence operator and instead of o - § we just write af.
The operators +, -, and & are applied to elements of A (actions).

In dynamic algebra, the elements of the boolean algebra are called tests
and are included in the set of actions of the Kleene algebra (i.e. tests are
special actions)”. With the test operator the skip action (denoted 1 above)
is defined as T7, where T is the special proposition that holds in every world.
1 is interpreted in PDL as the identity relation over the set of worlds. It has
the meaning that when executing the skip atomic action the system goes to
the same state. With skip the actions a and a-1 have the same set of traces,
and skip has also the property that 1* = 1.

We do not study in this paper properties of this action algebra but at a
first look the 4+ and - operators obey the same properties as the operators of
Kleene algebra. It is left to investigate the properties of & operator and its
relations with the other operators. Adding the test operator we obtain an
action algebra with tests [Koz97] and we expect to have similar properties.

"To be more formal and to have a syntax more closer to the syntax used in PDL we use
the ? operator and call it test operator. The test operator is special in the sense that it
is applied to elements of B (i.e. formulas in the boolean algebra) and generates actions of
A (ie. 7: B — A). Basically 7 generates the set of actions called the set of tests included
in A.

21

5.2 Action Normal Formal

It is known that for regular expressions there is no standard normal form,;
for example, see the Starr-Height problem |Egg63] which looks at regular
expressions normal forms from the perspective of Kleene star.

For the set of action operators (+, -, *, 7) of the algebra defined in
Section 5.1 we have the following definition of action normal form. For the
semantics of actions given with traces, as in process logics |[Pra79|, we obtain
all the traces of the action.

Definition 5.1 (action normal form for +). For actions defined with the

operators +, -, *, 7 we have an action normal form denoted by ANF™ and
defined as
a=+ p-a
PER

where a is a compound action, p represents either an atomic action or a test,
and R 1s a subset of atomic actions and tests.

Theorem 5.1. For every action in the algebra of Section 5.1 we have a
corresponding ANF™T.

A natural and useful view of action negation when we consider actions in-
terpreted as traces is to say that the negation @ of action « is the action given
by all the immediate traces that take us outside the trace of v [BWMO1].
With ANF™* it is easy to formally define @.

Definition 5.2 (action negation). The action negation is denoted by @ and
is defined for any action o in ANF™T as:
a=+pd= + b+ +pd
PER be A\R PER
where o is also in ANF™', and R is a set of the atomic actions or tests.
Note that b is only an atomic action® of A4, which means that the action
negation does not take into consideration the tests.

5.3 The Contract Language

We aim at the definition of a precise syntax of a contract language, with a
translation into a logic in order to be able to reason about it. We define
a Contract Language (CL), and provide a set of rewriting rules in order to
simplify and minimize the number of expressions in the language.

8When we remove from the set of atomic actions A the set R which contains both
atomic actions and tests, the resulting set will contain only the actions of A which are not
in R.

22

Definition 5.3 (Contract Language Syntax). The syntax of the contract
language 1s:

Contract :=D ; C
Ci=61Co 1€l CrlCACIlC | {a)C|CUC| OC
Co:=0(a) | Co® Co
Cp:=Pla) | Cp®Cp
Cr:=F(9) | CrVI[dCr

The syntax of CL closely resembles the syntax of a modal (deontic) logic.
Though this similarity is clearly intentional since we are driven by a logic-
based approach, CL is not a logic. In what follows we provide an intuitive
explanation of the CL syntax; a more precise meaning will be given later
through a translation into an extension of the propositional p-calculus.

A contract specification consists of two parts: definitions (D) and clauses
(C). In the definitions part we explicit the assertions (or conditions) and
the atomic actions present in the clauses. In a first presentation we let the
atomic actions underspecified, which for our purposes can be understood
as consisting of three parts: the proper action, the subject performing the
action, and the target of (or, the object receiving) such an action. C is
the general contract clause. Co, Cp, and Cr denote respectively obligation,
permaission, and prohibition clauses.

¢ represents an assertion, like the budget is more than 200%. N and & may
be thought as the classical conjunction and exclusive disjunction, which may
be used to combine obligations and permissions. For prohibition Cr we have
V, again with the classical meaning of the corresponding logical operator. «
is a compound action with syntax as given in Section 5.1, while § denotes
a compound action not containing any occurrence of +. Operationally, we
consider that atomic actions do not require time for their execution, i.e., the
atomic actions are instantaneous. A concurrent action is also instantaneous,
so from this point of view it can be seen also as atomic. Note that syntac-
tically & cannot appear between prohibitions and + cannot occur under F',
as discussed in Section 2.5.

We borrow from PDL the syntax [«]|C (also called dynamic bozx) to repre-
sent that after performing «, C should be the case. Intuitively, one may think
of [-] as the V quantifier in the sense that either the action is not performed or
if it is performed then the clause after it should be enforced. The [-] notation
allows having a test inside, where the syntax [¢7]C must be understood as
¢ = C. («)C (also known as dynamic diamond) captures the idea that there
must exist the possibility of executing «, in which case C will be enforced

23

(1) O(a+p) = O(a) ®O(B)
(2) Ofa&b) = O(a) A O(b)
(3) O(af) = O(a) AN[a]O(B)
(4) Pla+p) = Pla)® P(B)
(5) Plag) = P(a) A{e) P(f)
(6) F(af) = F(a)V[a]F(f)

Table 1. Compositional rules

afterwards. In the contract language we do not relate the dynamic box to the
dynamic diamond. They are related in p-calculus, through their translation
of Section 6.3. Following temporal logic (TL) |[Pnu77| notation we have U
(until) and O (next) with the intuitive behavior as in TL. Thus C; U C, states
that C; should hold until Cy holds. ()C intuitively states that the C should
hold in the next moment, usually after something happens. We can define
OC (always) and OC (eventually) for expressing that C holds everywhere and
sometimes in the future, respectively.

The compound actions have a compositional behavior in CL when they
appear under obligation O. For choice of actions we have

O(a+) = O(a) © O(p) (4)

with the intuition (drawn from the world of contracts) that If one is obliged
to choose between doing one action or doing another action, then one should
regard it as being either obliged to do the first action or as being obliged to
do the second action.

For concurrent actions we have

O(a&eh) = O(a) A O(b) (5)

with the intuition that, regarding atomic actions If one is obliged to do an
atomic action a and is also obliged to do another atomic action b then one
should conclude that one is obliged to do the two atomic actions at the same
time.

For the sequence of actions we have

O(af) = O(a) A [dJO(B) (6)

which intuitively means that if one is obliged to do a sequence of actions then
one should be obliged to do the first action, and after doing the first action
one should also be obliged to do the second action.

24

The compound actions under permition are similar to the ones under
obligation. The choice of actions is also exclusive choice and we still have
compositionallity of P:

Pla+3) = P(a) @ P(f) (7)

which intuitively means that if one is permitted to choose between doing
one of the actions o or # then, one is either permitted the first action or is
permitted the second action.

For concurrency under permission we do not find any compositionallity
rule. A clause P(a&b) stating that it is permitted to do the two actions at
the same time, does not give any information about the individual actions.
Moreover, the permission of the individual actions can not give information
about the permission of the concurrent execution of the two actions.

For the sequence of actions under permission we have:

Plaf) = P(a) A{e) P(5) (8)

with the intuition that if one is permitted to do the sequence of actions then
one may conclude that one is both permitted the first action and also there
exists a way of doing the first action and afterwords one would be permitted
the second action.

Compound actions under prohibition do not behave the same as under
obligation or permission. For concurrency under prohibition we do not find
any compositionallity rule; (see equations (2), and (3) of Section 2.5).

For the sequence of actions under prohibition we have

F(af) = F(a) V [o]F(5) (9)

with the intuition that if one is forbidden to do the sequence of actions then
one may conclude that one is either forbidden the first action or, if the first
action is performed the second action is forbidden.

The main difference between modal logic (where the modality denotes
necessity) and deontic logic (where the modality denotes obligation) is in the
fact that the deontic modality can be violated. For example, if in modal
logic one can make the inference: Cp then p (if it is necessary that p, then
p is true), in deontic logic the inference is no longer possible because O can
be violated (see Section 2.1 for a discussion). Related to this we constantly
find in contracts the contrary to duty (CTD) and contrary to prohibition
(CTP) formulas. CTDs express what happens if an obligation is violated. In
our case, if we have the obligation to do an action then the violation of the
obligation is the execution of the negation of the action. CTDs are added to
the contract language with the following syntax:

25

Oy(a)

stating the obligation to execute the compound action « and the reparation
formula ¢ which should hold in case the obligation is violated. The reparation
may be either another obligation, a prohibition, a stand alone assertion, or
even another CTD which should be enforced after the violation occurs. The
above is syntactic sugar for the following CL formula:

Op(a) = O(a) A [aly (10)

stating the obligation O(«) which should hold in the current world and if
the negation of « is executed (meaning that the obligation is violated) the
reparation ¢ should be enforced.

One might suggest that just the action negation as defined in Section
5.2 does not capture the intuition of violation of an obligation of an action.
One may say that for an action a (e.g. deposit money in the bank account)
a violating action may be just the negative action —a (NOT deposit money
in the bank account). In this paper we do not consider negative actions; for
a discussion about our decision see Section 2.4.3. A second argument for
our decision is that negative actions may be expressed in other ways. For
example, in order to say obliged NOT to do one can say forbidden to do.

Contrary to Prohibition statements explicitly provide the reparation for-
mula which should hold in case the prohibition is violated. For example if the
forbidden action « is executed (the prohibition is violated) then a reparation
formula ¢ should be enforced. The CTPs (denoted as F,(«)) are abbrevia-
tions of the CL formulas:

() = F(a) Alafe (11)

With the dynamic box syntax we can model in CL. conditional obligations,
permissions, and prohibitions (see Dyadic Deontic Logic for an introduction
to the formalism that has introduced conditional obligations [PS97]). We
may have two kinds of conditional expressions; let us take an example for
obligation. Conditional obligations can depend on both the execution of
an action, or on an assertion which holds in the current state. Intuitively,
conditional obligations related to actions state that after executing an action,
a certain obligation is the case. We represent such conditional obligation as:

[2]O(9) (12)

where « is the conditioning action and O(f3) is the obligation enforced by
the conditioning action. Often in contracts we find obligations triggered by
some assertion that holds in the current world. Intuitively, if the assertion

26

(1) O(a) NO(b) — O(akd)

(2) O(a) ® O(a&bd) — O(a)

(3) O(a) A O(ad&eb) — O(a&eb)

(4) O(a) A (O(a) ® O(b)) — O(a)

(5) O(a) AO(a) — O(a)

(6) O(a) ® O(a) — O(a)

(7)) Oe) A (O(a) ® O(b)) — (O(c) AO(a)) & (O(c) A O(D))
(8) (®:0(a;)) A (8;0(b5)) — @i;(O(a;) NO(by)) a; # b;

Table 2: Rewriting rules for obligation O

¢ holds in the current world then the obligation should be enforced in the
current world. We model this by using the test operator 7:

[£?]0(a) (13)

The formula ¢ represents any contract formula C specified in the Contract
Language or a stand alone assertion ¢ like: the budget is more than 2009.

We aim at translating into the logic of Section 6.2 as few constructs from
the contract language as possible. For this we give first a set of rewriting
rules for the CL obligation formulas which lead to an obligation normal form
which is much easier to translate. The rewriting rules are also useful for
giving several restrictions on the formulas of CLL drawn from real contracts in
practice. In the Table 2 the rules (1)-(4) are guided by the common examples
found in real contracts, rules (5)-(6) are the usual contraction rules, and the
rules (7)-(8) basically give the distributivity of the conjunction operator over
the exclusive disjunction operator. Note that the rules (1)-(8) are applied
only to obligation operator over atomic or concurrent actions.

For formulas involving just the obligation construct and the A and @ over
obligations we can write them in the following obligation normal form. Note
that it is applied only to obligations of atomic or concurrent actions, thus
giving a normal form only for the first step in the traces of the compound
actions. We do not take into consideration the - sequence syntax.

n

PO« aiy)

=1

where for a fixed 4, and Vj, a;; are different one from another. Because of
the normal form, all we need to translate for obligations into the extended
p-calculus is: O(a), O(a&b), and the & syntactic constructs.

27

6 The Underlying Logic for the Contract Lan-
guage

6.1 Propositional p-calculus: Syntax and Semantics

We take the classical propositional p-calculus as defined in [Koz83] (a very
nice introduction can be found in |[BSO01|, where the authors call the logic
modal p-calculus). p-calculus has nice properties: it is decidable |KP83]
and has a complete [Wal95| axiomatic system and a complete Gentzen-style
deduction system [Wal93].

pu-calculus defines a special set £ of labels, which we call atomic actions
and denote them by small letters from the beginning of the Latin alphabet
a,b,c,.... The syntax of propositional u-calculus is:

P, Z, and T are u-formulas; where P represents the propositional vari-
ables, Z represents the state variables, and T is the constant proposition
denoting true.

If ¢ and ¢ are p-formulas then —p, ¢ A ¢, and [a]e are p-formulas
where a € L are labels.

If ¢ is p-formula and v denotes the greatest fix-point then vZ.p(7) is
a pu-formula.

In a more concise notation the syntax of u-calculus is:

o =Pl Z|T|-p|loNe|lae|vZeZ)

We also have the usual dualities:

oV —(mp A)

(ayp < —[a)-p

12.9(2) Y v Z.~p(~2)

In the following we give the standard semantics of the operators of propo-
sitional p-calculus. The semantic interpretation of the above syntactic con-
structs follows the classical set-theoretical approach |[Koz83|. The formulas
are interpreted over a structure (similar to a labelled transition system) de-
noted 7. 7 is defined with respect to a set of propositions P and a set of
labels £ and is 7 = (S, Rz, Vp, V). S is the set of states (worlds), R, is a
function assigning to each action in £ a relation over S (i.e. Rp(a) C S xS,

28

a € L), Vp: P — 2% is the interpretation of the propositions as subsets of
states where the propositions hold. V is a valuation function assigning to
each state variable a set of states. The valuation V[Z := S| maps variable Z
to the states set S and in the rest it agrees with V. For the sake of notation
instead of R.(a) we write R,,.

Some of the papers in the literature present the semantics of p-calculus
as a Labeled Transition System (LTS) [BS01|. The difference between a LTS
and the present structure 7 is that in place of a labelled transition relation
—C S8 x L xS we associate for each action of £ a set of transitions between
two states. This set of pairs of states gives for each action a relation over S.

The semantics of p-calculus is:

IS =s
IPII% = Ve(P)
1ZI5 = Vv(2)

1=l = S\ el

lle AT = llells VIl

llalell}y = {s |Vt € S. (s,) € Ra =t € [lo|l}}
IvZells = U{S €81 S Cllellfz—s}

lle v IS = [l Ul

Ka)ells ={s | It €S. (s,t) € Ra Nt € |0}

lnzellf =N{S S S 152 llellfz_s}

It is known that propositional p-calculus is more expressive than PDL
and can embed PDL [BWMO01|. Therefore we define the following syntactic
shortcuts which capture the behavior of the action algebra we have in PDL.

We denote by [a; 5]¢ the following p-formula [o][F]e
We denote by [a U)¢ the following p-formula [a]p A [B]e

We denote by [a*]p the following p-formula vZ.o A [a]Z

29

We denote by [¢7]p the following u-formula ¢p = ¢

A simple example of a compound action in PDL is [¢)7; a]p which means
that if in the current state 1) holds then we may continue and execute action
a and every time the action terminates it will terminate in a state satisfying
formula ¢. Guided by the definitions of the above syntactic shortcuts we get
a pu-formula:

def def
W75 alp = [W7][ale = & = la]e
This formula expresses the partial correctness assertion of Hoare logic {¢}a{p}
which means that if a program starts with the input ¢ (in a state satisfying
1) then, whenever the program ends it will end in a state satisfying .

6.2 Yet another propositional p-calculus

In this section we give a variant of the propositional p-calculus specially
tailored for our needs to have a formal framework to reason about contracts
specified in CL. We take the syntax of the propositional p-calculus as defined
in Section 6.1, and we modify the set of actions £, and the set of propositions
P by adding a set of propositional constants which we denote by P, included
in P. The set of state variable remains also unchanged. We call the extended
logic Cpu.

The interpretation of the operators remains the same. We only give the
semantics for our extension part.

We need first to be able to deal with true concurrency. Instead of the
labels representing atomic actions we have finite subsets of atomic actions
with the intuitive meaning that all the atomic actions in the set are executed
concurrently.

Definition 6.1 (concurrent sets). A concurrent set denoted by v (possible
indexed) is a finite subset of the set of atomic actions L, v = {ay,...,a,}
where a; € L. These concurrent sets are considered the labels of Cu. The
structure of the new logic is interpreted over 2° instead of L.

Inside the box operator we now have concurrent sets ~ instead of atomic
actions ([y]¢). Note that Cu subsumes the classical p-calculus by taking the
actions of p-calculus to be singleton concurrent sets (v = {a}). We change
the R, function of y-calculus into Ryc which is applied to concurrent sets of
2£ instead of atomic actions of £. Ryr : 25 — S x S is a function assigning to
each concurrent set v of 2 a relation over S (i.e., Ryc(7) €S x S, v € 25).
Note also that R,z for singleton concurrent sets behaves the same as R, for

30

oiNg e

7 e @<©
O

Spkc c C S1 S23 ¢ ,

S t

Figure 3: The intuition for the determinism in Cpu.

actions of p-calculus. For the sake of notation instead of Ryc(y) we write R..
In the case of singleton concurrent sets instead of Ry, we just write R, when
there is no chance of confusion with the one from propositional p-calculus.
Also, we often use as shorthand for a concurrent set inside dynamic operators
just the syntax [a, b]e instead of [{a, b}]p.

Non-determinism in action logics like PDL and consequently propositional
p-calculus refers to the actions. Actions are considered non-deterministic
because from one world/state, by performing an action, the system may go
to several other worlds/states.

On the other hand deterministic variants of the above logics have been
investigated. Among the first approaches was DPDL of Ben-Ari, Halpern,
and Pnueli [BAHP81| where the intuition is that an action started in the
current state may terminate in only one final state. The determinism is
naturally defined for atomic actions. Formally, the relation R, that interprets
the atomic action a becomes a partial function p(a), i.e., for any (s, 1), (s,t') €
p(a) then ¢t = t/. Naturally a compound action may have several ending
worlds, both in the interpretation of the actions as relations [FL77| or the
actions as trajectories |Pra78|.

In the nice essay |[PT91| on Combinatory Dynamic Logic (PDL is ex-
tended with nominals; which are special constant propositions valid in only
one state) determinism is defined by an axiom:

(det) +F(a)p = lalp

The intuition is that an action may end up in several worlds but in all the
ending worlds we have the same set of propositions holding. This means that
in a Kripke structure we can merge all the arrows labelled with our action
into one arrow and all the states that the arrows end up in, into one state
(for an example consider the picture in Figure 3). Note that the authors also
relate the determinism to the atomic actions.

From the point of view of modelling contracts it is natural to adopt the
deterministic variant of an action logic. Usually the aim of a contract clause

31

is to explicitly state what is the outcome of performing an action. Non-
determinism is not desirable because we would be able to model actions
which have no clear single outcome.

The determinism that we have presented above extends to the concurrent
sets by requiring to have only one transition from one state labelled with a
concurrent set. Formally we take the approach of DPDL and restrict Roc
to assign to each concurrent set only partial functions (not relations). For
example, if (s,t),(s,t') € Ryapy, and s,t,t' € S then ¢ = t'. Note that if
(s,t) € R, and (s,t') € Ryeyp) it does not mean that for action a we have
non-determinism. This is because one may either perform action a and have
a formula holding after, or may perform the concurrent action a&b and have
some other outcome (other formula holding) in the state after. For example
one may consider O(a&b) & O(a) to generate non-determinism. A closer
analysis of the above example shows that it does not make sense to choose
between O(a&b) and O(a), since if it is my choice, then T would choose the
lest restrictive for me (i.e. O(a)), and if the choice is external (or imposed)
it may be the contrary.

Note that the action normal form ANF™ defined in Section 5.2 merges
together several arrows labelled with the same action into one arrow, which
goes well with our deterministic variant of p-calculus.

In order to translate obligation, permission and prohibition syntax of CL
into the new logic we need to extend the propositional p-calculus with a new
set P, of constant propositions. The constant propositions are interpreted,
the same as the propositional variables of P, as a set of states where the
constant proposition holds. We define the obligation constants O, € P, which
are indexed by the atomic actions of £. Similarly we define the prohibition
constants F, € P, which are also indexed by the atomic actions.

The intuition of the obligation constants is that when the system is in a
state s and 3t € S with (s,t) € R, and t € ||O,||}, then we may conclude
that in the current state s the system has the obligation to execute action a.

A first reason for having a set of obligation constants indexed by the
actions is that we want to capture in the logic the compositionallity of the
obligation construct of the CL over the concurrent actions. Another reason
for indexing the obligation constants is that in each state we need to know
which incoming actions are obligation actions; i.e. if we would have only one
constant proposition O denoting obligation then if O holds at a state ¢, and
two actions a = (s,t) and b = (s, t) enter the state ¢ then both actions have
to be obligatory actions.

For the obligation and prohibition constants we choose to have a restric-
tion on their semantics.

32

(1) fT(0(a)) = (a)O,

(2) fT(O(akeb)) = ({a, b})(Oa A Op)

(3) fT(Co®Co) = f7(C)/\fT(Co)

(4) ST(P(&fya;) = ({ar, ... an}) (N~ F,)
(5) fT(Cr@Cp) = fT()/\fT(CP)

(6) fHF(&Gyai) = [{ar, - an (A Fay)
(7) fE(F(0) V[BIF(6)) = [T (F(8)) Vv fT([B]F(9))

Table 3: The Translation Function for Co,Cp and Cr

Definition 6.2 (constants incompatibility). We define the constant propo-
sitions F, and the constant obligations O,, with a € L to be incompatible,
meaning that their interpretations as sets of states must be disjoint:

|FE N[O =0, Vae L.

The intuition drawn from electronic contracts is that we want to disallow
having in a certain world the obligation to do an action and prohibition of
the same action. Note that the above definition gives the following natural
result:

Proposition 6.1 (constants implication). We have the following implica-
tions holding:

1. O, = ~F,
2. F, = -0,

6.3 Translating the language into the logic

Because of the special status of the concurrent actions we choose to translate
both O(a) and O(a&b). Because of this and of the equation (5) of Section 5.3
we do not translate into Cu the A conjunction over obligations. Nevertheless,
we translate the choice and the dynamic box.

We consider a translation function f7 applied to formulas of CL which
generates formulas of Cpu.

Translation of the obligation to do an atomic action a is:

Translation of the obligation to do both actions a and b at the same time
uses the concurrent sets:

33

f7(0(aked)) = ({a,0})(Oa A Op)

Note that the conjunction A on the right side of the definition is the conjunc-
tion operator from propositional g-calculus (with the usual interpretation).

The two translations above can be generalized and combined into the
following concise notation:

O) = ({ar .. an}) (N1 O,) (14)

where O, are the special constant propositions of Cy, and concurrency of
only one atomic action (i.e. &]_,a;) represents the execution of only that
specific atomic action (ay).

The translation of the exclusive or @ over obligations is:

fT(Co®Co) = fT(Co) A fT(Co) (15)

There is no translation for the conjunction operator A over obligations
because this is handled by the rewriting rule (1) of Table 2.

The translation of the permission operator is similar to the translation of
the obligation operator.

P& a:) = Har- - an}) (N = Fa,) (16)
And the translation of the @& over permition is:
fT(Cr@Cp) = fT(Cp) A [T(Cp) (17)

We need to translate both prohibition over atomic actions and prohibition
over concurrent actions; i.e., F'(a) and F(a&b).

fT(F(a)) = [a]F
FT(F(a&b)) = [{a, b}]F (18)

The disjunction V over prohibition is translated naturally to its corre-
sponding operator of propositional p-calculus.

FI(E) V[BIF(y) = fT(EF(a) v f1(BIF (7)) (19)

Regarding general contract clauses C, the conjunction is translated as the
corresponding conjunction operator of propositional p-calculus, and until U,
and next () operators are translated using fix-point expressions.

34

JTCLAC) = fT(C) A fT(Cy)
fH(OC) = [any]f7(C) (20)
fr(CUcs,) pZ. fT(Co) V (f1(Cy) A [any]Z A (any)T)

where any is the special action which is interpreted as the union of all actions
in £; the intuition is doing any action.

Because « inside the dynamic box [a]C is a compound action obtained by
applying the operators of the action algebra of Section 5.1 and in Cp we have
only concurrent sets of atomic actions, we have to give separate translations
for each compound action. We give the translation of the compound actions
under the dynamic box operator from CL into Cu as follows:

= [ar,. o an}]f7(
= [ar,. - an}]f7(
FT(ledC) A f7([8
1) = 1)

C)

[2]C)
10) (21)

)
~— ~— ~—r
I

7 Properties of the Contract Language

We show here some of the good properties CL. enjoys, as well as that the
language avoids most important deontic paradoxes and the undesirable prop-
erties listed in Section 4.

Proposition 7.1 ensures that it is not needed to use negation on deontic
operators, while Proposition 7.2 establishes the standard relation between
obligations and permissions.

Proposition 7.1. The following statements are valid in CL:
o) P(a) = ~F(a)
b) F(a) = -P(a)

Proof: The proof follows easy from the translation of the P and F' operators
into the logic and the duality of the p-calculus operators [-] and (-). O

Proposition 7.2. The following statement is valid in CL:
O(a) = P(a)

35

s {a,b)

z)

Figure 4: A model M in the Cpu.

Proof: The proof follows from the similar translations of the O and P
into the logic. Moreover, the proof makes use of the Definition 6.2 of the
incompatibility of O, and F, constants. O

The following three results express that CL does not allow the derivation
of certain undesirable properties.

Proposition 7.3. The following statement does not hold in CL:
P(a) = P(a&b)

Proof: We give a counter example to show that the implication is not
possible. In our case we should give a model in the logic which is a model for
the translation of the first CL formula and is not a model for the translation
of the second CIL formula.

Consider (s,t) € R, and (s,t') € R,y with ¢ &€ || F, |3, and ¢ € || F, [T N
| Fo||5. Consider the model M in Figure 4 which has states S = {s,,t'}

two relations: one for action a, R, = {(s,t)} and one for action {a,b},
Riapy = {s,t'}. M is a model for the first formula but is not a model of the
second formula. O

Proposition 7.4. The following statement does not hold in CL:
F(a) = F(a&b)

Proof: The proof is based again on giving a counterexample. We change
the example of Proposition 7.3 such that ¢t € ||F,||Z and ¢ & || F.||L. M is
in this case a model of the first formula but is not a model of the second
formula. O

36

/
() {a,b}
%

Figure 5: A model in Cu for the CL prohibition expression F'(a).

Remark: We may give an alternative translation of the prohibition opera-
tor F' so that the above implication holds in CL. The translation we give for
F(a) respects equations (2) and (3) and represents also F'(a&b):

fT(F(@) = A\ Dl(Aaey Fa) (22)

yCL

N

where F,. are the special constant propositions and v is a concurrent set
which contains action a, i.e., v = {a} U/, o C L\ {a}. For a pictured
intuition of this translation consider Figure 5.

If we were to consider only one constant proposition F instead of the
actions indexed constants J, then the translation above is more concise and
also respects the above implication and equations (2) and (3).

f1(F(a) = \DBIF (23)

Note that this translation of prohibition goes well with the desiderata
from Broersen et al. [BWMO1|. If F'(a&b) than we can not say that F'(a)
but we may conclude that we are forbidden to do any other concurrent actions
which involves the a&b.

Proposition 7.5. The following statements do not hold in CL:
a) F(a&b) = F(a)
b) P(a&b) = P(a)

Proof: Proof proceeds similar to the proofs of the propositions above by
giving a counterexample. 0

7.1 Paradoxes

The following propositions express that the most important paradoxes of
deontic logic are avoided in our contract language, either because they are
not expressible in the language or because they are simply excluded by the
translation into the underlying logic.

Proposition 7.6. Ross’s paradox does not hold in CL.

Proof: Basically, Ross’s paradox says that it is counter intuitive to have
O(a) = O(a +b); i.e., Obligation to drink implies obligation to drink or to
kill. In CL this inference is not possible. The first formula is translated into

Cu as (a)O,. For the second formula we have O(a + b) = O(a) ® O(b) Z
(a)O,4 A (b)Oyp. We have in the logic that (a)O, 7 (a)Oq A (b)Op. O

Proposition 7.7. The Free Choice Permission paradoz does not exist in CL.

Proof: The Free Choice Permission paradox basically says that from having
one permission we may infer that we have any permission. That is: P(a) =
P(a+b) or P(a) = P(a) A P(b).

Neither of the two implications hold in our approach. The second one
is obvious. The first one is based on the second one because P(a + b) =
P(a) @ P(b) which translates in the logic with the conjunction operator. O

Proposition 7.8. Sartre’s Dilemma is not expressable in our approach.

Proof: Sartre’s dilemma can be rewritten in contracts terminology as:
Obliged to meet John and Forbidden to meet John. This is formally written
in CL as O(a) A F(a) which is a well formed formula. The translation into Cp
would result in a contradiction because we would have a state ¢t with (s,t) €
R, and t € || F,||% and t € ||O,]|5. This means that | F, |5 N [|O.|15 # 0
which is a contradiction with the semantics of the two constant propositions
in the logic (see Definition 6.2). So this paradox is dealt with at the semantic
level, in Cp. O

Proposition 7.9. The Good Samaritan paradox can not be expressed like in
SDL, which means we do not have this paradoz.

Proof: The Good Samaritan paradox uses ought-to-be and is more delicate
to transform it into our ought-to-do approach. The transformation looks
like: ¢» = O(h) which means that If Smith has been robbed then John is
obliged to help Smith. Where v is Smith has been robbed, = is if ...then,
and h is the action John helps Smith. We can not express in CL obligation

38

over conjunction of two actions that are not performed concurrently as this
paradox is expressed in SDL; i.e., we cannot express O(aAb). Also, with our
representation of the paradox we cannot infer that ¢ holds; i.e., infer that
Smith has been robbed. O

Proposition 7.10. The Chisholm’s paradoz is avoided in CL.

Proof: The propositions of the Chisholm’s paradox are expressed in CL as:
1. O(a)
2. [a]O(b)
3. [@lO(b)

Note first that formulas (1) and (3) give the CTD formula O,(a) of CL
where ¢ = O(b). The problem in SDL was that one may infer both O(b)

and O(b) holding in the same world. This is not our case because O(b) holds

only after doing action a, where O(b) holds only after doing the contradictory
action @. In the model of the above representation we can not have in the

same world both O(b) and O(b).
(]

Proposition 7.11. The Gentle Murderer paradoz is avoided in CL.

Proof: The propositions of the Gentle Murderer paradox are expressed in
CL as:

1. F(a)
2. [a]O(b)

Note first that the above two formulas give the CTP formula F,(a) where
¢ = O(b). The problem in the paradox comes from the fact that in SDL it is
possible to express the natural implication b = a which in common language
is If John kills the mother gently then it implies that John kills the mother.
This is not the case in CL because we do not have implication among actions.

On the other hand we could consider that the action of killing gently
implies the action of killing by giving a formula in CL which represents
implication of actions:

[ble = la]e (24)

The expression above intuitively says that whenever after executing action
b and formula ¢ holds then it must be the case that whenever after executing

39

the action a the same formula ¢ holds. In other words all the effects of action
b are also the effects of action a but there may be effects of action a that are
not effects of action b.

Still with this definition of implication among actions we can not infer
O(b) = O(a), which in SDL lead to the problem of the paradox. This is
because by considering action b to imply action a we have the following:

o) Z(1)0y & (a)0, £ O(a) 0
8 Example

In what follows we provide part of a contract between a service provider
and a client, where the provider gives access to Internet to the client. We
consider two parameters of the service: high and low, which denote the client’s
Internet traffic. We abstract away from several technical details as how it is
measured the Internet traffic. We will consider only the following clauses of
the contract:

1. Whenever the Internet traffic is high then the client must pay x$ im-
mediately, or the client must notify the service provider by sending an
e-mail specifying that he will pay later.

2. In case the client delays the payment, after notification he must imme-
diately lower the Internet traffic to the low level, and pay later 2 x x$.

3. If the client does not lower the Internet traffic immediately, then the
client will have to pay 3 x z$.

4. The provider is forbidden to cancel the contract without previous writ-
ten notification by normal post and by e-mail.

5. The provider is obliged to provide the services as stipulated in the
contract, and according to the law regulating Internet services.

We here formalize this partial contract, showing the CL formula for each
of the five clauses above. Let us first define the different propositions and
actions:

40

4
p
d
n
l
5
c
e
w

= the Internet traffic is high

= client pays z$

= client delays payment

= client notifies by e-mail

= client downs the Internet traffic

= provider provides the service as stipulated in the contract
= provider cancels the contract

= provider sends a written notification to the client by e-mail

= provider sends a written notification to the client by normal post

The following is the contract written in CL:

1. O(p = O(p+ (d&n)))
2. U([d, n](O(1) A [1}0(O(p) A [P]O(p))))
3. O([d. n][1]0(O(p) A [p]O(p) A [p - PIO(p))
4. O(F(c) A [w, €] P(c))
5. OO(s)
Remarks
1. Formulas 2 and 3 are rather long because we can not represent in CL

quantitative information like pay two times (2 23). Tt might be more
natural to use the & operator over actions with the same intuition as
in logics of resources (e.g. linear logic |Gir87|) and for obliged to pay
twice we could write in CL O(p&p) instead of O(p) A [p]O(p). Formulas
2 and 3 above would become:

2> O([d, n](O(1) A TIO(O(p&ep))))
3" O([p - p,n][1](00(p&plep)))

For these two formulas written in this concise syntax we give the exam-
ple model in Figure 6. The model as it is allows unwanted traces which
are pictured in dashed labeled arrows. A discussion and a solution to
this follows.

41

{p.p.p}

Figure 6: A model for statements 2" and 3’ of the contract example.

2. The above example shows the importance of being able to model check
a contract. Notice that the contract allows the client to go from low
to high Internet traffic many times and pay the penalty (2 % x$) only
once. The problem is that after the client downs the Internet traffic,
he might get a high traffic again and delay the payment till a future
moment. To avoid this situation we should add a clause specifying that
“after getting a high Internet traffic, if the client delays the payment
then he can get a high traffic again only after having paid”. In CL this
might be expressed by changing formulas 2 and 3 above:

2” O([d,n)(O() A =U (O(p) A [p]O(p)))
3” O([d, n][1](—~eU (O(p) A [p]O(p) A [p- p]O(D)))

In Figure 7 we give a model for the new statements 2”7 and 3”. Note
that the dashed arrows from the previous model have changed into the
dotted arrows, and we have also added the negative guards —¢? so that
the until U/ formulas are satisfied. Also the change in the statements
required two more states to be added to the model.

42

9

I 'f
\ @ RN T N
\x\w///‘

Figure 7: A model for the corrected example.

Model checking is out of the scope of this paper and will be consider
in future works.

. Notice that our contract language lacks the possibility of expressing

timing constraints and more involved clauses like “the client must pay
within 7 days”, or “the client is forbidden to pass more than 10 times
per month from low to high Internet traffic”, can only be expressed here
by introducing special variables and simulating a counter. For model
checking purposes we would like to include the possibility to express
these properties directly in the logic and an extension with real-time
would be desirable.

Other Approaches

In this section we contrast our approach in detail with the work by Broersen
et al [BWMO1]. Broersen et alintroduce a very interesting characterization of
obligation, permission and prohibition by following an ought-to-do approach
based on a deontic logic of regular actions. The idea is to use the pu®-calculus
as a basis and then define obligation, permission and prohibition over regular

43

expressions on actions. The main differences w.r.t. our approach are the
following.

1. There is no notion of contract language, only characterization of obli-
gation, permission and prohibition in the logic.

2. e The only deontic primitive is permission over atomic actions;

e Obligation is defined as an infinite conjunction of negation of per-
missions over actions not in the scope of the negation. We avoid
this infinite conjunction by defining both prohibition and obliga-
tion as primitive (and using the propositional constants O, and F,
at the semantic level) and prohibition as negation of permission.

e Obligation (O(-)) and prohibition (F(-)) are defined in terms of
permissions (e.g. F(a) = —P(«a)).

3. All the deontic operators are defined over regular actions, including the
Kleene star. We consider it is not natural to have starred actions under
the deontic notions, we have thus dropped it.

4. Obligation on the choice of actions is not compositional; it is composi-
tional in our case.

5. There is no conjunction over actions, i.e., it is not possible to express
concurrent actions, which is the case in our approach.

6. The approach uses disjunction over actions. We have decided to use
the exclusive or instead.

7. Negation on actions (meaning “not performing an action”) is defined
as a complement of the (infinite) set of actions. In our case the set of
actions is finite, at the language level, and we have a special definition
for negation of actions.

8. CTDs cannot be defined unless an extension of the p®-calculus is con-
sidered. In our setting both CTDs and CTPs are easily defined.

9. The semantics of obligation, permission and prohibition is given in
terms of properties over traces, instead of over an extension of the
Kripke structure as in our case.

The idea of using a propositional constant in an action-based logic for
giving semantics to the deontic notions was first presented in [Mey88|, where
the special constant V' was added to denote an “undesirable state-of-affairs”
in the current state.

44

10 Conclusion

In this paper we have presented a formal language for writing contracts, and
provided a formal semantics through the translation of the language into
a variant of the propositional p-calculus extended with concurrent actions.
The language avoids most of the classical paradoxes, and enjoys all the nice
properties listed in Section 4. To our knowledge no other work in the field has
achieved such goals. Given that our application domain is that of electronic
contracts, we have also given arguments for restricting syntactically and se-
mantically certain uses of (and relations between) obligations, permissions
and prohibitions, usually considered in philosophical and logical discussions.

10.1 Further Work

Our work is a first step towards a more ambitious task, and we believe the
formalism chosen will allow us to achieve the following goals. The first ex-
tension is to add real-time to be able to express and reason about contracts
with deadlines. Other immediate extension is the syntactic distinction in the
signature of the definition part of CL. between subjects, proper actions and
objects. This would permit to make queries (and model check properties) for
instance about all the rights and obligations of a given subject, or determine
under which conditions somebody is obliged /forbidden of performing some-
thing. We have not considered in this paper the problem of negotiation nor
monitoring of contracts. We believe these are important features of a con-
tract language which must be taken into account in future works. Concerning
actions, we got inspiration from the works on dynamic logics |[Pra76]. We
would like to deepen the study of the action algebra to make the distinction
between the intuitive meaning of conjunction under obligation, permission
and prohibition. Further investigation is also needed to characterize nega-
tion on actions, both for capturing and distinguishing the ideas of “not doing
something” and “doing something but a given action”, which are not differ-
entiated in our current approach. The use of a variant of the p-calculus as a
semantic framework for our language is not casual. The logic has nice prop-
erties: it is decidable [KP83|, has a complete axiomatic system [Wal95]|, and
a complete Gentzen-style deduction system [Wal93]. We want to explore the
proof system of the logic, and to extend existing model checkers [Bie97| to
analyze contracts as mentioned in the remarks of our example (Section 8).

We would like to be able to extract a contract monitor from the Kripke
structure of a given contract. Notice that this is not easy in general since
there are many models for a particular contract. As an example consider a
contract containing the following clauses:

45

O(pr = 00(p1))
O(¢p2 = 0O0(p2))

where ¢; and ¢, represent conditions on receiving a service with certain
quality ¢; and ¢, respectively. Depending to the quality of the service we
must pay a difference price p; or ps. It is possible to get a service with
quality ¢; once, and then with quality ¢» n times. The above conditional
obligations establish that we must pay p; only once and n times py. This
shows that the monitor should keep track of the correlation between the
different occurrences of the services and matching with the corresponding
payment. Though the run-time monitor is much more complex than the
Kripke structure, we believe that the latter can be the bases for constructing
the monitor, which would have to be enhanced with some counters and maybe
additional data structure. The addition of real-time (e.g. clocks) will simplify
many of these kind of problems.

References

[Aag01] J. Aagedal. Quality of Service Support in Development of Dis-
tributed Systems. PhD thesis, Dept. of Informatics, Faculty of
Mathematics and Natural Sciences, University of Oslo, 2001.

[AtCO6]| Carlos Areces and B. ten Cate. Hybrid logics. In P. Blackburn,
F. Wolter, and J. van Benthem, editors, Handbook of Modal
Logics. Elsevier, 2006.

[BAHP81| Mordechai Ben-Ari, Joseph Y. Halpern, and Amir Pnueli. Fi-
nite models for deterministic propositional dynamic logic. In
Shimon Even and Oded Kariv, editors, 8th Colloquium On Au-
tomata, Languages and Programming (ICALP’81), volume 115
of Lecture Notes in Computer Science, pages 249-263. Springer,
1981.

|Bie97| Armin Biere. pucke - efficient p-calculus model checking. In Orna
Grumberg, editor, 9th International Conference on Computer
Aided Verification (CAV’97), volume 1254 of Lecture Notes in
Computer Science, pages 468 471. Springer, 1997.

[BJP99| Antoine Beugnard, Jean-Marc Jézéquel, and Noél Plouzeau.
Making components contract aware. IEEE Computer, 32(7):38
45, 1999.

46

[BSO1]

[BVO3]

[BWMO1]

[Chi63]

|CKS96|

[Coh94|

[ConT1|

[Das00]

[DKR04]

[DMO1]

|Egg63|

Julian Bradfield and Colin Stirling. Modal logics and mu-calculi:
an introduction. In Handbook of Process Algebra, pages 293-330.
Elsevier, 2001.

Philippe Balbiani and Dimiter Vakarelov. PDL with intersection
of programs: A complete axiomatization. Journal of Applied
Non-Classical Logics, 13(3-4):231 276, 2003.

Jan Broersen, Roel Wieringa, and John-Jules Ch. Meyer. A
fixed-point characterization of a deontic logic of regular action.
Fundam. Inf., 48(2-3):107 128, 2001.

Roderick M. Chisholm. Supererogation and offence: A concep-
tual scheme for ethics. Ratio Juris, 5:1 14, 1963.

Ernie Cohen, Dexter Kozen, and Frederick Smith. Complex-
ity of kleene algebra with tests, the. Technical report, Cornell
University, Ithaca, NY, USA, 1996.

Ernie Cohen. Using kleene algebra to reason about concurrency
control. Technical report, Telcordia, Morristown, N.J., 1994.

John Horton Conway. Regular Algebra and Finite Machines.
Chapman and Hall, London, UK, 1971.

Aspassia Daskalopulu. Model Checking Contractual Protocols.
In Leenes Breuker and Winkels, editors, Legal Knowledge and
Information Systems, JURIX 2000: The 13th Annual Confer-
ence, Frontiers in Artificial Intelligence and Applications Series,
pages 35 47. 10S Press, 2000.

Hasan Davulcu, Michael Kifer, and 1. V. Ramakrishnan. CTR-
S: A Logic for Specifying Contracts in Semantic Web Services.
In Proceedings of WWW2004, pages 144-153, May 2004.

Aspassia Daskalopulu and T. S. E. Maibaum. Towards Elec-
tronic Contract Performance. In Legal Information Systems
Applications, 12th International Conference and Workshop on
Database and FExpert Systems Applications, pages T71-T77.
IEEE C.S. Press, 2001.

L. C. Eggan. Transition graphs and the star-height of regular
events. Michigan Mathematical Journal, 10(4):385-397, 1963.

47

[FL77|

|[For84|

[Gir87]

|Gov05|

|GROG|

[HKTO00]

[Koz80]

[Koz81]

[Koz83]

[Koz90]

[Koz94]

Michael J. Fischer and Richard E. Ladner. Propositional modal
logic of programs. In 9th ACM Symposium on Theory of Com-
puting (STOC’77), pages 286 294. ACM, 1977.

J. W. Forrester. Gentle murder or the adverbial samaritan.
Journal of Philosophy, 1981:193-197, 1984.

Jean-Yves Girard. Linear logic. Theoretical Computer Science,
50:1-102, 1987.

Guido Governatori. Representing business contracts in RuleML.
International Journal of Cooperative Information Systems,
14:181-216, 2005.

Guido Governatori and Antonino Rotolo. Logic of violations: A
gentzen system for reasoning with contrary-to-duty obligations.
Australatian Journal of Logic, 4:193 215, 2006.

David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic Logic.
MIT Press, Cambridge, MA, USA, 2000.

Dexter Kozen. A representation theorem for models of *-free
pdl. In J. W. de Bakker and Jan van Leeuwen, editors, 7th Collo-
quium on Automata, Languages and Programming (ICALP’80),
volume 85 of Lecture Notes in Computer Science, pages 351 362.
Springer, 1980.

Dexter Kozen. On the duality of dynamic algebras and kripke
models. In Logic of Programs, Workshop, volume 125 of Lecture
Notes in Computer Science, pages 1 11. Springer-Verlag, 1981.

Dexter Kozen. Results on the propositional mu-calculus. Theor.
Comput. Sci., 27:333 354, 1983.

Dexter Kozen. On kleene algebras and closed semirings. In
Branislav Rovan, editor, Mathematical Foundations of Com-
puter Science (MFCS’90), volume 452 of Lecture Notes in Com-

puter Science, pages 26—47. Springer, 1990.

Dexter Kozen. A completeness theorem for kleene algebras and
the algebra of regular events. Information and Computation,
110(2):366-390, 1994.

48

[Koz97]

[KP83|

[Mal26]

[McNO6]

[Mey88]

[MJSSW04]

[PDKO05]

[Pnu77|

|Pra76|

[Pra78|

Dexter Kozen. Kleene algebra with tests. ACM Transac-
tions on Programming Languages and Systems (TOPLAS’97),
19(3):427 443, 1997.

Dexter Kozen and Rohit Parikh. A decision procedure for the
propositional p-calculus. In Edmund M. Clarke and Dexter
Kozen, editors, 4th Workshop on Logics of Programs, volume 164
of Lecture Notes in Computer Science, pages 313 325. Springer,
1983.

Ernst Mally. Grundgesetze des Sollens. Elemente fer Logik des
Willens. Graz: Leuschner & Lubensky, 1926.

Paul McNamara. Deontic logic. In Dov M. Gabbay and John
Woods, editors, Handbook of the History of Logic, volume 7,
pages 197-289. North-Holland Publishing, 2006.

J.-J. Ch. Meyer. A different approach to deontic logic: Deontic
logic viewed as a variant of dynamic logic. Notre Dame Journal
of Formal Logic, 29:109-136, 1988.

Carlos Molina-Jiménez, Santosh K. Shrivastava, Ellis Solaiman,
and John P. Warne. Run-time Monitoring and Enforcement of
Electronic Contracts. FElectronic Commerce Research and Ap-
plications, 3(2), 2004.

Adrian Paschke, Jens Dietrich, and Karsten Kuhla. A Logic
Based SLA Management Framework. In 4th Semantic Web Con-
ference (ISWC 2005), 2005.

Amir Pnueli. Temporal logic of programs, the. In Proceedings of
the 18th IEEE Symposium On the Foundations of Computer Sci-
ence (FOCS™17), pages 46 57. IEEE Computer Society Press,
1977.

Vaughan R. Pratt. Semantical considerations on floyd-hoare
logic. In IEEE Symposium On Foundations of Computer Science
(FOCS’76), pages 109 121, 1976.

Vaughan R. Pratt. A practical decision method for propositional
dynamic logic: Preliminary report. In 10th ACM Symposium on
Theory of Computing (STOC’78), pages 326 337. ACM Press,
1978.

49

[Pra79|

|[Pra80)|

[Pri58]

[PS96]

[PS97]

[PT85]

[PTY1]

[Ros41]
[SGO5]

[TPO5|

[Wal93]

[Wal95]

Vaughan R. Pratt. Process logic. In 6th Symposium on Prin-
ciples of Programming Languages (POPL’79), pages 93-100.
ACM, 1979.

Vaughan R. Pratt. Dynamic algebras and the nature of in-
duction. In 12th ACM Symposium on Theory of Computing
(STOC’80), pages 22 28. ACM, 1980.

A. N. Prior. Escapism: The logical basis of ethics. In A. L.
Melden, editor, Essays in Moral Philosophy, volume 33 of Jour-

nal Symbolic Logic, pages 135 146. Association for Symbolic
Logic, 1958.

Henry Prakken and Marek Sergot. Contrary-to-duty obliga-
tions. Studia Logica, 57(1):91 115, 1996.

Henry Prakken and Marek Sergot. Dyadic deontic logic and
contrary-to-duty obligation. In Donald Nute, editor, Defeasi-
ble Deontic Logic, pages 223 262. Kluwer Academic Publishers,
1997.

Solomon Passay and Tinko Tinchev. PDL with data constants.
Information Processing Letters, 20:35 41, 1985.

Solomon Passay and Tinko Tinchev. An essay in combinatory
dynamic logic. Information and Computation, 93:263 332, 1991.

Alf Ross. Imperatives and logic. Theoria, 7:53 71, 1941.

Ishu Song and Guido Governatori. Nested rules in defeasible
logic. In RuleML, volume 3791 of Lecture Notes in Computer
Science, pages 204 208, 2005.

Vladimir Tosic and Bernard Pagurek. On Comprehensive Con-
tractual Descriptions of Web Services. In IEEFE International
Conference on e-Technology, e-Commerce, and e-Service, pages
444 449. TEEE, 2005.

Igor Walukiewicz. A Complete Deductive System for the p-
Calculus. PhD thesis, Institute of Informatics, Warsaw Uni-
versity, 1993.

Igor Walukiewicz. Completeness of Kozen’s axiomatisation of
the propositional u-calculus. In 10th IEEE Symposium on Logic

50

in Computer Science (LICS’95), pages 14-24. IEEE Computer
Society, 1995.

[Wri51| Georg Henrik Von Wright. Deontic logic. Mind, 60:1-15, 1951.

[Wri99] Georg Henrik Von Wright. Deontic logic: A personal view. Ratio
Juris, 12(1):26 38, 1999.

51

